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Abstract 

 

Abstract (English) 

 

Shape optimization is a largely studied problem in aeronautics. It can be applied to many 

disciplines in this field, namely efficiency improvement of engine blades, noise reduction of 

engine nozzles, or reduction of the fuel consumption of aircraft. Optimization for general 

purposes is also of increasing interest in many other fields. 

 

Traditionally, optimization procedures were based on deterministic methodologies as in 

Hamalainen et al (2000), where the optimum working point was fixed. However, not considering 

what happens in the vicinity of the defined working conditions can produce problems like loose 

of efficiency and performance. That is, in many cases, if the real working point differs from the 

original, even a little distance, efficiency is reduced considerably as pointed out in Huyse and 

Lewis (2001). 

 

Non deterministic methodologies have been applied to many fields (Papadrakakis, Lagaros and 

Tsompanakis, 1998; Plevris, Lagaros and Papadrakakis, 2005). One of the most extended non-

deterministic methodologies is the stochastic analysis. The time consuming calculations required 

on Computational Fluid Dynamics (CFD) has prevented an extensive application of the 

stochastic analysis to shape optimization. Stochastic analysis was firstly developed in structural 

mechanics, several years ago. Uncertainty quantification and variability studies can help to deal 

with intrinsic errors of the processes or methods. The result to consider for design optimization is 

no longer a point, but a range of values that defines the area where, in average, optimal output 

values are obtained. The optimal value could be worse than other optima, but considering its 

vicinity, it is clearly the most robust regarding input variability. 

 

Uncertainty quantification is a topic of increasing interest from the last few years. It provides 

several techniques to evaluate uncertainty input parameters and their effects on the outcomes. 

This research presents a methodology to integrate evolutionary algorithms and stochastic 

analysis, in order to deal with uncertainty and to obtain robust solutions.   
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Resum (Català) 

El problema d‘optimització de perfils aerodinàmics és un dels més estudiats dins de l‘àmbit de 

l‘aeronàutica. Pot ser aplicat en múltiples disciplines, com la millora d‘eficiencia en àleps de 

turbines, reducció de soroll en toveres de motors, o la reducció del consum de fuel de l‘avió. 

L‘optimització en general és un camp de creixent interès en molts altres camps. 

 

Tradicionalment, els procediments d‘optimització estaven basats en metodologies deterministes 

com ho fan a Hamalainen et al (2000), de manera que resultaven en un punt òptim de 

funcionament. De totes maneres, si no es considera què passa al voltant d‘aquest punt de treball 

pot sorgir un problema. Aquest problema pot provocar, en molts casos, que si el punt de treball 

varia lleugerament de les condicions del punt òptim, encara que sigui una distància mínima, 

l‘eficiència es vegi reduïda en gran mesura com s‘indica a Huyse i Lewis (2001).  

 

Els procediments no-deterministes han estat aplicats en molts camps (Papadrakakis, Lagaros and 

Tsompanakis, 1998; Plevris, Lagaros and Papadrakakis, 2005). Un dels mètodes no-deterministes 

més estesos és l‘anàlisis estocàstic. Però el cost de computació dels anàlisis de fluido-dinàmica 

(CFD) han evitat fins ara la seva extensa implantació a l‘optimització de forma. Inicialment, 

l‘anàlisi estocàstic va ser desenvolupat en el camp de la mecànica estructural. La quantificació de 

la incertesa i els estudis de variabilitat poden ajudar a tractar amb els errors intrínsecs dels 

processos i mètodes utilitzats. El resultat deixa de ser un punt per convertir-se en un rang de 

valors que defineix l‘àrea òptima. Aquesta àrea pot contenir valors pitjors que l‘òptim 

determinista, però considerant l‘àrea total el resultat és millor i més robust en front de la 

variabilitat de les entrades. 

 

La quantificació de la incertesa és un tema d‘interès des de fa relativament pocs anys. Les 

tècniques de quantificació de la incertesa permeten avaluar incerteses en els paràmetres d‘entrada 

i els seus efectes en els resultats. Aquest treball d‘investigació presenta una metodologia que 

integra algoritmes evolutius i anàlisis estocàstic  per treballar amb incerteses i obtenir solucions 

robustes. 
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Resumen (Castellano) 

El problema de la optimización de perfiles aerodinámicos es uno de los más estudiados dentro 

del ámbito aeronáutico. Puede ser aplicado en múltiples disciplinas, como la mejora de eficiencia 

en álabes de turbinas, la reducción del ruido en toberas de motores, o la reducción del consumo 

de combustible del avión. La optimización en general es un campo de creciente interés en otras 

muchas disciplinas. 

 

Tradicionalmente, los procedimientos de optimización estaban basados en metodologías 

deterministas como las descritas en Hamalainen et al (2000), de manera que resultaban en un 

punto óptimo de funcionamiento. De todas formas, si no se considera qué pasa entorno de este 

punto de trabajo puede surgir un problema. Este problema puede provocar, en muchos casos, que 

si el punto de trabajo varia ligeramente de las condiciones del punto óptimo, aun siendo una 

distancia mínima, la eficiencia se vea reducida en gran medida como se indica en Huyse and 

Lewis (2001).  

 

Los procedimientos no-deterministas han sido aplicados en muchos campos (Papadrakakis, 

Lagaros and Tsompanakis, 1998; Plevris, Lagaros and Papadrakakis, 2005). Uno de los métodos 

no deterministas más utilizados es el análisis estocástico. Pero el coste computacional de los 

análisis de fluido-dinámica (CFD) ha evitado hasta la fecha su aplicación extensiva a la 

optimización de forma. Inicialmente, el análisis estocástico fue desarrollado en el campo de la 

mecánica estructural. La cuantificación de la incertidumbre y los estudios de variabilidad pueden 

ayudar a tratar con los errores intrínsecos de los procesos y métodos utilizados. El resultado deja 

de ser un punto para convertirse en un rango de valores que definen el área óptima. Esta área 

puede contener valores peores que el óptimo determinista, pero considerando el área total el 

resultado es mejor y más robusto ante la variabilidad de las entradas. 

 

La cuantificación de la incertidumbre es un tema de interés desde relativamente poco tiempo 

hacia aquí. Las técnicas de cuantificación de la incertidumbre permiten evaluar incertidumbres en 

los parámetros de entrada y sus efectos en los resultados. Este trabajo de investigación presenta 

una metodología que integra algoritmos evolutivos y análisis estocástico  para trabajar con 

incertidumbres y obtener soluciones robustas. 
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List of Notations 

AoA: Angle of attack 

bi,n(t): Bezier polynomials 

Cd: Coefficient of drag 

Cdp: Coefficient of pressure drag 

Cl: Coefficient of lift 

Cm: Coefficient of momentum 

ci(x): Constraint function for optimization 

ξ: random variable 

h: Horizontal damping  

 :Angular damping 

fi(x): Objective function for optimization 

hci(t):Elastic vertical displacement of the profile, dependant on time. This is the 

displacement component of flutter.  

LHS: Latin Hypercube sampling 

µ: Statistical mean value 

µr: Wing mass ratio 

M: Mach number 

MC: Monte-Carlo  

Nt: time steps for the numerical simulation of the flutter phenomena  

PCM: Probabilistic Collocation Method 

PDF: Probability density function 

i(t): Elastic angular oscillation of the profile, dependant on time. This is the angular 

component of flutter. 

σ: standard deviation 

x_cg: x-coordinate of the centre of gravity location 

x_ea: x-coordinate of the elastic axis position 

ωi(ξ): stochastic term 

ttx: duration of taxi, fixed to 5 minutes. 

ffr: fuel flow reference; minimum fuel flow of each engine (kg/h). 

SE: single engine taxi; 0= taxi with only one engine, 1= taxi with two engines 

thtx: throttle adjustment (% of full throttle). 

vto: take-off speed (kt) 

lr: runway length (m) 
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hto: altitude of departure airfield (ft) 

wto: wind during take-off (kt) 

AA: Acceleration altitude (ft) 

CR2AA: climb ratio to acceleration altitude (ft/min) 

vaa: Mach number at acceleration altitude  (% Mach) 

CIaa: Cost Index during flight to acceleration altitude 

thaa: throttle position during flight at acceleration altitude 

CR2C: climb ratio to cruise altitude (ft/min) 

CA1: Cruise altitude 1 (ft) 

wc1: wind at cruise level 1 (kt) 

vc1: Mach number at cruise level 1 

dod: distance from departure to destination airfields (NM) 

CIc1: cost index during cruise 1 

CRCC: climb ratio to cruise altitude 2 (ft/min) 

CA2: Cruise altitude 2 (ft) 

wc2: wind at cruise level 2 (kt) 

CIc2: cost index during cruise 2 

CRFA: descent ratio to final approach altitude (ft/min) 

hd: altitude of the destination airfield (ft) 
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1 Introduction 

 

Optimization is becoming a daily task in engineering departments. It is of increasing 

importance thanks to the recent improvements regarding methods and applications. 

Optimization methods can be applied to almost all engineering fields, and to most 

engineering design phases; from conceptual to detailed design. Optimization plays an 

important role in order to define the optimal solution from the beginning.  

 

Several methods have been defined and used in the context of the optimum design. 

Usually, each method is oriented to the improvement of one specific type of problem. 

Brute force methods, gradient methods, simulated annealing methods, stochastic 

methods, evolutionary algorithms and further developments define the path followed by 

optimization methods. History shows that calculus of variations is not a recent topic. 

The research by Johan Bernoulli or by Fermat is a good example of the mathematical 

development and scientific interest about this topic. Calculus of variations is the seed of 

the optimization methods used today. 

 

Evolutionary algorithms, on the other hand, have demonstrated their capabilities to deal 

with any kind of problems. They are efficient and fast, and avoid local minimum thanks 

to random search techniques (Goldberg, 1988 & 1994). Hundreds of references can be 

found regarding evolutionary optimization applied to airfoil design, see for example 

Chafedar, Xuan, Rasheed (2003), Chiba et al (2003), Desideri, Janka (2004), or Marco, 

Desideri, Lanteri (1999) to mention a short list.  

 

Optimization methods have been used in the scientific and industrial community for 

solving many applications. Each application requires a specific solver to solve a specific 

problem. Based on mathematical methodologies, some of them inspired on nature, 

optimization methods use iterations to converge to the optimum. The solver will provide 

the evaluation of the objective function for each individual in order to perform the 

optimization loop. A relevant fact regarding the associated computational cost is that the 

computer science is growing with huge steps. The efficiency and reliability of 

computers are improving every day, and the calculation capacity is also increasing 

while the machine cost is decreasing. Nowadays, the public in general can accede to the 
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computation equipment that some time ago was restricted only to big companies and 

research centres of the universities. The combination of the computer advances and new 

advances in techniques that ensure a fast convergence of the numerical methods leads to 

an increasing efficiency of the solvers, which helps to increase the interest and attraction 

to specific applications. 

 

Computational Fluid Dynamics is a good example that confirms the previous 

statements. Advances in Computational Fluid Dynamics (CFD), with the application of 

Particle Finite Element Method (PFEM), help to better simulate fluid-structure 

interaction problems (Oñate et al, 2008), or efficiently deal with potential flow (Ortega, 

Oñate, Idelsohn, 2007), or with compressible flow (Ortega, Oñate, Idelsohn, 2009). 

These developments help to develop a parallel field as aerodynamic optimization; from 

shape optimization, to flow control applications, but also aero-elastic problems. 

 

The extended use of the numerical simulation as a design tool is now enhanced with 

optimization techniques because it leads to a fast convergence to the best design. 

Numerical simulation or virtual prototyping is the best alternative to physical 

prototyping; the cost of physical prototypes is removed, numerical simulations are easy 

to modify and the cost of those modifications is lower. The use of numerical methods 

and tools enables to test more designs, obtaining more information and using more 

parameters, in less time than using physical prototyping. 

 

Many engineering applications require solving optimization problems to define the 

optimal design. The problem definition is always the same; an objective function is 

defined on a constrained search space in order to be maximized or minimized. In many 

cases, the optimization problem includes nonlinear objective functions, and/or nonlinear 

constraint functions. But, even if the functions are linear, engineering problems can be 

too complex to be easily solved (like the fluid dynamics case); because they can present 

local solutions and no analytical function can be calculated. Traditional approaches 

usually converge to these local optimal solutions as in Bazaraa, Sherali and Shetty 

(1993), or Nash and Sofer (1996), because their search range is limited to a 

neighbourhood of the starting point. 

 

If the objective functions were well-known, differentiable and smooth, it would be 

analytically solved. However, engineering problems are usually unknown, or non-

differentiable or smooth. Then, a method that explores all search space is required. The 

so-called non-deterministic or stochastic methods take advantage of the random 

generation of each individual in order to ensure searching across all input space. Even 

though they are called stochastic methods, they are not focused on the analysis of a 

problem considering the uncertainty of input variables. 

 

Uncertainty is also an important parameter to be taken into consideration. Introduction 

of uncertainty in the simulation process will produce robust results. Uncertainty can be 

associated to the method of calculation, but also to the input variables, which represent 

some nature behaviour, or some manufacturing parameters and tolerances. 

 

Uncertainty can be classified in two categories, as described by Durga et al (2006); the 

first one is the so called random uncertainty. Behaviour of nature, which has an inherent 

variability, is the best example. Thanks to empiric observation random uncertainty can 

be accurately modelled and represented through the use of probabilistic methods. The 
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second category is the so called epistemic uncertainty, which comes from a lack of 

knowledge of the behaviour of the system. Usually, it is not well represented or 

modelled using classical probabilistic approaches and it leads to non-probabilistic 

methods based on interval specifications. 

 

Error estimation in CFD is also a very important field in development. Numerical 

errors, mainly related to simplification, approximation of functions, modelling of the 

flow, or turbulence, are clear examples and several solutions have been defined. But the 

new trend is the introduction of physical uncertainties coming from a lack of knowledge 

of the physics phenomena. 

 

Some decades ago, engineers did not consider uncertainty, and statistical behaviour of 

the variables was not introduced into the calculation process. However, it meant that 

optimized design produced a single optimal point. Mathematically speaking, a point is a 

non-dimensional object, so physically speaking it is impossible to determine due to the 

physical uncertainty of the measures. Error in calibration, tolerances or manufacturing 

errors should be taken into consideration. It is well-known that a pair of measures of 

any kind will not be equal between them. In order to define the optimum, it is better to 

use the point itself but also the probability to lie on this region. The highest the 

probability, the largest the region will be, and vice versa. It implies more accuracy but 

also more computational resources and time. 

 

Uncertainty quantification is a very recent topic, see for example Loeven and Bijl 

(2008), Loeven and Bijl (2009) or Mathelin, Hussaini, Zang (2008) for aerodynamic 

applications, Plateeuw (2009) for turbulence modelling, Witteveen and Bijl (2008) for 

diffusion problems or Constantine, Doostan and Iacarrino (2009) for heat transfer 

problems. The usual treatment of uncertainty is based on multi-point robust design. The 

uncertainty on parameters is modelled by selecting uniformly distributed values along 

the range. The multi-point technique does not care about the probabilistic and statistical 

definition of the input values, but on discrete evaluations. See Huyse and Lewis (2001), 

Li, Padula (2003), Li, Huyse, Padula (2002), or Lee et al (2008, 2009, 2010) for airfoil 

design using multi-point methodology. 

 

Taking advantage of the mentioned improvements, the contribution of this research is 

the development of a methodology that combines the capabilities of evolutionary 

algorithms and stochastic analysis to define an optimization method, which takes into 

account uncertainty on the input variables, and its effect on the output values.  

 

This research has focussed its attention on robust design and robust optimization 

techniques. The main contributions can be listed as follows: 

 

- Implementation of a stochastic procedure based on Monte Carlo techniques 

- Implementation of the stochastic procedure for stochastic and robust 

optimization 

- Implementation of a methodology to reduce the computational cost of such 

procedure based on Artificial Neural networks 

- Establishment of a comparison point between standard optimization 

methodologies, based on deterministic procedures, and a new implementation of 

the stochastic and robust optimization methodologies. 
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- Application of the stochastic procedure, as well as the stochastic and the robust 

optimization procedure to Computational Fluid Dynamics, Fluid-Structure 

Interaction and mission planning problems as a validation point. 

 

It is worth mentioning that this new procedure is dealing with variables uncertainties, 

defining them in a stochastic way. One can confuse stochastic optimization methods, 

like evolutionary algorithms, with stochastic definition of the input variables. The first 

one does not take into account uncertainty, only random definition of initial values to 

ensure a good search strategy. In addition, the new procedure will be a stochastic robust 

methodology. Taking advantage of the stochastic definition of the input variables, the 

new methodology will be able to deal with robust optimization problems. 

 

A comparison can be established with previous research done by others in order to 

highlight the differences and the main contribution of this research. 

 

- Stochastic calculus has not been further developed in the CFD field, due to its 

expensive computational cost. 

- The use of surrogate models is spread out from few years ago, when the research 

in this field enhanced the cost of generating the models, compared to the 

accuracy it provides. 

- All the applications regarding robust design optimization uses a few numbers of 

points to statistically analyse each individual. It is not a proper way to perform 

and statistic analysis due to the lack of accuracy. 

 

This document is organized in 5 main chapters. The first one is this introduction. The 

second one is the study of the state of the art, where evolutionary algorithms, stochastic 

calculus, and aerodynamics concepts are developed and analysed from the point of the 

view of what is going on and what is coming in a near future. The third chapter 

describes the stochastic procedure that helps to introduce the uncertainty into the 

analysis. It is a first step which leads to the developments on the fourth chapter. The 

fourth chapter describes the developments on robust optimization using uncertainty 

quantification techniques. Stochastic and robust procedures have been defined to deal 

with input uncertainty and to analyse the output variability. The third and fourth 

chapters include several test cases and examples for a better understanding and 

comparison among deterministic and both stochastic and robust procedures. Finally, the 

fifth chapter is where the conclusions are developed.    
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2 State of the art 

2.1 Introduction 

 

Robust optimization methods are quite a brand new topic. Even though optimization and 

sensitivity analysis have a large trajectory it was quite hard to think on coupling them 

together. Sensitivity studies were extremely computationally expensive. Reviewing the state 

of the art, few references are found that consider uncertainties on optimization analysis. Few 

of them use CFD solvers and those which use them are the most recent ones. One of the first 

researches dealing with uncertainty and CFD applications is done by Huyse and Lewis 

(2001), who dealt with shape optimization of 2-D airfoils. More recent researches have 

already introduced the Uncertainty Quantification concept as a set of methods that propagate 

the uncertainty within the optimization loop. Loeven and Bijl (2008), and Loeven and Bijl 

(2009), Eldred and Bunkardt (2009), are some of them. 

 

When dealing with computationally expensive analysis surrogate models are commonly used. 

In optimization analysis, the use of a surrogate model helps to reduce the required 

computational effort. Due to the lack of accuracy of the surrogate models, some other 

methods are emerging. The most remarkable ones are the reduced-order methods (ROM), 

which are based on very recent developments and should be considered as an emerging 

technology, rather than a mature one. Cervera, Codina and Galindo (1996) have proposed two 

strategies to simplify the work when dealing with coupled problems, Badia and Codina (2000) 

have proposed the use of pressure segregation methods to deal with fluid-structure interaction 

problems, and they have applied the method to bridge aero-elasticity analysis. Badia and 

Codina (2009) have developed a simplification based on subscales approximations. Some of 

these developments are related to extremely expensive analysis, so even though reduced order 

models decrease computational time, it is still not enough to provide a fast and accurate 

response for an optimization process. Due to this issue, they are not considered in this 

research, but should be considered for the near future. 

 

Two are the main topics developed in this chapter; namely optimization methods and 

uncertainty quantification. All of them are strongly related to this research since optimization 

methods and uncertainty quantification methods are the core of this research monography.  
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This chapter is divided in two main sections. The first one is the description and analysis of 

the state of the art of the optimization methods. And the second section is the description of 

uncertainty quantification techniques. 

 

As additional information, Appendix I, II and III are devoted to provide a brief introduction of 

some relevant topics related to the present research. Numerical methods are of great 

importance regarding the solver definition, but also the surrogate models definition. Appendix 

I contains a description of numerical methods that are directly related to the present research. 

It also includes a description of the required tools. STAC, the stochastic manager tool, TDYN 

and PUMI CFD solvers, GID as the pre and post-processor tool, the Aero-elastic tool, all of 

them are described in Appendix I. It also includes a description and validation of the Artificial 

Neural Networks that has been selected as the surrogate model. A general introduction of 

relevant aerodynamics concepts is provided in Appendix II. It includes a brief introduction to 

flow theory and non-dimensional coefficients. Finally, Appendix III briefly describes shape 

parametrization, focusing on Beziers Curves, as one of the main common methods. 

 

2.2 Optimization methods 

 

Optimization methods can be classified using several criteria: the type of problems they can 

solve, if they deal with linear or non-linear objective functions, or constraints, if they need 

second or higher order derivative of the objective function, etc.  

 

The most common criteria of classification are: 

 The number of control variables (Inputs): 

 Discrete optimization: it defines a limited number of input values.  

 Calculus of variations: it accounts an infinite number of input variables. 

 Definition of the control variables: 

 Deterministic: it defines the next individual to be evaluated according the data 

from the previous loop. A typical example of a deterministic method is the 

Gradient Method. 

 Random or stochastic: it defines the next individual according the data from 

previous loop but using some random criteria or method. An example of a 

stochastic method is the Evolutionary Algorithm 

 Treatment of individuals: 

 Non-populated based method: it uses a single individual in each iteration. 

Examples are Newton‘s method for the non-populated method. 

 Populated based method: it groups the individuals in population to take 

advantage of the multi-individual search. Evolutionary Algorithm as a 

populated-based method. 

 Type of equations that defines the objective functions or constraints:  

 Linear: it uses linear functions. 

 Non-linear: it uses non-linear functions. 

 Geometric: it is a particular case of the non-linear because it deals with 

polynomial functions.  

 Quadratic: it is another particular case of the non-linear programming. It is told 

to be the best behaved non-linear case.  

 Type of constraints: 
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 Constrained: it includes the constraint definition within the problem 

formulation. 

 Unconstrained: it does not include any constraint. 

 Number of objective functions: 

 Single-objective problem: only one function must be optimized. 

 Multi-objective problem: two or more functions must be optimized at the same 

time. 

 Some methods have the single, but also the multi-objective definition. 

 Type of variables: 

 Binary: it codifies the input variables as binary strings. 

 Integer: it uses some or all the control variables defined as integers 

 Real-valued: it uses some of the control variables defined as a real value. 

 Uncertainty: 

 Deterministic: it does no deal with any variability of the control values. 

 Stochastic, non-deterministic and Robust take into account the variability of 

the control variable. 

 

From this research‘s point of view, a relevant classification concerns the uncertainty 

management. Robust design optimization methods can be based on standard methods, which 

usually do not take into consideration the uncertainty definition of the input variables. Some 

modifications should be applied to take into account the variability of input and output 

variables. 

 

The classification using the criteria of the definition of the input variables can lead to a simple 

confusion. The stochastic or random methods are those which take advantage of random 

generation of the populations in order to ensure the best searching strategy. Random 

generation of the individuals to be evaluated is a good strategy not only to spread them across 

the whole search space, but also to avoid to be trapped in local minima. Although they are 

also referred as stochastic optimization methods, they do not consider uncertainty 

quantification. During this research, whenever stochastic is referred, in almost all the cases it 

will describe uncertainty related issues.   

 

A clear example of this issue is Evolutionary Algorithms. They are described as non-

deterministic and also stochastic methods. Evolutionary Algorithms are population-based 

methods, which take advantage of random definition of the initial population and of pseudo-

random methods to generate the new ones. However, they are not intrinsic robust 

optimization methods, and do not consider uncertainty on the input parameters.  

 

Robust design optimization is a topic under development. Robust means that result values do 

not suffer from big variations when small variations are present in the input variables. The 

variations of the input value are directly related to uncertainties. Uncertainty quantification is 

a major concern in order to reduce the computational cost of the robust design and 

optimization. A solution to deal with uncertainty is to define a multi-point problem. It defines 

several evaluation values for each input variable, usually uniformly distributed along the 

range. It does not consider any probabilistic or statistical definition, and in addition they 

usually use few evaluation points. Due to the fact that robust optimization takes into 

consideration the variance of the input and/or output variables, a multi-point criteria could not 

be enough to define an accurate value of variance.  
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Some relevant research and first steps on robust design was done by Huyse and Lewis (2001), 

who focused on the development of an effective strategy based on stochastic optimization; the 

authors defined a non-deterministic multi-point optimization procedure that achieve the best 

performance and minimal cost by managing the uncertainty and obtaining the best solution. 

Other researches have studied the robust optimization method. Nagarathinam et al (2006) 

have clearly differentiated between non-deterministic and robust optimization methods. They 

use an evolutionary algorithm, which is improved using the so-called Hierarchical Genetic 

Algorithm. This algorithm uses a hierarchical topology of the members of the population, 

which are distributed into three layers. The first one is used by the refined calculations, 

another one by the course calculations and exploration for new optimal points and the last 

intermediate layer is used as a ―bridge layer‖ between refinement and exploration layers.  

 

Aeronautical engineers deal with multi-objective and multi-disciplinary problems as their 

daily work, due to the multi-physics environment and numerous objectives involved on the 

problems to be solved. CFD solvers are time-consuming, which means optimization problems 

can be unaffordable, even without considering the multi-objective character. Trade-offs are 

not an easy task, and optimization methods try to solve this issue. 

 

Lots of methods have been developed. The most popular ones are still under development and 

improvement. New ones will be developed to fulfil specific requirements of specific 

problems, and old ones could be refurbished whenever the circumstances or applications 

facilitate their renaissance.  

 

In the following sections, some of these methods and procedures are reviewed.  

 

2.2.1 Newton method, and Quasi-Newton Method 

 

The Newton method is mainly a method developed to find the roots of a function, but it can 

be used to locate maximum or minimum values of a continuous and second order derivable 

function using and iterative process. Dennis and More (1977) compared Newton and Quasi-

Newton‘s methods in order to justify their development and further applications, but Broyden 

(1967) was the first who described the application of Quasi-Newton‘s method to minimization 

problems. Sorensen (1982) improved the convergence of the method to overcome some 

problems when minimization analysis is faced. Deuflhard (1974) developed an extended 

method to deal with ―singular‖ Jacobian matrix.  

 

The used iterative scheme is: 
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In Equation 2-1 x is the location of the optimal value. This scheme is based on the Newton-

Raphson method to find the roots of a function, which starts with a first guess of the root, x0, 

to iteratively look for the real root, x: 
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Extending this scheme to a multi-dimensional problem: 
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From the previous schemes, we know that the evaluated function f(x) must be differentiable, 

and the Hessian matrix (H) must be invertible. In addition, we should be careful with the 

Hessian matrix because even if it is invertible, in some cases it can be ill-conditioned and lead 

to divergence problems.  

 

In order to solve this kind of problem, a B matrix is introduced that facilitates to invert H. 
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The Quasi-Newton method needs to compute the first derivative, but it does not need to 

compute the Hessian matrix because it is approximated using the B matrix, which is updated 

in each iteration analysing the gradients. Its iterative scheme is: 
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 2-5 

 

The Quasi-Newton method can be a generalization of the Secant method (Press et al, 2002), 

which is based in a recurrent procedure to calculate the roots of the function based on the 

approximation of the root from secant lines. Although the similarities they have, the Secant 

Method and the Gradient Method were initially developed independently.   

2.2.2 Linear programming 

 

The Linear programming method is an optimization technique to be applied to linear function 

with linear constraints. The Simplex method is a representative of linear programming 

methods.   

 

The linear constraints define the feasible space, and if they are properly defined, they will 

ensure that an optimum value will be found. 

 

2.2.2.1 The Simplex Algorithms 

 

A simplex is defined as a figure of N + 1 vertex in the N-dimensional search space (a 

tetrahedron in the 3D space, or a polytope). The constraints of the problem define a polytope. 

A polytope is a convex and unbounded region defined by all the inequalities that define the 

constraints of the problem. The concept of the method is, following the sides of the polytope, 
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to find the vertex which is the optimal solution. Convergence of the method for low 

dimension problem has been demonstrated by Lagarias et al (1998). 

 

The simplex algorithm has been selected as one of the top-ten methods for linear 

programming. 

 

2.2.3 Non-Linear programming 

 

Non-linear programming is the name given to the set of techniques to solve an optimization 

problem over a non-linear objective function and/or a set of non-linear constraints. In some 

non-linear cases, convex optimization techniques can be used by splitting the problem into 

different linear functions that will lead to the use of convex techniques of linear 

programming. 

 

2.2.3.1 Downhill Simplex Method 

 

The Downhill Simplex Method deals with non-linear problems, using the same concept of 

Simplex as in the Simplex Algorithms. Each simplex defines a solution in the search space. 

The simplex can be expanded, contracted, and reflected. Rogalsky et al (2000) compared 

several methods when dealing with shape optimization problem. Downhill simplex is 

compared with Evolutionary algorithms, which provide the best performance for this kind of 

problems. 

 

If x0 is defined as the centre of gravity of the simplex, which is defined by the vector  

x= {x1, x2, …, xn}.  

 

A contraction is:  
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An expansion is 
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A reflection is 
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If the reflected vertex, is equal to the one used as reference for the reflection, then 
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Figure 2-1. Contraction, Expansion and Reflection examples in a 2D Simplex, a triangle. 

 

There are, of course, several combinations of the above modifications. The Downhill Simplex 

Method takes a series of random steps as follows. First, it finds the point where the objective 

function is the highest (high point) and the lowest (low point). Then it reflects the simplex 

around the high point. If the solution is better, it tries an expansion in that direction; else, if 

the solution is worse than the second-highest point, it tries an intermediate point. If no 

improvement is found after a number of steps, the simplex is contracted, and started again 

(Nelder and Mead, 1965). 

  

An appropriate sequence of such steps will always lead to a minimum. Better results are 

obtained when a large number of steps are tried.  

 

2.2.4 Stochastic programming 

 

The stochastic methods take advantage of the random definition of the input variables, even in 

the intermediate iterations of an optimization process, in order to ensure the best spread out of 

the evaluations across the search space.  

 

Some of the stochastic methods are based on natural phenomena, like Simulated Annealing 

and Genetic Algorithms. Find further details in Section 2.2.4.1 and 2.2.4.2. Both of them use 

information from the previous iteration to ―randomly‖ generate the next one, in order to 

combine the best search in all the feasible space but taking into consideration the fittest values 

previously obtained.  

 

Genetic Algorithms (GA) provide the capability to search in a large design space, combined 

with the capability to manage a large amount of input parameters. Simulated Annealing shows 

its best in low number of design variables problems, providing more accurate solutions and 

spending less time than GA. Mengistu and Whaly (2000) defined an optimization procedure 

that uses the best of both; Genetic Algorithms and Simulated Annealing. 

 

Expansion Reflection Contraction 
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2.2.4.1 Simulated Annealing 

The starting point of this technique has an analogy with the thermodynamics of equilibrium. 

Condensed matter consists of a very large number of molecules, whose energy is described by 

the Boltzmann probability distribution:  

 
 

kT
E

eEP
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Where E is the energy of the configuration, T is the temperature and k is the Boltzmann 

constant. The system is characterized by thermal fluctuations about the average energy, which 

is the most probable configuration of the system in a thermal equilibrium. The Boltzmann 

equation states that all the energy levels are in principle allowed, although high and low 

energies can be equally unlikely. At a macromolecular scale, the individual energies give rise 

to the equilibrium temperature. Systems that are slowly cooled reach a minimum state of 

energy, because the molecules are given enough time to rearrange in ordered crystals. On the 

contrary, if a system is rapidly quenched from high temperatures, it assumes a polycrystalline 

state that is meta-stable. The slow cooling (annealing) is essential to drive the system into a 

minimum state of energy.  

Simulated Annealing and Numerical Optimization 

Metropolis, Rosenbluth and Rosenbluth (1953) first applied this idea to simulate a system at 

thermal equilibrium. In such a simulation, given a small random movement, corresponding to 

a fluctuation dE, the new configuration is accepted if dE < 0; if dE > 0 it is treated 

probabilistically, e.g. it is accepted with a probability P(dE) = exp(-dE/kT). This model is 

known as the Metropolis algorithm. Kirkpatrick, Gelatt and Vecchi (1983) take the idea of the 

Metropolis algorithm and apply it to combinatorial (and other) optimization problems. From 

the physical process, the numerical elements are applied as shown in Table 2-1. 

 

Thermodynamic Simulation Combinatorial Optimization 

System States Feasible Solutions 

Energy Cost 

Change of State Neighbouring Solutions 

Temperature Control Parameter 

Frozen State Heuristic Solution 

Table 2-1. Thermodynamic simulation and combinatorial optimization equivalence 

 

For an optimization problem the objective function f is used instead of the energy E and the 

system is defined by its parameters x. This algorithm requires some additional tuning, because 

the result is strongly dependent on the annealing schedule, the number of trials at a given 

temperature and the starting temperature. The random search used by this method avoids to be 

trapped on local minima.  

 

Regarding performance of the method, Simulated Annealing cannot be applied to all 

problems. It is known that some functions do not accept annealing due to their shape; mainly 

because the lack of smoothness. It means that annealing will be trapped on local minima 

without the capability to reach high-temperature states that will lead to better low-temperature 
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states (global minimum). Rutenber (1989) described this situation in his general description 

and overview of the state-of-the-art about Simulated Annealing. 

