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Abstract. In layer-based direct deposition Additive Manufacturing (AM), the geometry of thin-
walled structures fits particularly well with path-planning methods, where the print head’s movement
is optimized to follow continuous deposition paths. Despite this potential, reliably assessing the print-
ability of such structures and embedding these assessments into computational design optimization
remains a challenge. To address this gap, we propose a Shape Optimization (SO) Method based on
surface energies that modifies an existing surface-based geometry, defined within prescribed closed
boundary curves, to enhance the printability of the given design while preserving the fixed bound-
aries. The optimization relies on a scalar field and surface parametrization to introduce a surface
energy functional, which models the distribution of isolines corresponding to non-continuous print-
ing paths. Printability is linked to the uniformity of these isoline distributions across the surface,
and a fabrication metric is defined to evaluate design feasibility. Sensitivity analysis is performed
with automatic differentiation, combined with spectral filtering regularization, and optimization is
carried out in a nested loop for both the parametric field and the shape. The outcome is a surface-
based design with improved fabrication feasibility for layer-based direct deposition AM, along with
the corresponding isolines that define the printing paths. The method is demonstrated on different
geometries, including an industrial case, and validated using Fused Deposition Modeling (FDM).

1 INTRODUCTION
1.1 Application, Motivation and Framework

In the realm of industrial product design, Shape Optimization based only on path-planning can en-
hance printability for layer-based direct deposition Additive Manufacturing (AM) processes, which
encompass Fused Deposition Modeling (FDM), Wire Arc Additive Manufacturing (WAAM), con-
crete, and clay 3D printing. In this framework, using smooth and continuous surfaces within pre-
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scribed boundaries is highly beneficial for material and geometry complexity reduction. For these
shapes, non-planar printing-paths are advantageous, as they allow for boundaries preservation, avoid-
ing further post-processing manufacturing operations. Additionally, they reduce the staircase effect,
since the non-planarity accommodates the layer directly onto the desired surface, minimizing slicing
approximation of the shape, especially when combined with layer-orthogonal-printing orientation.
Moreover, they lessen the need for supports since each layer conforms to the surface and can achieve
a greater interlayer contact area than conventional planar printing. Furthermore, they improve surface
quality, thanks to the higher degrees of freedom in adapting to the desired shape in a 3D space, and en-
hance continuous 3D printing-paths, by simplifying the spiralization procedure from non-continuous
sets of printing-paths.

1.2 Challenges, Research Question and Proposal

Two main challenges can be highlighted in this context. First, for a given 3D surface it is non-
trivial to define an optimal path-height distribution, such that it is smooth, continuous within the layer,
minimizes support structures, captures all the geometrical features, or generally suits some desired
path-planning properties. Secondly, it is often the case that, even for an optimal path-distribution,
the non-planar path-planning strategy may be incompatible with the specific machine capabilities
(e.g. dimension of the nozzle and expansion properties of the material), which means that the design
feasibility must be checked against machine layer-height constraints. In fact, by operating within a
layer-height range, the planned path and therefore the computed layer-height 2 must fit into the limits
of the minimum (/) and maximum (h) layer-height printable by the specific machine (Figure .
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Figure 1: Research Question. (a) On an initial surface geometry, a printing-path and layer-height distribution are derived.
By considering the deposition modulation m, the feasibility condition can be expressed as m = h/hyin < hy/hr. In
this setup, areas with m > 1.6 are considered unfeasible. (b) The initial surface (dark blue) must therefore be updated
(dark red) such that the shape can become feasible. (c) The optimized shape and printing-path respect the lower (hy,) and
upper (hyr) layer-height boundaries. Feasibility is reflected by the absence of regions with m > 1.6.

Therefore, our research question states: given an initial geometry, how can we simultaneously
optimize both the shape and the printing path for layer-based direct deposition AM?

To optimize path-height distribution, we propose the usage of non-planar evenly spaced printing-
paths within machine limits (hz, hy). To bridge the gap between design feasibility and machine
constraints, we realize a coupled nested-loop optimization where both shape and printing-paths in-
form each other iteratively. The full workflow is schematized in Figure 2]
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Figure 2: Workflow Overview. On an initial shape, a path-distribution is realized and a feasibility metric called energy
density E'r allows to identify the non-feasible area (red) and serves as a foundation for a Simultaneous Shape and Printing-
Path optimization preserving the boundaries. The optimized shape is now printable.