  

Even though this described issue, Wang and Damodaran (2001) apply Simulated Annealing to 

an aerodynamic shape optimization problem. Due to the time-consuming codes to solve the 

Euler and Navier-Stokes equations, they implement a parallel computing platform to improve 

calculation time. 

   

2.2.4.2 Genetic Algorithms 

 

Genetic algorithms belong to a more general set of techniques named Evolutionary Strategies 

or Evolutionary Algorithms. The two most common strategies are Genetic algorithms, based 

mainly on three operators; cross-over, selection, and mutation, and Evolution strategies. 

Evolution strategies differ from Genetic Algorithms because of the use of mutation over 

recombination. As explained by Papadrakakis, Lagaros and Tsompanakis, (1998) and by 

Whitley (2001), the new developments are mainly used to machine learning, and Evolution 

Strategies are used to optimization, whereas Genetic Algorithms are viewed as a multi-

purpose technique that can be successfully applied to optimization, too. 

  

The Genetic Algorithms are population-based techniques. They are devoted to the 

improvement of the individuals of a population in an iterative optimization loop. The Genetic 

algorithms techniques are based on evolution-like mechanisms, which provide the ability to 

learn from the environment having no control on it. Basically, evolution is a consequence of 

random modifications that are based on hereditary information. These modifications could be 

recombination of the chromosome strings, mutation, and crossover of genetic information 

between parents. Considering that all living species are well adapted to their environment, the 

same techniques can be applied to look for the optimum value in an optimization problem. 

  

In a numerical optimization problem, the Genetic Algorithm technique provides a 

methodology applicable to any kind of problems. Such a method does not need to have a 

complete knowledge of the problem itself, but it will find the optimum value anyway.  

 

Using the natural genetic process, crossover is the basic recombination mechanism that allows 

beneficial genes to be represented in the new children DNA. The DNA information is 

swapped. Several processes are developed, and new ones are in development in order to 

optimize the crossover efficiency, and the convergence speed of the overall GA technique. 

  

Mutation is a refinement that keeps the health of the new populations, avoiding a too fast 

convergence to a non optimum value. Generally speaking, this process corresponds to 

selecting at random a few members of the population, determining at random a location in the 

strings and switching the bit at that location.  

 

Numerically, such a process can be easily programmed. Inputs can be converted to their 

binary representations, if binary representation is selected. However, Genetic Algorithms can 

only use a real-coded input string. The input string, which will contain the input values, can 

be shorter using real coded representations, but not all the problems accept this kind of 

codification. The user should select between binary or real codification according to the input 

parameters.  
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Selection is the technique that gets to the fittest individuals the chance to be reproduced. As it 

can be guess, Selection determines the best individuals over the whole population. 

  

Recombination is the creation of a new individual taking information of two parents. Half of 

the individual comes from one parent and the other half from the second parent.    

 

Further description of these strategies is going to be presented in next sections, because of the 

interest of this method. 

 

A fitness function is defined, and each individual is associated to its objective function value 

(its fit value). Therefore, the fittest individuals will have bigger probability to be chosen; they 

will become parents of a new generation. To generate each new individual of a new 

population, the crossover, mutation and selection operator can be applied to the parents. Each 

operator can be assigned a probability to operate on a given parent. 

 

A genetic algorithm can use binary-coded or real-coded variables. Binary-coded variables 

need to be coded and decoded during the input and output phases of the optimization. To code 

the variables the number of genes or chromosomes must be previously defined, so the binary 

string must contain the binary representation of the number. Those variables that use discrete 

values can also be binary coded.   

  

There are several developments, even considering only Genetic Algorithms and avoiding the 

most general category of Evolutionary Strategies. Sasaki et al (2001) used Adaptative Range 

Multi-Objective Genetic Algorithms (ARMOGA) for the optimization of an aerodynamic 

wing, minimizing transonic and supersonic drag and structural moments in the wing. Deb and 

colleagues in (Deb, 2003; Deb, Anand and Joshi, 2002; Deb et al, 2000; Deb et al, 2000; Deb 

and Goel, 2000; Deb, Pratap and Moitra, 2000) extensively studied Genetic algorithms and 

created the Non-dominated Sorting Genetic Algorithms, the so called NSGA, and its 

evolution NSGA-II, while developing new applications with real coding genetic algorithms. 

 

2.2.4.2.1 Crossover 

 

The crossover operation is based on the need to reproduce the best members of each 

population to generate the next one, so the optimization can evolve to the optimum value. 

Crossover is a recombination of the chromosomes from the best individuals. The simplest 

crossover technique is done with binary-coded, but real-coded cross-over is also feasible 

(Deb, Anand and Joshi, 2002). There are several methods to produce this recombination; the 

main ones are the single point crossover, the two-point crossover and the last one, the 

crossover on a straight line (or uniform crossover): 

a) One-point crossover: from two parents it is possible to generate two new offspring 

dividing the parents into two parts (head and tail of the binary string), and then, 

interchanging the tails to create two new individuals to be evaluated. 

b) Two-point crossover: a generalization of the one-point crossover is the two-points, and 

even the multi-point crossover. Dividing the binary string in two different points (or 

more than two in the multi-point case), it consists on the recombination of the portions 

into new offspring. 

c) Multi-point crossover: this type of crossover is based on the definition of the new 

offspring gene by gene to define the new chromosomes. The information can be taken 

from one or two parents, which randomly provide the value of each gene of the new 
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individual. No values are predefined to the chromosomes and are randomly selected 

from the information provided by the parents. 

 

2.2.4.2.2 Mutation 

 

The mutation operator creates new offspring from changing the value of a selected gene. 

Mutation is generally presented as a secondary operator used mainly to avoid being trapped in 

local minimum. Mutation should introduce new information to the genetic chain, refreshing 

the individual information. It is important to take into consideration that increasing the 

mutation probability, the convergence to a non-global minima can be increased, but also it can 

produce the opposite effect reducing or completely enabling the convergence. 

 

The crossover operator is commonly the most important because, compared with mutation, it 

is faster, so the whole search space can be quickly analysed. Although this generally accepted, 

mutation can be used instead of crossover in many cases, obtaining similar results. 

 

There are mainly two types of mutation. The first one consists on mutating all the genes, 

according to the mutation probability. The second type is the so-called creep mutation which 

applies a tiny variation to the values, or what is the same, it changes only one bit. Figure 2-2 

shows an example of the creep mutation. 

 

 

Figure 2-2. Creep Mutation example 

 

2.2.4.2.3 Selection 

 

The selection operator is used to define which individual will be chosen to generate the new 

offspring. The selection operator defines the probability of an individual to be selected 

according to its fitness value, the value coming from the evaluation of the fitness function. 

There are several ways to define the selection probability, and the definition of the best one is 

mainly a problem related issue. Some selections techniques can be Fitness proportionality, 

Roulette wheel, Stochastic Universal Sampling, Tournament selection, or Ranking. 

 

A brief introduction of each of them is provided: 

a) Fitness proportional selection: In this case, the selection probability of the individuals 

is calculated by dividing their fitness value by the sum of all the other fitness of the 

individuals. 

b) Roulette wheel selection: An individual is selected by spinning the wheel, which is 

divided according to the selection probability. The selection probability is calculated 

according the values of the fitness function. The bigger the probability selection, the 

Offspring 1 0 1 0 0 1 0 0 1 0 

Mutated Offspring 1 0 1 0 1 1 0 0 1 0 

Mutation Point 
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larger the wheel section assigned to each individual. At the end it is based on the 

probability of each individual. 

c) Stochastic Universal sampling: It is an improvement of the Roulette wheel. It avoids 

bias and it minimizes spread because it uses a constant selection step along the wheel.  

d) Tournament selection operates by choosing some individuals randomly from a 

population, creating the so-called mating pool, and selecting the best from this group 

to survive in the next generation. Its simplest form is binary selection, where a random 

pair of individuals is selected from the population and the pair with higher fitness is 

copied to the mating pool or population.  

e) Ranking: individuals are ranked by their fitness values. The best individual receives 

rank 1; the second receives rank 2 and so on. A selection probability is reassigned in 

accordance with the ranking order. 

 

Selection is needed to gain diversity and avoid premature convergence. The selection level 

has to be defined in the appropriate value to ensure evolution. 

 

2.2.5 Robust Design and Optimization 

 

Robust optimization techniques are a set of methodologies that take into account the 

uncertainty in the input variables of an optimization problem. They are based on the known or 

estimated probabilistic information of the input variables.  

 

Robust optimization deals with feasibility and robustness concepts. Both of them manage 

uncertainty information in order to keep the best design regarding reliability or robustness. 

These two concepts are quite similar, but they present some basic differences; as explained in 

Crespo and Kenny (2005) in a reliability-based formulation, the probability of violating the 

prescribed design requirements by inequality constraints is minimized. In a robustness-based 

formulation, a metric that measures the tendency of a random variable/process to cluster close 

to a target scalar/function is minimized. Crespo and Kenny (2005) studied both reliability and 

robustness-based formulations to be applied in a multi-objective optimization procedure. 

 

Robust optimization techniques can be based on deterministic optimization methods. They 

use a non-intrusive uncertainty quantification method, combined with the optimizer to create 

a non-deterministic analysis. Intrusive uncertainty quantification methods are expensive, 

mainly in the implementation. They require the modification of the numerical solver. Non-

intrusive methods use the solver as a black box, so uncertainty is defined in a parallel box that 

feeds the solver with the values to be evaluated. Later on, all the results are treated to obtain 

their mean and variance deviation. 

 

2.2.6 Deterministic and non-deterministic design optimization 

 

Both deterministic and non-deterministic optimization are applied in many fields, but, due to 

the complexity and the required long calculation time of the solver, non-deterministic 

optimization has not extensively been applied to too many engineering fields so far. 

 

The so-called deterministic optimization does not use any information about the nature of the 

input variables and only the range and the search space are considered. Mathematically 

speaking, it means that all values are considered with the same probability. However, 
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engineering problems do not have such behaviour and some variables can follow a normal 

density probability function, for example. 

 

To take this behaviour into consideration with a non-intrusive technique requires more 

calculation time due to the generation of more individuals and populations, which means 

more cases to be evaluated. Although it is applied in other fields, CFD requires a long time 

for each evaluation, so the computational total time is rapidly increased. This is the main 

reason why non-deterministic optimization has not been extensively applied to CFD so far, 

and the reason why one hardly can find literature about the topic.   

 

The deterministic optimization can provide us a very high precision optimum value, but it will 

be completely isolated from reality; as mentioned by Beyer and Sendhoff (2007) robust 

optimization takes into consideration some important points from the real world: 

1) Almost all optimization procedures are based on approximation models, so it 

means an intrinsic error exists in the optimization procedure and in its result. 

2) Manufacturing tolerances are not included in the calculations. They can affect 

the performance of the system during its life-cycle. 

3) Life cycle of the system; including parameters fluctuation, materials wear 

down, parts replacement due to maintenance, and some other factors that 

change the initial state of the systems also affect the performance, and they 

produce a variability around the nominal working point. 

4) Maintenance issues, and environmental considerations, for example, limit the 

ability to reach the optimum design and they must be taken into account during 

the design process. They are the constraints of an optimization analysis. 

 

All this factors introduce variability on the system conditions, uncertainties during design, 

manufacturing and use of the system, and all of them should be considered during the 

optimization process. 

 

Non-deterministic or Robust optimization, establishes its roots in the researches developed by 

Taguchi in 1940‘s developed as quality improvement methods (Taguchi and Chowdhury, 

2000). Taguchi‘s method or Robust design is mainly oriented to the process design rather than 

to the product design. It can be understood as a design of experiments methodology. 

Taguchi‘s method is an unconstrained method. Taguchi‘s method has been largely used in 

engineering applications, see for example Clarich et al (2004), or Pediroda and Clarich 

(2004). As stated on the robust design by Park et al. (2006) and references therein, and in the 

robust optimization review by Beyer and Sendhoff (2007), and also references therein, it 

introduces the concept of robustness using the function  

 

    .
2

mfkfL   2-11 

 

A quadratic loss function L where k is the constant to define the loss and m is the target value. 

 

The expected value of loss is then defined as 

 

     ,22 mkfLEQ    2-12 

 

Where µ is the mean value of f and σ is the standard deviation. Then the robust design is 

aimed to minimize the average loss. From this starting point, Taguchi‘s method defines a 
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scale factor s, as the ratio between m and µ. Applying this scale factor on equation 2-12 the 

next equation 2-13 is obtained 

 

.log10 2

2

10 










  2-13 

 

That is called the signal to noise (S/N) ratio, or signal noise. 

 

The research on Taguchi‘s method by Park et al (2006) defines the transfer function to ensure 

effectiveness of S/N ratio, and identifies if robust design will be obtained depending on the 

S/N ratio before solving the problem. Some other developments over the Taguchi‘s method 

uses meta-models to approximate the analysis in order reduce the calculation time required. 

The point is that the accuracy of the method strongly depends on the accuracy of the meta-

model.  

 

Several attempts have been made in order to solve multi-objective problems with Taguchi‘s 

method. As Park et al. (2006) describe in their research, some solutions based on weight 

factors.  They apply the Fuzzy theory to determine the weight factors and to avoid the strong 

dependency on the designer intuition. Some other researches improve Taguchi‘s method by 

including constraints as explained in reference therein Park et al (2006). 

 

Several references can be found for optimization methods, deterministic methodologies are 

the most extensively applied, see for example Monge and Tobio, (1988), Hua et al, (2003), 

other ones use the so called probabilistic methods or stochastic methods, like Evolutionary 

Algorithms, which are population-based methods, or simulated annealing (Obayashi, Sasaki 

and Takeguchi, 1998; Wang and Damodaran, 2001; Dietz, Vob and De Breuker, 2004; Sasaki 

et al, 2001; Deb, 2003).  

 

Stochastic-probabilistic methods are the next step to the so-called robust optimization, taking 

into account uncertainties like it has been developed by Thamotheram et al (2002), Bugeda et 

al (2003) and Balsa-canto et al (2003). 

 

Although there are some methods and techniques for uncertainty quantification in the 

optimization procedure, almost all methodologies consider few points into the range of 

uncertain variables. Li and Padula (2003), for example, define five values within the range of 

uncertainty for the Mach number when dealing with airfoil shape optimization. Lee et al 

(2008, 2009, 2010) use the same technique to evaluate the mean and the standard deviation of 

the results due to the uncertainty given by the Mach number and the angle of attack.  

 

2.2.7 Multi-objective optimization 

 

All engineering problems are multi-objective problems. The problem can be simplified by 

only analysing one of the objective functions. But the entire real-world problems will always 

involve two or more objective functions. 

 

Engineers have the responsibility to analyse all the set of solutions and to choose the most 

appropriate one. The best one no longer exists, because the combination of multiple best 

solutions for each objective will provide us a set of optimal solutions. Analysing two or more 

objective functions leads to the need of selecting the best possible combination, and 
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sometimes it depends on external factors not included on the optimization procedure. Then 

the usual situation in multi-objective optimization is that improving one of the objectives can 

mean the second objective to get worse. The concept of Pareto Optimality is the most 

convenient way to select the best solutions. 

 

2.2.7.1 Pareto Optimality 

 

The Pareto Optimality concept was established by Vilfredo Pareto in 1906 in his ―Manual of 

Political Economy‖. The Pareto Optimality defines the optimal points of a multi-objective 

optimization as the points that improve one of the objectives without getting worse one of the 

others. It means that all objective functions improve their values to an optimum or it cannot 

be considered an optimal point. 

 

Firstly described in economics, it has been easily transferred to engineering and other fields. 

The Pareto Optimality has become a powerful tool to define the set of optimal solutions, so 

the designer can choose the preferred ones according to several design criteria (Beyer and 

Deb, 2000; Golberg, 1988; Deb, 2003).  

  

2.2.7.2 Pareto Frontier 

 

The representation of the optimum set of values is the so called Pareto Frontier or Pareto Set. 

The mathematical definition of Pareto frontier is as follows: 

 

Being an optimization process which seeks the minimum point,  
mnf :  

is the function that gives a design space point x of n dimensions, a judgement criteria y=f(x) 

of m dimensions. 

  

X is the feasible subset of n  and Y=f(X).  

 

The Pareto frontier is the subset of Y compounded by the non-dominated points. A point a is 

called to dominate b if ii yx   for each i, and ii yx   for some i. It is represented as yx  , 

and it is said that x strictly dominates y. Figure 2-3 is an example of the Pareto front. The 

black set of points is the Pareto frontier, while the red set is the whole set of feasible 

solutions. 
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Figure 2-3. Non-Dominated solutions 

 

2.2.7.3  Upgrading Genetic Algorithms 

 

Genetic algorithms, as the more general description of evolutionary algorithms, are 

considered one of the best methods to deal with multi-objective problems. However, they are 

always under development, with new methodologies which improve mutation, or cross-over, 

input treatment, or procedures to better fulfil each problem requirement. 

 

Schaffer (1985) defined the first multi-objective application for genetic algorithms with his 

Vector Evaluated Genetic Algorithm (VEGA). The Multi-objective formulation of Genetic 

Algorithms was reviewed in Fonseca and Fleming (1993) or a more recent one in Toshev and 

Korsenov (2007). Both of them present several developments regarding multi-objective 

genetic algorithms and conclude that, although performance criteria can be defined, each 

problem has specific requirements and the algorithms developed can fit better to the specific 

problems. 

 

As already mentioned, Sasaki et al (2001) developed an Adaptative Range Multi-Objective 

Genetic Algorithm (ARMOGA), which provides better performance dealing with transonic 

wing shape optimization. Regarding noisy solutions, Strength Pareto Evolutionary Algorithms 

(SPEA) developed by Ziztler and Thiele (1999) uses dominance criterion for fitness 

assignment and selection of solutions to avoid misleading optimum solutions due to noise on 

the solution. SPEA2 and SPEA2+ developed by Ziztler in 2001, introduce improvements on 

the searching techniques (crossover and selection). They reinforce the searching capabilities 

of these methods while ensuring the best performance and also while ensuring the 

maintenance of diversity on the solutions that will lead to optimum values. A comparison 

between well-known NSGA-II by K.Deb and SPEA, SPEA2 and SPEA2+ by Ziztler has been 

evaluated by Hiroyasu, Nakayama and Miki (2005). 
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2.3 Uncertainty quantification 

 

Although uncertainty is usually identified with error, it can also be associated with lack of 

knowledge. Error is the difference between the real value and the measured/calculated one, 

but this is not the magnitude of interest in our case. Uncertainty refers to how this lack of 

knowledge is modelled, and how it can be introduced into analysis. 

 

Several methods have been developed to deal with uncertainty quantification. The first one is 

the Monte Carlo method, which provides an easy way to model random probabilistic values in 

a non-intrusive way. In addition, it enables the analysis of full statistics of the variables; 

namely the four main statistical moments. It is well-known that one of the major drawbacks of 

Monte Carlo methods is the associated huge computational effort. 

 

Non-intrusive methods can be coupled with the numerical solver without modifying it, or at 

least without major changes.  

 

Another proposed technique is the so-called perturbation method, which basically involves 

expanding the variables around their mean values, using Taylor series. This technique is 

limited to Gaussian or quasi –Gaussian processes due to the fact of a difficult incorporation of 

terms of order higher than two. In addition, it only provides low order statistics, due to its low 

order approximations. 

 

Other methods that are under development are Probabilistic collocation methods. They 

provide the capability to capture statistical behaviour with few samples. Each sample is 

weighted according the probability density function of the variable. The main drawback of the 

Probabilistic Collocation methods is that the higher the number of variables is, the higher the 

complexity of implementation is. 

 

2.3.1 Monte Carlo Techniques 

 

Monte Carlo method defines a set of non-intrusive sampling techniques. Monte Carlo 

sampling, Latin Hypercube sampling, and Orthogonal sampling are briefly introduced in 

Sections 2.3.1.1, 2.3.1.2, 2.3.1.3. 

 

All this sections contain concepts that are used by STAC. STAC is a stochastic calculus 

manager which provides the capability to perform stochastic analysis in a non-intrusive way. 

It takes advantage of Monte Carlo techniques (see Appendix I). 

 

2.3.1.1 Monte Carlo sampling 

 

The Monte Carlo method provides a flexible procedure to statistically analyse a problem 

using probabilistic information of the input variables. It is very useful to compute full 

statistics; it is considered an exact method to account with uncertainty in the sense it does not 

require any assumptions or approximations. 

  

Monte Carlo method uses the input variables and their probability density function to generate 

a set of samples of the input variables. Each sample is a combination of a randomly generated 

value of each input variable, and it is used to perform the simulations (an evaluation or a shot, 
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in Monte Carlo terminology) instead of using directly the probability density function of each 

input variable. The method works inverting the probability density function, which will be 

introduced later. 

 

Figure 2-4. Inversion of the probability density function 

 

The method uses the relation y(x) = F
-1

(x). Geometrically, F(y) is the area under the p(y) 

curve (the probability density function of y). Therefore, the relation described above is the 

same as saying that: choose a uniform random x, then find the value y that has that fraction x 

of probability area to its left. As shown in Figure 2-4, the probability density function 

provides the capability to transform a value, which is uniformly distributed or has a uniform 

probability to be selected within a range [0,1], to a transformed one which follows a Gaussian 

distribution within a pre-defined range. 

 

The amount of shots (samples) calculated must ensure the convergence from a statistical point 

of view. The confidence intervals (+/- 5%) of the mean are used for such purpose. The mean 

µe is estimated dividing the sum of the values by the total number of values.  

 

Statistics show that 
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The random variable M is normally distributed with mean µM equal to zero, and standard 

deviation σM equal to 1. Then the probability that M lies within the range [a, b] is 
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   babMaP   2-15 

 

 

Where  x  is the standard normal variable, a widely tabulated variable. 

 

The normalized statistical moments have their application on the comparison between 

probability density function which have been defined using different values of mean and 

standard deviation. During the present research the normalised values have been used. 

 

Using the notation of the so called Significance Level, α, where 
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As previously mentioned, the application of Monte Carlo‘s method uses common values of α 

within the range [0,03; 0,05], depending on how restrictive one needs to be.  

 

Cumulative Frequency 

 

If a random variable Y can take a real number a ≤ Y ≤ b, and if the upper limit b is a 

deterministic real value x, then the probability that Y is less or equal to x, F(x), becomes a 

function of x. This probability is shown by the hatched region in the Figure 2-5, and 

mathematically written as follows: 

 

    xYPxYaPxF   2-17 

 

 

Figure 2-5. Cumulative Frequency 
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Probability density function 

 

The probability density function describes the expected concentration and spread of the 

random variable Y within a range [a, b]. This is done by considering the probability that Y 

assumes a value in the range [x, x+∆x]. 

 

   


 
dx
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If ∆x approaches to zero, p(x) approaches 
 

dx

xdF
, the first derivative of the cumulative 

distribution function and it is called the probability density function, hereafter referred to as 

PDF. The cumulative distribution frequency is related with the probability density function 

as: 

 
x

a

dxxpxF  2-19 

 

Both Cumulative Frequency and Probability density function have been used for the 

calculation of x value according its probability. 

 

Generation of a Random Number   
 

The equation mXaX ii mod1   is the expression of the linear congruential method, 

which is used to generate random numbers in the range [0, 1]. “mod” is a function that 

removes the value of m from the value of a·Xi until the residual is less or equal to m. The 

values of a and m are defined by the user. STAC code, which has been extensively used 

during our research, uses the values: a=2
31

-1, and m=890706376 (Hurtado and Barbat, 1998; 

Hurtado, 2004). See Appendix I for further details about STAC. 

 

Uncertainty quantification based on Monte Carlo method provides the capability to obtain the 

full statistics. Based on the variance rule for samples of N elements, it can be the main 

advantages are that its convergence rate does not depend on the number of independent 

random variables, and that its application is straightforward (Mathelin, Hussaini and Zang, 

2005). 

 

Some techniques that improve its convergence rate are Latin Hypercube, or importance 

sampling.     

 

2.3.1.2 Latin hypercube sampling 

 

The statistical method of Latin hypercube sampling (LHS) was developed to generate a 

distribution of plausible collections of parameter values from a multidimensional distribution. 

It can be considered an improvement method over Descriptive Sampling and it is often 

applied in uncertainty analysis. Latin Hypercube sampling improves the convergence rate of 

Monte Carlo sampling (Mathelin, 2008). 

 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Multidimensional_distribution
http://en.wikipedia.org/wiki/Uncertainty
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McKay, Conover and Beckman (1979) describe firstly this technique. Ronald, Iman, Helton 

and Campbell (1981) further elaborate it in 1981.  

 

In the context of statistical sampling, a square grid containing sample positions is a Latin 

square if (and only if) there is only one sample in each row and each column, as shown in 

figure 2-6. A Latin hypercube is the generalisation of this concept to an arbitrary number of 

dimensions, whereby each sample is the only one in each axis-aligned hyper-plane containing 

it. 

 

 

Figure 2-6. Latin Square 

 

When sampling a function of N variables, the range of each variable is divided into M equally 

probable intervals. M sample points are then placed to satisfy the Latin hypercube 

requirements; note that this forces the number of divisions, M, to be equal for each variable. 

Also note that this sampling scheme does not require more samples for more dimensions 

(variables); this independence is one of the main advantages of this sampling scheme. 

Another advantage is that random samples can be taken one at a time, remembering which 

samples were taken so far. 

 

2.3.1.3 Orthogonal sampling 

 

Orthogonal sampling adds the requirement that the entire sample space must be sampled 

evenly. Although more efficient, orthogonal sampling strategy is more difficult to implement 

since all random samples must be generated simultaneously.  

 

Figure 2-7 is a representation on how the probabilistic definition of the variable affects the 

way the samples are spread across the sampling space. 

 

http://en.wikipedia.org/wiki/Latin_hypercube_sampling#cite_note-0#cite_note-0
http://en.wikipedia.org/wiki/Ronald_L._Iman
http://en.wikipedia.org/wiki/Ronald_L._Iman
http://en.wikipedia.org/wiki/Latin_hypercube_sampling#cite_note-1#cite_note-1
http://en.wikipedia.org/wiki/1981
http://en.wikipedia.org/wiki/Latin_square
http://en.wikipedia.org/wiki/Latin_square
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Figure 2-7. Latin Hypercube samples spread out 

 

In two dimensions the difference between random sampling, Latin Hypercube sampling and 

orthogonal sampling can be explained as follows: 

 

In random sampling, new sample points are generated without taking into account the 

previously generated ones. Thus one does not necessarily need to know beforehand how many 

sample points are needed.  

 

In Latin Hypercube Sampling one must first decide how many sample points to use and for 

each sample point remember the row and column the sample point is located.  

 

In Orthogonal Sampling, the sample space is divided into equally probable subspaces. All 

sample points are then chosen simultaneously making sure that the total ensemble of sample 

points are a Latin Hypercube sample and that each subspace is sampled with the same density. 

  

Thus, orthogonal sampling ensures that the ensemble of random numbers is a very good 

representation of the real variability; Latin Hypercube Sampling ensures that the ensemble of 

random numbers is representative of the real variability whereas traditional random sampling 

(sometimes called brute force) is just an ensemble of random numbers without any 

guarantees. 

 

2.3.2 Probabilistic collocation method 

 

Several methods have been developed to deal with uncertain input parameters and to 

propagate this uncertainty to the solution. 

 

Both the Monte Carlo method and its evolution, the Latin Hypercube sampling have been 

already discussed. They are based on the computation of samples from the probability density 

function of the input variables, which are used to compute deterministic calculation of the 

solver. From this set of deterministic solutions mean and standard deviation values can be 

calculated.  

 

The Monte Carlo method is usually seen as an expensive method to deal with uncertainties. 

Some cases need to deal with a large amount of samples in order to catch the mean and 

deviation of the input and output values. 

  

Other methods do not use the concept of random sample, but use the concept of collocation. It 

means that the uncertain space is represented by a set of weighted values that provide a good 
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understanding of the behaviour of the uncertain parameter. Points, or the so called collocation 

points, and weights are calculated based on a Gauss-quadrature of the uncertainty space. The 

required quantity of solver evaluations quickly increases with the number of uncertain 

parameters to deal with. But it also increases due to the degree of the spectral expansion 

representing the uncertain parameters. However, the number of shots is less than other 

uncertainty quantification methods. 

 

The Probabilistic Collocation method uses quadrature techniques to obtain the points where 

the solver will be evaluated, and they use fixed values for same probability density functions 

using the same mean and the standard deviation. Figure 2-9 to 2-14 show the quadrature 

points obtained for different degrees of the polynomial, which defines the quadrature 

collocation, when a non-truncated or a truncated probability density functions are defined. 

The truncated case uses a truncation interval defined by the mean plus 3 times the standard 

deviation, which means the 99,7% of the probability. Non-truncated PDF spreads collocation 

points across a wide range when the polynomial order of the collocation method is increased, 

while truncated PDF fixes a limited range of values where the collocations points are located, 

even the polynomial order is increased. Figure 2-8 illustrates the truncated or non-truncated 

PDF concepts. 

 

 

Figure 2-8. Truncated and non-truncated PDF 

 

Figure 2-9 compares the set of quadrature points obtained for the polynomial of degree equal 

to 5 for a non-truncated and a truncated PDF. Figure 2-10 compares the points for degree 

equal to 10. Both truncated and non-truncated cases are plotted.  

 

Figure 2-11 compares the points for the non-truncated cases of degree 5, 10, and 15. Figure 

2-12 the weight of each collocation point from Figure 2-11. And Figure 2-13 compares the 

points for the truncated cases. Figure 2-14 shows the weight of each collocation point from 

Figure 2-13. The figures show the points where the solver is evaluated. These are the 

collocation points extracted from the probability density function.  

 

Comparing Figure 2-12 and 2-14, the reader can observe how the truncated PDF limits the 

range of the collocation points. The Gaussian bell defined in the non-truncated case, Figure 



UPC-CIMNE  DoCTA 

Doctorat en Ciència i Tecnologia Aerospacial 

 54/261 

2-12, is thinner than that in Figure 2-14 due to the larger range of values of the collocation 

points.  
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Figure 2-9. Quadrature points for order 5, truncated and non-truncated PDF 
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Figure 2-10. Quadrature points; PC order 10, truncated and non-truncated PDF 
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Figure 2-11. Quandrature points PC order 5, 10 and 15, non-truncated PDF 
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Figure 2-12. Weights of PC order 5, 10 and 15, non-truncated PDF 
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Figure 2-13. Quadrature points PC order 5,10 and 15, truncated PDF 
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Figure 2-14. Weights of PC order 5,10 and 15, truncated PDF 

 

It is clear that truncated probability density function (PDF) limits the range of the collocation 

points. However, the selection of a truncated or a non-truncated PDF does not affect the mean 

and the standard deviation and both of them represent the same population. As already 

mentioned, the mean and the standard deviation remain to the defined values, whichever the 

degree of the polynomial is, or the selected PDF is.  

 

The quadrature technique has defined the collocation points and their weights. Figure 2-15 

and 2-16 illustrate how the mean and 3σ range of the input variables remain constant when 

the degree of the polynomial increases.  
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Due to the fact that the Probabilistic Collocation method does not use the concept of samples 

as Monte Carlo or Latin Hypercube do. It has no sense to analyse the variability of the set of 

samples, because all of them will be the same set of values; exactly the same values.  

 

 

 

Figure 2-15. AoA variability 

 

 

Figure 2-16. M variability 

 

As it can be seen in Figure 2-15 and 2-16, increasing the degree of the polynomial does not 

lead to a better representation of the input values, but it leads to a larger number of collocation 

points to be evaluated, so it is computationally expensive. It is clear that increasing the degree 

the only difference in the output is an increasing amount of collocation points. 

 

Non-intrusive methods uses the solver as a black box, and do not need to modify it, but 

intrusive methods are completely coupled with the solver. For complex applications, a non-

intrusive approach has the advantage of using an existing solver without modifications. 

 

As mentioned above, the need to find faster methods facilitates the development of the 

method described below.  

 

Polynomial chaos expansions represent stochastic quantities as spectral expansions of 

orthogonal polynomials. Stochastic Galerkin method takes advantage of this representation of 

the uncertainty space to represent the input and outputs. It is a good method to deal with steep 

and non-linear solutions, but its intrusive characteristic make it difficult to implement and it 

requires an efficient and robust solver to deal with a system of coupled equations.  

 

The stochastic collocation is a non-intrusive method developed to address the limitations of 

the Stochastic Galerkin method. It uses deterministic evaluations of carefully selected samples 

in order to quantify uncertainty through the analysis. 

  

Further developments and applications of Probabilistic Collocation method (PCM) have been 

developed by Webster, Tatang and McRae (1996), where the PCM is used to deal with 

uncertainties in a complex model as global climate change. They also compare it with the 

Monte Carlo method and conclude that the PCM enables a significant reduction of model 

evaluations. Foo, Wan and Karniadakis (2008) present a generalized form of the PCM, the so-

called Multi-element PCM (ME-PCM), which prescribes the discretization for each variable. 

Other developments, such as in Blatman and Sudret (2008), or Nobile, Temprone and 

Webster (2007) define new structured collocation methods which enable a faster convergence 

and a lower computational costs. Several applications and further details on the development 

can also be found in Parussini and Pediroda (2007 and 2008), who deal with geometric 
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uncertainties, Xiu and Karniadakis (2002 and 2003), who apply Polynomial Chaos to fluid 

simulation, and Xiu et al (2002), who apply generalized polynomial chaos to stochastic 

modelling. 

 

2.3.2.1 Polynomial Chaos Expansion 

 

Considering the problem from Equation 2-20, defined in a d-dimensional bounded domain  

 

        DxallforptxfuptxL
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Where u(ω) is the solution, and p(ω) are the input data. Input data is represented by 

parameters or stochastic processes, ω. In order to find the solution and numerically solve the 

equation, the working space of stochastic processes, ω, is reduced from the infinite-

dimensional space into a finite space. A truncated spectral expansion of the stochastic process 

characterizes the random inputs, by setting N random variables, ξ(ω). Thanks to the Boob-

Dynkin Lemma, the solution can be written as u(x,t,ω)=u(x,t,ξ). 

 

Polynomial chaos expansions is a second order stochastic process as 
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{Φi(ξ)} is an orthogonal basis, that means  

ijiji 2,   2-22 

 

Where δij is the Kroneker delta, ,  is the inner product 

         


  dgfgf ,  2-23 

 

 

where ρ(ξ) denotes the weight function that depends on the type of each defined random 

variable. 

 

Table 2-2, from Eldred (2009) and Mathelin (2008), defines the relationship between the 

probability distribution and its optimal polynomial basis. 

 

Distribution Polynomial  Weight function Support range 

Normal  Hermite, Hen(x) e-x2/2 [-∞,∞] 

Uniform Legendre, Pn(x) 1 [-1,1] 

Beta Jacobi, Pn(α,β)(x) (1-x)α (1+x)β [-1,1] 

Exponential Laguerre, Ln(x) e-x [0,∞] 

Gamma Generalized Laguerre, Ln(α)(x) xα e-x [0,∞] 

Table 2-2. Summary of subsonic regime results 
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In other words, the basic idea is to project the variables of the problem onto a stochastic 

space, which is defined by a set of orthogonal polynomials Φi(ξ(ω)), where ξ(ω) are the 

random variable and ω the random event. Then, is clear that the convergence rate and the 

required number of terms Npc in Equation 2-24 to obtain a desired accuracy level depend on 

the random process to be approximated, but also the random variables used, as is pointed by 

Mathelin and Hussaini (2003) and Mathelin (2008). 
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Where npc is the dimensionality, ppc is the order of expansion. 

 

Blatman and Sudret (2008) have developed an adaptative algorithm which takes the 

significant polynomial coefficient, and they have defined as a Sparce Polynomial Chaos 

expansion. 

 

The so-called Generalized Polynomial Chaos (gPC), also known as Wiener-Askey 

polynomial chaos takes the orthogonal basis Φ so that the weighting function takes the same 

form as the probability density function of the random variable ξ. 

 

This approach estimates the coefficients of the polynomial basis based on a set of solution 

evaluations. To calculate the sampling, linear regression, tensor-product quadrature or 

Smolyak sparse grid approaches can be used. The linear regression approach uses a single 

linear least squares solution to find the coefficients which best match the known outputs. 

Eldred (2009) has also used spectral projection as an alternative method. In that case, 

responses are projected against each polynomial basis, using inner products, and it extracts 

polynomial coefficients using orthogonality properties. In any case, Polynomial chaos uses 

approximation values for polynomial coefficients, which could not provide the required 

accuracy. 

 

This approach is developed by Jakeman and Roberts (2009), Eldred (2009) and Witteveen 

(2008), for example. Witteveen deals with multiple uncertainties defining boundary 

conditions. He defines new strategies and compares them in order to keep the best one. 

 

As explained, in Polynomial Chaos method a random variable z can be expressed as 
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So the product of two random variables z and y 
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That considering the Galerkin truncation 
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If Npc+1 coefficients of z·y product are computed, the number of operations are of order 

O(Npc
3
). It is easy to understand that increasing the random variable leads to a fast increase of 

its complexity. To manage several random variables in the same problem, Stochastic 

Collocation methods have been developed. 

 

2.3.2.2 Stochastic Galerkin method 

 

The Stochastic Galerkin method is a further development of the Polynomial Chaos method. In 

this case, a Galerkin projection is used to project the random variables expansion, generally 

based on Karhunen-Loeve expansion method, to the polynomial basis. A Galerkin projection 

minimizes the error in the Polynomial Chaos expansion. 

 

When using Stochastic Galerkin method, it should be taken into consideration the requirement 

of smoothness for solution function, in order to ensure fast convergence (Jakeman and 

Roberts, 2009). But in addition, an advantage of Galerkin methods is pointed out by 

Witteveen (2008); the computational effort of collocation approaches usually increases faster 

than the required one in Galerkin approaches.  

 

Constantine, Doostan and Iaccarino (2009) present a hybrid scheme that mixes collocation 

and Galerkin methods in order to reduce the computational cost. They conclude that this 

hybrid scheme provides accurate and converged statistics, reducing the number of the 

required deterministic evaluations. 

 

2.3.2.3 Stochastic Collocation method 

 

The Stochastic Collocation Expansion method is based on the Stochastic Galerkin method. It 

combines the Stochastic Galerkin method concept with non-intrusive sampling, which means 

it only requires the solution of decoupled equations and it can be used in combination with 

―external‖ solver. The Stochastic Collocation method enables applications to Spectral 

Discontinuous Galerkin methods, and reduces the cost of Polynomial Chaos methods. 

 

In the Stochastic Collocation method one uses the Probability Density Function of the random 

variable as the basis of the transformation between its random space to its artificial stochastic 

space. It simplifies the quadrature approximation of both variables and product truncation in 

Equation 2-28. 

 

2.4 Conclusions 

 

Several optimization methods have been introduced. Evolutionary algorithms are general 

purpose methods. They have been selected in the present research because of the lack of 

knowledge about the fitness functions. The combination of several input variables and the 

discontinuities, as those appearing during the analysis of a transonic flow with shock wave, 
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leads to an unpredicted behaviour of the problem. Evolutionary algorithms, and especially 

genetic algorithm, can reach a good converged optimal solution in such conditions.   

 

Several Uncertainty Quantification methods have also been presented. Each of them has its 

advantages and drawbacks. The intrusive techniques have been dismissed due to their 

complexity and the need of modifying the solver.  

 

The non-intrusive techniques can be compared, as done in Table 2-3.   

 

 Multi-point Monte Carlo Latin 

Hypercube 

Probabilistic 

Collocation 

Evaluation 

Points 

Fixed Samples Samples Fixed and 

Weighted 

Full Statistics 

(µ, σ, Skew, 

Kurt) 

µ, σ with Low 

accuracy 

All All µ, σ 

Number of 

Uncertainties 

Unlimited Unlimited Unlimited Restricted due 

to 

computational 

cost 

Calculation 

time 

Depends on # 

of uncertainties 

Expensive but 

constant 

Expensive but 

constant 

It exponentially 

increases with 

# uncertainties 

Statistical 

Sampling 

No Yes Yes Yes 

Table 2-3. Comparison of main UQ techniques 

 

Due to the statistical definition of the Monte Carlo and Latin Hypercube sampling techniques, 

they have been selected as the main uncertainty quantification techniques. The fact that other 

techniques use fixed evaluation points has been understood as a relevant drawback. Anyway, 

Probabilistic Collocation method has been applied in order to compare the results and 

methodologies. The selection of Monte Carlo and Collocation techniques has been done 

according the statistical definition of the evaluation points.  

 

Taking into account the uncertainties, one can deal with uncertain input data, with uncertain 

objective function or with uncertain restrictions. A clear differentiation can be done between 

stochastic and robust methods, although both of them deal with uncertainties. 

 

As shown in Table 2-4, if the problem is defined in a deterministic way it means all the values 

have been defined to a single fixed value and the results are also a single fixed value. In the 

other hand, if only the input values are defined as variable the analysis is stochastic. And if 

input values, and/or objective function, and/or restrictions are defined as variables, a robust 

method is in use.    
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Type of 

method 

Input Data Objective 

Function 

Restrictions Output / 

Fitness 

function 

Deterministic Fixed Fixed Fixed Fixed 

Stochastic Variable Fixed Fixed Variable 

Robust Fixed Variable Fixed Variable 

Robust Fixed Fixed Variable Variable 

Robust Variable Variable Variable Variable 

Table 2-4. Definition of Deterministic, Stochastic and Robust methods 

 

In this research, stochastic and robust methods have been described and applied to the 

solution of several test cases. 

 

2.5 Summary 

 

This chapter provides a general overview of the main topics which are related to the research 

work of this research.  

 

Optimization methods and uncertainty quantification methods are the two main topics which 

have been analysed. They are the main core of the present research. Regarding optimization 

methods a brief introduction of the main available methods is provided. But the focus is on 

the evolutionary algorithms and the genetic algorithms.  

 

Uncertainty quantification methods have been also introduced. Probabilistic based methods, 

Monte-Carlo methods and Probabilistic collocation techniques are described to get a better 

understanding which is the new trend when dealing with uncertainties and probabilistic 

definition on the variables.   
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3 Stochastic procedure 

 

3.1 Introduction 

 

During design phase, uncertainty on the physical phenomena should be taken into 

consideration. The lack of knowledge, tolerances in manufacturing processes or measuring 

errors lead to a lack of accuracy on the numerical models which generates uncertainty on the 

results. Design engineers should take uncertainty into account in order to obtain a robust 

design solution. Variability on the input parameters or on the boundary conditions is 

transferred to output whatever the source of uncertainty is. 

  

When the design engineer deals with variability without knowing about it, he can arrive to 

completely wrong conclusions. It is really important to ensure the best understanding of the 

phenomena under study, but also the associated uncertainties and the associated variability of 

the parameters. 

  

The present chapter comprises a set of numerical variability analysis on the problem 

parameters; namely CFD, FSI or Mission planning problems. Several parameters with 

uncertainty have been considered, single CFD discipline or multi aero-elastic discipline 

analyses have been used in order to detect the most relevant parameters in terms of their 

influence in the results. In both CFD and FSI problems, lift and drag coefficients have been 

selected as the main output parameters. Different input parameters have been selected 

depending on each test case. 

  

Following tests are mainly intended to check if the stochastic procedure leads to meaningful 

results that can be used in further development of a stochastic and robust optimization 

method. In this research, the stochastic procedure will use a non-intrusive method to spread 

uncertainties through the analysis. It is based on Monte Carlo and Latin Hypercube sampling 

techniques. In order to have a comparison reference, Probabilistic collocation method has also 

been used. Physical meaning of the results has been evaluated as a validation check. 
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As mentioned, Monte Carlo and Latin Hypercube sampling techniques are quite similar. Both 

are based on the same concepts, although Latin Hypercube is said to improve the variance 

convergence. Section 3.3 is devoted to the analysis and comparison of both. 

 

3.2 Methodology 

 

The methodology of the analysis in chapter 3 is based on the statistical definition of the input 

variables and the statistical analysis of the output values. In order to better understand how the 

stochastic analysis is performed, and how the procedure to be followed is, the flowcharts in 

Figure 3-2 and 3-3 are shown below. Figure 3-1 shows the representation of a classical 

deterministic flow chart in order to be compared with the stochastic ones. It shows a 

procedure as simple as a solver evaluation. 

 

 

Figure 3-1. Flowchart of a deterministic analysis 

 

Figure 3-2 identifies the main steps of a stochastic analysis using Monte Carlo or Latin 

Hypercube sampling. Both of them use the same procedure. First step is the selection of the 

stochastic variables. They are chosen from the whole set of input variables of the problem. 

For a CFD analysis, as shown in sections 3.5 and 3.5.2, different flow parameters can be 

selected; namely airflow speed, angle of attack, angle of incidence, etc. For an aero-elastic 

problem, devoted to the analysis of the flutter phenomena, as done in section 3.6, both flow 

and structural parameters can be selected. 

 

The statistical definition of the variables is the next step. It uses the definition of a probability 

density function (PDF). After selecting the PDF (Gaussian, uniform, t-student …), the main 

probabilistic parameters should be selected. The mean and standard deviation are, usually, the 

main ones, but it depends on the type of selected distribution. For instance, in the case of a 

uniform PDF the lower and upper bounds of the variables must be defined. 

 

From the PDF, STAC (see Appendix I for details about this tool) generates a set of random 

values, which will be applied to the problem in order to define the evaluation sampling points. 

One evaluation with the solver at each point is required to get the set of output values as a 

result. Later on all these results will be statistically analysed to obtain the mean and variance 

values.  
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Figure 3-2. Flowchart of the Monte Carlo and Latin Hypercube analysis 

 

The evaluation of all the stochastic samples is the step with the larger computational cost. 

Compared with a deterministic analysis with a single solver evaluation, the stochastic analysis 

will multiply this cost by the number of stochastic evaluations.    

 

The statistical analysis of the results will provide their statistical moments; mean, standard 

deviation, skewness and kurtosis. They represent the trend of the set of results (Mean), the 

dispersion in its distribution (standard deviation), how centred the distribution is (skewness), 

and finally how sharp the peak of the distribution is (kurtosis). Additional information can be 

taken from each individual analyses, which are single deterministic evaluations. 

 

The flowchart in Figure 3-3 has some common points with Figure 3-2. The main difference is 

how the evaluation points are generated and managed. Probabilistic Collocation method 

(PCM) is a powerful stochastic tool. It generates evaluation points from the statistical 

information of the input parameters, but this generation is not random, it is always univocal. 

Taking a PDF with the same mean and the same standard deviation, PCM will always 

generate the same evaluation points with the same weights. It will lead to the calculation of 

the same outputs, and then the same output mean and standard deviation will be obtained. 

PCM only enables the possibility of the calculation of the two primary statistical moments; 

mean and standard deviation. Both of them are calculated using mathematical equations. 
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Figure 3-3. Flowchart of the Probabilistic Collocation Method  

 

Section 2.3.2 discuss about PCM and provide additional details on this methodology. As 

explained, PCM only evaluate few points. This is one of the main key differences between 

PCM and Monte Carlo or Latin Hypercube. The amount of points is defined depending on the 

degree of the polynomial defining the collocation method.  

 

3.3 Latin Hypercube Sampling vs. Monte Carlo sampling 

 

This section is mainly focussed on the study of Monte Carlo and Latin Hypercube as 

uncertainty quantification methods (Helton and Davis, 2003; Durga et al, 2006). Latin 

Hypercube Sampling (LHS), is generally described as an improved Monte Carlo sampling 

technique. LHS divides the search space into portions, which can be selected according the 

probability density function that defines the variable, in order to ensure a better representation 

of the whole space. LHS uses fewer samples to obtain the same level of accuracy when 

modelling the search space (see McKay, 1979). 

 

In order to compare both sampling techniques, and mainly to evaluate the reduction of 

required shots when using LHS, the following analysis is established. Several analyses have 

been performed for each sampling technique with 5 to 250 stochastic samples. All of them 

have been compared with. The CFD analysis of this profile is executed using the Monte Carlo 

and Latin Hypercube set of samples, and the lift and drag coefficients are statistically 

analysed as results. 

 

The conditions of the flow have been defined as: 

- Mach number:  = 0,23, σ = 0,02, normal probability distribution. 
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- Angle of attack:  = 2,79º, σ = 0,279, normal probability distribution. 

 

The magnitudes used for the comparison are the mean () and the standard deviation (σ) of 

the ratio CL/CD, defined by Equations 3-1 and 3-2. 
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3-2 

 

Latin Hypercube should require a lower amount of required evaluations (the so-called shots) 

in order to obtain the same or quite the same mean and standard deviation values. It is 

expected to obtain a significant reduction of the amount of shots, providing a tool to reduce 

the computation time. 

 

Table 3-1 shows the results obtained, and the relative difference between each LHS analysis 

and the Monte Carlo‘s reference.  Figure 3-4 shows the behaviour of the set of values. Section 

3.5.2 shows an additional comparison between both sampling methods.  

 

Sampling 
Method 

Shot 
Qty 

Cl/Cd values Deviation wrt MC250 

Mean Std Dev Mean Std Dev 

LHS 5 81,750 0,445 0,27% 171,66% 

LHS 10 81,156 0,743 -0,46% 353,91% 

LHS 50 81,358 0,314 -0,21% 92,13% 

LHS 100 81,454 0,140 -0,09% -14,30% 

LHS 150 81,475 0,211 -0,06% 29,04% 

LHS 250 81,608 0,161 0,10% -1,51% 

MC 5 81,758 1,378 0,28% 741,92% 

MC 10 80,886 0,338 -0,79% 106,71% 

MC 50 81,588 0,346 0,07% 111,42% 

MC 100 81,614 0,131 0,11% -19,85% 

MC 150 81,455 0,103 -0,09% -37,06% 

MC 250 81,528 0,164 0,00% 0,00% 

Table 3-1. LHS and MC comparison 

 

Table 3-1 and Figure 3-4 show how Latin Hypercube converges to the real mean and standard 

deviation values quicker than Monte Carlo sampling method. 
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Figure 3-4. Comparison of the mean value between Monte Carlo and Latin Hypercube sampling techniques 

 

3.4 Stochastic analysis applied to the study of the influence of the 
mesh size variation in the CFD results 

3.4.1 Introduction 

 

It is well-known that mesh sizes have a direct effect on the accuracy of the finite element 

analysis. Due to this reason, the analysis of the influence of the mesh size variability in the 

results has been selected as the first test of the stochastic procedure. Using a fixed geometry, 

mesh sizes are randomly defined and applied to a CFD analysis in order to capture the 

changes in the output induced by the mesh variability. Monte Carlo method has been selected 

to define the random values of sizes. 

 

Because the fluid has been treated in a laminar flow, with low Mach number and moderate 

angle of attack, results should confirm the expected behaviour that changes in mesh sizes 

applied to the vicinity of the profile boundary will have larger effect on the variability of the 

output than mesh sizes applied in the rest of the domain.  

 

The main aim of the present Section 3.4 is to present the coupling between PUMI, the CFD 

solver, and STAC, the stochastic manager, and to show an illustrative example about the 

mesh variability and its effects. Details about STAC and PUMI can be found on Appendix I. 
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3.4.2 Procedure 

 

Mesh sizes applied to each one of the elements of the geometry are defined according to a 

probabilistic definition; Gaussian and Uniform probability distributions have been combined 

in the definition of a set of stochastic analyses, mainly intended to analyse output variability 

of the lift and drag coefficients of a 2D RAE2822 profile. Additional information about airfoil 

profiles can be extracted from UIUC database and PDAS website. 

  

Based on the defined geometry, see Figure 3-5 and 3-6, two control areas have been defined 

around the profile. The inner one is mainly intended to capture the behaviour of the airfoil, 

and the outer one is intended to expand the control area in order to ensure a correct definition 

of the value of pressure of the free flow. Additional information about the RAE2822 is 

available in Appendix IV. 

 

The dimensions of the defined geometry are: 

- Chord Length of the profile: 1 m 

- Diameter of the inner mesh: 6 m 

- Diameter of the outer mesh: 30 m 

- Distance from Leading edge to the limit of the inner mesh: 3m 

 

The boundary conditions have been defined as: 

- Free velocity applied to the point of the trailing edge 

- Infinity boundary Roe applied to the external limit of the outer mesh 

- Slip wall enforced condition applied to the profile lines 

 

The conditions of the flow have been defined as: 

- Mach number: 0,734 

- Angle of attack: 2,79º 

 

The SI units have been used through all this research. 

  

 

 

Figure 3-5. General view of the outer and inner control areas 
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Figure 3-6. Detail of the RAE2822 airfoil profile 

 

The mesh size distribution is defined through three different sizes, which are applied to 

profile lines, inner control area surface and outer control area surface. Figure 3-8 is an 

example of one of the obtained meshes. 

 

The names of each value are:  

- SL: size applied to profile lines. 

- SS: size applied to inner surface. 

- SG: size applied to outer surface.   

 

STAC, the stochastic management tool, and PUMI, the Fluid Dynamics (CFD) solver, which 

have been used in this analysis, are described in Appendix I. Both of them have been coupled 

in the way described in Figure 3-7. STAC is managing the input and output information; 

namely the selection of the input parameters and their statistical definition when assigning a 

probability density function, as well as it is providing the statistical numerical and graphical 

analysis. The CFD solver is invoqued by STAC at each evaluation.  

 

 

Figure 3-7. STAC and CFD solver coupling. 

Normal and uniform probability density functions (PDF) have been used to define the mesh 

size values. Normal PDF focuses the attention of the analysis on the mean value of the mesh 

sizes. It is expected that output values follow a Gaussian distribution when the same statistical 

distribution is applied to the input values. To compare the statistical distributions of the input 

and the output values the mean and the standard deviation have been used as reference on the 

comparison. On the other hand, uniform PDF, which is defined by the lower and upper bound 

of the variables, has been used as a second comparison point. Roughly speaking, the selected 

range of values which define the statistical samples from Gaussian and uniform PDF have 

been defined as similar as possible, in order to easily establish the comparison. 
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Figure 3-8. General view of the mesh. 

Nine different test cases have been analysed. The first eight apply normal PDF to mesh sizes. 

In the first case the inner surface size, SS, and the outer surface size, SG, remain constant 

while the profile size, SL, is defined with a mean value of 0,05 and a standard deviation equal 

to 0,005. In the second case, SL and SG remain constant, and SS is defined with µ=0,5 and 

σ=0,05. SL and SS remain constant, and SG with µ=1,1 and σ=0,11 in case 3. In case 4 only 

SG remains constant, µSL=0,05 and σSL=0,005, µSS=0,5 and σSS=0,05. SL remains constant in 

case 6 while µSS=0,5 and σSS=0,05, µSG=1,1 and σSG=0,11. In cases 5, 7, and 8 none of the 

parameters remain constant, they define one of the three σ as a multiple of their previous 

values. Finally, in case 9 uniform density functions are applied to all the parameters. Table 

3-2 summarizes the definition of all the cases. 

 

The analysed cases are: 

 
Mesh Size Lines; SL Inner Surface; SS Outer Surface; SG 

Mean Std 

Deviation 

Mean Std 

Deviation 

Mean Std 

Deviation 

Case 1: Normal PDF 0,05 0,005 0,5 -- 1,1 -- 

Case 2: Normal PDF 0,05 -- 0,5 0,05 1,1 -- 

Case 3: Normal PDF 0,05 -- 0,5 -- 1,1 0,11 

Case 4: Normal PDF 0,05 0,005 0,5 0,05 1,1 -- 

Case 5: Normal PDF 0,05 0,005 0,5 -- 1,1 0,11 

Case 6: Normal PDF 0,05 -- 0,5 0,05 1,1 0,11 

Case 7: Normal PDF 0,05 0,005 0,5 0,05 1,1 0,11 

Case 8: Normal PDF  0,05 0,010 0,5 0,10 1,1 0,22 

 Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Case 9: Uniform PDF 0,035 0,065 0,35 0,65 0,77 1,43 

       

Table 3-2: Definition of cases 

 

As shown in Table 3-2, different combinations of the parameters have been defined for each 

analysed case. Some of the combinations use random and/or constant definitions, in order to 

identify which variable is the most significant one.  
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3.4.3 Results 

 

The mean and the standard deviation of Cl (lift) and Cdp (pressure drag) coefficients are the 

output for all the analyses. Pressure drag coefficient has been selected, instead of drag 

coefficient, because the PUMI solver is based on Euler equations without accounting for 

boundary layer effects. It means that no viscous drag calculation is performed, and only at 

transonic regime, when shock occurs, drag is calculated. At subsonic regime the value of drag 

is zero (except numerical noise). Table 3-3 is the brief description of the results obtained. The 

table lists the maximum, the minimum, the standard deviation and the mean values of the 

input variables; mesh sizes, and the output variables; Cl and Cdp coefficients. 

 

Expected values should point to a larger influence of the mesh size applied to the profile lines 

(SL size) and to the inner surface (SS size), mainly for the first one, in both Cl and Cdp cases. 

Previous to the analysis, the results for those cases which combine more than one mesh size 

could not be easily predicted. But, generally speaking, the expected trend should be that the 

higher variability is introduced by the mesh size applied to profile, whichever the combination 

of parameters is. 

 

If the ranges of +/- 3σ of Cl and Cdp are plotted for each case, and comparing both plots, the 

output variability can be easily checked. The larger effect, as expected, is produced by line 

size variation (SL). In all the analyses where SL value is stochastically defined, the variability 

of the results is larger. Figure 3-9 and 3-10 show the mentioned ranges of σ. The central point 

is the mean value, and the larger the bar is, the larger the variability is. 

 

 

Figure 3-9. Cl variability. 
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 SL SS SG Cl Cdp Cl/Cdp 

Case 1: Normal PDF 

Min 0,034 -- -- 0,003 0,009 0,316 

Max 0,063 -- -- 0,194 0,019 13,246 

Std Dev 0,005 -- -- 0,029 0,003 1,934 

Mean 0,051 -- -- 0,096 0,014 6,937 

Case 2: Normal PDF 

Min -- 0,349 -- 0,080 0,011 7,291 

Max -- 0,631 -- 0,090 0,011 8,120 

Std Dev -- 0,051 -- 0,003 0,000 0,297 

Mean -- 0,500 -- 0,085 0,011 7,656 

Case 3: Normal PDF 

Min -- -- 0,717 0,080 0,011 7,284 

Max -- -- 1,424 0,090 0,011 8,107 

Std Dev -- -- 0,119 0,002 0,000 0,172 

Mean -- -- 1,100 0,084 0,011 7,413 

Case 4: Normal PDF 

Min 0,034 0,364 -- 0,002 0,008 0,282 

Max 0,065 0,620 -- 0,197 0,019 13,808 

Std Dev 0,005 0,051 -- 0,029 0,004 1,928 

Mean 0,050 0,498 -- 0,098 0,014 7,042 

Case 5: Normal PDF 

Min 0,035 -- 0,851 0,003 0,009 0,297 

Max 0,064 -- 1,349 0,187 0,019 13,163 

Std Dev 0,005 -- 0,107 0,031 0,003 2,065 

Mean 0,050 -- 1,092 0,099 0,014 7,090 

Case 6: Normal PDF 

Min -- 0,353 0,734 0,078 0,011 7,093 

Max -- 0,637 1,369 0,090 0,011 8,248 

Std Dev -- 0,050 0,112 0,003 0,000 0,312 

Mean -- 0,499 1,091 0,085 0,011 7,650 

Case 7: Normal PDF 

Min 0,031 0,317 0,767 0,002 0,009 0,210 

Max 0,064 0,614 1,319 0,223 0,019 14,019 

Std Dev 0,005 0,052 0,111 0,031 0,003 2,113 

Mean 0,050 0,496 1,086 0,097 0,014 7,040 

Case 8: Normal PDF 

Min 0,019 0,274 0,585 -0,020 0,007 -2,485 

Max 0,076 0,787 1,701 0,313 0,020 16,050 

Std Dev 0,010 0,099 0,221 0,067 0,004 4,358 

Mean 0,049 0,504 1,084 0,100 0,013 6,808 

Case 9: Uniform PDF 

Min 0,035 0,351 0,773 0,002 0,008 0,194 

Max 0,065 0,647 1,429 0,191 0,019 13,594 

Std Dev 0,008 0,087 0,183 0,053 0,003 3,752 

Mean 0,049 0,502 1,096 0,100 0,013 7,366 

 

Table 3-3. Obtained numerical result values 
 

The variability of each case is directly related to those values defining the input parameters. 

The first three cases identify the effect from single parameters, but other cases combine more 

than one variability effect. The last case, that is defined using uniform distribution, uses 

similar value ranges as case number 7. The obtained results significantly differ when 

compared Cl, but are almost the same for Cdp results. 
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Figure 3-10. Cdp variability. 

   

Both Cl and Cdp variations do not have the same order of magnitude, so the comparison of the 

coefficient of variation can help to compare the variability of Cl and Cdp. The coefficient of 

variation is the ratio between the standard deviation and the mean values. It normalizes the 

variance, so it can be used to compare different probability density functions. In all the 

analyses, Cdp has smaller coefficients, which means lower variation. Table 3-4 summarizes 

the values of the coefficient of variation. 

 

Mesh Size Coefficient of Variation 

SL SS SG Cl Cdp 

Case 1: Normal PDF 0,100 0,000 0,000 0,306 0,249 

Case 2: Normal PDF 0,000 0,100 0,000 0,034 0,015 

Case 3: Normal PDF 0,000 0,000 0,100 0,018 0,013 

Case 4: Normal PDF 0,100 0,100 0,000 0,292 0,248 

Case 5: Normal PDF 0,100 0,000 0,100 0,307 0,246 

Case 6: Normal PDF 0,000 0,100 0,100 0,038 0,015 

Case 7: Normal PDF 0,100 0,100 0,100 0,317 0,248 

Case 8: Normal PDF  0,200 0,200 0,200 0,676 0,281 

Case 9: Uniform PDF 0,025 0,250 0,055 0,529 0,248 

Table 3-4. Coefficient of Variation for Cl and Cdp distributions 

 

As mentioned, expected values are confirmed after this analysis. The most affecting mesh 

size, SL, is that applied to the profile boundary. It contributes to capture the drag, which could 

be considered as the most sensitive output value. The second most affecting mesh size is the 

one applied to the inner surface. Inner surface is defined to capture lift, accurately capturing 

the flow behaviour around the profile, so it is easily understandable that it has a greater effect 

on the results variability.   
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3.4.4 Conclusions 

 

First stochastic analysis helps to define the stochastic procedure. The stochastic management 

tool, STAC, and the CFD solver, PUMI, are correctly coupled. This enables to control 

whatever variables the user needs to work with; from mesh sizes to boundary or flow 

conditions. 

 

The general procedure has been established as defined in section 3.2. The procedure described 

in the flowchart in Figure 3-2 has been applied to the variability analysis and it is ready to be 

applied to solve CFD and aero-elastic problems. 

 

3.5 Uncertainty applied to a stochastic CFD analysis 

3.5.1 Variability of the flow variables 

3.5.1.1 Introduction 

 

The developed integration of the stochastic analysis management tool and the CFD solver is 

now used to determine the effects of the variability of results with respect to the flow 

parameters. The chosen flow parameters are the angle of attack and the velocity of the airflow 

(Mach number). The outputs will be Cl and Cdp, as defined in the previous test case. The same 

procedure as in Section 3.4 has been used. It is described in Section 3.5.1.2. 

 

In addition, the results obtained from the stochastic analysis are compared with the 

deterministic ones in order to justify the present approach. 

 

3.5.1.2 Procedure 

 

Based on the same geometry of a RAE2822 profile, as in Section 3.4.2, see Figure 3-11 and 

3-12, the defined mesh is shown in Figure 3-13. The main values that define the problem are 

as follow: 

 

The dimensions of the defined geometry are: 

- Chord Length of the profile: 1 m 

- Diameter of the inner mesh: 6 m (fine mesh) 

- Diameter of the outer mesh: 30 m (Course mesh) 

- Distance from Leading edge to the limit of the inner mesh: 3m 

 

The boundary conditions have been defined as: 

- Free velocity applied to the point of the trailing edge 

- Infinity boundary Roe condition applied to the external limit of the outer mesh 

- Slip wall enforced condition applied to the profile lines 

 

The conditions of the flow have been defined as: 

- Mach number: see Table 3-5 for details. 

- Angle of attack: see Table 3-5 for details. 

 

The SI units have been used through all this research. 
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Figure 3-11. General view of the outer and inner control areas 

  

 

Figure 3-12. Detail of the RAE2822 airfoil profile 

 

Figure 3-13 shows the used finite element mesh. It has been selected taking care of a trade-off 

between accuracy of the results and the time calculation. The applied mesh sizes are: 

- Size to the leading and trailing edge points: 0,02 

- Size to the profile lines: 0,05 

- Size to the inner surface: 0,1 

- Size to the outer surface: 0,75 
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Figure 3-13. General view of the mesh. 

As done in the mesh size test case, normal and uniform probability density functions have 

been defined for each selected parameters. Several combinations of them enable the analysis 

of the influence of each one on the variability of the output.  

 

The angle of attack (AoA) and Mach number (M) have been selected as input parameters with 

uncertainties. Several probabilistic definitions have been applied to both of them, in order to 

analyse the behaviour of the output data Cl and Cdp with respect to the variability of the input 

data. 

 

Similarly of what was done in the mesh test case, 8 cases have been defined. The first and the 

second one define the values for the angle of attack or the Mach number as constant. From 

cases 3 to 7 several mean and standard deviation values have been applied to both angle of 

attack (AoA) and Mach number (M); using case 3 as reference case 4 doubles the standard 

deviation value of angle of attack, and case 5 multiply by 3 this value, maintaining other 

values as in case 3. Compared with case 3, case 6 divides by two the deviation value of M, 

and case 7 multiplies it by 1,5. The last case applies uniform distributions to angle of attack 

and Mach number. 

 

The definition of the input parameters for each analysis has been described in Table 3-5: 

 
Flow Conditions Angle of Attack; 

AoA 

Mach number; M 

Mean Std 

Deviation 

Mean Std 

Deviation 

Case 1: Normal PDF 4 -- 0,7 0,08 

Case 2: Normal PDF 4 0,5 0,7 -- 

Case 3: Normal PDF 4 0,5 0,7 0,08 

Case 4: Normal PDF 4 1,0 0,7 0,08 

Case 5: Normal PDF 4 1,5 0,7 0,08 

Case 6: Normal PDF 4 0,5 0,7 0,04 

Case 7: Normal PDF  4 0,5 0,7 0,12 

 Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Case 8: Uniform PDF 2,5 4,5 0,45 0,95 

     

Table 3-5: Definition of test cases 
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STAC is the stochastic manager that generates the set of probabilistic samples. A new set of 

samples are generated whenever is required. The PUMI input file is fed with the samples to 

evaluate all of them and to get the resulting cloud of points. Finally, the statistical analysis of 

the resulting cloud of points lead to the mean and standard deviation used to compare among 

cases. 