2 STATE OF THE ART

Path-planning and relative optimization have been successfully explored for different layer-based
direct deposition AM technologies. Although surface informed, no shape modification is considered
in these applications. Some attempts in performing shape optimization tailored to manufacturability
have been proven promising for improving build direction [[1] and respecting feature size, but path-
planning has not been considered as a main parameter. Topology optimization, on the other hand, has
been widely explored in relation to manufacturing constraints such as build orientation [2], but also —
closer to path-planning — to space-time fabrication sequence and deposit direction [3]. However, 3D
surfaces are typically not addressed. There is, therefore, still a substantial gap in developing co-design
approaches that simultaneously optimize shape and fabrication path-planning.

3 METHODOLOGY

We present our method for simultaneous shape and printing-path optimization of thin-walled struc-
tures. The full detailed pipeline is depicted in Figure [3] and the optimization implementation is de-
scribed by Figure [d]

3.1 Assumptions

From a geometric perspective, we define the shape design space as a 2-manifold with boundaries
embedded in the Euclidean space IR3. This space represents thin-walled structures that can be printed
using a single bead. In a discrete setting, this design space is represented by a 2-simplicial complex,
specifically a triangle mesh.

From a printing-path-manufacturing perspective, we adopt a purely geometrical approach, without
any structural, thermal analysis or any other complex aspects. As the layering conveys the most
important information about fabrication, it is therefore the only fabrication parameter considered in
the optimization. The manufacturability objective translates the need for equally spaced layers and
therefore the feasibility condition must ensure that the local layer-height £ is within the machine
capability, i.e. hy < h < hy. We assume that the modulation capability condenses the relevant
machine limitations and is defined as = hy;/hy. Furthermore, the layer is considered with a circular
cross-section and treated as 3D polyline, and a node-based shape optimization allows for more design
freedom.
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Figure 3: Full Workflow. The shape optimization problem starts with the input mesh and boundaries. A fabrication field
is defined, which simply acts as a surface paramterization. The printing-path spacing is then computed in three main steps
and a functinoal named Energy Density is computed. Sensitivities finally allow for the shape a printing-paths updates.
The method is independent from any base-plate orientation. The base-plate reference frame is highlighted only for the
final step, where it is fundamental.
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Figure 4: Optimization loops. The nested loop optimization allows for the definition of the optimal printing-path for
the current iteration (orange) according to fabrication gradient, and successively for the update of the shape according to
shape gradients (blue).

3.2 Scalar-Field-Based Path-Planning

As in existing approaches [4], given an initial surface with start and end boundaries of the printing
(Figure[3p), we use a vertex-based scalar field (Figure [3b) to represent printing-paths on a thin-walled
surface €2 (Figure[3f). This mesh attribute, denoted as the fabrication field ¢ and defined at the nodes
Zn, describes printing-paths as non-intersecting level sets:

s(9) = {a; € | d(x;) = 6} (1)

The fabrication field acts as an interpolator, between Start and End boundaries of the printing
(ps = —1,¢n = +1) and it adapts to the number of printing-paths by resampling them. It provides
information on deposit height and it bridges the spatial geometric space and the fabrication space
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(Figure[5). As a consequence, it allows to derive printing-paths which lie on the surface to preserve
shape fidelity and interpolate between given start and end boundaries to enforce boundary conformity.
Furthermore, they do not intersect to prevent material overlap or collisions, and they are continuous
within the layer to ensure trajectory integrity and discontinuous across the surface. Spiralization
can be performed in post-processing through linearization of subsequent isolines, which are non-
planar to adapt to the boundary curves without staircasing them. Additionally, from a computational
perspective, our approach represents printing paths as two types of information: (1) spatial deposition
trajectory, meaning the geometric course of the nozzle as it moves across the surface, and (2) material
deposition modulation, meaning the local variation in the amount of material deposited along that
path. In the optimization, the nozzle is always assumed to remain tangential to the surface; only the
frame orientation around the nozzle’s vertical axis (z-axis rotation) is excluded. Both trajectory and
modulation are derived directly from the scalar field ¢ and stored as nodal values on the surface.
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Figure 5: Correspondence between Spatial Geometry and Fabrication Field. Global geometry representation (left), ele-
ment representation (right). Each path-isoline p corresponds to a single scalar value of the fabrication field ¢. The points
of the geometries where the gradient of the fabrication field vanishes are the singularity points, where more than a single
isoline corresponds to one ¢* value. Those points identify a branch splitting/rejoining and allow for skeletonization of
the 3D surface. Since triangular elements with linear shape functions are used, a line within the element of the mesh
corresponds to a point in the fabrication field, and equidistant isolines within the element correspond to equispaced points
of the fabrication field.