3.5.1.3 Results on the variability of the flow parameters 

 

Table 3-6 shows the list of the maximum, minimum, standard deviation and mean values of 

the input variables; AoA and M, and the output variables; Cl and Cdp coefficients. The results 

of the deterministic case are also added for comparison. 

 

The analysis of all these values is intended to confirm the known relationship between lift 

(Cl), drag (Cdp), angle of attack (AoA) and Mach number (M). The well-known relationship is 

the result to be obtained in order to validate the procedure. 

 

The ranges of +/- 3σ of Cl and Cdp have been plotted in Figure 3-14 and 3-15 for each case 

described in Table 3-5. Comparing both plots, it can be observed that Cl presents lower 

variability than Cdp, but each case produces similar effects on Cl and Cdp. If normal 

distribution is applied to AoA while M remains constant, lower variability on Cl and Cdp 

values is obtained than if a normal distribution is applied to M and AoA, for instance. 

 

The use of a solver based on the Euler equations, combined with the random definition of the 

angle of attack and Mach number and the fact that the solver does not impose any restriction 

on the produced value for Cdp, cause that in some cases the obtained shock drag value has no 

physical meaning. The Euler solver is not taking into account the boundary layer effect, so if 

the Mach number is clearly subsonic the drag value provided comes only from numerical 

noise and not from a real drag value. The values are shown to maintain the integrity of the 

range of values of the results, although it is well-known that for an accurate analysis, the 

jordiskype 

shock drag must be zero for the subsonic cases. 

 

Figure 3-14 and 3-15 show the ranges of the variance in each analysed case. The variability of 

lift and pressure drag coefficients has been analysed and plotted. 

  

In order to compare, the coefficient of variation can be used. It measures the variance of the 

obtained distribution. It is easy to observe that Cdp distribution is more sensitive to input data 

variation than Cl. If the first two cases are taken (normal distribution to M or to AoA), for 

instance, it can be seen that coefficient of variation of Cl distribution is lower than Cdp one, 

and lower than 1 (the limit between lower variation and larger variation distributions). 

 

Coefficient of variance can be compared when M or AoA are constant. M produces larger 

influence than AoA, which in both Cl and Cdp distributions presents lower coefficients of 

variation. Table 3-7 summarizes the coefficient of variations of each analysis. 

 

 

 

 

 



UPC-CIMNE  DoCTA 

Doctorat en Ciència i Tecnologia Aerospacial 

 79/261 

 AoA M Cl Cdp 

Case 1: Normal PDF 

Min -- 0,469 0,197 0,001 

Max -- 0,951 0,802 0,116 

Std Dev -- 0,080 0,113 0,023 

Mean 4,000 0,694 0,575 0,015 

Case 2: Normal PDF 

Min 3,021 -- 0,477 0,000 

Max 5,242 -- 0,678 0,004 

Std Dev 0,471 -- 0,043 0,001 

Mean 4,042 0,70 0,566 0,002 

Case 3: Normal PDF 

Min 2,573 0,490 0,217 0,000 

Max 5,282 0,982 0,888 0,125 

Std Dev 0,478 0,082 0,127 0,027 

Mean 3,991 0,707 0,582 0,018 

Case 4: Normal PDF 

Min 0,829 0,462 0,249 0,000 

Max 6,793 0,864 1,031 0,103 

Std Dev 1,026 0,079 0,151 0,021 

Mean 3,924 0,694 0,578 0,014 

Case 5: Normal PDF 

Min -0,225 0,505 0,153 0,000 

Max 8,241 0,941 1,050 0,137 

Std Dev 1,502 0,081 0,166 0,027 

Mean 4,008 0,701 0,572 0,017 

Case 6: Normal PDF 

Min 2,764 0,595 0,402 0,000 

Max 5,348 0,796 0,862 0,054 

Std Dev 0,474 0,041 0,085 0,008 

Mean 3,964 0,695 0,562 0,006 

Case 7: Normal PDF 

Min 2,714 0,334 0,156 0,001 

Max 5,203 1,095 0,872 0,124 

Std Dev 0,473 0,119 0,147 0,031 

Mean 4,039 0,689 0,559 0,021 

Case 8: Uniform PDF 

Min 2,505 0,450 0,126 0,001 

Max 4,498 0,949 0,845 0,124 

Std Dev 0,586 0,147 0,165 0,044 

Mean 3,504 0,698 0,465 0,034 

Deterministic case 

 4,000 0,700 0,56205 0,00084 

Table 3-6. Numerical Result values 
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Figure 3-14. Cl ranges 

 

 

Figure 3-15. Cdp ranges 
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Environmental variables Coefficient of Variation 

AoA M Cl Cd 

Case 1: Normal PDF 0 0,114 0,196 1,579 

Case 2: Normal PDF 0,125 0 0,076 0,483 

Case 3: Normal PDF 0,125 0,114 0,218 1,516 

Case 4: Normal PDF 0,25 0,114 0,260 1,455 

Case 5: Normal PDF 0,375 0,114 0,291 1,643 

Case 6: Normal PDF 0,125 0,057 0,151 1,253 

Case 7: Normal PDF 0,125 0,171 0,263 1,493 

Case 8: Uniform PDF 0,048 0,060 0,354 1,310 

Table 3-7. Coefficient of Variation for Cl and Cd distributions 

 

Figure 3-16 to Figure 3-22 provide a plot of graphical analysis showing the variability of the 

output variables Cl or Cdp versus any of the input parameters, while the other one remains 

constant. 

 

Figure 3-16 shows how Cl increases with M, up to a limit, where shock waves can appear. It 

follows the typical shape of a polar curve. It can be seen how the values are concentrated 

around the point corresponding to the near value of M. 
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Figure 3-16. Case 1; Cl vs M, AoA constant 

 

Figure 3-17 shows how Cdp follows a quite constant behaviour until transonic values of M 

begins to increase. The CFD used solver, PUMI, only provides Cdp values because it is based 

on Euler equations, without calculating boundary layer effects. Then, the provided value is 

negligible up to transonic values, when shock pressure appears and Cdp can be calculated. 
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Figure 3-17. Case 1: Cdp vs M, AoA constant 

 

Figure 3-18 shows a straight line portion of the polar curve. Notice that the range of values is 

small enough to ensure values lower than 15º, where the polar curve begins to decrease. 
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Figure 3-18. Case 2: Cl vs AoA, M constant 

 

A similar situation can be noticed in Figure 3-19, where Cdp is plotted versus AoA. 

RAE22822 airfoil is not symmetric, then pressure drag Cdp has a local minimum value around 

its optimal position for the prescribed Mach number, while it generally increases with AoA. 
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Figure 3-19. Case 2: Cdp vs AoA. M constant 

 

In all the above figures the effect of the normal distribution applied to the Mach number or 

the angle of attack can be also observed, as pointed out previously. 

 

Figure 3-20 to 3-24 show how the previous plots are modified when AoA or M are 

probabilistically defined. 

 

The original line, which means a constant AoA, increases its width when standard deviation 

applied to AoA also increases. 

  

Figure 3-20 shows a clear dependency between Cl and AoA; on one hand, in subsonic and 

low transonic regimes, M<0,8, the plot presents a great variability of Cl while increasing the 

standard deviation of AoA, even considering the effect of doubling and multiplying by 3 this 

value, or considering a uniform distribution. On the other hand, in high transonic regime, the 

variability of Cl is lower, and the plot is a thinner line of points. 

 



UPC-CIMNE  DoCTA 

Doctorat en Ciència i Tecnologia Aerospacial 

 84/261 

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.4  0.5  0.6  0.7  0.8  0.9  1

C
l

M

AoA constant

AoA Std Dev =0,5

AoA Std Dev = 1,0

AoA Std Dev = 1,5

AoA uniform

 

Figure 3-20. Case 1, 2,4,5 and 8: Cl vs M; AoA several distributions 

 

Figure 3-21, where Cdp is plotted as done with Cl, shows a lower variability of Cdp due to 

AoA. In opposite to what happens with Cl, Cdp variability increases in transonic regime, due 

to the presence of shock waves. Variability in subsonic regime is associated to numerical 

noise of the solver, instead of being associated to Cdp variance. 
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Figure 3-21. Case 1, 2,4,5 and 8: Cdp vs M; AoA several distributions 

 

Figure 3-22 shows a linear relationship between AoA and Cl, as it has to be due to the range 

of values of AoA. The variability induced by M is regularly spread along the curve. It can 

also be observed the effect of shocks in transonic regime. This phenomenon produces a 

reduction of the Cl values that can be easily identified on the plot.  
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Figure 3-22. Case 2, 3, 6, 7 and 8: Cl vs AoA; M several distributions 

 

Figure 3-23 and 3-24 are the 3D representation of the previous plots. Cl and Cdp coefficients 

have been plotted against AoA and M. 
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Figure 3-23. All Cases: Cl vs AoA and M 

 

Figure 3-20 to 3-22 show the 2D projection of those Figure 3-23 and 3-24, which can help to 

understand how AoA and M values are spread around the range. They can only help to 

understand the induced variability to aerodynamic coefficients. 
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Figure 3-24. All Cases: Cdp vs AoA and M 

 

3.5.1.4 Preliminary conclusions on the variability of the flow parameters 

 

The previous plots has a strong relationship with the polar curve of the profile. Similarities 

can be detected between the deterministic polar curve, and the stochastic representations. The 

main difference is the fact the stochastic analysis can detect effect that a single deterministic 

analysis cannot detect, like shocks. 

  

It is very important to emphasize that the stochastic analysis provide information about the 

behaviour of the profile when the input parameters are slightly modified. This information 

includes the possible presence of shock waves. This is not provided by the classical 

deterministic analysis. 

  

3.5.2 Comparison of Monte Carlo and Latin Hypercube sampling 
methods 

3.5.2.1 Introduction 

 

Due to the high computational cost involved in stochastic analysis a comparison between 

Monte Carlo and Latin Hypercube sampling methods has been established in order to guess 

which of them requires a smaller number of sampling points for the same level of accuracy. 

From the results of section 3.3 it can be concluded that LHS should improve efficiency while 

reducing the amount of evaluations required, so reducing the cost. 

  

The first aim is to establish if there is any difference between MC and LHS, as expected from 

previous conclusions. A secondary aim is to analyse how the variability on the input values is 

transferred to the output values; if the variability induced by the sampling is relevant enough 

to be taken into account and if the main source of the variability is from the statistical 
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sampling or from the variability of the input values. All these questions should be answered to 

better face further developments regarding optimization problems. 

 

The variability study is performed on the aerodynamic analysis of a 2D profile, namely a 

RAE2822 profile, applying a stochastic definition on the angle of attack and the Mach 

number.  

 

3.5.2.1.1 Sampling variability 

 

From the statistical point of view, samples are a representation of the population. Samples 

converge to the whole population when their amount is increased. Mathematically speaking, 

the mean of the set of samples tend to be the mean of the whole population. The standard 

deviation of the set of samples is  

 

.
n

S


  3-3 

 

where S is the standard deviation of the set of samples, n is the number of samples in the set, 

and σ is the standard deviation of the whole population.  

 

Due to the relationship expressed in equation 3-3, the standard deviation of different sets of 

samples can differ between them from even if both sets belong to the same population. The 

following example has been used to study the effect of the different sampling procedures. 
 

3.5.2.2  Procedure 

 

The sampling effects have been analysed using the same problem definition for different 

cases as a basic reference. The RAE2822 2D profile is analysed to evaluate the variability 

induced on Cl and Cdp coefficients by the variability defined for the angle of attack and the 

Mach number.  

 

In order to evaluate sampling variability the analysis is mainly focused on the comparison of 

the results obtained when applying different sets of samples. Sets with 5, 10, 50, 100, 150 and 

250 samples have been used with both sampling algorithms (MC and LHS). For each amount 

of sampling points, 5 different sets have been generated and compared. A comparison among 

the sets with the same amount of samples, and also with those sets with different amount of 

samples has been established.  

 

All this procedure is performed using Monte Carlo and Latin Hypercube samples, so different 

factors are considered when analysing the results. STAC stochastic analysis software and 

PUMI and XFoil CFD solvers have been used as the main tools for the stochastic analysis; the 

first one for transonic regime and the second one for subsonic regime. 

 

A relevant task is to compare the Monte Carlo and the Latin Hypercube sampling techniques, 

since previous results seem to show that LHS has a better efficiency. The fact that Latin 

Hypercube sampling technique is said to better represent the sampled space leads to think it 

could generate improved results compared with other sampling techniques, such as Monte 

Carlo.  
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Details of the procedure are: 

- Sets with different number of samples have been randomly defined, i.e., no correlation 

between different sets has been defined. No information from previous sets has been 

used to generate a new one. Each set is applied to the same stochastic analysis in order 

to evaluate the variability introduced by the sampling. 

- For a given number of samples, the analysis is repeated 5 times. All five times the 

mean and the standard deviation of input values have been kept constant. 

- The sets, those containing 5, 10, 50, 100, 150 or 250 samples, also represent the same 

probability density function, with same mean and same standard deviation. The only 

difference is the amount of generated samples. 
 

At the end of the complete process a total of 30 stochastic analyses have been performed 

using Monte Carlo sampling technique, and 30 using the Latin Hypercube sampling 

technique. 

 

This process have been applied first to a subsonic stochastic analysis and second to a 

transonic one. 
 

3.5.2.2.1 Details on the subsonic analysis 

 

The subsonic case is solved using XFoil CFD solver. The main used parameters are as follow: 

- Number of panels: 160 (used by Xfoil to define a discrete geometry) 

- Reynolds number: 6,5·10
6
 

- Mach number: defined as stochastic value 

- Angle of attack: defined as stochastic value 

 

No mesh is required to work with XFoil, only the profile has to be inputted. Figure 3-25 

shows the points that define the profile, as well as the profile line. The transition is set as free. 

For details about RAE2822 profile refer to Appendix IV. 
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Figure 3-25. Definition of the RAE2822 profile for XFoil CFD solver 

3.5.2.2.2 Details on the transonic analysis 

 

The analysis is based on the geometry of a RAE2822 profile, as described in Section 3.5.2.1. 

The CFD solver used is PUMI. The main values that define the problem are as follow: 
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The dimensions of the defined geometry are (Figure 3-11): 

- Chord Length of the profile: 1 m 

- Diameter of the inner mesh: 6 m (fine mesh) 

- Diameter of the outer mesh: 30 m (Coarse mesh) 

- Distance from Leading edge to the limit of the inner mesh: 3m 

 

The boundary conditions have been defined as (Figure 3-12): 

- Free velocity applied to the point of the trailing edge 

- Infinity boundary Roe condition applied to the external limit of the outer mesh 

- Slip wall enforced condition applied to the profile lines 

 

The conditions of the flow have been defined as: 

- Mach number: see Table 3-5 for details. 

- Angle of attack: see Table 3-5 for details. 

- Reynolds Number: 6,5·10
6
 

 

Figure 3-13 shows the defined mesh. It has been selected taking care of a trade-off between 

accuracy of the results and the time calculation. The applied mesh sizes are: 

- Size to the leading and trailing edge points: 0,02 

- Size to the profile lines: 0,05 

- Size to the inner surface: 0,1 

- Size to the outer surface: 0,75 

3.5.2.3 Result of the Monte Carlo and Latin Hypercube comparison  

 

The results are presented in a tabulated and in a graphical way. The mean and the standard 

deviation presented in the tables have been calculated using the mean values of each 5 

repetitions, so the trend to the real mean has been compared between the 6 different analyzed 

cases. 

 

The fact that the results of the transonic case include the effect of the shock waves on the 

profile have leaded to perform the same analysis but in subsonic regime. Shock wave in 

transonic regime produces additional variability that makes more difficult to take clear 

conclusions. The main aim is to separate the shock wave effect on the lift and drag from the 

variability induced by the input values and set of samples variability.  

 

First of all, tabulated results are presented in Table 3-8 (subsonic case) and in Table 3-13 

(transonic case). Each table shows a comparison of the results produced by MC and LHS 

sampling techniques for the same numbers of sampling points (5, 10, 50, 100, 150, 250 

samples). Listed results include minimum and maximum values, and mean and standard 

deviation of the 5 generated repetitions of samples.  

 

In a second step, the angle of attack (AoA) and the Mach number (M) evolution when 

increasing the amount of samples have been compared. Figure 3-26 and 3-27 are the mean 

and the standard deviation of the angle of attack. Figure 3-28 and 3-29 are the mean and the 

standard deviation of the Mach number. 

 

Figure 3-26 to 3-29 show the comparison between MC and LHS results. The evolution of the 

mean and the standard deviation of both the angle of attack and the Mach number are plotted 

and compared with three reference values. These reference values are the real ones (both 
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mean and standard deviation, taken from the PDF definition), and also the mean and standard 

deviation of such cases using 500 and 9000 samples. These two last test cases have been used 

as reference due to the fact that the real values of the standard deviation of Cl and Cd are 

unknown. The obtained values using 500 or 9000 samples are good approximations to the real 

standard deviation, while the deterministic test case value can be used as the reference for the 

mean value. Table 3-9 shows the obtained results in a deterministic analysis. 

 

LHS 5 

samples 

AoA M Cl Cd MC 5 

samples 

AoA M Cl Cd 

Minimum 2,214 0,2060 0,459 0,0062 Minimum 2,791 0,1783 0,522 0,0066 

Maximum 3,411 0,2832 0,598 0,0070 Maximum 3,338 0,2533 0,590 0,0070 

Std Deviation 0,435 0,0291 0,050 0,00030 Std Deviation 0,236 0,0302 0,030 0,00015 

Mean 2,845 0,2421 0,533 0,0067 Mean 3,138 0,2214 0,564 0,0069 

LHS 10 

samples 

AoA M Cl Cd MC 10 

samples 

AoA M Cl Cd 

Minimum 2,214 0,2060 0,459 0,0062 Minimum 2,369 0,1894 0,483 0,0064 

Maximum 3,411 0,2832 0,598 0,0070 Maximum 3,224 0,2688 0,570 0,0069 

Std Deviation 0,370 0,0226 0,043 0,00025 Std Deviation 0,251 0,0259 0,026 0,00014 

Mean 2,810 0,2349 0,528 0,0067 Mean 2,815 0,2278 0,528 0,0067 

LHS 50 

samples 

AoA M Cl Cd MC 50 

samples 

AoA M Cl Cd 

Minimum 2,169 0,1737 0,452 0,0062 Minimum 2,120 0,1716 0,455 0,0062 

Maximum 3,470 0,2647 0,603 0,0071 Maximum 3,398 0,2844 0,599 0,0070 

Std Deviation 0,280 0,0242 0,032 0,00018 Std Deviation 0,273 0,0238 0,031 0,00017 

Mean 2,776 0,2263 0,523 0,0066 Mean 2,814 0,2297 0,528 0,0067 

LHS 100 

samples 

AoA M Cl Cd MC 100 

samples 

AoA M Cl Cd 

Minimum 2,093 0,1830 0,449 0,0061 Minimum 2,140 0,1620 0,453 0,0062 

Maximum 3,638 0,2765 0,615 0,0071 Maximum 3,368 0,2795 0,586 0,0070 

Std Deviation 0,322 0,0226 0,036 0,00021 Std Deviation 0,267 0,0227 0,030 0,00017 

Mean 2,780 0,2306 0,524 0,0066 Mean 2,773 0,2284 0,523 0,0066 

LHS 150 

samples 

AoA M Cl Cd MC 150 

samples 

AoA M Cl Cd 

Minimum 2,134 0,1518 0,452 0,0062 Minimum 2,217 0,1842 0,464 0,0063 

Maximum 3,443 0,2939 0,598 0,0070 Maximum 3,744 0,2889 0,633 0,0072 

Std Deviation 0,281 0,0232 0,031 0,00018 Std Deviation 0,282 0,0221 0,032 0,00018 

Mean 2,788 0,2295 0,525 0,0066 Mean 2,814 0,2304 0,528 0,0067 

LHS 250 

samples 

AoA M Cl Cd MC 250 

samples 

AoA M Cl Cd 

Minimum 1,617 0,1709 0,399 0,0056 Minimum 1,915 0,1561 0,429 0,0059 

Maximum 3,684 0,2880 0,629 0,0072 Maximum 3,608 0,2923 0,615 0,0071 

Std Deviation 0,298 0,0236 0,033 0,00020 Std Deviation 0,280 0,0244 0,031 0,00018 

Mean 2,792 0,2303 0,525 0,0066 Mean 2,795 0,2303 0,526 0,0066 

Table 3-8. Summary of subsonic regime results for Latin hypercube and Monte Carlo sampling using different 

number of samples 
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Deterministic 

results 

AoA M Cl Cd 

Mean 2,79 0,23 0,5246 0,00666 

Table 3-9. Deterministic values 

 

Table 3-10 and Table 3-11 show the four statistical moments of the Angle of attack and the 

Mach number. The mean, which defines the trend of the samples, the standard deviation, 

which measures the dispersion of the population, the skewness value, a measure of the 

symmetry of the probability distribution and the kurtosis value, which measures how tall is 

the peak described by the distribution are listed and compared. Considering the defined mean 

and standard deviation (AoA, µ=2,79 and σ=0,279; M, µ=0,23 and σ=0,023), the reader can 

observe that the larger the number of samples is, the better the accuracy is. On the other hand, 

the differences between Latin Hypercube and Monte Carlo are not significant. 
 

Angle of attack 
Samples Mean Std Dev Skewness Kurtosis 

Latin Hypercube 5 2,845 0,435 -0,3235 1,1095 

 10 2,810 0,370 -0,0838 -0,6315 

 50 2,788 0,292 -0,0937 0,0463 

 100 2,783 0,282 0,0719 0,1680 

 150 2,802 0,276 -0,0126 -0,0300 

 200 2,798 0,287 -0,0830 -0,0928 

 250 2,789 0,281 -0,0299 0,1443 

Angle of attack 
Samples Mean Std Dev Skewness Kurtosis 

Monte Carlo 5 2,823 0,242 -0,0514 -1,3324 

 10 2,751 0,278 0,6102 0,4909 

 50 2,790 0,287 -0,0240 0,1864 

 100 2,776 0,276 0,0534 -0,2311 

 150 2,808 0,283 -0,0163 -0,0523 

 200 2,796 0,274 0,0511 0,0200 

 250 2,794 0,271 -0,0524 0,1104 

Table 3-10. Statistical moments of Angle of Attack for subsonic case 

Mach number 
Samples Mean Std Dev Skewness Kurtosis 

Latin Hypercube 5 0,242 0,029 0,2922 0,0846 

 10 0,235 0,023 0,9475 1,1375 

 50 0,229 0,022 0,0254 -0,2103 

 100 0,230 0,023 -0,0017 -0,2670 

 150 0,230 0,022 0,0607 -0,0395 

 200 0,230 0,022 -0,0120 0,0257 

 250 0,029 0,003 -0,3837 0,4303 

Mach number 
Samples Mean Std Dev Skewness Kurtosis 

Monte Carlo 5 0,229 0,025 0,0067 -0,4863 

 10 0,231 0,019 -0,1497 -0,1079 

 50 0,229 0,023 -0,0699 0,0851 

 100 0,229 0,023 0,0962 0,1314 

 150 0,229 0,023 -0,0794 -0,1372 

 200 0,230 0,023 0,0842 -0,0400 

 250 0,231 0,023 -0,0390 0,1024 

Table 3-11. Statistical moments for M for subsonic case 
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Figure 3-26. Evolution of AoA mean when increasing the amount of samples (Subsonic) 

 

 

Figure 3-27. Evolution of AoA St Deviation when increasing the amount of samples (Subsonic) 
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Figure 3-28. Evolution of M mean when increasing the amount of samples (Subsonic) 

 

 
 

Figure 3-29.  Evolution of M St Deviation when increasing the amount of samples (Subsonic) 

 

Histograms in Figure 3-30 and 3-31 provide additional information to compare Monte Carlo 

and Latin Hypercube samplings. Two representative cases of 250 samples of Angle of attack, 

and Mach number have been selected. One of them plots the Latin Hypercube samples 

(Figure 3-30, and 3-32), and the other plots the Monte Carlo samples (Figure 3-31 and 3-33), 

it can be observed they are pretty similar. The reader can observe that the differences between 

 

MC 

LHS 

 

MC 

LHS 
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Monte Carlo and Latin Hypercube cannot be easily detected from the obtained results. In 

conclusion, it can be assumed that the capture of the variability is almost the same when using 

MC or LHS sampling techniques. On the other hand, the variability between the set of 5 

samples and the set of 250 samples is relevant. It agrees with the statistical theory that the 

larger the number of samples is, the better accuracy is obtained. 

 

 
Figure 3-30. Histogram  of AoA for 250 LHS samples case (Subsonic) 

 

 
Figure 3-31. Histogram  of AoA for 250 MC samples case (Subsonic) 
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Figure 3-32. Histogram  of M for 250 LHS samples case (Subsonic) 

 

 
Figure 3-33. Histogram  of M for 250 MC samples case (Subsonic) 

 

The transonic test cases have been analysed in a similar way the subsonic test cases have 

done. Table 3-12 shows the obtained results of a deterministic analysis.  

 

Deterministic 

results 

AoA M Cl Cdp 

Mean 2,79 0,734 0,7094 0,0262 

Table 3-12. Deterministic values for the transonic analysis 
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LHS 5 

samples 

AoA M Cl Cd MC 5 

samples 

AoA M Cl Cd 

Minimum 2,316 0,606 0,283 0,0139 Minimum 2,074 0,568 0,310 0,0138 

Maximum 3,407 0,888 0,640 0,1154 Maximum 3,121 0,881 0,612 0,1098 

Std Deviation 0,085 0,013 0,030 0,0179 Std Deviation 0,075 0,029 0,022 0,0134 

Mean 2,799 0,722 0,430 0,0243 Mean 2,692 0,743 0,452 0,0300 

 

LHS 10 

samples 

AoA M Cl Cd MC 10 

samples 

AoA M Cl Cd 

Minimum 1,952 0,600 0,325 0,0137 Minimum 2,082 0,587 0,092 0,0139 

Maximum 3,277 0,876 0,652 0,1082 Maximum 3,602 0,922 0,668 0,1228 

Std Deviation 0,056 0,021 0,019 0,0113 Std Deviation 0,093 0,030 0,048 0,0128 

Mean 2,723 0,742 0,450 0,0282 Mean 2,744 0,762 0,448 0,0406 

 

LHS 50 

samples 

AoA M Cl Cd MC 50 

samples 

AoA M Cl Cd 

Minimum 2,188 0,461 0,123 0,0138 Minimum 2,098 0,529 0,111 0,0137 

Maximum 3,703 0,902 0,689 0,1253 Maximum 3,688 0,933 0,671 0,1258 

Std Deviation 0,049 0,008 0,005 0,0021 Std Deviation 0,034 0,011 0,008 0,0053 

Mean 2,787 0,733 0,451 0,0283 Mean 2,823 0,732 0,441 0,0301 

 

LHS 100 

samples 

AoA M Cl Cd MC 100 

samples 

AoA M Cl Cd 

Minimum 1,998 0,539 0,120 0,0136 Minimum 1,814 0,488 0,111 0,0135 

Maximum 3,860 1,069 0,669 0,1239 Maximum 3,659 0,925 0,665 0,1252 

Std Deviation 0,017 0,007 0,005 0,0022 Std Deviation 0,015 0,004 0,008 0,0024 

Mean 2,804 0,734 0,445 0,0282 Mean 2,790 0,735 0,445 0,0301 

 

LHS 150 

samples 

AoA M Cl Cd MC 150 

samples 

AoA M Cl Cd 

Minimum 1,903 0,499 0,105 0,0136 Minimum 1,749 0,528 0,107 0,0131 

Maximum 3,598 0,989 0,664 0,1247 Maximum 3,727 0,931 0,681 0,1249 

Std Deviation 0,019 0,004 0,007 0,0026 Std Deviation 0,016 0,006 0,007 0,0043 

Mean 2,791 0,734 0,445 0,0289 Mean 2,788 0,735 0,446 0,0295 

 

LHS 250 

samples 

AoA M Cl Cd MC 250 

samples 

AoA M Cl Cd 

Minimum 1,788 0,489 0,109 0,0134 Minimum 2,008 0,509 0,106 0,0136 

Maximum 3,637 0,960 0,679 0,1255 Maximum 3,786 0,969 0,666 0,1255 

Std Deviation 0,018 0,004 0,004 0,0018 Std Deviation 0,019 0,002 0,003 0,0006 

Mean 2,805 0,736 0,446 0,0298 Mean 2,800 0,733 0,447 0,0285 

Table 3-13.Summary of transonic regime results for Latin hypercube and Monte Carlo sampling using different 

number of samples 

 

Table 3-14 and 3-15 summarize the four statistical moments of the performed analysis for the 

transonic test cases. Table 3-14 presents the values of angle of attack, and Table 3-15 the 

values of Mach number. Considering the defined mean and standard deviation (AoA, µ=2,79 

and σ=0,279; M, µ=0,734 and σ=0,0734), the reader can again observe that the larger the 

number of samples is, the better the accuracy is. On the other hand, the differences between 
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Latin Hypercube and Monte Carlo are not significant. This conclusion confirms that obtained 

with the subsonic analysis. 

 

 
Angle of attack 

Samples Mean Std Dev Skewness Kurtosis 

Latin Hypercube 5 2,730 0,327 -0,330 -1,904 

 10 2,674 0,372 -0,606 -0,303 

 50 2,749 0,305 0,668 0,330 

 100 2,783 0,278 0,110 -0,340 

 150 2,808 0,285 0,055 -0,237 

 200 2,817 0,293 0,087 -0,364 

 250 2,730 0,327 -0,330 -1,904 

Angle of attack 
Samples Mean Std Dev Skewness Kurtosis 

Monte Carlo 5 2,765 0,269 0,098 -0,436 

 10 2,727 0,410 0,740 1,773 

 50 2,853 0,267 -0,410 -0,173 

 100 2,807 0,270 0,152 0,373 

 150 2,799 0,255 -0,138 -0,077 

 200 2,819 0,292 0,216 0,485 

 250 2,765 0,269 0,098 -0,436 

Table 3-14. Statistical moments of Angle of Attack for transonic case 

 
Mach number 

Samples Mean Std Dev Skewness Kurtosis 

Latin Hypercube 5 0,724 0,088 0,522 -3,201 

 10 0,746 0,046 0,726 0,356 

 50 0,735 0,079 -0,713 1,865 

 100 0,731 0,067 0,106 0,027 

 150 0,735 0,077 -0,037 -0,110 

 200 0,731 0,072 -0,029 0,613 

 250 0,724 0,088 0,522 -3,201 

Mach number 
Samples Mean Std Dev Skewness Kurtosis 

Monte Carlo 5 0,750 0,056 0,989 0,167 

 10 0,799 0,082 0,048 -0,857 

 50 0,731 0,072 -0,078 -0,248 

 100 0,724 0,074 -0,033 -0,310 

 150 0,728 0,075 -0,387 -0,228 

 200 0,734 0,071 -0,189 0,100 

 250 0,750 0,056 0,989 0,167 

Table 3-15. Statistical moments for M for transonic case 

 

Similar conclusions can be extracted from the transonic values. Figure 3-34 to 3-37 show the 

comparison between the mean and the standard deviation of the angle of attack and the Mach 

number. Figure 3-34 shows the evolution of the mean of the angle of attack while the amount 

of samples increases. Figure 3-35 shows the evolution of the standard deviation. Figure 3-36 

and 3-37 show the evolution of the transonic Mach number. 
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Figure 3-34. Evolution of AoA mean when increasing the amount of samples (Transonic) 

 

 

Figure 3-35. Evolution of AoA std deviation when increasing the amount of samples (Transonic) 
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Figure 3-36. Evolution of M mean when increasing the amount of samples (Transonic) 

 

 
 

Figure 3-37. Evolution of M St deviation when increasing the amount of samples (Transonic) 
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The input variables are not directly affected by the flying regime. But both subsonic and 

transonic cases have been presented. As expected, and due to statistical reasons, the shown 

values are slightly different, but both of them show the same trend. In both cases, the mean 

value of the Angle of attack and the Mach number converge to the real mean when increasing 

the number of samples.  

 

Although, both Monte Carlo and Latin Hypercube (blue and magenta lines respectively in the 

Figure 3-34 to 3-37) catch the real values and converge to it, a slight difference can be 

detected in the case of Latin Hypercube. Latin Hypercube sampling shows a closest value to 

the converged mean when number of samples is low. But the standard deviation is the 

parameter which presents a most significant difference. The standard deviation of the Latin 

Hypercube case presents a quicker trend to the real value with a low number of samples. Latin 

Hypercube Sampling technique improves Monte Carlo sampling technique regarding variance 

convergence. The results showing a faster convergence of the standard deviation when 

defining samples with LHS confirm the fact that Latin Hypercube Sampling technique better 

represents the working space with its selected samples. 

 

The main point when analysing the output values is to detect if this slight difference between 

Monte Carlo and Latin Hypercube Sampling is transferred to outputs.  

  

The first thing the reader can observe is that standard deviation in the subsonic case is lower 

than in the transonic case. It clearly confirms that the shock wave is inducing additional 

variability. 

   

Another point is that the variability in the input values is transferred in a special way to the 

output. It means that the angle of attack and the Mach number values produce specific effect 

on lift and drag coefficient due to the relationship between parameters. If the formula that 

relates angle of attack and Mach number with lift and drag is analysed it can be observed that 

the velocity is quadratic and the angle is a plain value. It can be easy to expect a different 

behaviour of lift and drag. 

 

The lift and the drag coefficients also show a convergence when increasing the amount of 

samples. The standard deviation of the repetitions of the analysis also tends to converge. In 

addition, the standard deviation of the Latin Hypercube Sampling cases shows slight more 

stable values. Although they converge to the final value, the difference between the set of 5 

samples and the set of 250 samples are lower than those observed on Monte Carlo cases. 

Figure 3-38 to 3-45 clearly show this behaviour.  

 

Figure 3-38 to 3-45 are a comparison of the behaviour of the mean and the standard deviation 

of Cl and Cd (subsonic case) or Cdp (transonic case) coefficients when input parameters are 

defined using Latin Hypercube or Monte Carlo sampling. All of them compare the 

convergence while increasing the amount of samples. To facilitate the comparison some 

reference values, plot as horizontal lines, are used. The selected reference values are obtained 

from the same problem definition with a set of 500 or 9000 Monte Carlo samples (referred as 

MC500 and MC9000 in Figure 3-38 to 3-41). In Figure 3-38 the mean value of the population 

is also used as reference. It is mentioned as ―Real mean‖, and it is the mean value applied to 

the PDF in order to obtain the samples. 

 

In all the cases, increasing the amount of samples leads to closer values compared with the 

reference ones. Both sampling cases, namely Monte Carlo and Latin Hypercube sampling, 
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have a similar convergence rate. Both of them are affected by sampling variability, and the 

trend curve is not so smooth. 

 

Comparing the relative errors it can be confirmed that these conclusions are the right ones.    
 

 

Figure 3-38. Cl mean evolution (Subsonic) 

 

 

Figure 3-39. Cl St Deviation evolution (Subsonic) 
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Figure 3-40. Cdp mean evolution (Transonic) 

 

 

Figure 3-41. Cd St Deviation evolution (Subsonic) 
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Figure 3-42. Cl mean evolution (Transonic) 

 

 

Figure 3-43. Cl St Deviation evolution (Transonic) 
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Figure 3-44. Cdp mean evolution (Transonic) 

 

 

Figure 3-45. Cdp Std Deviation (Transonic) 

 

In order to carefully take some conclusions, some measurements of the error have been used. 

Two calculated values have been used as references. In Figure 3-46, the deterministic value 

has been used as reference, and the error of the different amount of analysis samples has been 

plotted for the lift, and the drag coefficients, when using a Monte Carlo or a Latin Hypercube 
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sampling techniques. For additional information the errors of a 500 and 9000 Monte Carlo 

analysis samples are added to the plot. 

 

 

Figure 3-46. Error MC/LHS vs Deterministic (subsonic) 

 

 

Figure 3-47. Error MC/LHS vs Monte Carlo 500 shots (subsonic) 

 

Figure 3-47 compares the same values with a 500 samples Monte Carlo analysis, in order to 

evaluate the availability to reduce the amount of samples without decreasing the accuracy. 
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In both cases, error values remain below 2.5%. Errors are the addition of all the errors 

involved on the analysis; definition of the geometry, CFD numerical analysis, and sample 

induced error or variability.  

 

3.5.2.4 Preliminary conclusions of the Monte Carlo and Latin Hypercube comparison  

 

It has been verified that the Latin Hypercube sampling technique is able to better capture the 

input variability compared with the Monte Carlo sampling technique. What was expected and 

it has not been clarified is the fact that this better representation of the input variability is 

translated to a better capture of the output variability. It has been expected that Latin 

Hypercube would provide a better representation of the output variability compared with 

Monte Carlo, but the results show slight differences between them. It leads to the conclusion 

that Monte Carlo and Latin Hypercube are equivalent from the output variability point of 

view. 

 

3.5.3 Variability analysis using the Probabilistic Collocation method 

3.5.3.1 Introduction 

 

Several methods have been developed to deal with uncertainty quantification (UQ). Stochastic 

methods are considered computationally very expensive, although they provide full statistics 

of the outputs. Stochastic methods are based on statistical random sampling instead of on 

defining a multi-point analysis, which selects a fixed set of points through all the analysis to 

check the random space. 

 

The Probabilistic Collocation method is one of the most successful developments in UQ. It 

has been applied in several disciplines as thermal analysis or CFD analysis. The main 

advantage of PCM compared with stochastic analysis is the lower computational cost to 

obtain the mean and standard deviation of the output variables. On the other hand, its major 

drawback is that it uses a multi-point strategy because given a PDF, with a defined mean and 

standard deviation, the evaluation points are always the same. The reader can refer to section 

2.3.2 and references Loeven and Bijl (2008, 2009) and Leoven et al (2007) for additional 

details about the method. 

 

The objective of this section is to compare stochastic sampling methods, Monte Carlo and 

Latin Hypercube, with the Probabilistic Collocation method; understand how PCM works and 

evaluate their pros and cons.  

 

3.5.3.2 Procedure 

Input parameters have been defined with a normal probability density function. The statistical 

values are AoA=2,79 ,  σAoA=0,01 , and M=0,25 ,  σM=0,001. 

 

To calculate the mean and the standard deviation of the output, when dealing with two 

uncorrelated stochastic variables, the following expressions can be used: 
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Where uij(a,m) is the function evaluation in the (ij)-th collocation point. The weight for each 

uncorrelated stochastic variable is wai and wmj. And Np is the total amount of collocation 

points defined.  

 

3.5.3.3 Results applying the variability using Probabilistic Collocation Method  

 

The collocation method defines evaluation points and weights using a quadrature method as 

described in section 2.3.2, This is directly translated to the output values. Figure 3-48 shows 

how the output behaviour is also almost constant in lift and momentum coefficient (Cm). Drag 

coefficient is not plotted because the resultant figure has no sense since Euler solver does not 

consider boundary layer effects. 

 

Figure 3-48. Cl comparative for truncated and non-truncated PDF (+/-3std dev ranges and mean) 
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Figure 3-49. Cm comparative for truncated and non-truncated PDF (+/-3std dev ranges and mean) 

 

Figure 3-50 presents the plot of error of the results compared with the mean value of the 

deterministic case. All of them remain under 4.5%, but a large sensitivity to the numerical 

analysis can be detected. The plot shows a peak for the point defining polynomial degree 

equal to 35 that is associated to numerical noise. 
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Figure 3-50. Errors PCM vs Deterministic values 

 

Lift, and momentum coefficients have been analysed when truncated and non-truncated 

probability density functions have been defined. Errors obtained for the truncated cases 

follow the same behaviour, as happens on the non-truncated cases. 
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3.5.3.4 Preliminary conclusionsw when using Probabilistic Collocation Method  

 

Probabilistic Collocation Method is a powerful method for Uncertainty Quantification. It 

reduces the computational cost, providing the two main statistical moments of the results. The 

results show how the PCM approximation leads to a narrow error which provide a good 

accuracy on the results.  

 

A comparison can be establish between stochastic techniques and PCM, both have their 

advantages and their drawbacks, both leads to accurate results and both are able to capture the 

variability induced by input uncertainty. The user should select between them considering the 

requirements from the problem and the available computational resources. 

 

3.5.4 Conclusions from the different stochastic analysis of a CFD 
problem 

 

When analysing variability against flow conditions, and considering the range of values 

applied to the input values, it is easy to identify the correlation between the input and output 

variables. The polar curve can be identified in those plots where one of the variables has been 

defined as constant. The polar curve shape can also be identified when variability effects 

appear on the plot without considering constant values, as happens in Figure 3-17 and 3-21, 

for instance.  

 

The comparison with the deterministic analysis shows that the stochastic analysis provides a 

better understanding of the global phenomena around the nominal point. In the transonic test 

case the deterministic values do not identify the point when the shock wave appears. The 

stochastic analysis is able to identify it while analysing the nominal point.  

 

Regarding the mesh size test case, the mesh size is strongly related with the geometry of the 

profile and the control area. It was expected that the mesh size applied to profile lines 

produced larger effect on the results, but it was not easy to anticipate the effect of the sizes 

applied to the inner control area or the outer area.  

 

The fact that PUMI CFD solver is based on Euler equations must be taken into consideration, 

so the calculation of drag is an approximation that can affect the final behaviour of the results 

of the transonic test case. The used solver only provides the pressure or shock drag and it is 

not computing the boundary layer effect. This fact demonstrates the need of knowing the 

solver and understands its use. If not conclusions can easily be wrong. 

 

This chapter has also been aimed to clarify the differences between the Monte Carlo and the 

Latin Hypercube sampling techniques regarding its efficiency to capture the real value of the 

mean and standard deviation. It can lead to a significant reduction of the required evaluations 

and a reduction on the computational cost. But it is also devoted to verify if different sets of 

samples, coming from the same population, produce same effects on the results and if the 

sampling variability is transferred to the output values in the same way in both the Monte 

Carlo and the Latin Hypercube techniques. Although Latin Hypercube better captures the 

input data behaviour than Monte Carlo, the output data behaviour is captured as good as with 

both Monte Carlo and Latin Hypercube techniques.  
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Robust optimization procedures will take advantage of the definition of computing samples to 

increase the robustness of the solution. Instead of defining a multi-point procedure, a 

probabilistic robust procedure will be defined. The variability due to the sampling points has 

to be under control. In addition, the comparison between MC and LHS to check if LHS 

enables the reduction of the amount of samples has been investigated. 

 

Analysing both aims, it can be concluded that the differences between the results obtained 

with Monte Carlo and Latin Hypercube sampling techniques are small. Latin Hypercube does 

not improve the output variability results and leads to no-reduction of the amount of samples 

used to characterize the probability distribution. On the other hand, it has been verified that 

samples are not introducing additional variability. All the statistical set of samples are a well 

representation of the whole population. 

 

The Probabilistic Collocation method (PCM) is a powerful method to deal with uncertainties. 

It provides an easy method to evaluate the mean and the standard deviation, defining a 

predefined and limited amount of evaluations. As stated on the state of the art section, PCM 

and other collocation methods increase their complexity when increasing the number of 

uncertain parameters to deal with.  

 

Table 3-16 shows Pros and cons of this method against stochastic method, as a brief summary 

of Table 2-3: 

 

 Stochastic PCM 

Full Statistics Yes No 

# Uncertainties No limitation 
Increase complexity and 

calculation time 

Calculation time Big number of evaluations 
Small number of 

evaluations 

Statistical Sampling Yes No 

Fixed Multi-point No  Yes 

Table 3-16. Comparison between stochastic techniques and PCM 

 

The PCM provides the capability to obtain a fast output, but the fact that stochastic analysis 

uses statistical sampling helps to ensure robustness during and optimization problem. During 

optimization, stochastic methods can provide different set of samples for each population, or 

even for each individual. A study of when it is convenient to generate different sets of 

sampling points will be presented in chapter 4.  

 

Anyway, the PCM is a method to take into account for further developments or specific cases 

where robustness is not so important compared to a faster solution. 

 

From the point of view of the applicability of the method to a CFD problem, no relevant 

issues have been raised. Mesh size, geometry parameters, and flow conditions have been 

defined as stochastic parameters. Then any kind of problem can be solved. The requirement is 

that the user should know the probability distribution of the variables in advance. The 

selection of the amount of the stochastic samples to be generated will define the accuracy; the 

larger the amount of samples is, the more accurate the stochastic representation will be. 
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3.6 Variability on an aero-elastic problem 

3.6.1 Introduction 

 

This section describes the analysis of the variability of output values against flow and 

structural parameters of an aero-elastic problem defined for a RAE2822 airfoil. 

 

The analysis is mainly focussed on the study of the behaviour of the output data when a 

stochastic definition is used for several input parameters to study the flutter phenomena. 

These input parameters are the Angle of Attack, the Mach number of the free stream, the x-

coordinate of the elastic axis, and the damping coefficients for vertical and angular 

movements. Applying random values for these parameters the behaviour of the angular 

movement (Theta, θ), vertical movement (hc), lift, drag and momentum coefficients and their 

minimum and maximum values is analysed. 

 

The aims of the analysis are to describe the effects on the time evolution of aero-elastic values 

(lift, drag, vertical movement and angular spin, for example) when flow is defined with 

uncertainties. This analysis provides a better understanding of the response of an aero-elastic 

system under input variability. Figure 3-51 is a graphical description of the test case.  

 

 

Figure 3-51. Representation of the aero-elastic problem under uncertainties 

3.6.2 Used Tools 

 

The software tools used for this stochastic analysis are: STAC, which is used as stochastic 

calculus manager, and an Aero-elastic solver, based on a compressible flow solver developed 

by E. Ortega et al. (2007)(2009), which provides the numerical analysis for each stochastic 

shot (run) of STAC. 

 

The used aero-elastic solver is a recent development. It couples a 2D Finite Point method 

CFD solver with a simplified structural solver for the analysis of the elastic response of a 

wing profile. It considers the infinite profile assumption, and reduces the structural study to a 

spring-damp system. This system enables the study of two degree of freedom; vertical 

Flow with 
uncertainties 

Variability on 
structural and 
aerodynamic 
behaviour 
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movement and angular movement around elastic axis. The aero-elastic solver is further 

described in the Appendix I. 

3.6.3 Procedure 

 

Input parameters are the angle of attack (AoA) and the Mach number (M), as the flow field 

parameters, the elastic axis x-coordinate (x-EA), the vertical movement (z-dp) and the angular 

movement damping (a-dp), as the structural parameters. A normal probabilistic distribution 

has been applied. For all them the main values applied are described in Table 3-17: 

 

 

 Mean Standard deviation 

Angle of attack 2,79 0,279 

Mach number 0,734 0,01 

x-EA 0,4 0,04 

z-dp 0,25 0,025 

a-dp 0,25 0,025 

Table 3-17. Probabilistic Values 

 

A first test case has been defined where all the parameters are defined statistically. It acts as 

the fully non-deterministic reference case. A fully deterministic case, which uses the mean 

value of each parameter, has also been calculated to compare as the second reference case. 

 

To generate the mesh, the following mesh sizes have been applied: 

- Leading and trailing edge points: 0,002 

- Profile boundary: 0,001 

- Control area default size: 0,1 

 

3.6.4 Results 

3.6.4.1 Fully deterministic analysis results 

 

An initial deterministic analysis has been performed in order to be used as reference for the 

stochastic calculation. The values of the different parameters used for the deterministic 

analysis are equal to the mean values used later for the next stochastic analysis (see Table 

3-17).  

 

Table 3-18 shows the evolution of output parameters at different time steps for the 

deterministic analysis.  

 
 

step time Theta, θ (º) hc Cdp Cl Cm 

50 25 -0,63750E-02 0,21673 0,2019E-01 0,8567 -0,7136E-03 

100 50 -0,24378E-01 0,22571 0,1945E-01 0,8438 -0,1516E-02 

150 75 -0,22342E-01 0,22422 0,1945E-01 0,8435 -0,1419E-02 

200 100 -0,21217E-01 0,22384 0,1947E-01 0,8438 -0,1359E-02 

Table 3-18. Deterministic Values at different time steps 
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Table 3-19 is the compilation of minimum and maximum values.  
 

 Theta, θ (º) hc Cdp Cl Cm 

Max 0,00859 0,25622 0,02029 0,8577 0,00009 

Min -0,42774 0 0,01185 0,6335 -0,02476 

Table 3-19. Deterministic Max/min Values 

 

Figure 3-52 to 3-56 show the evolution of output parameters versus time. The damping 

coefficients are high enough to ensure a fast convergence. Theta, θ, and hc evolutions start at 

zero because they refer to incremental values (angle and height). Other parameters start from 

the value obtained by a stationary analysis. 

 

Theta evolution presents an initial spin, clockwise and lower than 0,5º, that initiates a small 

oscillation before convergence to a close to zero value. 
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Figure 3-52. Theta vs time. Deterministic case 

 

Similarly, hc or height value behaves with an initial oscillation which leads to a convergence 

value around 0,22.  

 

Deformation of a real wing during a real flight can confirm that the aero-elastic effect is larger 

on deformation than in angular spin. The deformation of the wing is easily detected, while 

angular deformation is not so much apparent. 
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Figure 3-53. hc vs time. Deterministic case 
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Figure 3-54. Cdp vs time. Deterministic case 
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Figure 3-55. Cl vs time. Deterministic case 
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Figure 3-56. Cm vs time. Deterministic case 

 

The behaviour of the lift, pressure drag and momentum coefficients is plotted in Figure 3-54, 

3-55 and 3-56. All of them follow a similar behaviour with a fast convergence due to the 

defined input values. 

 

3.6.4.2 Results of the stochastic analysis 

 

Once stochastic values, as described in Table 3-20, are applied to the problem, theta, hc, Cl, 

and Cm can be statistically analysed. Six test cases have been defined, which use a stochastic 
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definition of the input variables. Some of these test cases define some of the input variables as 

constant, and some of them combine constant definitions with stochastic definitions. 

 

 
AoA M x-EA a-dp z-dp 

 µ σ µ σ µ σ µ σ µ σ 

Case 1 2,79 0,279 0,734 0,01 0,4 0,04 0,25 0,025 0,25 0,025 

Case 2 2,79 0,279 0,734 -- 0,4 -- 0,25 -- 0,25 -- 

Case 3 2,79 -- 0,734 0,01 0,4 -- 0,25 -- 0,25 -- 

Case 4 2,79 -- 0,734 -- 0,4 0,04 0,25 -- 0,25 -- 

Case 5 2,79 -- 0,734 -- 0,4 -- 0,25 0,025 0,25 -- 

Case 6 2,79 -- 0,734 -- 0,4 -- 0,25 -- 0,25 0,025 

Table 3-20. Cases for stochastic analysis 

 

The comparison of the results is done through the use of the coefficient of variation. Table 

3-21 lists the coefficients of the input and the output parameters. Each case is numbered 

associated to the description in Table 3-20. 

 

 AoA M x-EA z-dp a-dp θ (min) hc (max) Cdp(max) Cl (min) Cm (min) 

Case 1 0,0927 0,0133 0,0980 0,0960 0,0930 -0,6952 0,1332 0,9685 10,2331 -0,6719 

Case 2 0,0972 0,0 0,0 0,0 0,0 -0,0487 0,0502 0,1293 0,0602 -0,0376 

Case 3 0,0 0,0130 0,0 0,0 0,0 -0,6854 0,0120 1,0182 7,0153 -0,6480 

Case 4 0,0 0,0 0,1084 0,0 0,0 -0,3362 0,1583 1,0021 0,1032 -0,3340 

Case 5 0,0 0,0 0,0 0,1069 0,0 -0,0077 0,0223 0,0 0,0094 -0,0061 

Case 6 0,0 0,0 0,0 0,0 0,0981 -0,0018 0,0026 0,0 0,0041 -0,0038 

Table 3-21. Coefficient of variation 

 

The low effect that damping coefficients, both vertical and angular movement damping, have 

on all the output values compared to other input parameters can be observed. Standard 

deviations of almost all input variables have been defined as the 10% of its mean value. Then, 

damping coefficients have a coefficient of variation around 0,10, but the obtained coefficient 

of variation of outputs are significantly lower than this reference value. Also Figure 3-83 to 3-

90 clearly show that variability induced by damping coefficients are lower than those by other 

input parameters. 

 

Table 3-22 to 3-27 show the mean, standard deviation, minimum and maximum values for all 

the output values. The maximum and minimum values of the time evolution are analysed. It 

has been considered that both of them are a better representation of the range of values the 

evolution takes than the use of a single value equal to the mean due to its non-statistical 

behaviour. 
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Normal PDF: AoA, M, xEA, Zdp, Adp 

  Max θ Min θ Max hc Min hc Max Cdp Max Cl Min Cl Max Cm Min Cm 

Minimum 0,0000 -4,1061 0,1100 -0,2940 0,0052 0,5232 -1,1970 0,0000 -0,2547 

Maximum 1,3318 -0,4789 0,2264 0,0000 0,0896 0,8533 0,4137 0,0852 -0,0096 

Std Dev 0,1835 1,0398 0,0189 0,0901 0,0169 0,0566 0,5724 0,0117 0,0574 

Mean 0,0452 -1,4958 0,1418 -0,0423 0,0174 0,5452 0,0559 0,0029 -0,0854 

Table 3-22. Max/min Values for all-stochastic parameters 

 

 

Normal PDF: AoA 

  Max θ Min θ Max hc Min hc Max Cdp Max Cl Min Cl Max Cm Min Cm 

Minimum 0,0000 -1,1146 0,1219 0,0000 0,0058 0,5236 0,2810 0,0000 -0,0682 

Maximum 0,0000 -0,8798 0,1561 0,0000 0,0115 0,5531 0,3806 0,0000 -0,0567 

Std Dev 0,0000 0,0477 0,0070 0,0000 0,0012 0,0050 0,0205 0,0000 0,0023 

Mean 0,0000 -0,9805 0,1402 0,0000 0,0089 0,5248 0,3410 0,0000 -0,0617 

Table 3-23. Max/min Values for stochastic AoA 

 

 

Normal PDF: M 

  Max θ Min θ Max hc Min hc Max Cdp Max Cl Min Cl Max Cm Min Cm 

Minimum 0,0000 -3,7819 0,1329 -0,275 0,0088 0,5235 -1,083 0,0000 -0,2161 

Maximum 0,0000 -0,9678 0,1420 0,0000 0,0576 0,5237 0,3410 0,0000 -0,0580 

Std Dev 0,0000 1,0181 0,0017 0,0954 0,0171 2,4227E-05 0,5424 0,0000 0,0582 

Mean 0,0000 -1,4854 0,1391 -0,0426 0,0168 0,5236 0,0773 0,0000 -0,0898 

Table 3-24. Max/min Values for stochastic M 
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Normal PDF:xEA 

  Max θ Min θ Max hc Min hc Max Cdp Max Cl Min Cl Max Cm Min Cm 

Minimum 0,0000 -2,0488 0,1123 0,0000 0,0088 0,5231 0,2253 0,0000 -0,1032 

Maximum 3,5621 -0,3949 0,3128 0,0000 0,1409 1,1690 0,4268 0,2260 0,0315 

Std Dev 0,3470 0,3388 0,0230 0,0000 0,0107 0,0772 0,0350 0,0221 0,0197 

Mean 0,0848 -1,0077 0,1451 0,0000 0,0107 0,5537 0,3388 0,0054 -0,0589 

Table 3-25. Max/min Values for stochastic xEA 

 

 

Normal PDF: Zdp 

  Max θ Min θ Max hc Min hc Max Cdp Max Cl Min Cl Max Cm Min Cm 

Minimum 0,0000 -1,004 0,1323 0,0000 0,0088 0,5236 0,3316 0,0000 -0,0629 

Maximum 0,0000 -0,9652 0,1483 0,0000 0,0088 0,5236 0,3481 0,0000 -0,0610 

Std Dev 0,0000 0,0075 0,0031 0,0000 5,905E-10 0,0000 0,0032 0,0000 0,0004 

Mean 0,0000 -0,9833 0,1396 0,0000 0,0088 0,5236 0,3404 0,0000 -0,0619 

Table 3-26. Max/min Values for stochastic z-dp 

 

 

Normal PDF: Adp 

  Max θ Min θ Max hc Min hc Max Cdp Max Cl Min Cl Max Cm Min Cm 

Minimum 0,0000 -0,9850 0,1387 0,0000 0,0088 0,5236 0,3368 0,0000 -0,0625 

Maximum 0,0000 -0,9757 0,1404 0,0000 0,0088 0,5236 0,3435 0,0000 -0,0614 

Std Dev 0,0000 0,0018 0,0004 0,0000 5,905E-10 0,0000 0,0014 0,0000 0,0002 

Mean 0,0000 -0,9831 0,1396 0,0000 0,0088 0,5236 0,3406 0,0000 -0,0618 

Table 3-27. Max/min Values for stochastic a-dp 
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Figure 3-57 to 3-62 are a comparison of the confidence interval of +/-3σ, for each of the analysed 

cases: namely all stochastic, stochastic angle of attack, stochastic mach number, or x-coordinate 

of the elastic axis, or both damping coefficients. The first bar on all plots represents the 

variability induced by all the stochastic parameters together, which means that all the effects are 

combined. Other bars represent each stochastic parameter separately. 

 

The reader can observe the greater effect on theta from Mach number, the greater one on hc is 

coming from x-coordinate of elastic axis. The Cl and Cdp variability is mostly affected by Mach 

or by x-EA in the case of maximum value. Cm is mostly affected by Mach number, but slightly 

combined with x-EA effect. 

 

In Table 3-22 to Table 3-27, maximum or minimum values of theta, hc, and Cm have not been 

considered because they are close to zero. Then, they have been neglected in order to reduce the 

amount of information. 

 

Anyway, Cl has non-zero values for max and min, and it is a remarkable issue that the maximum 

or the minimum values of the same output parameter are affected differently by several input 

values. This effect can only be understood considering the elasticity of the wing and its 

relationship with lift and drag coefficients. The vertical displacement and the angular movement 

produce a new configuration of the airfoil that leads to equilibrium of the forces acting on the 

wing. Due to the use of a solver based on Euler equations, with boundary layer effects, the 

minimum value of Cdp is zero. Only the maximum value is considered in this analysis of the 

results. 

 

Figure 3-57 to 3-62 take the mean value of the stochastic results of time step equal to 100. 

 

 

Figure 3-57. Theta ranges 
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Figure 3-58. hc ranges 

 

Figure 3-59. Cdp ranges 
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Figure 3-60. Cl (max) ranges 

 

 

 

Figure 3-61. Cl (min) ranges 
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Figure 3-62. Cm ranges 

 

Above comments can be confirmed checking the Figure 3-63 to 3-90. They represent the 

complete evolution of output parameters versus time, when stochastic parameters are introduced 

as input values. All same cases are considered as commented; all input parameters as stochastic 

ones (figures from 3-63 to 3-67), only angle of attack (from Figure 3-68 to 3-72), only Mach 

number (from Figure 3-73 to 3-77), x-EA (from Figure 3-78 to 3-82), z-dp (from Figure 3-83 to 

3-86) and a-dp (from Figure 3-87 to 3-90). 
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Figure 3-63. Theta evolution (all stochastic parameters) 
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Figure 3-64. hc evolution (all stochastic parameters) 
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Figure 3-65. Cdp evolution (all stochastic parameters) 
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Figure 3-66. Cl evolution (all stochastic parameters) 
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Figure 3-67. Cm evolution (all stochastic parameters) 

 

Applying all stochastic parameters at once, several cases lead to a non-convergence of the results. 

Most of the results show a ―parallel‖ and converged behaviour, and all plots are similar. The non-

convergence effect is produced by one of the stochastic parameters, which defines values that 

produce aero-elastic instability of the profile. This parameter can be detected analysing the 

individual effects. In order to calculate the mean and the standard deviation all values have been 

taken into account. 
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Figure 3-68. Theta evolution (stochastic parameter: 

AoA) 
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Figure 3-69. hc evolution (stochastic parameter: AoA) 

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  20  40  60  80  100

C
d

p

dimensionless time

Cdp evolution - Variation of the AoA

 

Figure 3-70. Cdp evolution (stochastic parameter: 

AoA) 
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Figure 3-71. Cl evolution (stochastic parameter: AoA) 
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Figure 3-72. Cm evolution (stochastic parameter: 

AoA) 

 

 

 

Analysing the results for the case where only Angle of attack is defined as stochastic value, the 

reader can observe how all the results converge. After a first step of oscillation, all the output 

parameters stabilize. Then it is easy to understand that the angle of attack is not the one 

producing the flutter detected in the previous plots. 

  

Briefly, if only one parameter is defined as stochastic, the convergence can be assured except for 

the Mach number case. It is clear, then, that the parameter which introduces the non-convergence 

effect is the Mach number. All other parameters reach convergence on all output values. 
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Figure 3-73. Theta evolution (Mach stochastic) 

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  20  40  60  80  100

h
/c

Dimensionaless time 

h/c evolution - Variation of M number

 

Figure 3-74. hc evolution (Mach stochastic) 
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Figure 3-75. Cdp evolution (Mach stochastic) 
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Figure 3-76. Cl evolution (Mach stochastic) 
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Figure 3-77. Cm evolution (Mach stochastic) 

 

 

The stochastic definition of the X-coordinate of the elastic axis also leads to converged results. It 

can be observed that the distribution of the plots is not as regular as in the angle of attack case. It 

means that some of the axis location produces larger effects on the final values of the output 

parameters. It is directly related to the centre of gravity location, which, combined with the 

elastic axis location, can affect the airfoil stability. It will lead to larger stability of theta, θ (spin 

rotation) and hc (vertical movement) of the airfoil, which are directly related to Cl, and Cm values. 
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Figure 3-78. Theta evolution with stochastic x-EA 
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Figure 3-79. hc evolution with stochastic x-EA 
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Figure 3-80. Cdp evolution with stochastic x-EA 
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Figure 3-81. Cl evolution with stochastic x-EA 
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Figure 3-82. Cm evolution with stochastic x-EA 
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Figure 3-83. Theta evolution with z-dp as stochastic 

variable 
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Figure 3-84. hc evolution with z-dp as stochastic 

variable 
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Figure 3-85. Cl evolution with z-dp as stochastic 

variable 
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Figure 3-86. Cm evolution with z-dp as stochastic 

variable 

The confidence interval plots suggest that vertical and angular damping have a slight effect on all 

output parameters, at least on the defined range of study. Figures from 3-87 to 3-90 can confirm 

this guess. The variation between evolution plots is within a narrow range compared with other 

plots.  
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It can be suggested that damping coefficients are not interesting parameters in a variability or 

uncertainty analysis, due to their small effect on the selected outputs. 
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Figure 3-87. Theta evolution with a-dp as stochastic 

variable 

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  20  40  60  80  100

h
/c

dimensionless time

h/c evolution - Variation of the angular damping

 

Figure 3-88. hc evolution with a-dp as stochastic 

variable 
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Figure 3-89. Cl evolution with a-dp as stochastic 

variable 

-0.065

-0.06

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

 0  20  40  60  80  100

C
m

dimensionless time

Cm evolution - Variation of the angular damping

 

Figure 3-90. Cm evolution with a-dp as stochastic 

variable 

3.6.4.2.1 Uncertainty effects 

 

Figure 3-91 to 3-99 are the representation of the most significant output parameters against the 

input parameter with uncertainty. The maximum and the minimum values of the time evolution 

of the outputs have been used to enable a clear identification of the correlation between input and 

output variables. Physical phenomena can be detected analysing the following plots. 

 

These plots provide additional information to understand the particular behaviour of each output 

parameter related to the uncertainty input. This is the case of the uncertainty on the Mach 

number. The values where shock waves begin to appear and produce the shown instability can be 

clearly identified. Plot of theta angle, θ, or Cl, or Cm versus Mach can easily help to identify the 

point where shock wave appears; Figure 3-96, 3-98, and 3-99 show a clear discontinuity. Figure 

3-91, 3-92, 3-94 and 3-95, like theta or hc versus angle of attack show a linear relationship 

between them.  

 

In order to take into account all the time evolution of the parameters, minimum and maximum 

values have been plotted. The use of a mean value at a certain time step has been considered as 

being no representative of the time oscillation. 
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Figure 3-91. Mins  of Theta vs AoA 
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Figure 3-92. Maxs of hc vs AoA 
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Figure 3-93. Maxs of Cl vs AoA 
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Figure 3-94. Mins  of Cl vs AoA 
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Figure 3-95. Mins  of Cm vs AoA 

 

Figure 3-91 to 3-94 show the relationship between several output values when angle of attack is 

stochastically defined. The range of values is too small and values are low, so the result is mainly 

a straight line. But Figure 3-93, where maximum values of lift coefficient are plotted versus 

angle, shows a completely different behaviour. Maximum values, reached during profile 

oscillation, remain constant until a point around 3.2º. From this point, lift starts to increase. This 

effect is due to the combination of two factors; namely the value of Mach number, and the high 

value of angle. Both induce flow separation. 

 

Analysing the results which are related to Mach number, it can be easily observed how different 

behaviours are produced. For theta, lift and momentum it is quite similar; when shock waves 

appear the value falls down abruptly. Of course, pressure drag shows the opposite behaviour, 

increasingly with shock waves. The maximum oscillation value decreases with the increment of 

Mach number, which is an expected result. 
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Figure 3-96. Mins  of Theta vs M 
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Figure 3-97. Maxs of hc vs M 
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Figure 3-98. Mins  of Cl vs M  
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Figure 3-99. Mins  of Cm vs M 
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Figure 3-100. Maxs of theta vs x-EA 
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Figure 3-101. Mins  of Theta vs x-EA 
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Figure 3-102. Mins  of hc vs x-EA 
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Figure 3-103. Maxs of Cl vs x-EA 
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Figure 3-104. Mins  of Cl vs x-EA 

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6

C
m

x-EA

Maximum Values of Cm vs x-coord EA

 

Figure 3-105. Maxs of Cm vs x-EA 
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Figure 3-106. Mins  of Cm vs x-EA 

 

The most relevant effect of the position of X-coordinate of elastic axis is on lift and momentum. 