Continuity of the path is ensured by interpolating vertex values of ¢ using barycentric shape func-
tions &, ), in the same manner as vertex coordinates are usually interpolated:

zi(m, €,n) = an w(m, €,m) )
¢(m, &) = Zczsn (m,&,m) 3)

Boundary-conforming printing-paths are enforced by prescribing constant values at the bound-
aries:
On = da, Vap €4 4)
The interior values of the fabrication field are then computed to smoothly interpolate the prescribed
boundary constraints. Common choices include harmonic or biharmonic functions [3]], which solve
for interior values based on boundary conditions and can serve as effective preconditioners for the
fabrication field.
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A path following the gradient direction (Figure [3c) of ¢ moves orthogonally to the contours. The
distance between two such points z;(¢) and x;(¢;) along the path is:

-1

1 || O é1 ¢
= |5 o= [ s )
$o 99 2 0 O 2
For level sets s(@) spaced at constant intervals Aé, the inverse gradient magnitude k = ‘ % )
12

indicates the local printing-path spacing (Figure [3d). From this printing-paths can be extrapolated as
isolines and the modulated deposit height computed (Figure [3g).

3.3 Printing-path Feasibility

While the fabrication field approach yields continuous, non-intersecting, and boundary-conforming
printing-path, it does not inherently ensure fabrication feasibility. In practice, the deposition height
h is limited by machine-specific bounds h € [hp, hy]. To capture the machine’s ability to modulate
print height, we define the modulation capability ratio as:

= (©)

Ui

The modulation capability converts the line-spacing field % into a density distribution acting as a
converter from shape to printing path information. Since printing-path spacing is proportional to the
inverse gradient magnitude of the fabrication field, the spacing constraint thus translates to:

ke [kL, kU] (7)

Assuming a mean-centered, symmetric distribution of £ over the domain €2, we define the follow-
ing relations:

A= [ dw = A (8)
>
1%—1 kd ~1Zk:A 9)
TA T AL
i, _n—1
k:L_k:(l n+1) (10)
_ 77—1
ky=k(1+ 21— 11
v (+n+1) (h

where A,, is the area and k,,, the inverse gradient magnitude of the fabrication field at face m. As we
use bilinear finite elements, the gradient is constant within the element, which results in constant line
spacing at each face. For an arbitrary fabrication field, the values k(z;) € R™ may violate the feasible
bounds. To quantify this deviation and enable optimization, we introduce an objective function £
penalizing values outside [ky, k], suitable for use in gradient-based optimization. Areas below or
over the feasible bounds would require respectively an over or under deposition of material to be
manufactured (e.g. due to nozzle size), while areas within the limits can be printed by exploiting the
full layer-height range of the machine (Figure [6)).
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Figure 6: Feasible, over and under deposition areas according to the machine layer-height constraints kz, and ky (left).
Modulation Surface Energy functional (right). Density distribution (blue), surface energy density (red), modulation sur-
face energy function (dashed red).

3.4 Modulation Surface Energy

To enable gradient-based optimization methods, we define a surface energy functional that penal-
izes local deviations from feasible printing-path spacing. This energy is aggregated by integrating a
surface energy density f(k) over the domain, to compute the Modulation Surface Energy as:

By = /Q flk)dw sy {f(k)}bm A (12)

Since  is strictly positive, we define the energy density f (k) in logarithmic scale to symmetrically
penalize squared deviations from the global mean k:

f(E) = (In(k) — In(k))? = k*In? (%) (13)

where k? is used for global rescaling to ensure that f”(k = k) remains constant. The logarithmic
scale is also necessary to handle singular points where the gradient magnitude approaches zero and,
therefore, & — oo. Notice that while f(k) — oo as k — oo, the gradients remain stable at singular
points, with f'(k) — 0.

This expression results in a surface energy equal to zero only when all spacing values are equal.
However, such a hard constraint does not fully utilize the machine’s modulation capability. To allow
bounded variation in &k within the feasible range [k, ky|, we apply a piecewise rescaling using min
and max operators:

~ k

k,, = P [min(k,,, k) + max(k,, kv) — ku] (14)
L

This transformation neglects contributions from values within the feasible range while penalizing

those outside it. The final surface energy (Figure [6] right) is then evaluated as:

Pe = [ 1o~ 3B} A 15)

7
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3.5 The Optimization Problem

The optimization problem is formulated as following:

min  E o
WLt Tpni, On
st xp =10 (16)

ni

¢n:_1a vne{O‘l’mGFs}
On=41, Vne{o|z,; €N}

It is solved with gradient steepest descent, optimizing internally to the loop for the design variables
¢n and externally for x,,; as shown in Figure ] The surface energy is generally non-zero (Figure [3f),
until the problem converges.