Both of them gradually increase when axis moves to backward positions. Up to a values of 46% 

of the chord, elastic axis position produce null or slight effects to other variables. 

 

3.6.5 Conclusions for the aero-elastic test case 

 

Another step has been done in the stochastic procedure definition. An aero-elastic analysis tool 

has been used successfully, enabling the control of fluid and structural parameters at the same 

time. As expected from the previous CFD stochastic analysis, the method enables the generation 

of stochastic values for any kind of variables.  

 

The aero-elastic analysis tool is a more expensive solver, compared with single CFD tool due to 

the coupling of the two involved disciplines. It is of major importance to enable a good efficiency 

when dealing with this kind of problems in order to reduce the computational cost. The use of 

surrogate models can be one of the solutions; once trained they will provide faster outputs for the 

candidate evaluations. Parallelization of the solver, but also of STAC is also a solution. STAC 

already includes parallelization capabilities. It requires running on a computer network. Further 

steps to be done are to be able to use GPU or multi-core computers for parallelization.  

 

Regarding the parallelization issue, it is important that parallelized solver matchs the 

requirements of the parallelized STAC. If not execution problems can arise, and it could unable 

to take advantage of these capabilities. 
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3.7 General Conclusions on stochastic analysis 
 

Stochastic analyses have provided the tools for the study of the output variability for the 

RAE2822 test case, as well as the aero-elastic problem dealing with flutter effects. Two analyses 

have been performed regarding flow parameters (angle of attack and Mach number), one has 

dealt with mesh sizes, and one with the aero-elastic parameters. 

 

Regarding the results on the mesh variability, the obtained results follow the expected trends. The 

most affecting size is that applied to profile lines. And the most affecting flow parameter has 

been the Mach number in both the analysis of the 2D profile, and in the aero-elastic analysis. 

 

The application of uncertainty definition to the input variables is transfered to the behaviour of 

the output values. Applying a normal distribution to input values the results also show a Gaussian 

behaviour. Then, to accurately perform the analysis it is important to know about the best 

stochastic representation of the input variables in its working environment. 

 

The convenience of performing stochastic analysis in front of just the deterministic one has been 

demonstrated by the better understanding of the global phenomena, without missing the focal 

point on the nominal values. Both CFD and FSI test cases has demonstrated that the deterministic 

analysis is not able to identify neither the shock wave effects nor the flutter phenomena, while 

the stochastic analysis clearly identify those effects. 

 

The stochastic procedure has been performed well with all the complexity levels shown in the 

cases analysed. In all the analysed cases, the use of the coefficient of variation is demonstrated as 

mandatory to be able to compare the results. A clear example is the analysis of the 2D profile; 

their analyses produce lift and drag coefficient values as results, mean and standard deviation 

values have been then calculated, but both values are not comparable. Lift values are at least one 

order of magnitude larger than drag values. The simplest way to compare the obtained Gaussian 

distributions is to normalize standard deviation values through the use of the coefficient of 

variation. 
 

This research has been devoted to two main goals; namely to study the variability induced by the 

samples, and to study and compare in detail two sampling techniques: Monte Carlo and Latin 

Hypercube. Considering that samples are generated using the same probability density function, 

these two goals have been translated into expected conclusions. They should help to clarify how 

large the effect of the intrinsic variability of the set of samples is. In addition, the level of 

improvement when using Latin Hypercube sampling, compared with Monte Carlo samples, 

should be shown. It has been expected that Latin Hypercube sampling would help to increase the 

convergence of the samples to their real values. A greater convergence rate will help to reduce 

the amount of samples. 

  

Considering these two goals, and after analyzing the presented results it can be concluded that: 

- Latin Hypercube Sampling provides a better representation of the sampled space when 

the amount of samples is low. 

- The best representation of the sampled space when using Latin Hypercube Sampling 

technique is transferred to output values affecting the standard deviation values. 

- This effect will greatly depend on the correlation between input and output values; if it is 

linear, quadratic or if there are additional parameters that introduce variability. 

- In conclusion, it points out the fact that Latin Hypercube Sampling technique will provide 

a slight improvement compared to Monte Carlo method, due to the dependency on input 
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output correlation. But it hardly improve the computational cost with a significant 

reduction of the stochastic samples evaluated. In this sense, Monte Carlo and Latin 

Hypercube techniques are equivalent. 

 

Finally, Monte Carlo method, Latin Hypercube sampling and Probabilistic collocation method 

have been compared. A significant influence of the solver has been identified on the final 

numerical results, in particular its accuracy. Its accuracy, when dealing with uncertainty 

quantification, is of  great importance. But neglecting this effect, it can be concluded that: 

- Monte Carlo and Latin Hypercube manage the uncertainty as samples, so variability is 

better evaluated due to the different set of samples selected for each analysis. 

- Probabilistic collocation fixes the evaluated points, so it could be considered as a multi-

point evaluation of the function. 

- The calculated collocation points and weights remain constant while the probability 

definition remains the same.  

- Probabilistic collocation method can use fewer evaluation points, but this amount of 

points strongly depends on the number of uncertainties to deal with. 

- All three methods have similar error compared to the deterministic case. 

- No significant differences in the results are detected using one of these three methods. 

 

As a brief summary of the comparison between Monte Carlo methods and Probabilistic 

Collocation method, Table 3-28 describes the main issues. 

 
 Monte-Carlo 

Stochastics 

Probability 

Collocation 

Method 

Uncertainty propagation Yes Yes 

Full statistics Yes No 

Computational cost High Depending on 

the # of 

variables 

Multi-point method No Yes 

Robustness by sampling Yes No 

Enables use of surrogates Yes Yes 

   

Table 3-28 Comparison between Monte Carlo methods and Probabilistic Collocation 

 

The variability effect on an aero-elastic problem has also been analysed. The selected input 

parameters include not only flow field parameters, but also structural ones. Output parameters 

also include structural outputs and forces on the wing.  

 

After this analysis some conclusions can be taken: 

- Some of the selected parameters have no significance on the study; although it was not an 

easy conclusion in advance. 

- The vertical and the angular coefficients have the smaller effect on the output values.  

- Mach number is one of the most relevant parameters to analyse. Its variability introduces 

greater variability on the output values, and in addition it can lead to a non-convergence 

result. 

- Structural parameters like damping ratios hardly affect lift and drag coefficients. 
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The aero-elastic study is a clear confirmation that the use of the coefficients of variation is a 

powerful tool to compare statistical behaviour of the data. They enable to compare results of 

different order of magnitude, as in the aero-elastic case. 

 

A summary of the test cases in this chapter is provided in the following Table 3-29. 

 
Stochastic Procedure 

Name Variables Objectives 
Uncertainty Quant. 

Techniques (UQ) 
Flow Regime Chapter 

   MC LHS PCM Subsonic Transonic  

Mesh 

variability 
Mesh sizes 

Analyse sensibility 

to mesh sizes 
Yes No No no Yes 3.4 

Flow 

conditions 

Initial 

conditions 

of flow 

Analyse sensibility 

to flow conditions 
Yes No No Yes Yes 3.5 

Flow past a 

2D profile 

Flow and 

boundary 

conditions  

Analyse sensibility 

to flow conditions. 

Compare UQ tech. 

Yes Yes Yes Yes Yes 3.5 

Aeroelasticity 

analysis 

Structural 

parameters 

Apply procedure to 

aeroelasticity 

problem. Analyse 

sensibility to 

structural 

parameters 

Yes No No No Yes 3.6 

Table 3-29. Summary of analysed cases 

 

 

The next step leads to the use of this information to perform stochastic optimization where the 

stochastic variables are defined with Latin Hypercube Sampling or Monte Carlo method. In order 

to decrease the computational time the number of samples defining the stochastic variables has to 

be reduced. Both Monte Carlo and Latin Hypercube Sampling perfectly describe the population 

if the number of samples is not dramatically reduced.  

 

3.8 Summary 

 

Chapter 3 describes a compilation of test cases dealing with stochastic analysis. A comparison 

between Monte-Carlo and Latin Hypercube sampling techniques is also provided. The main aim 

of this chapter is to establish the best basis for a further robust design optimization, which can 

take advantage of a good understanding of stochastic methods. 

 

As described in the previous sub-chapter, and summarized in table 3-24, the selected test cases 

have been those dealing with mesh variability, flow around wing, and an aero-elastic analysis. 

The used techniques have been Monte-Carlo, and Latin Hypercube sampling, as well as 

Probabilistic Collocation method. 

 

Probabilistic Collocation method is a new development which combines probabilistic definition 

with collocation strategies, and it helps to establish a comparison point to evaluate the pros and 

cons of the pure probabilistic methods, as Monte-Carlo and Latin Hypercube. 

 

Regarding the application of the stochastic procedure to perform uncertainty analysis, it is 

already remarked that: 
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- It can deal with any kind of variables and problems. 

- The definition of the PDF should be according the real behaviour of the parameter in its 

working environment. 

- The use of the coefficients of variation is useful to better compare and understand the 

variability of the results. 

- Latin Hypercube and Monte Carlo are offering the same efficiency on variability analysis. 

Latin Hypercube better represents the stochastic behaviour of the variables but is not able 

to significantly reduce the amount of samples to evaluate.  

- Probabilistic collocation method is a useful tool to easily evaluate uncertainty 

quantification, but it is not dealing with random and probabilistic values to evaluate the 

stochastic results. 

 

The computational cost of a stochastic analysis is higher than the cost of a deterministic analysis. 

As a first approximation if the deterministic case takes some time, the stochastic analysis could 

take this amount multiplied by the number of stochastic samples. Usually it takes even more 

time. 

Table 3-30 shows a comparison of the approximate calculation cost for each problem, defining 

the computational resources used, as well. 

 
Case Computer Deterministic Stochastic 

   (250 shots) 

Mesh 

variability 

Pentium IV @ 1GHz 

RAM 512Mb 
30min 150h 

Flow 

conditions 

Intel Core 2 Quad CPU 

Q9300 @ 2,5GHz 

RAM 3,48Gb 

3min 15h 

Flow past a 

2D profile 

Intel Xeon 16 CPU @ 

3,2GHz 

RAM 15,2Gb 

2min 8h 

Aeroelasticity 

analysis 

Intel Xeon 16 CPU @ 

3,2GHz 

RAM 15,2Gb 

15min 96h 

Table 3-30. Approximate calculation cost 
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4 Stochastic Robust optimization 

 

4.1 Introduction 

 

In this research, the methods dealing with uncertainties are named non-deterministic 

methods. Deterministic methods are those which, in opposition with the previous 

definition, do not consider variability of the input parameters. However, some existing 

deterministic methods are described as non-deterministic due to their random definition 

of the initial populations, or the random or pseudo-random generation of new members 

and generations. 

 

The main aim of this research study is to deal with uncertain parameters within the 

optimization processes. A new definition is also introduced within the non-deterministic 

methodologies, namely the stochastic and robust procedures. Both of them take into 

account the uncertainties on the input parameters, but robust procedures also take into 

account the variability on the output values through the use of the variance or standard 

deviation values. 

  

In many cases, the deterministic methods are the starting point for the development of 

non-deterministic methods, and it is important to know about their characteristics, 

configurations and procedures. 

 

The main objective of this research is to evaluate the capabilities of stochastic and 

robust optimization procedures. These new procedures have been defined to be 

integrated in, not only evolutionary algorithms, but also in other optimization methods. 

This research has been mainly based on evolutionary algorithms and, specifically, on 

genetic algorithms, which have been analysed on Appendix I: Numerical Methods and 

Tools. 

 

Regarding the required tools to be used, they are introduced in Appendix I. The reader 

is referred to the descriptions on the Appendix I to know more details about STAC, the 

stochastic management tool, which enables the generation of random values according 

with a prescribed probability density function. 
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In a first step, a deterministic evolutionary algorithm optimization method is analysed in 

order to move a step forward to a non-deterministic method. Additional tests devoted to 

the validation of the evolutionary algorithm can be found in Appendix I. 

 

This section also focuses its attention on stochastic related methodologies applied to the 

optimization procedure. The use of an analysis tool, or a surrogate model, is maybe one 

of the most important points to take into account. The definition of random values using 

Monte Carlo or Latin Hypercube techniques, and their comparison, in a similar way that 

has been done in Chapter 3, is also considered to validate the selection of a sampling 

technique. Another interesting point is the use of a fixed set of values or a random set to 

be applied to each population or individual. A comparison has been established in order 

to better understand the effect of applying the same samples along the whole analysis or 

update them with the evaluation of each population or the evaluation of each individual. 

 

Taking advantage of the procedure developed in the previous chapter, the focus of 

chapter 4 is on the evaluation of the feasibility of its application to a robust design 

optimization procedure. Using a stochastic definition of the input variables, the 

objective functions will be stochastically evaluated. Output variables are no longer 

defined by a single point, but they are defined by their probability density function 

(PDF), namely mean and standard deviation, or the statistic moments to define the 

appropriate PDF. 

  

The chapter scheme is as follows: there are two main sections describing the 

deterministic and stochastic solutions, respectively, of several types of optimization 

problems. Each main section describes the specific procedures of each problem. 

 

The Chapter 4 presents several test cases. Two main descriptions of each test case is 

analysed; the first one is the deterministic analysis, which is used as a reference. The 

second one is the stochastic and robust analyses, which are the core of the chapter and 

which consider the uncertainty as part of the variable definition and results analysis. 

 

4.2 Methodology 

 

To better understand how the different methods are applied, the following flowcharts 

not only highlight the main differences but also the similarities among the three of them. 

 

Figure 4-1 shows the flowchart of a deterministic optimization based on evolutionary 

algorithms. An initial population is randomly generated and evaluated to obtain the 

initial fitness function values. The evaluation can be done using a solver, but it could 

also be done by using a surrogate model, which provides a faster evaluation and reduces 

the computational cost of the whole process. The stop criterion is checked; it can be a 

stop criteria based on the fitness function, or depending on the number of evaluations or 

the computational time, or a combination of all of them. If the criterion is fulfilled the 

optimal population is reached, if not the actual population members are selected, 

mutated, and combined to get new offspring which define the next generation. The 

iterative process is done until the criterion is fulfilled. 
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The basic scheme of a stochastic or a robust optimization is pretty similar to the one 

from a deterministic case. The main difference is the stochastic evaluation of the 

individuals of each population, which leads to an increment of the total amount of 

evaluations, and directly increase the total computational cost. 

 

 

Figure 4-1. Flowchart of a deterministic optimization 

 

As it is shown in Figure 4-2 the flowchart is defining similar steps for both types of 

processes; the deterministic and the stochastic. An initial population is randomly 

generated. Its evaluation starts an iterative process that checks if the stop criterion is 

fulfilled. If it is not fulfilled, new offspring are generated to create a new population and 

the loop starts again. This is the same as in the deterministic case, but in the stochastic 

and robust cases it is also necessary to generate the stochastic values for some of the 

parameters. These parameters are not the control variables but they are directly related 

to the problem. Applying the stochastic set of values, several evaluations are required 

and a cloud of results are obtained. To deal with this amount of information, the fitness 

function will be defined as the mean and/or the standard deviation of the individual 

evaluations. After the evaluations, a statistical calculation is required in order to obtain 

the statistical moments. The stochastic procedure calculates the mean value, and the 

robust procedure calculates the mean and the standard deviation values. 

 

Due to the fact that the computational cost tends to quickly increase with the number of 

evaluations, the use of a surrogate model can be mandatory.  

 

From the point of view of the evolutionary algorithm nothing has changed. The 

evolution strategy is applied as it was done in the deterministic case. The individuals are 

generated in the same way. It only needs to deal with a set of conditions while only one 

condition was analysed in the deterministic case. 
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Figure 4-2. Flowchart of a stochastic/robust optimization 

 

4.3 Mathematical test cases 

4.3.1 Introduction 

In this section, some mathematical test cases have been analysed. They have been 

defined to test the optimizer when facing constrained problems, and they are considered 

as validation tests for the optimization algorithms. 

 

The mathematical test cases have been analysed to validate the proposed approach, 

which includes the stochastic data management. The obtained results will define a 

comparison between the deterministic and the stochastic one. 

 

The CTP7 and the OSY mathematical test cases (Chafekar et al, 2003, Deb et al, 2000, 

Deb and Goel, 2000) have been selected among those defined by Prof. Deb. Both test 

cases have been taken and have been modified to add a stochastic component. Several 

definitions of the stochastic component are tried out and the results are compared with 
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those obtained for the deterministic analyses. CTP7 presents a constrain near the 

optimal Pareto front, and OSY a set of six constrains, four of them being linear. 

 

The differences between the selected deterministic version of the test cases and their 

stochastic robust definitions ensure a wide study of the effects coming from uncertainty; 

namely how the problem changes (definition of the fitness function), but also how the 

results change regarding the Pareto Front shape. The aim of this section is to provide a 

validation point of the stochastic and robust procedures. First of all, the deterministic 

solution is obtained and compared with the literature references. Next, the stochastic 

definition is applied and the results are compared with the deterministic ones. 

 

4.3.1.1 Mathematical Test Cases: CTP7 and OSY 

 

The NSGA-II (Deb et al, 2000; 2002; 2003) algorithm has been selected as the 

optimizer for the deterministic case. NSGA-II is a multi-use optimizer based on 

evolutionary techniques, which is able to deal with any kind of problems, as it has been 

demonstrated through the multiple applications that have been developed (Deb, 2005; 

Deb et al, 2000; Hiroyasu et al, 2005). The algorithm has been extended by applying 

uncertainty management strategies. 

 

 

4.3.1.2 CTP7 Test Case; Deterministic definition 

 

First, a deterministic (or classical) version of the CTP7 test case has been solved. Te 

corresponding results will be compared with those obtained with the stochastic version 

of the same test case. 

  

The following parameters have been used to set-up the NSGA-II optimizer in all the 

CPT7 test cases: 

- Crossover probability: 0,9 

- Mutation probability: 0,16667 

- Maximum amount of populations: 1000 

- Population size: 200 

 

CPT7 is a constrained problem that presents discontinuities in the solution. Dealing with 

these discontinuities is the main challenge to solve the problem.CTP7 problem is 

described as (Deb et al, 2000): 

 

Minimize  

  11 xxf   

   
 
  











xg

xf
xgxf 1

2 1  

4-1 

Subject to 

                     d
h

xfexfbaxfexfxc 1212 cossinsinsincos    
4-2 

 

The parameters and constant values used in equations 4-1 and 4-2 are: 
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 Figure 4-3.- CTP7 constrained test problem: whole populations and Pareto Front 

 

 Figure 4-3 shows the representation of the whole population and the Pareto front 

obtained for the CPT7 mathematical problem. As defined in Deb et al (2000), the 

constrained feasible space of the solution is represented by the striped area in the right 

figure, which leads to a dashed Pareto front. 

 

4.3.1.3 CTP7 Test Case; Stochastic definition 

 

Two stochastic definitions have been applied to modify the CTP7 test case. One 

stochastically modifies the fitness functions, f’1(x) and f’2(x), and the second one 

modifies two parameters of the constraint c(x). In both cases, the fitness functions have 

been calculated as the mean value of the whole set of evaluations, which have been 

defined by the stochastic term. 

  

- CTP7 Test Case with stochastic fitness function 

 

CTP7 problem is described by equations 4-3 and 4-4: 

 

Minimize                                         111'  xxf  

Minimize                             
 
 

 



















  2

1
2 1'

xg

xf
xgxf  

4-3 

 

Each of the fitness functions, f’1(x) and f’2(x), include a stochastic term, ω1() and ω 

2(), respectively. Both of them are calculated as the mean value of the set of 

evaluations coming from the introduction of the stochastic term.   
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Subject to  

                     d
h

xfexfbaxfexfxc 1212 cossinsinsincos    
4-4 

 

Constant parameters and g(x) function are defined as in the deterministic case, in 

Section 4.3.1.2. 

 

Equations from the deterministic definition of the CPT7 problem have been modified 

adding stochastic terms ωi(ξ). These terms introduce a set of values into the equation 

which lead to its stochastic definition. Stochastic terms have been defined through their 

mean (µ) and standard deviation (σ). The following values have been defined for a 

Gaussian distribution: 

 

  

  

  

   01,0

1

5,0

3

2

2

1

1

















 

 

The µ value for each stochastic term has been selected to clearly identify the effects of 

introducing it in the fitness functions. They enable an easy comparison between the 

results highlighting the differences in shape and position of the whole population and 

the Pareto front. 

 

Figure 4-4 shows the solution of the CTP7 test case with a stochastically defined fitness 

function.  
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Figure 4-4.- CTP7 problem with stochastically defined fitness function 
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Figure 4-5.- Comparison between CTP7 problem with stochastically defined fitness function and the 

deterministic solution 

 

Figure 4-5 is a comparison between the deterministic solution of the CTP7 test case and 

the stochastic solution of the same mathematical test case. It shows the constrained 

solution space. Figure 4-5 shows how adding a stochastic term in the fitness function 

the total number of evaluations on the front is reduced. Former best individuals lose 

their dominance due to the stochastic term. Even though the shapes of total population 

and of Pareto front are almost the same, as it can be seen in Figure 4-5, the density of 

points in the Pareto front is lower in the stochastic case, as it can be seen in the bottom 

image of the Figure 4-5. This effect is produced due to the fact that the stochastic term 

introduces variability on the fitness values that means losing dominance and becoming a 

non-optimal solution. 

 

- CTP7 Test Case with stochastic terms on the constraint function 

 

The second stochastic definition of CPT7 problem modifies a and b parameters in the 

definition of constraint c’(x). CTP7 problem has been described as: 

 

Minimize                                                11 xxf   

   
 
  











xg

xf
xgxf 1

2 1  
4-5 

 

Subject to 

                      






 
d

h
xfexfbaxfexfxc 1212

' cossinsinsincos   
4-6 

 

Parameters defining the constraint have been defined as:  
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Equations 4-5 and 4-6 are the same as from the deterministic definition of the CPT7 

problem. The stochastic terms ω’i(ξ) have been introduced into the definition of the 

parameters of the constraint, which should be calculated as the mean value of set of 

values defined by the stochastic terms. The Gaussian distributions of the stochastic 

terms have been defined with the following parameters: 
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Values for the mean and the standard deviation have been selected according the 

deterministic value. They enable an easy comparison between the results highlighting 

the differences in shape and position of the whole population and the Pareto front. 
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Figure 4-6.- CTP7 problem with stochastically defined constraint 

 

This case presents a completely different behaviour. The stochastic terms are affecting 

the constraint definition in such a way that the final shapes of the total population and 

the Pareto front, shown in Figure 4-6, do not follow the guideline defined by 

deterministic CPT7 problem. Now, the Pareto front becomes a continuous line instead 

of a dashed line as in the deterministic case. This effect is produced by the variability of 

the constraints values, so the band-shaped plot loses its meaning. 

 

4.3.1.4 OSY Test Case; Deterministic definition 

 

The deterministic description of the OSY test case (Deb et Al, 2000) is based on two 

quadratic objective functions with 6 linear constraints. 

 

OSY problem is described as: 
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Minimize 
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The parameters defining the constraints are: 
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To set up the NSGA-II optimizer in all OSY test cases the following values have been 

used: 

- Population size: 200 

- Number of generations: 1000 

- Probability of Crossover: 0,99 

- Probability of Mutations: 0,16667  
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Figure 4-7 shows the problem solution and its Pareto front. The reader can observe how 

linear constraints define the feasible area, and how the optimal solutions in the Pareto 

front follow the defined restrictions.  
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Figure 4-7.- OSY constrained test problem solution and Pareto front 

4.3.1.5 OSY Test case; stochastic definition 

 

OSY test case has been modified from its deterministic description to a non-

deterministic version with the introduction of stochastic components in the former 

fitness functions f’’1 and f’’2, plus considering as new fitness functions the mean of the 

new functions f’’’1 and f’’’2. 

 

OSY problem is now described as: 

 

Minimize  
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4-10 

 

The value ranges for xi parameters have been defined as done in Section 4.3.1.4. The 

stochastic terms have been defined in two different ways. A Gaussian probability 

density function has been applied in the first case, while in the second case a Uniform 

distribution has been applied. 

 

- OSY Test Case with Gaussian stochastic terms 

 

Gaussian distributions have been applied to the stochastic terms, considering the 

stochastic parameters: 
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Population size has been defined equal to 200 individuals and the number of generations 

equal to 1000, as done in the deterministic case. 

 

The new definition of the fitness functions produces a displacement of the fitness value, 

as the reader can observe in Figure 4-8. The mean value suffers a displacement of 5 

units in both functions, and considering how small the standard deviation values are, the 

expected result would be a displacement of the entire Pareto front up and right.  
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Figure 4-8. OSY test case: deterministic and stochastic definition 

 

- OSY Test Case with stochastic terms defined by a Uniform distribution 

 

In the second test case the stochastic parameters have been defined following a uniform 

density function with the defined lower and upper bounds of: 
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Values for the upper and lower bounds have been selected to define a similar stochastic 

range compared with the previous case which has defined a Gaussian distribution. 

 

Figure 4-9 shows a comparison of the two defined test cases; the one using a normal or 

Gaussian distribution, and the one using a uniform distribution. Taking as reference the 

Pareto front of the Gaussian distribution case, the Pareto front obtained in the stochastic 

case using uniform distribution moves forward the small difference between the mean 

of Gaussian distribution and lower bound of the uniform distribution. Even though 

Gaussian distribution and uniform one obtain Pareto optimal individuals according to 

the dominance criterion, Gaussian PDF is centred on the mean value, and uniform is 

distributed along the whole range of values, and this behaviour is reflected on the Pareto 

front.  
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Figure 4-9. OSY test case: uniform  and Gaussian PDF 

 

The uniform PDF case is similar to the Gaussian definition if the central point of the 

uniform distribution is equal to the mean value for Gaussian distribution and the range 

of values is equivalent to the Gaussian one on its 95% confident range.  

 

4.3.1.6 Conclusions 

 

Stochastic terms have been introduced in both fitness functions and constraints of the 

selected mathematical test cases. The reader can observe how the consideration of 

stochastic terms in the constraint produces a completely new problem, while the 
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stochastic fitness function only produces a slight modification of the problem, providing 

similar results to the deterministic one. The stochastic definitions applied to both CTP7 

and OSY test cases shows this behaviour, but CTP7 shows a completely new behaviour 

between the cases with the deterministic and the stochastic fitnees function and the 

stochastic constraints. 

 

This is an important conclusion in order to understand a more complex problem and the 

effects that uncertainty definition can produce. As mentioned, in CFD problems several 

uncertainty sources can be selected and analysed. The comparison between the original 

problem and the one with uncertainties has to be fair. Both definitions and results 

should be comparable. 

 

4.4 Deterministic, Stochastic and Robust Optimization 

4.4.1 Introduction 

 

In previous section, a couple of mathematical test cases has been analysed in order to 

compare the deterministic and the stochastic optimization results for the same problem. 

Taking advantage of the same problem definition, the comparison of these three types of 

results has been very useful to clarify the concepts and methodologies. 

 

One of the main objectives of this section analyses has been to evaluate the differences 

between these three procedures; namely the deterministic, the stochastic and the robust 

ones. The deterministic solution of the deterministic problem does not take into account 

neither the stochastic definition of the input variables, nor the variability analysis of the 

output values. The result is always a single point. The stochastic case already takes into 

account the uncertainties in the definition of the input parameters. Uncertainties are 

modelled using a probabilistic density function. The stochastic case takes also into 

account the variability induced on the output parameters, but only considering the mean 

value of the cloud of results. Finally, the robust case defines the input variables with 

their associated uncertainties, but also analyse the variability of the results managing the 

mean and the standard deviation of the results. 

 

4.4.2 Single Objective test case 

4.4.2.1 Problem definition 

 

In order to compare the deterministic, stochastic and robust procedures, a test case with 

the same problem definition has been used through the three test cases. A profile has 

been analysed using Eulerian solver PUMI (Flores and Ortega, 2007). The baseline 

design has been selected as the RAE2822 profile as shown in Figure 4-10. Six control 

points have been used to generate and to control the geometry of the shape optimization 

problem. Although one of the most usual ways to define aeronautical profile shapes is 

using chord curvature and thickness of the profile, the definition of the shape using the 

coordinates of the knots or control points of the Bezier curve is also an accepted 

procedure. It provides great flexibility, mainly when dealing with optimization methods 

which require a good control of the shape to be optimized. The search space of the 

values has been defined by the following range of values for each parameter: 
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- Upper Profile: 

o First control point, y-coordinate of the control point located at x = 0,25: 

[0,05 0,085] 

o Second control point, y-coordinate of the control point located at x = 0,5: 

[0,03 0,0599] 

o Third control point, y-coordinate of the control point located at x = 0,75: 

[0,001 0,0199] 

- Lower profile: 

o First point, y-coordinate of the control point located at x = 0,25:  

[-0,0499 -0,03] 

o Second point, y-coordinate of the control point located at x = 0,5:  

[-0,035 -0,02] 

o Third point, y-coordinate of the control point located at x = 0,75:  

[-0,0149 -0,005] 

 

This search space has been constructed in such a way that a constrain on a minimum 

thickness of the profile is automatically accomplished. 

 

The main parameters of the CFD analysis are: 

- Reynolds number: 6,5*10
6
 

- Angle of attack: 4º 

- Mach number: 0,704 

 

The stochastic and the robust cases also define the probabilistic density function of 

angle of attack and Mach number as Gaussian distributions with the mean values equal 

to the previous defined values and the standard deviation equal to: 

- Standard deviation of Angle of attack: 0,5 

- Standard deviation of Mach number: 0,08 

 

Standard deviation values have been selected as a 10% of the mean value to define a 

large stochastic range of values. It enables the generation of a stochastic range large 

enough to clearly modify the deterministic results. 
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Figure 4-10.- Geometry definition 
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The objective functions for each case (deterministic, stochastic and robust design) have 

been defined in equations 4-11, for the deterministic test case, 4-12, for the stochastic, 

and 4-13, for the robust one: 

 

- Deterministic case: 

 

Minimise                                     
l

d
d C

C
xf 1  4-11 

 

- Stochastic case: 

 

Minimise the mean of                 







l

d
s C

C
xf 1         4-12 

 

- Robust case: 

 

Minimise                                      







l

d
r C

C
xf 1  

                                                     







l

d
r C

C
xf 2  

4-13 

 

The reader can observe that the robust case cannot be defined as a single-objective 

problem if mean (µ) and standard deviation (σ) should be taken into account. The use of 

the ratio µ/σ has not been considered as an option because it cannot be directly 

compared with the deterministic and stochastic objective functions. 

 

On the other hand, the evolutionary algorithm, NSGA-II, for optimization has been set-

up with the following parameters: 

- Population size: 24 

- Number of generations: 300 

- Probability of Crossover: 0,95 

- Probability of Mutation: 0,166667 

 

A surrogate model, based on the Artificial Neural Network, has been used to accelerate 

the evaluations. In order to train the network a set of 400 samples has been used, which 

sample the search space of the design variables of the optimization process. The 

validation set has been defined with 40 additional samples. The obtained validation 

error is lower than 1.5%. The surrogate model has been trained previously to perform 

the optimization analysis. This fact helps to greatly reduce the total computational cost 

of the whole process. 

 

An important remark is the specific definition of each case. The deterministic objective 

function has been just defined by the use of the drag-lift ratio, while the stochastic 

objective function and robust one have been defined by the mean value of a set of 

evaluations of the drag-lift ratio. At the end of the process, for this research both values, 

the deterministic one and the stochastic mean, are considered as fully equivalent 

whichever the number of evaluations to calculate the stochastic mean is. A second 

remark is that the robust case is no longer a single-objective problem due to the 

mandatory introduction of the standard deviation. The robust test case is aimed to 
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reduce the variability, as well as the mean value. This issue has been considered when 

comparing with the results of the other test cases. 

 

4.4.2.2 Results of the single objective test case  

 

Figure 4-11 shows the convergence of the three cases, while Table 4-1 lists the 

converged values. Some clear differences can be appreciated. The first one is the 

difference between the converged value of the deterministic case and the stochastic and 

robust cases. There is a big difference between the deterministic and the stochastic 

optimal values, while the stochastic and the robust optimal values are closer between 

them. A second difference is the convergence rate. Deterministic and stochastic cases 

are only dealing with one objective function, namely the deterministic value and the 

mean value, whereas the robust case is dealing with two objective functions, namely the 

mean and the standard deviation. Then, the convergence rate of the robust case is slower 

than in the other two cases. This is mainly due to the larger complexity of solving a 

multi-objective optimization problem compared with single objective ones. 
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Figure 4-11.- Convergence for Deterministic, Stochastic and robust case 

 

Test Case Converged Value 

Deterministic 1,605e-003 

Stochastic 2,342e-003 

Robust 3,737e-003 

Table 4-1: Converged values of the single objective test cases 

 

Figure 4-12 shows the convergence of the standard deviation of the drag-to-lift ratio, 

which has been defined as the second fitness function of the robust test case. Figure 

4-13 shows the geometrical shape of the obtained profiles for each optimization process. 

As it can be anticipated by the obtained values, each of them has a different shape. The 

stochastic and robust solutions are closer between them than with the deterministic 

ones.  
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Figure 4-12.- Convergence for Deterministic, Stochastic and robust case 
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Figure 4-13.- Comparison of the optimal profile for Deterministic, Stochastic and robust case 

 

In order to better understand the results and how the results are affected by the 

stochastic definition, Figure 4-15 and 4-16 show a comparison of the behaviour of the 

obtained optimal individuals for each case when analysed under uncertainty conditions. 

Figure 4-15 shows the evolution of the drag to lift ratio under uncertainties on the Angle 

of Attack. For small values of the angle of attack the reader can observe a larger 

difference between the behaviour of the three cases. The stochastic case presents a more 

constant slope, but larger than the slope of the robust case, which after a fast increment 

from 0 to 2, it reaches a constant and smaller slope. For a certain range of values, close 

to the stochastic mean value of the angle of attack, the robustness of the objective 

function can be ensured and the results of the stochastic and the robust test cases 

improve those obtained by the deterministic test case. Due to the fact that the robust test 

case has provided a whole Pareto front as the optimal solution, some of the Pareto 

members have been plotted in order to better compare how the solution behaves. The 

curves marked as ―Robust PM‖ are: 
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- Robust PM1; the member with the largest variability 

- Robust PM10 and Robust PM12; the central members of the Pareto front, id est, 

those with the better balance between both objectives functions. 

- Robust PM24; the member with the lowest variability. 

 

The reader can compare how the member with the largest variability has a similar 

behaviour as the stochastic test case result. The member presenting the lowest 

variability shows a more stable value of the drag-to-lift ratio along the whole range of 

angle of attack. 
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Figure 4-14.- Pareto front of the robust test case 

 

Figure 4-14 shows the Pareto front of the robust test case, and the selected Pareto 

members which have been analysed. 

 

Figure 4-16 shows the equivalent comparison when the Mach number is the uncertain 

parameter. Mach number has a larger effect on the vicinity of the stochastic mean value 

due to the shock wave phenomena. On the subsonic region, the differences between the 

three test cases are insignificant. But on the transonic region, the drag to lift ratio 

increases quickly due to the drag increment. The deterministic test case is not 

considering the vicinity of the evaluated point, so it cannot detect this phenomena and 

the optimal value is not robust under this circumstance. On the other hand, the 

stochastic and the robust test cases are considering the vicinity of the evaluated point 

during the optimization and they are able to improve the search. Obviously, the robust 

test case provides the mist uniform behaviour. 

 

The reader can observe how the angle of attack and the Mach number introduce a 

different variability to the objective function. In Figure 4-16 the reader can observe how 

the Pareto member with the lowest variability shows an equivalent behaviour to the 

Pareto member 10 with a balanced equilibrium between mean value and variability. 
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Figure 4-15.- Robustness of drag/lift versus Angle of Attack number for Deterministic, Stochastic and 

robust case 

 

 
Figure 4-16.- Robustness of drag/lift versus Mach number for Deterministic, Stochastic and robust case 
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4.4.3 Multi-Objective test case 

4.4.3.1 Problem definition 

 

As it has been done in the previous section, the deterministic, the stochastic and the 

robust test cases have been defined and compared. The same problem definition has 

been used through the three test cases. A profile has been analysed under transonic 

regime conditions.  

 

The main parameters of the analysis are: 

- Reynolds number: 6,5*10
6
 

- Angle of attack: 4º 

- Mach number: 0,704 

 

The stochastic and the robust cases applies a Gaussian distribution to angle of attack 

and Mach number with: 

- Standard deviation of Angle of attack: 0,5 

- Standard deviation of Mach number: 0,08 

 

The NSGA-II optimizer has been set-up with the following parameters: 

- Population size: 24 

- Number of generations: 300 

- Probability of Crossover: 0,95 

- Probability of Mutation: 0,16667 

 

The surrogate model, which has been trained for the single objective test case, has been 

used in the multi-objective test case. The training and validation processes have been 

performed in advance to the use of the surrogate model within the optimization process.  

 

The objective functions for each case have been defined in equation 4-14 for the 

deterministic case, in 4-15 for the stochastic case, and in 4-17 for the robust design case: 

 

- Deterministic case: 

 

Minimise                                     
l

d C
xf 1

1   

                                                     dd Cxf 2  
4-14 

 

- Stochastic case: 

 

Minimise the mean of                 







l

s C
xf 1

1   

                                                      ds Cxf 2  

4-15 
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- Robust case: 

 

Minimise                                      







l

r C
xf 1

1   

                                                      dr Cxf 2  

                                                    







l

r C
xf 1

3   

                                                     dr Cxf 4  

4-16 

 

4.4.3.2 Results of the Multi-objective test case 

 

The comparison of the results of the multi-objective test cases has been done only 

considering the f1d and f2d, f1s, f2s, f1r and f2r objective functions, i.e., the deterministic 

and the mean values of 1/Cl and Cd coefficients for the stochastic and robust test cases. 

 

Figure 4-17 shows the whole set of populations obtained for the three cases, when using 

an evolutionary algorithm optimizer, the modified NSGA-II, combined with the 

deterministic, the stochastic and the robust design procedures. The deterministic case 

presents a more concentrated population, while the stochastic case spreads values in a 

larger range, due to the fact that the introduction of uncertainties can lead to an 

increment on the output variability. If the robust design case is added to the comparison, 

a significant increase of the variability can be observed. It should be taken into 

consideration that the robust case is using four objective functions, including the 

standard deviation values, while the previous two cases only use two objective functions 

(mean values). 

 

The effect of defining four objective functions can be clearly observed in Figure 4-18. It 

shows the Pareto fronts for each case. Those cases which have defined only two 

objective functions have a 2D front, while the robust case has a 4D front. The 

comparison between a case defining 2 objective functions and a case defining 4 

objective functions is not an easy task. The 2-functions case defines a 2D result space 

while the 4-functions case defines a 4D space. The comparison can be done only by 

pairs of objective functions, which is not a fair comparison due to the fact the 4D case is 

dismissing two dimensions. The use of Self Organizing Maps (SOM) can be evaluated 

when dealing with high dimensional data, which cannot be easily plotted and compared 

(see references Obayashi and Sasaki, 2003; Obayashi, Jeong and Chiba, 2005; Pediroda 

and Poloni, 2006; Parashar, Pediroda and Poloni, 2008). 
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Figure 4-17.- All populations comparison for Deterministic, Stochastic and robust case 
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Figure 4-18.- Best population comparison for Deterministic, Stochastic and robust case 

 

The robustness of the optimal individuals obtained in each test case has been evaluated 

through the comparison of its behaviour under uncertain conditions. The lift and drag 

coefficients have been analysed under uncertain values of Mach number and Angle of 

attack, in a similar way the optimization process did.  

 

The figures show the most balanced Pareto members, which can be considered the 

optimal values from the point of view of both fitness functions. The represented 

individual by the profile has been selected from those with a balanced optimality on all 

the objective functions, i.e. from the central area of the Pareto front.  

 

Figure 4-19, 4-20, 4-21 and 4-22 show lift and drag coefficients versus angle of attack 

and Mach number. The reader can observe how the lift coefficient values are bigger and 
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with a larger line slope for the stochastic and robust test cases than for the deterministic 

cases  

 

Taking into consideration that the objective of the optimization was defined as the 

minimization of the inverse value of the lift coefficient, and the minimization of the 

drag value, what the reader can observe in Figure 4-19, 4-20, where lift values are 

bigger in the stochastic and robust cases, and drag value is bigger in the deterministic 

case fulfils the expectations of the analysis; the maximization of lift and minimization 

of drag while taking into account the variability.  

 

In Figure 4-21 and 4-22, the reader can observe that in the case of variability on the 

angle of attack the lift and drag values are not improved as much as in the Mach number 

case. This is also a penalty the engineer should pay due to the introduction of the 

uncertainty analysis. 

 
 

 
Figure 4-19.- Robustness of lift versus Mach number for Deterministic, Stochastic and robust case 
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Figure 4-20.- Robustness of drag versus Mach number for Deterministic, Stochastic and robust case 

 

 

 
Figure 4-21.- Robustness of lift versus angle of attack for Deterministic, Stochastic and robust case 
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Figure 4-22.- Robustness of drag versus angle of attack for Deterministic, Stochastic and robust case 
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Figure 4-23.- Comparison of the optimal profile for Deterministic, Stochastic and robust case 

 

 

Figure 4-23 shows the profile representation of three optimal results. Each of them has 

been selected from the best population of each analysed cases; namely one profile for 

the deterministic case, one for the stochastic case, and one for the deterministic case. It 

can be observed the similarities between deterministic and stochastic optimal profiles, 

while the difference with the robust optimal profile. Although, these three cases cannot 

be considered as the best representation of the general behaviour of the results, it can be 

taken as a good example. The deterministic case can be easily compared with the 

stochastic one. The objective functions they use are more similar than compared with 

the robust case. 
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The reader can observe how the resulting shape is modified when applying robust 

methodologies.  

 

4.4.4 Conclusions 

 

From the obtained results the reader could wonder which the best method is. The 

deterministic method is only using a single point value, which could miss information 

about variability under uncertain conditions. The stochastic method is already using the 

variability information to produce the mean value as its objective function. It can be 

seen as an improvement due to a better representation of the actual behaviour of the 

optimized phenomena. Finally, the robust method is using both the mean and the 

standard deviation. It means it is not only considering the input variability, or 

uncertainty, but also the output variability. The complexity of the method is increased, 

the computational cost is also increased, but the quality of the results, regarding the 

uncertainty quantification is greatly improved. 

 

The simple set of three parallel test cases has enabled the comparison of the different 

behaviour of a CFD analysis under deterministic, stochastic or robust definition. 

Anyway, engineers should take into account that the more simplified the model is, the 

less accurate it is. The computational cost associate to uncertainty quantification 

techniques is a drawback, but if the phenomenon has a large stochastic component the 

computational cost is no longer a drawback compared with the accuracy the designer 

obtains. 

 

Deterministic and Stochastic cases can be easily compared, mainly because of the fact 

that both of them define only two objective functions. The objective functions have a 

comparable meaning; the deterministic value and the stochastic mean are almost the 

same. The robust case, which includes the standard deviation values, introduces new 

dimensions on the result space. If the space of results has a large dimension, methods as 

SOM (Self-Organized Maps) should be used.  

 

Both stochastic and robust cases use the variability information as an input. It means 

that both of them take into account the variability and the robustness of the solution. 

The main difference is the definition of the standard deviation as an objective function, 

which not only ensures the analysis of the variability of the input variables, but also 

ensures taking into consideration the variability of the objective functions.   

 

The reader can appreciate how the stochastic and the robust test cases can provide lower 

optimal values compared with the deterministic cases. But on the other hand, the 

robustness of these solutions of the stochastic and robust cases improves the obtained 

for the deterministic case. 

 

Comparing the stochastic and the robust case, the designer should select if it is required 

to deal with the standard deviation as an additional objective function, which increase 

the complexity of the solution space, or if it is enough to consider the mean value. 
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4.5 Definition of the initial population on the optimization 
process 

4.5.1 Introduction 

 

The main objective of the analysis in this section has been to check the influence of the 

initial population guess. Usually, the initial population is randomly generated. Here two 

extreme cases have been defined: the first one has defined a regular distribution of 

population members across the search space, and the second one has defined a 

concentrated location of the members of the population. 

 

4.5.2 Procedure and results 

 

The problem takes the profile definition shown in Figure 4-10 as the base line. The 

geometry is modified thanks to the use of Bezier curves. The knot coordinates of the 

Bezier curves defining the profile are listed in Table 4-2. The optimization problem is 

defined as the maximization of the lift to drag ratio. No restrictions have been applied.  

 

The optimization problem is defined as a maximization problem, so it can be written as: 

 

Maximise                                       
d

l

C
C

xf 1  

 

4-17 

 

The optimizer has been set-up with the following parameters: 

- Number of populations: 45 

- Population size: 10 

- Probability of crossover: 0,95 

- Probability of Mutation: 0,02 

 

Name of the variable 

value 

Control Points Value ranges 

X 

coordinate 
Y coordinate Lower Limit Upper limit 

Coordinates x1s, y1s 0 0 - - 

Coordinates x2s, y2s 0 0,05 - - 

Coordinates x3s, y3s 0,25 Random 0,05 0,085 

Coordinates x4s, y4s 0,5 Random 0,03 0,06 

Coordinates x5s, y5s 0,75 Random 0,01 0,02 

Coordinates x6s, y6s 1 0 - - 

Coordinates x2l, y2l 0 -0,05 - - 

Coordinates x3l, y3l 0,25 Random -0,06 -0,03 

Coordinates x4l, y4l 0,5 Random -0,035 -0,02 

Coordinates x5l, y5l 0,75 Random -0,015 -0,005 

 Assigned Values   

Angle of attack 4    

Mack number 0,7    

Table 4-2: Problem definition values 

 

In order to compare the sensitivity of the optimization algorithm with respect to the 

initial population two types of initial population have been defined. The first one is 
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regularly distributed across the search space. The second one is located in a random 

location concentrating all the members of the initial population within a small area of 

the search space. The solutions for both cases present a similar optimum value.  

 

Figure 4-24 shows the results for the regularly distributed initial population. The reader 

can observe how the maximum values remain almost constant along the generations, 

while the mean value of the Cl/Cd ratio tends to the optimal value. Figure 4-25 shows 

the results for the concentrated initial population. Both the maximum and the mean 

value of each generation show a clear trend to the optimum value.  

 

As mentioned, Figure 4-24 does not show a clear trend, while the values remain around 

the optimum one from the beginning of the analysis. Some of the analysis present a lost 

of quality, decreasing their values and not improving the previous generation. These 

poor values are a consequence of the search strategy of the Evolutionary Algorithm, 

which uses the mutation as the mechanism to avoid local minima. The mutation ensures 

that all the search space is scanned, while the convergence to the optimum is recovered 

in few next generations. 

 

On the other side, when the initial population is located close to a certain area, the 

behaviour of the analysis is completely different. The evolution of the maximum values 

converges to the optimum in an asymptotic way, reaching quite the same optimum 

value as in the previous case. Both analyses can be said to converge to same optimum 

value. Figure 4-25 shows the maximum and the mean values evolution of each 

calculated generation for the concentrated initial population. 

 

Figure 4-25 shows the evolution of the Cl/Cd means of each generation. It can be 

observed both maximum and mean values are representative of the general trend to the 

optimum; although the maximum has been considered as our final objective function. 
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Figure 4-24.-Cl/Cd evolution with a regularly distributed initial population 
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Figure 4-25.- Cl/Cd maximums evolution; concentrated initial population 

 

4.5.3 Conclusions 

 

The main difference is that the case using a regularly distributed initial population 

seems to converge to a value similar to the initial one. While the other case present a 

clear convergence to an optimum value. 

 

Two strategies for the definition of the initial population have been compared. The 

random generation of the initial population that Evolutionary Algorithms mainly uses is 

switched to a user-defined initial population. It enables the comparison of two extreme 

cases of the random generation, in order to ensure if both reach the same optimum 

value.  

 

It can be concluded that evolutionary algorithms are robust enough to converge to an 

optimum solution whichever the initial population is generated. Both random and fixed 

generation of the initial population produce similar effects and no improvement is 

introduced in the results.  

 

4.6 Applying enhancements to the stochastic method 

4.6.1 Deterministic procedure 

4.6.1.1 Introduction 

 

Taking advantage of a multi-objective definition of the CFD problem, several 

enhancements have been tested and evaluated. An improvement on the efficiency of the 

method has been looked for thanks to the use of surrogate models, and the Latin 

Hypercube sampling technique. 

 

The deterministic solution of the problem has been defined as the reference point to 
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validate the new results.  

 

4.6.1.2 Procedure 

 

The problem to be solved is basically the optimization of a 2D profile (Clarich et al, 

2004; Pediroda et al, 2004), as it has been made in the previous single-objective 

problem. Two objective functions have been defined to be minimized; the first one is 

the inverse of the lift coefficient, Cl, in order to maximize its value, and the second one 

is the drag coefficient, Cd. Bezier curves have been used to define the profile shape in 

order to ensure a smooth shape (see Figure 4-10). Coordinates of the knot points which 

define the upper and lower profiles have been selected as the input values of the genetic 

algorithm. In addition, the flow conditions have been defined as secondary input 

parameters. These parameters are the angle of attack and the Mach number, which take 

the values in Table 4-3. The selection is mainly intended to reproduce the flight 

conditions during straight and stabilized flight in a transonic regime. 

 

In order to decrease the computational time of each solver evaluation, and, 

consequently, the computational effort of the global optimization process, an Artificial 

Neural Network has been used as surrogate model of the solver. 

 

The parameter values for the configuration of the evolutionary algorithm are: 

- Number of populations: 500 

- Population size: 24 

- Probability of Crossover: 0,95 

- Probability of Mutation:  0,16667 

 

The problem has been defined as: 

Minimise                                    
 

lC
xf 1

1 
 

                                                   
  dCxf 2  

4-18 

 

No restrictions or constraints are applied. The search space is defined according the 

range of values in Table 4-3. 

 
 Name of the variable 

value 

Control Points Value ranges 

X 

coordinate 
Y coordinate Lower Limit Upper limit 

Coordinates x1s, y1s 0 0 - - 

Coordinates x2s, y2s 0 0,05 - - 

Coordinates x3s, y3s 0,25 Variable 0,05 0,085 

Coordinates x4s, y4s 0,5 Variable 0,03 0,06 

Coordinates x5s, y5s 0,75 Variable 0,01 0,02 

Coordinates x6s, y6s 1 0 - - 

Coordinates x2l, y2l 0 -0,05 - - 

Coordinates x3l, y3l 0,25 Variable -0,06 -0,03 

Coordinates x4l, y4l 0,5 Variable -0,035 -0,02 

Coordinates x5l, y5l 0,75 Variable -0,015 -0,005 

 Assigned Values   

Angle of attack 2,79    

Mack number 0,734    

Table 4-3: Problem definition values 
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The neural network has been trained with evaluation data from TDYN and PUMI 

solvers. TDYN has provided subsonic data, and PUMI has provided transonic data. Two 

different surrogate models have been generated to ensure the accuracy. One of them has 

been trained with the subsonic regime data, and another one has been trained with the 

transonic regime data. 

 

In order to train the Neural Network (ANN) 400 evaluations have been required. To 

ensure the quality of the training process this is the minimum amount of evaluation, and 

all of them must be representative of the search space. Table 4-3 shows a comparison 

for a fixed number of evaluations when the ANN is already trained, and when the direct 

evaluation of the solver is used. 

 
 EA run defining 750 generations and 8 

individuals 

 Using ANN Using the analysis tool 

Generation of training Values 

(400 samples) 

12h -- 

Training Process 1h -- 

Validation process 0,5h -- 

EA calculation  1,5h 200h 

   

Total 15h 200h 

 -92,5%  

Table 4-4: Cost comparison for a fixed number of evaluations using ANN or the analysis tool 

 

In this example, the Artificial Neural Network has been trained before the integration 

into the optimization loop. It could be trained during the execution of the optimization 

analysis, taking advantage of the evaluation of the individuals to train the network. It 

means that the training process and the validation process would take longer, because of 

the fact they would have been repeated several times.  

4.6.1.3 Results of the deterministic procedure 

 

Figure 4-26 shows the best population, the initial population and the whole set of result 

values of this analysis. The solutions on the Pareto Front have been plotted in Figure 

4-27. Figure 4-27 shows the shape of the optimum profiles, while Figure 4-28 shows the 

profiles of the initial population and the values of the objective functions. 

  

Figure 4-26 includes the plot of the non-dominated solutions, the optimal ones in green, 

the whole population, in red, and the initial values obtained from the multi-objective 

problem. 

 

Comparing the shape of the best profiles and the initial ones, Figure 4-27 and 4-28, the 

reader can observe that the best ones define specific characteristics to the profile that the 

initial ones do not consider. A clear example is the trailing portion, which is thinner. In 

addition, the best profiles define a trend to two or three best shapes.  
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Figure 4-26.- Pareto Front, whole population and initial population; deterministic case 
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Figure 4-27.- Best Solutions; deterministic analysis 
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Figure 4-28.- Initial Population 

 

4.6.2 Stochastic procedure  

4.6.2.1 Introduction 

 

The stochastic procedure has now been applied to a CFD optimization problem. The 

results from this analysis have been used as a comparative point when the same problem 

has been solved using a surrogate model.  
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4.6.2.2 CFD problem definition 

 

The optimization problem has been defined as: 

 

Minimize  

                                                             

 d

l

Cf

C
f
















2

1
1
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RAE2822 has been selected as the baseline design, and it has been parameterized using 

Beziers curves. See Figure 4-10 form details.The constraints for the knot points have 

been defined as in the previous section. 

 

The parameter values for the configuration of the evolutionary algorithm are: 

- Number of populations: 150 

- Population size: 24 

- Probability of Crossover: 0,95 

- Probability of Mutation:  0,16667 

 

Applying the values on the Table 4-3, additional constraints are stochastically defined 

on Table 4-5 in order to define a Gaussian distribution for Angle of attack and Mach 

number. 

 

 Mean 
Standard 

Deviation 

Angle of attack 2,79 0,279 

Mach number 0,734 0,05 

   

Table 4-5: Stochastic Constraints 

 

The geometry related variables are controlled by the optimization algorithm itself. They 

have been defined as the design variables. The stochastic samples have been used to 

define a set of evaluations for each individual to calculate the fitness function as the 

mean of all the evaluations.  

 

The total number of samples used to evaluate each individual has been 250. The 

selection has been done due to the fact that previous tests have shown that the accuracy 

of a 250 samples set is accurate enough for this research purpose compared with the real 

mean value. 

 

4.6.2.3 Results of the stochastic procedure 

 

Figure 4-29 and 4-30 show the results obtained with the stochastic analysis, using 250 

samples for the stochastic definition of the variables. Both plots of the whole population 

and the Pareto front have been obtained from the same analysis.     
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Figure 4-29. Stochastic result 
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Figure 4-30. Stochastic Optimal Pareto Front 

 

Figure 4-31 shows a comparison between the deterministic and the stochastic 

optimization solutions. Both of them use the same problem definition except for the 

angle of attack and the Mach number, which are the stochastic variables. Both use ANN 

coupled with the optimizer.  

 

The reader can observe that the shapes of both Pareto fronts are similar, but one front is 

displaced with respect to the other one. The stochastic front is clearly forwarded, as it 

can be seen in the amplified picture. Solutions are different because the stochastic 

solution is dealing with the mean of a cloud of evaluations instead of a single value as in 

the deterministic case. Some of these points are affected by the presence of a shock 

wave whereas the deterministic optimization does not take into account the possibility 

of having this shock wave. From this point of view, the stochastic definition produces a 

more robust solution. Closest Pareto fronts could be obtained in low subsonic situations, 

but when the research is focused on transonic flow fields the differences are relevant. 
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The same behaviour, just described, can be observed in the mathematical test cases in 

section 4.3. The front of the stochastic solution has displaced in comparison with the 

deterministic one.  

 

 
Figure 4-31. Comparison between deterministic and stochastic results 

 

Figure 4-32 show the solution to the same problem but using only 10, 50, 100 or 150 

stochastic evaluations of each individual. Figure 4-32 shows the whole populations and 

Figure 4-33 shows the Pareto fronts. 

  

The reader can observe that 10 samples analysis produces results with low accuracy; 

both the whole population and the Pareto front show bigger dispersions. The accuracy 

increases with the number of samples, but the reader can observe that those cases using 

100, 150 or 250 samples are pretty similar, and only intrinsic variability of sampling can 

be detected.    
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Figure 4-32. Stochastic sampling comparison 
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Figure 4-33. Stochastic sampling comparison 

 

 

Comparing the obtained optimal solutions, it can be observed that a lower number of 

samples produces a more discrete dispersion of the geometries within the optimal range. 

On the other hand, increasing the number of samples a richer population of optimal 

solutions is obtained. Richer population means the optimal individuals differ from each 

other in a more significant way, so the optimal set better represents its optimality. When 

comparing the same analysis using several stochastic samples, expected result can be 

that all the optimal values belongs to the same Pareto front. Figure 4-33 shows it is not 

exactly true because the sampling variability must be taken into consideration in 

addition to the poor statistical definition when the number of samples is low. 

 

Figure 4-34 to 4-37 show the profile shapes of the optimum individuals when using 

different number of stochastic samples. Figure 4-34 shows the 10 stochastic sample 

solutions, Figure 4-35 shows the 50 stochastic sample solutions, Figure 4-36 shows the 
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100 stochastic sample solutions, and Figure 4-37 shows the 150 stochastic sample 

solutions. 
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Figure 4-34. Stochastic sampling comparison; optimal geometries with 10 stochastic samples 
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Figure 4-35. Stochastic sampling comparison; optimal geometries with 50 stochastic samples 

 

Comparing a multi-point method to the one applied here is worst to mention that, first 

of all, almost all the multi-point methods use a simple discretization of the search space. 

In this research, sample values are taken from the statistical definition of the stochastic 

variables. It means they follow a mean and standard deviation when a Gaussian 

distribution is used, or uniformly and randomly spread along the search space when a 

uniform distribution is defined. The procedure selects the stochastic samples according 

the definition of the variable. On the other hand, usual multi-point discretization uses 

few points. As it has been demonstrated, the lower the number of stochastic samples is, 

the lower the accuracy is. From statistical theory, it is clear that variance of a set of 

samples strongly depends on the number of samples.  
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Figure 4-36. Stochastic sampling comparison; optimal geometries with 100 stochastic samples 
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 Figure 4-37. Stochastic sampling comparison; optimal geometries with 150 stochastic samples 

 

4.6.3 Stochastic procedure using a surrogate model 

4.6.3.1 Introduction 

 

Previous research has demonstrated how expensive a CFD analysis can be. Stochastic 

procedure for optimization requires the calculation of a big amount of individuals, 

which are highly increased when dealing with uncertainty quantification techniques, 

mainly if they are based on Monte Carlo method. The use of a surrogate model has been 

considered to keep the computational cost under reasonable limits. The Artificial Neural 

Networks have been selected due to their capability to deal with a vast type of problems. 

It will be integrated in the evolutionary algorithm and the stochastic tool. 

 

Neural Networks provide a powerful tool for reducing the calculation time. After a 

required training, the network will obtain a result much faster than performing the 

calculation itself. Based on the research of Lopez (2007), a Neural Network has been 

embedded into the evolutionary algorithm code. The Multilayer Perceptron Model 

((Lopez and Oñate, 2006), (Lopez, Balsa-Canto and Oñate, 2008)) is the type of 
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Artificial Neural Network selected due to its good performance dealing with regression 

and model generation problems. 

 

Exactly the same problem as defined in section 4.6.2.2 has been analysed used the 

surrogate model. The only difference is that a surrogate model has been previously 

trained and used instead of the solver. In order to train the networks parameters have 

been defined within the same range as defined in ¡Error! No se encuentra el origen de 

la referencia. and Table 4-5. 

 

4.6.3.2 Results of the stochastic procedure using a surrogate Model 

 

The usual procedure when working with surrogate models is to use them only for 

around the 25% of the evaluations. The stochastic robust procedure quickly increases 

the total amount of evaluations, so even reducing them to 25% does not mean a 

significant increase of speed. What has been proposed is to completely substitute the 

analysis tool with the surrogate model. It implies to ensure and control the surrogate 

model accuracy. 

 

The used Artificial Neural Network (ANN) has been trained in order to provide results 

with less than 1% of error. In order to ensure ANN feasibility, it has been compared the 

Pareto fronts obtained using the direct analysis tool and the ANN. Figure 4-38 shows 

both Pareto fronts and the difference existing between them. This difference remains 

below a 3% at maximum, which has been considered as acceptable. 
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Figure 4-38. Analysis tool and Surrogate model comparison 

 

4.6.4 Variability of the stochastic samples 

4.6.4.1 Introduction 

 

In Section 3.5 a variability analysis has been performed in order to detect how sampling 

affects the results. Two sampling techniques have been compared; namely Monte Carlo 

and Latin Hypercube. In the present chapter, similar analysis has been performed into 
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an optimization process. The previous results have pointed out two main conclusions; 

namely the low effect sampling variability has on the stochastic analysis, and the 

negligible difference between Monte Carlo and Latin Hypercube sampling techniques. 

Similar tests have been performed when applying the stochastic and the robust 

procedure into the optimization process, in order to confirm what the previous analysis 

pointed out. 

 

A brief summary of the comparative results between Monte Carlo and Latin Hypercube 

stochastic sampling is presented. Stochastic and robust procedures have been applied to 

the optimization process. The robust procedure has been seeking to evaluate if the best 

convergence of the variance of the Latin Hypercube technique produces some 

improvement in the optimization results. 

 

4.6.4.2 Problem definition 

 

The same problem as defined in section 4.6.1 has been analysed using Monte Carlo and 

Latin Hypercube sampling techniques. To define the stochastic and robust test cases 

several amount of samples have been defined and compared. Comparative data for 10, 

50, 100, 150 and 250 samples have been used, in both Monte Carlo and Latin 

Hypercube sampling techniques. 

 

- Stochastic definition 
 

The objective functions are defined as follow: 

 

Minimize  

                                                            

 ds

l
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- Robust definition 
 

The stochastic test case has used the mean values as fitness function. A robust test case 

has been performed using both mean and standard deviation. It has been already pointed 

that Latin Hypercube improves the convergence of the variance with low number of 

samples in comparison to the Monte Carlo sampling technique. The test case aims to 

check the influence of the standard deviation if it is used as a secondary fitness function. 

 

The robust formulation of the fitness functions of the problem is: 

 

Minimize  

                                                            

 

 dr

dr

l
r

l
r

Cf

Cf

C
f

C
f































4

3

2

1

1

1

 
4-21 



UPC-CIMNE  DoCTA 

Doctorat en Ciència i Tecnologia Aerospacial 

 178/261  

 

The applied constraints and stochastic definition of the parameters are the same as in the 

previous case. The number of used samples is 10, 50, 100, 150 and 250 samples in both 

MC and LHS cases. 

 

4.6.4.3 Random and fixed stochastic sampling 

 

A comparison is now established between the results of equivalent analysis when using 

a random stochastic sampling or a fixed stochastic sampling. A fixed stochastic 

sampling defines an initial set of stochastic random samples which is used all long the 

analysis. A random stochastic analysis generates the set of stochastic samples for each 

generation, or even for each individual to be evaluated. 

 

In fact, the fixed sampling can be considered an extreme case of a multi-point 

optimization problem, but with a very high number of points. On the other hand, 

random sampling takes into account the statistical variability to ensure additional 

robustness of the solution. 

 

Several tests have been performed regarding the sampling variability, the Monte Carlo 

and the Latin Hypercube techniques or the number of samples used to define the 

stochastic variables. All of these issues have been analysed and conclusions have been 

taken. An additional test has been performed regarding the definition of the initial 

population. It is usually randomly defined by the optimization method itself. What is 

done in this test is to analyse the result behaviour if the initial population is prescribed. 

 

4.6.4.4 Defining the initial population 

 

A comparison has been also established when initial populations are predefined. It has 

been compared how the optimization behaves if it uses Monte Carlo sampling with an 

initial population equal to the optimal one obtained by an analysis which uses Latin 

Hypercube sampling, and vice versa. Table 4-6 is a brief description of all the 

performed analysis in order to determine the variability effects on the results. 

 
 Monte Carlo Analysis (MC) Latin Hypercube Analysis (LHS) 

Initial 

populations 

- From MC sampling 

- From LHS previous 

analysis 

- From LHS sampling 

- From MC previous analysis 

Applied to - Stochastic optimization 

- Robust optimization 

- Stochastic optimization 

- Robust optimization 

Objective - Analysis of the variability 

induced by sampling 

- Comparison between MC 

and LHS  

- Analysis of the variability 

induced by sampling 

- Comparison between MC and 

LHS 

Table 4-6. Performed analyses 

 

All these analyses have used a meta-model to surrogate the solver evaluation. 

 

 



UPC-CIMNE  DoCTA 

Doctorat en Ciència i Tecnologia Aerospacial 

 179/261  

4.6.4.5 Results of the analysis of the Variability of the stochastic samples 

 

4.6.4.5.1 Monte Carlo and Latin Hypercube sampling applied to stochastic 

optimization 

 

- Stochastic definition 

 

Firstly, the results using only two objective functions are shown. Fitness function values, Cl and Cd 

coefficients, are shown in Figure 4-39 and 4-40 with the entire population or only the 

Pareto front. Comparing the plots, the reader can observe no significant improvement 

can be obtained.  
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Figure 4-39. Comparison between MC and LHS. 
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Figure 4-40. Pareto Front comparison between MC and LHS. 
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Monte Carlo (MC) and Latin Hypercube (LHS) comparison has been performed 

defining several amounts of samples. Comparative data for 10, 50, 100, 150 and 250 

samples have been used, in both Monte Carlo and Latin Hypercube sampling 

techniques. Again, previous results are confirmed and negligible difference can be 

detected. 

 

- Robust definition 

 

The shape of the result is completely different when dealing with 4 objective functions. 

The introduction of two additional fitness functions creates a new problem, but slight 

differences between MC and LHS are detected. 