3.6 Sensitivity Analysis

Due to the algebraic complexity of computing gradients in geometric embeddings, we rely on
Automatic Differentiation (AD) to obtain sensitivities (Figure [7). AD provides exact gradients and
allows implementation using standard computational frameworks. For this to be possible, the evalua-
tion of the Modulation Surface Energy must be expressed as a forward pass through a computational
graph. This structure enables efficient backward evaluation of the gradients with respect to both
spatial (Figure [3jg) and fabrication (Figure [3h) design variables:

OER

5 (w.r.t. vertex spatial coordinates) (17)
Tni

oF

8¢F (w.r.t. vertex fabrication values) (18)

OBy

Figure 7: Forward (top) and Backward (bottom) AD pass for sensitivities computation.

As described in Section the energy density and its gradients vanish in regions where k €
[kp, ky]. While this reflects feasibility, it can lead to stagnation during optimization, as no update
is driven in those regions. To address this, we introduce a leaky energy density that supplements
the original energy with a small, non-zero gradient within the feasible range, and constant gradients
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outside of the feasible range:

k(kp = kv) +Co, if k < kr
fleaky(k) — (k i 01)27 if kL S k S kU (19)
k(ky — k) 4+ Co, itk > ky

1

Co = Z(k?] + 2kyky, — 3k7) (20)
1 _

Ci = §(kU+kL) =k 21
1

Cy = Z(k:i + 2kpky — 3kE) (22)

The total energy density is then given by:

FOU k) = F(k) + wf (k) 23)
with w controlling the strength of the leaky component.

3.7 Filtering

Particular care must be taken with the representational capacity of the sensitivity fields used to
update the shape and printing paths. Triangular meshes with bilinear shape functions yield surface and
field representations that are continuous but not differentiable. Without regularization, optimization
may lead to sharp discontinuities or low smoothness in both the shape and the printing-paths on it. We
mitigate this by applying a spectral filtering. The main goal is to realize a compression of the design
variables using a projection and reconstruction as a low-rank approximation for smoothing gradients
according to dominant modes. A visual representation is depicted in Figure [§]

— i— ' GJ- - — L
Encode to Truncated Decode to
“ spectral Basis l ‘ I : l Original Space
—
o oW
Gradient Field with ’ivw v = 3 Regularized
Discretization Artifacts &~ "o =8 Gradient Field

Figure 8: Regularization based on the eigenvectors of the Discrete Laplacian Operator.

The eigenvectors form an orthonormal basis with respect to the Euclidean inner product, analogous
to a Hilbert space basis in the continuous setting. This basis provides a change of coordinates for
representing the sensitivity fields on which features are ordered depending on their size. To reflect
the preservation of boundaries in the optimization steps, the nodes at the boundaries are clamped by
adding a stiffness « to them.

L= Ly +a, ifm :'n and x,, € I, 24)
Lo, otherwise.

9
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N
L* = Z M\, Uy, @ Uy (25)
n=0

where L is the cotangent Laplacian Matrix, L* the modified Laplacian matrix with clamped bound-
ary nodes and v,, and )\, its eigenvectors and eigenvalues respectively. The eigenvectors allow an
encoding of the sensitivity field as the projection w,, of the gradient g onto the eigenvectors v,, of L:

Wn = <ga Un> (26)

The reconstructed gradient g is evaluated through the truncated decoding, on which the features
corresponding to the eigenvectors v,,, n > m are removed:

m<N
g=> wo, 27)
n=0

This filtering technique enables some important properties. The results are almost mesh-independent,

as they are not influenced by symmetries or uniformity in the tessellation. The refinement still plays a
role. Furthermore, the introduction of the hyper-parameters of the eigenvalues into the optimization,
allows for a more intuitive control on the optimization, since the number of eigenvalues for shape gra-
dient IV, directly influences the smoothness of the optimized shape (features’ size), while the number
of eigenvalues for fabrication gradient N, is responsible of the smoothness of the printing-paths. The
full workflow is summarized and shown on the example of a more complex geometry, such as the
vase in Figure 9]
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Input Mesh and Fabrication Fabn'canon F.md Line Spacing _r:ll:;gd ;i sd Energy Sensitivities Optimized
Boundaries Field Spatial Gradient Field wit odu ate Density P
Magnitude Deposit Height Shape and
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x, T ¢ \ ngami ; k=g h=rgmo  Er

Y
Printing-Path Spacing

Figure 9: Method Summary. From the input Mesh and Boundaries, the Optimised Shape and Printing Paths are derived
for a vase example.

4 RESULTS AND DISCUSSION

The results applied to the example of the skewed cylinder can be seen in Figure 3j. Depending on
the modulation capability 7, Figure[I2]shows that the extent of modifications needed must adapt to the
layer-height fabrication constraint, meaning that a nozzle with a higher printability range will require
less adaptation of the original design, while for very limited printability range more modifications are
needed to homogeneously distribute the paths over the surface, such that the local geodesic distances
between subsequent priniting-paths are as uniform as possible considering the machine limitations.

Further examples, including an industrial application, are collected in Figure[T1] The method has
been validated by printing with FDM the skewed cylinder for = 1.3 in Figure[12]

10
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Figure 10: Results on the skewed cylinder for different modulation capability values.

Open

Single-branch

Multi-branch

(h)

Figure 11: Results. Several examples shows the optimization of single-branch, multi-branch open and close geometries.
For multi-branch, more than one segmentation is needed.

S CONCLUSIONS, LIMITATIONS AND OUTLOOK

We presented a novel methodology that realizes a simultaneous optimization of shape and printing-
paths. In our optimization framework, a computational graph enables the evaluation of design gradi-
ent fields, while the introduction of a customized filtering allows for the design variable compression
achieved through spectral projection of the sensitivities. Manufacturability has been simplified, ac-
counting only for the printing-paths fabricability and aiming at an evenly spaced layer-height distri-
bution within the machine layer-height range expressed as lower (k) and upper boundary (h). Path-
planning feasibility, therefore, has been evaluated using a scalar objective function, named Modula-
tion Surface Energy, which models the uniformity in layer-height all over the surface, accounting for
boundary preservation, taking advantage of non-planar printing-path. Key properties of our method-
ology are the boundary and shape features preservation, and an active smoothness control of both
shape and printing-path with the hyperparameters of the eigenvectors number used in the filtering.

Some limitations of the method can be highlighted. Regarding manufacturability, considering

11
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only path-planning and adopting a purely geometrical approach captures only limited aspects of the
fabrication. For example, collisions or singular positions in robot kinematics are not perceived by the
objective function. Figure[TTk, in fact, shows a computationally valid result that, despite minimizing
the objective function, may not be manufacturable. The optimization may be critical as we deal with
high non-convexity, and we have a gradient post-processing dependency. For topologically complex
designs, the hyperparameter tuning process becomes increasingly challenging.

Although we tested the method on a simple geometry, further testing and validation are needed.
The manufacturability modeling must be improved with additional fabrication constraints, such as
frame orientation, collisions, design space constraints, and more complex physics, such as stress and
thermal analysis. The optimization framework that we built, thanks to its modularity, can be easily
extended with multiple constraints optimization.
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Figure 12: Results on the skewed cylinder for = 1.3. Initial geometry (a) is outside the feasible layer-height range
(unfeasible). After the optimization (b) dm < n everywhere (feasible) and can be printed (c).

6 CREDITS

The co-first authors, F. Schito and J.D. Meza Zeron, equally contributed to this paper, which has
been funded by BMW AG and the TUM Georg Nemetschek Institute.

REFERENCES

[1] E. Ulu, N. Gecer Ulu, W. Hsiao, and S. Nelaturi, “Manufacturability oriented model correc-
tion and build direction optimization for additive manufacturing,” Journal of Mechanical Design,
vol. 142, no. 6, p. 062001, 2020.

[2] J. Olsen and I. Y. Kim, “Design for additive manufacturing: 3d simultaneous topology and build
orientation optimization,” Structural and Multidisciplinary Optimization, vol. 62, no. 4, pp. 1989—
2009, 2020.

[3] V. Mishra, C. Ayas, M. Langelaar, and F. Van Keulen, “Simultaneous topology and deposition
direction optimization for wire and arc additive manufacturing,” Manufacturing Letters, vol. 31,
pp. 45-51, 2022.

[4] X. Chen, G. Fang, W.-H. Liao, and C. C. Wang, “Field-based toolpath generation for 3d print-
ing continuous fibre reinforced thermoplastic composites,” Additive Manufacturing, vol. 49,
p. 102470, 2022.

[5] O. Stein, “A quick introduction to the laplacian and bilaplacian through the theory of partial
differential equations,” in SGP 2021 Graduate School, 2021.

12



	INTRODUCTION
	Application, Motivation and Framework
	Challenges, Research Question and Proposal

	STATE OF THE ART
	METHODOLOGY
	Assumptions
	Scalar-Field-Based Path-Planning
	Printing-path Feasibility
	Modulation Surface Energy
	The Optimization Problem
	Sensitivity Analysis
	Filtering

	RESULTS AND DISCUSSION
	CONCLUSIONS, LIMITATIONS AND OUTLOOK
	CREDITS