 

Figure 4-41 to 4-46 show the Pareto front that combines the fitness functions. Figure 

4-41 is the Pareto front combining f1r and f2r fitness functions. Figure 4-42 is the Pareto 

front combining f1r and f3r functions. Figure 4-43 is the Pareto front combining f1r and 

f4r. Figure 4-44 is the Pareto front combining f2r and f3r fitness functions. Figure 4-45 is 

the Pareto front combining f2r and f4r functions. And finally, Figure 4-46 is the Pareto 

front combining f3r and f4r. 
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Figure 4-41. 4-objective results; plots of f1r and f2r fitness functions 
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Figure 4-42. 4-objective results; plots of f1r and f3r fitness functions 
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Figure 4-43. 4-objective results; plots of f1r and f4r fitness functions 
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Figure 4-44. 4-objective results; plots of f2r and f3r fitness functions 
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Figure 4-45. 4-objective results; plots of f2r and f4r fitness functions 
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Figure 4-46. 4-objective results; plots of f3r and f4r fitness functions 

 

The lift and drag‘s mean and standard deviation obtained in a four (4) objective 

optimization is represented by a four dimensional graph. To be able to plot it, the graph 

is split into pair of fitness functions. In all of them there are no significant differences 

between a 250 Monte Carlo samples analysis and a 250 Latin Hypercube samples one. 

 

Other analyses that define less samples increase the variability due to intrinsic sampling 

variability, but both Monte Carlo and Latin Hypercube show a similar behaviour.  

 

4.6.4.5.2 Random and fixed stochastic sampling 

 

To compare the results using a random or a fixed set of samples the reader can focus on 

the shape of the Pareto fronts, Figure 4-47 shows how optimal results for the fixed 

definition lead to a poor number of individuals compared with those existing in the 

Pareto front obtained with the variable definition. The variable definition leads to a 

narrower front, producing results with lower values for f1. 
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Figure 4-47. Comparison between Pareto fronts for Random variable and fixed definition. 

 

Figure 4-48 shows the comparison between the fixed random definition and the variable 

random definition for each individual. It can be detected how the fixed definition also 

fixes the front of the solution, clearly defining a linear trend, while the variable 
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definition breaks this regularity. It means that the variable definition affects the 

evaluation of the fitness function enabling to capture better results.  

 

A comparison of two different types of PDF has also been done. The Gaussian and the 

uniform PDF have been used and applied to the analysis of each individual during the 

optimization loop and it has not been detected any relevant difference between them. 

 
Figure 4-48. Comparison between Random variable and fixed definition and detail on random variable 

definition effects on the front. 

 

4.6.4.5.3 Defining the initial population 

 

First of all, two tests have been done to obtain the best population of one analysis using 

Monte Carlo sampling, and to obtain the best population using Latin Hypercube 

sampling. These two optimum populations have been prescribed as initial populations 

for an analysis using Latin Hypercube sampling, and for one using Monte Carlo 

sampling respectively. Figure 4-49 shows the optimal profile obtained in each case. 

These are the profiles that have been defined as the initial populations. 
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Figure 4-49. Optimal solution for LHS and MC sampling. 
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The same test is repeated three times to ensure robustness and convergence to the same 

results. Even though each analysis has been affected by the variability of the samples; 

the final result has almost been the same. Figure 4-50 shows a combined plot of the 

three whole populations, and the three Pareto fronts. It can be observed how similar 

they are. The robustness of the analysis is demonstrated. The third image in the Figure 

4-50 is the optimal profiles of an analysis which uses Latin Hypercube samples, and an 

initial population from a Monte Carlo analysis. 
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Figure 4-50. Results for LHS analysis using MC initial population. 

 

The same procedure has been followed when applying Monte Carlo samples into the 

analysis which uses the Latin Hypercube optimal population as its initial population. It 

has been repeated three times to ensure its convergence and robustness, as well. Figure 

4-51 shows similar images as in Figure 4-50. The first two images are the set of three 

whole populations, and the set of three Pareto Fronts. All three are pretty similar, and no 

relevant differences can be detected. The third image in Figure 4-51 is the set of optimal 

profiles.   
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Figure 4-51. Results for MC analysis using LHS initial population. 
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Regarding the definition of the initial population, improvements cannot be detected on 

the optimal solution. However, it can be observed that the use of an optimal solution as 

the initial population will lead to a narrow distribution of the results, closer to the Pareto 

front; although Pareto front itself does not improve. The whole population is located 

near the Pareto Front, instead of being spread across a large area. 

 

4.6.5 Probabilistic Collocation method  

4.6.5.1 Introduction 

 

The Probabilistic Collocation method is an uncertainty quantification method based on 

quadrature techniques. It calculates a set of fixed points using the information of the 

probability density function (PDF) of each variable. It can be considered a multi-point 

method because, given a PDF, it always produces the same points with the same weight.  

 

Due to the fact the probabilistic collocation method is becoming a common method it 

has been compared with the stochastic method developed in this research. 

 

4.6.5.2 Procedure 

 

The optimization problem to be solved is the same as in previous sections. The 

evolutionary algorithm is controlling the geometry, and flow conditions are defined as 

stochastic variables. Stochastic variables have been defined using mean and standard 

deviation of a truncated Gaussian distribution. It is truncated at the 99.7% confidence 

interval.Same mean and standard deviation values as in the previous test case have been 

applied in order to enable the comparison. Evaluation points are now fixed to the 

following values: 

 

 Mean Standard Deviation 

Angle of 

attack 
2,79 0,279 

Mach number 0,734 0,05 

Collocation 

point # 

Angle of Attack Mack 

number 

Weight 

1 1,034 -0,009 0,0026 

2 1,792 0,312 0,0886 

3 2,464 0,596 0,4088 

4 3,116 0,872 0,4088 

5 3,788 1,156 0,0886 

6 4,546 1,477 0,0026 

Table 4-7: Collocation points 

 

The calculation method for mean and standard deviation of the outputs is described in 

equations 4-22 and 4-23 for one and two stochastic variables. 

 

One single stochastic variable: 
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Two stochastic variables: 
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4.6.5.3 Probabilistic Collocation Method 

 

A comparative plot can be drawn between deterministic case, which means standard 

evolutionary algorithm execution, stochastic case, which uses stochastic definition of 

the input variables, and Probabilistic Collocation method (PCM) that defines stochastic 

variables using quadrature techniques. Figure 4-52 shows the comparison among the 

three methods. Figure 4-52 shows the three whole populations of the solutions, and 

Figure 4-53 shows the Pareto Fronts of the three cases. 

 

The first difference comes from the use of a truncated distribution in the PCM case. It 

produces values in a narrow range. The second difference is that it improves results in a 

range of f1 values. 
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Figure 4-52. Comparative plot of whole populations. 
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Figure 4-53. Comparative plot of best populations. 

 

The reader should take into account the evaluation point obtained by the quadrature 

technique. In the case of the Mach number a negative value is obtained, which is has no 

physical sense. In order to define the same PDF and to enable a comparison this 

evaluation point should be taken into consideration, even its weight is almost zero. 

 

4.6.6 Conclusions 

 

Evolutionary algorithm coupled with Artificial Neural Networks meta-model has 

provided a powerful combination of tools to reduce the computational effort. It does not 

require major changes on the procedure. Although the training cost have to be taken into 

account, the save of time is still remarkable. In order to ensure the best accuracy with 

the fewer training effort, a good Design of Experiments should be required.  

 

Deterministic and stochastic cases have been compared in order to validate stochastic 

procedure. The stochastic robust procedure has been fully integrated into the 

optimization process. But an important issue arises after this test; as expected the total 

computational time required for the evaluation of 1250 generations of 16 individuals 

takes several days. 

 

The total time required is clear a big issue concerning stochastic robust procedure. Table 

4-8 is an approximate overview of the computational cost of the coupling between 

evolutionary algorithms and stochastic analysis, when using a direct evaluation of the 

analysis tool. The computer used is a calculation server Intel Xeon 16 CPU @ 3,2GHz 

RAM 15,2Gb.  
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Stochastic 

samples 

Computational 

time 

10 7.5h 

50 40h 

100 80h 

150 115h 

250 190h 

  

Table 4-8: Computational time 

 

The use of a surrogate model has demonstrated its capability to reduce the 

computational effort while ensures the accuracy in an easy way. Table 4-9 shows a 

comparison of the computational cost with a calculation server Intel Xeon 16 CPU @ 

3,2GHz RAM 15,2Gb. 

 
Stochastic 

samples 

Computational 

time 

Using ANN 

250 190h 29h 

   

Table 4-9: Computational time using a surrogate model 

 

Then, it is clear that it is better to find a new strategy to face such a costly effort. A 

surrogate model is a good option to reduce the total time required for each analysis. 

Other possibilities are the parallelization of the code, and take advantage of the new 

developments in GPU computing. 

 

The final decision of using a surrogate model instead of direct evaluations of the solver 

has been taken; the computational cost is the main reason. But accuracy is always an 

important issue, as well. The literature about the use of a surrogate model always leads 

to a combined use of the model and the solver (Chiba et al, 2003; Desideri and Janka, 

2004). But stochastic and robust optimization that is defined in this research is really 

expensive. Evolutionary algorithms use a population based search with pseudo-random 

generation of the new individuals. Its combination with Monte Carlo techniques for 

stochastic definition means a huge number of evaluations. Deterministic analyses tend 

to limit the use of the surrogate model to the 25% of the evaluations. This is not a good 

solution for the stochastic and robust procedures. Then, a full-surrogated evaluation has 

been selected. It leads to seek the best accuracy of the meta-model. With this 

comparative study, it has been demonstrated that a good training and validation process 

can ensure a tight accuracy. It enables an optimization process completely based on 

surrogate model evaluations.  

 

The stochastic and robust optimization is strongly related to sampling techniques. It has 

been expected that Latin Hypercube helps to reduce the total amount of samples 

required, but the results show it produces slight improvement compared to Monte Carlo 

sampling. As done in chapter 3, the comparison between MC and LHS has been 

expected to provide some improvement regarding the computational cost while 

reducing the amount of samples evaluated. As resulted in the stochastic analysis in 

chapter 3 this has not been the case.  

 

A relevant conclusion is that regarding the random definition of the samples. The 

stochastic analysis should not be confused with a multi-point analysis. The uncertainty 
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of the input variables should be taken into consideration in all its statistical sense. This 

is the main reason that the stochastic samples are regenerated for each individual of the 

optimization process. This ―variable‖ generation of samples does not decrease accuracy 

but ensures a larger robustness of the solution. The computational cost in both fixed and 

variable sample definition has been the same. 

 

The Probabilistic Collocation method is an interesting method for uncertainty 

quantification. It is very useful to introduce the input variability in the analysis. It 

demonstrates a good performance in comparison to Monte Carlo based stochastic 

procedure. However, the Probabilistic Collocation Method can be considered a multi-

point method because it fixes the evaluation points for a given density function. In 

addition, the user should take care of the values of the evaluation points, because they 

could be completely meaningless. Quadrature technique spreads the values along the 

range, and it defines weight without taking care of real and physical limits of the 

variable. Another handicap is the increasing computational cost the method has when 

increasing the number of stochastic variables or when increasing the degree of the 

collocation polynomial.  

 

Even with a low degree value, degree 5 for example, for 1 stochastic variable 6 

evaluations are required, for 2 variables 36 evaluations. In a general case, if Np is the 

degree of the collocation, and n the number of variables it requires (N+1)
n
 evaluations. 

The increase is exponential, so the computational cost also exponentially increases. 

 

All these tests confirmed that the stochastic method produces robust results, but at the 

same time at a high computational cost. 

 

4.7 Multi-objective optimization of an Aero-elastic problem 

4.7.1 Deterministic procedure 

4.7.1.1 Introduction 

 

The same strategy of section 4.4 has been applied to an aero-elastic problem. The 

deterministic, the stochastic and the robust procedures have been applied to a Fluid 

Structure Interaction (FSI) problem. A multi-objective optimization problem has been 

defined to analyse the flutter phenomena and to optimize the structural behaviour. The 

objective functions of the optimization problem have been defined as the smoothness 

(the second derivative) of the evolution of a structural parameter and of the evolution of 

an aerodynamic parameter of the profile over the time. 

 

The deterministic, the stochastic and the robust test cases are mainly intended to search 

the smoother behaviour of the angular spin of the profile (i(t)); not only the smoothest 

but also the robustest behaviour. In the stochastic and the robust test cases, the mean 

value of the curvature is considered as the objective function. Figure 4-54 and 4-55 

shows two examples of how the curvature of the time evolution of i(t) is improved. 

Figure 4-54 shows only one curve, as considered in the deterministic test case, and 

Figure 4-55 shows a set of stochastic curves, as considered in the stochastic and the 

robust test cases.  
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Figure 4-54.- Angular movement examples 
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Figure 4-55.- Angular movement for two sets of individuals 

 

The deterministic problem has been solved in order to be used as the reference for a 

stochastic and robust optimization.  

 

4.7.1.2 Procedure 

 

The selected FSI problem for this research has been based on a RAE2822 profile. The 

main objective has been defined to search the smoother behaviour of the time evolution 

of the angular spin (θi(t)) and the time evolution of the pressure drag coefficient (Cdp(t));  

smoother in the sense to reduce the total integral of the curvature, the second derivative 

of each time dependant function. The problem has been formulated as: 
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Minimize                                         
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Nt is the number of time steps used to calculate both time dependant variables, so the 

total sum of the curvature values has been obtained and used as fitness functions. The 

reader can refer to Appendix I for further details on the formulation of the aero-elastic 

equations and how they are coupled and solved. 

 

Considering the following bounds for the design variables: 

- Range of the x-coordinate of the elastic axis; x_ea: [0,25 0,65] 

- Range of the x-coordinate of the centre of gravity; x_cg: [0,35 0,60] 

- Range of the mass ratio, r: [30,0 65,0] 

- Range of the damping coefficient for the vertical deformation, h: [0,15 0,35] 

- Range of the damping coefficient for the angular spin, : [0,15 0,45] 

 

The angle of attack and the Mach number have been defined as constant values at: 

- Angle of attack: 2,79 

- Mach number: 0,734 

 

The evolutionary algorithm has been configured with the following parameters: 

- Population size: 8 

- Number of populations: 100 

- Probability of Crossover: 0,99 

- Probability of Mutation: 0,25 

 

Finally, no surrogate model has been used during the optimization. 

 

4.7.2 Stochastic procedure 

4.7.2.1 Introduction 

 

In order to take into consideration the variability on the input values each individual has 

been stochastically analysed. It means a cloud of points has been obtained instead of a 

single value. The mean value has been used as the objective function. 

 

4.7.2.2 Procedure 

 

In this case, both objective functions are the mean values of the total sum of the 

curvature of two different outputs: the time evolution of the angular spin of the aero-

elastic airfoil (i(t))  and the time evolution of the drag coefficient (Cdp(t)). The analysis 

has been aimed to compare if the stochastic procedure is able to find robust solutions 

without defining standard deviation of the main output as one of its objective functions 

(as in a robust design case), which would be the case in a classical robust design 

problem. 
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The problem is now defined as: 
 

Minimize               
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The design variables are defined as in the previous deterministic aero-elastic case. 

Finally, angle of attack and Mach number are defined as stochastic variables: 

- Angle of attack follows a Gaussian distribution;  

µ = 2,79, σ = 0,01 

- Mach number follows a Gaussian distribution;  

µ = 0,734, σ = 0,01 

 

Five stochastic samples have been generated on each individual evaluation. The NSGA-

II evolutionary algorithm has been configured with the following parameters: 

- Population size: 8 

- Number of populations: 50 

- Probability of Crossover: 0,99 

- Probability of Mutation: 0,2 

 

As did on the deterministic test case, no surrogate model has been used during the 

optimization. 

 

4.7.3 Robust procedure  

4.7.3.1 Introduction 

 

The aero-elastic problem has been used as basis of the robust optimization as the third 

step on the present analysis. It has been based on the same problem definition already 

used in Section 4.7.1. Further details regarding the problem formulation, as well as 

about coupling strategy, can be found in Appendix I. Direct evaluations of the analysis 

tool are used instead of a surrogate model.  

 

The problem has been described as a robust optimization due to the fact that the mean 

and the standard deviation of the solution have been considered as objective functions. 

From the stochastic procedure defined in Section 4.7.2 one step forward is done 

including an additional robust criteria. 

 

 

4.7.3.2 Procedure 

 

The problem RAE2822 profile has again been defined as the baseline design to solve 

the following optimization problem: 
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Minimize 
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Considering the following constraints: 

 Range of the x-coordinate of the elastic axis; x_ea: [0,25 0,65] 

 Range of the x_coordinate of the center of gravity; x_cg: [0,35 0,60] 

 Range of the mass ratio, r: [30,0 65,0] 

 Range of the damping coefficient for the vertical deformation, h: [0,15 0,35] 

 Range of the damping coefficient for the angular spin, : [0,15 0,45] 

 

Finally, the angle of attack and the Mach number have been defined by 5 stochastic 

samples from the Gaussian distributions defined as: 

 Angle of attack follows a Gaussian distribution;  

µ = 2,79, σ = 0,01  

 Mach number follows a Gaussian distribution;  

µ = 0,734, σ = 0,01 

 

The evolutionary algorithm has been configured with the following parameters: 

- Population size: 8 

- Number of populations: 50 

- Probability of Crossover: 0,99 

- Probability of Mutation: 0,2 

 

As did on the previous test cases, no surrogate model has been used during the 

optimization. 

 

4.7.4 Results 

4.7.4.1 Results of the Deterministic test case 

 

The optimization method searchs for a shape providing the angular spin (i(t)) and the 

shock pressure drag (Cdp(t)) curves that should look similar to that shown in Figure 4-56 

right, which is smoother that the one shown in Figure 4-56 left. Optimal results should 

reach smooth shapes for both fitness functions. From the point of view of the analysed 

application, the flutter phenomena, the optimal results would provide a more stable 

behaviour. The flutter phenomena would not disappear at all, but it should occur more 

rarely. 
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Figure 4-56.- Vertical movement examples 

 

The optimization procedure has defined initial populations that present a wide 

variability, as shown in Figure 4-57 (a) and (b). After the optimization process, the best 

population that fulfil the optimization criteria has been obtained. Figure 4-58 shows a 

set of curves with a smoother time evolution. 

 

But not only the smoothness of the curves has been improved; also the dispersion of the 

population has been reduced. Both i(t)  and Cdp(t) initial populations present a large 

variability: a large dispersion between members of the population, but also a significant 

difference between the behaviour of each member. Some of them present an early 

converge in time, but others converge after a larger amount of time steps. On the other 

hand, the behaviour of the best populations is much homogeneous, as it can be seen 

comparing Figure 4-57 with 4-58. 

 
Figure 4-57.- Representation of the behaviour of the (a) initial population for i(t), and the (b) optimal 

population for i(t). 

 
Figure 4-58.- Representation of the behaviour of the (a) initial population for Cdp(t). and the (b) optimal 

population for Cdp(t) 

 

Figure 4-59 shows the results and the Pareto front of the robust test case. 

 

The analysed deterministic optimization has been performed as a validation of the 

problem definition. It defines a comparison point with the next analyses done. 

Comparing the obtained results for the best and the initial populations, the reader can 
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observe the closer behaviour of all the optimal members compared with the initial ones. 

Even the dispersion has been reduced; each of the optimum members has his own 

shape. 
 

 
Figure 4-59.- Detail on (a) the whole population and (b) Pareto front from the optimization process. 

 

4.7.4.2 Results of the Stochastic test case 

 

Again, the problem has been mainly intended to look for the smoother behaviour of 

both curves. Results can be analysed using a similar scheme as it has been done in the 

previous case. In Figure 4-60, the detail showing the whole population identifies the 

main fitness function as the one with larger dispersion. The range of obtained values is 

larger in f1s case than in f2s case. When the attention is focussed only on the Pareto front 

it can be observed that both value ranges have similar dispersion.   
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Figure 4-60.- Whole population and Pareto front for an aero-elastic stochastic analysis. 

 

Another comparison can be established between the time evolution of each initial 

individual, showing its five stochastic evaluations, and the same time evolution for the 

optimal individuals. Figure 4-61 shows the time evolution of i(t)  and Cdp(t).  In this 

case, even not defining the standard deviation as one of the objective functions, the final 

aim is reached. Both i(t)  and Cdp(t)  curves became smoother after the optimization. 
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Figure 4-61.- (a) Initial and (b) best populations of Tetha, i(t), evolution. 
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Figure 4-62.- (a) Initial and (b) optimal populations of Cdp(t) evolution. 

 

Similar conclusions can be taken from Figure 4-61 and 4-62, as it has been done in the 

previous test case. Comparing initial and best populations the reader can observe how 

the optimization process tends to search the fittest individuals. Compared with the 

deterministic results, the dispersion between optimal members has been reduced and the 

shapes of all the optimal members tend to be pretty similar.  

 

4.7.4.3 Results of the Robust test case 

 

The results can be analysed using a similar scheme as it has been done in the 

deterministic and the stochastic case. First of all, a comparison between initial 

population and the optimal one has been done. The plot showing the whole population 

demonstrates that the initial individuals are far from the optimal values. Again, the 

optimization process has been able to tend to the optimum. 

  

The coupling between the stochastic procedure and the aero-elastic analysis tool has 

performed as expected, without any major issue. Figure 4-63 shows the whole solution, 

including a detail of the area closest to the optimum values. Figure 4-64 shows the 

Pareto front. 
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Figure 4-63.- Whole population for an aero-elastic robust analysis 
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Figure 4-64.- Pareto front for an aero-elastic robust analysis 

 

Another comparison can be established between the time evolution of each initial 

individual, showing its five stochastic evaluations, and the same time evolution for the 

optimal individuals. It is easy to observe how the initial population is more disperse, in 

all the senses. Each individual differs a lot from the other ones, but also each stochastic 

evaluation of individuals also presents bigger variability. On the other hand, the set of 

best solutions tend to the same shape, with lower variability comparing both individuals 

and stochastic evaluations. Figure 4-65 shows the comparison between the initial 

population and the best one. 
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Figure 4-65.- Initial and optimal population comparison 

 

A comparison can be established between the results from the deterministic analysis and 

those obtained applying the robust procedure. Comparing Figure 4-64 and 4-66 it can be 

observed that in the deterministic case the final curves are smoother than in the 

stochastic case. It is easy to understand that one of the main reasons is due to the 

uncertainty on the input parameters, which makes more difficult to identify an optimum 

value as the deterministic does. 

 

Comparing with stochastic test case both the dispersion of the optimal individuals and 

the smoothness of the curves of the time evolution of the fitness functions have been 

improved. 
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Figure 4-66.- θi and Cdp time evolution for and optimal populations (taken from the deterministic case) 

 
 

4.7.5 Conclusions 

 

Flutter problem is one of the biggest structural issues during flight. The aircraft wings 

must be designed to deform in order to absorb wing gust or impact during landings. But 

the aero-elastic problem can arise if the wing is perturbed in its resonance frequency. 

Then, the wing can reach an unstable oscillation that can produce its structural failure. 

Flutter is a structural problem which can appear in high aspect ratio wings; id est., large 

spanwise and short chord (a narrow and long wing). The results are quite interesting in 

the physical sense, but also from the point of view of the application itself.  

 

Physically speaking, the aero-elastic parameters have been optimized to ensure a quick 

convergence of the aero-elastic behaviour. It means that flutter, or structural instability, 

is minimized straight when using one of the optimum individuals. 

 

From the point of view of the application, it is interesting to note the definition of the 

fitness functions, which leads to an easy representation of the smoothness over the time. 

Of course, the same problem definition has been used for a stochastic and a robust 

design optimization problem.  

 

The stochastic definition of the input variables introduces the uncertainty on the 

analysis. Although only the mean of the output values has been considered, it already 

means a best focus on the solution of the problem under uncertainties. Comparing the 

final results, it can be seen that dispersion on the optimal populations is lower than in 

the deterministic case. When facing uncertainty or variability on the parameters, the use 

of this procedure will lead to a better solution compared to the deterministic case. It 

should be taken into consideration by engineers, who should balance between getting a 

robust design and the computational cost associated. 

 

The fact that only the mean value has been used in the stochastic case can be understood 

as a lost of information about variability of the output values. It leads to use the robust 

procedure which is taking both mean and standard deviation as objective functions. 

 

Additional information taken from Figure 4-59 of the time evolutions of Theta i(t) is of 

upmost interest to validate the final results of this test case. 
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Figure 4-65 and 4-66 showing fitness functions clearly identify how the optimization 

process behaves. But in this particular case, where the fitness function is strongly 

related to a time dependant function, it is also important to confirm that results adjust to 

the desired behaviour. 

 

A perfect coupling between aero-elastic problem and stochastic robust procedure has 

been performed. The test case does not use any geometrical information; it only uses a 

fixed geometry of a RAE2822 profile. Evolutionary algorithm controls other kind of 

input parameters like mass ratio or damping coefficient, which are directly related with 

this type of problem. 

 

The robustness of the solution has been reinforced using the stochastic definition of the 

input variables, which introduces uncertainty on the parameters into the analysis, but 

also using the variability as an objective of the optimization, which ensures the stability 

of the performance.  

 

A central Pareto member of each analysed test case has been analysed to evaluate its 

angular spin behaviour. Next figures show these results. Figure 4-67 shows the time 

evolution of the deterministic Pareto member, Figure 4-68 shows the stochastic Pareto 

member and Figure 4-69 the robust Pareto member when the Mach number remains 

equal to 0,734, and the angle of attack is stochastically defined. Figure 4-70 shows a 

comparison of the three test cases. The reader can observe how the time evolution of the 

deterministic test case has a large variability between their members. The stochastic and 

the robust test cases present a similar behaviour, reducing the variability of the 

deterministic test case. 
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Figure 4-67.- Time evolution of θi for the deterministic test case with constant Mach number 
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Figure 4-68.- Time evolution of θi for the stochastic test case with constant Mach number 
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Figure 4-69.- Time evolution of θi for the robust test case with constant Mach number 
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Figure 4-70.- Comparison of the deterministic, the stochastic and the robust time evolutions 

 

Figure 4-67, 4-68 and 4-69 are a clear example of how the stochastic and the robust 

procedures are able to obtain a more stable behaviour of time evolution of the angular 

spin θi(t) for different values of the angle of attack and the Mach number. From the 

application point of view, the aero-elastic behaviour of a wing should be kept. The 

stochastic and robust results lead to a more predictable values of the angular spin θi(t) 

which can help to improve the flight performance of the wing. 

 

If the analysis focus its attention on a constant value of angle of attack, equal to 2,79, 

and an uncertain Mach number, the next figures are obtained. Figure 4-67 shows the 

time evolution of the deterministic Pareto member, Figure 4-68 shows the stochastic 

Pareto member and Figure 4-69 the robust Pareto member. The reader can observe how 

the variability of the deterministic case is similar in the three test cases when angle of 

attack remains constant. The stochastic and the robust test cases present a similar 

behaviour, reducing the variability of the deterministic test case, although the converged 

value is not the same, being a little bit higher in the robust case. 
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Figure 4-71.- Time evolution of θi for the deterministic test case with constant angle of attack 
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Figure 4-72.- Time evolution of θi for the stochastic test case with constant Angle of attack 
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Figure 4-73.- Time evolution of θi for the robust test case with constant Angle of attack 

 

Figure 4-67, 4-68 and 4-69 are a clear example of how the stochastic and the robust 

procedures are able to obtain a more stable behaviour of time evolution of the angular 

spin θi(t) for different values of the angle of attack and the Mach number. From the 

application point of view, the aero-elastic behaviour of a wing should be kept. The 

stochastic and robust results lead to a more predictable values of the angular spin θi(t) 

which can help to improve the flight performance of the wing. 
 

4.8 Multi-objective optimization of a Mission Planning problem 

4.8.1 Introduction 

 

A project proposal to an air carrier company has opened the opportunity to develop the 

present test case. The main aim of the proposal has been to define an optimization 
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problem that helps to define the optimum flight procedures in order to reduce the fuel 

consumption. Some good ideas has been described in Lee et al (2010) where a mission 

path planning problem for Unnamed air vehicles (UAV) and a fuel reduction problem 

have been analysed through the definition of an optimization problem. 

 

The provided information from the air carrier leads to the definition of a rough model of 

the fuel consumption. The model used in this section is an approximation to the real one 

due to the confidentiality agreement with the company. Anyway, the concept is the 

same and the results are accurate enough to provide the opportunity to enlarge the test 

case portfolio. 

 

The mission profile has been defined in several phases. For each phase the time, the fuel 

consumption, and the distance have been calculated. The fuel consumption has been 

calculated using parameters like the climb ratio and the fuel flow of the engines 

described later on. The distance has been calculated based on the distance trip between 

waypoints. And the time has been defined by the ratio of distance and velocity. As in 

previous test cases, this problem has been solved using the deterministic, the stochastic 

and the robust procedures. 

 

4.8.2 Definition of the problem 

 

The mission planning problem has been based on the optimization of a flying route 

between two points. The restrictions are applied to the intermediate points, the so-called 

waypoints, but also to the parameters that define the vertical profile of the mission. 

Parameters like climb rate, acceleration and cruise altitudes are restricted within feasible 

range of values, according to the aircraft performances and air traffic restrictions. Thew 

defined model has been based on the guidelines by AIRBUS, 2008 and BOEING, 2007. 

 

Three objective functions have been considered; namely the fuel consumption, the time 

of the mission and the length of the mission. The mission has been divided into mission 

phases; taxi, take-off, initial ascent, acceleration at acceleration altitude, ascent to cruise 

altitude, cruise at first cruise altitude, ascent/descent to second cruise altitude, cruise at 

second cruise altitude, descent, descent in final approach, and finally landing, as 

described in Figure 4-74.  

 
Figure 4-74.- Mission phases  
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The model for the time and the distance has been obtained by means of the calculation 

of the distance between waypoints depending on the flying phase. The time has been 

calculated using the velocity information. And the fuel consumption model has been 

defined as an approximation from the data of the customer. Parameters used to calculate 

the fuel consumption are only a representative set of all the parameters that could be 

used. 

 

Several simplification have been decided to reduce the total amount of variables of the 

problem: limited number of flight phases have been defined, some variables have been 

considered as equal (throttle during cruise and levelled flight phases, Mach number for 

both first and second cruise are some examples). 

 

This specific application has defined Barcelona as departure airport and Athens as 

destination. The waypoints are 4, and they have been selected from a list of 4 options 

each one. A discrete list of waypoints has been defined: 

- Departure Point, Barcelona. 

o Waypoint 1: Girona, Lleida, Palma de Mallorca, Alghero. 

o Waypoint 2: Marseille, Cagliari, Tunis, Porto-Vecchio. 

o Waypoint 3: Torino, Genova, Roma, Palermo. 

o Waypoint 4: Split, Bari, Patra, Kalamata. 

- Destination Point: Athens. 

 

Examples of the possible mission profiles and routes are given in Figure 4-75.  
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Figure 4-75.- Mission profiles and routes  

 

 

4.8.3 Deterministic procedure 

 

The problem to solve has been defined as described in equation 4-27: 

 

Minimize 
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4-27 

 

For the first phase, taxi, the time value is considered as fixed at a value equal to 5 min.  

The distance is not considered in the overall journey. Fuel consumption during Taxi 

phase, fctx is computed as: 
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    txtxtx tthffrSEfc  11  4-28 

 

ttx: duration of taxi, fixed to 5 minutes. 

ffr: fuel flow reference; minimum fuel flow of each engine (kg/h). 

SE: single engine taxi; 0= taxi with only one engine, 1= taxi with two engines 

thtx: throttle adjustment (% of full throttle). 

  

Time, tto, and Fuel consumption, fcto, of Take-off phase are computed as: 
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vto: take-off speed (kt) 

lr: runway length (m) 

hto: altitude of departure airfield (ft) 

wto: wind during take-off (kt) 
 

Time, ta2aa, distance, da2aa, and Fuel consumption, fca2aa, of Ascent phase after take off 

are computed as: 
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AA: Acceleration altitude (ft) 

CR2AA: climb ratio to acceleration altitude (ft/min) 

 

Time, taa, distance, daa, and Fuel consumption, fcaa, of flight at acceleration altitude are 

computed as: 
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vaa: Mach number at acceleration altitude  (% Mach) 

CIaa: Cost Index during flight to acceleration altitude 

thaa: throttle position during flight at acceleration altitude 

 

Time, taa2c, distance, daa2c, and Fuel consumption, fcaa2c, of ascent to cruise altitude are 

computed as: 
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CR2C: climb ratio to cruise altitude (ft/min) 

CA1: Cruise altitude 1 (ft) 

wc1: wind at cruise level 1 (kt) 

 

Time, tc1, distance, dc1, and Fuel consumption, fcc1, of first cruise phase are computed 

as: 
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vc1: Mach number at cruise level 1 

dod: distance from departure to destination airfields (NM) 

CIc1: cost index during cruise 1 

 

Time, tc2c, distance, dc2c, and Fuel consumption, fcc2c, of ascent/descent from cruise 

altitude 1 to cruise altitude 2 are computed as: 
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CRCC: climb ratio to cruise altitude 2 (ft/min) 

CA2: Cruise altitude 2 (ft) 

wc2: wind at cruise level 2 (kt) 

 

Time, tc2, distance, dc2, and Fuel consumption, fcc2, of second cruise phase are computed 

as: 
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CIc2: cost index during cruise 2 
  

Time, td2a, distance, dd2a, and Fuel consumption, fcd2a, of descent phase to final approach 

altitude are computed as: 
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CRFA: descent ratio to final approach altitude (ft/min) 

hd: altitude of the destination airfield (ft) 
 

Time, tfa, distance, dfa, and Fuel consumption, fcfa, of final approach phase are computed 

as: 

  fatxfa
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Optimization parameters are defined as follows: 

 throttle taxi (%): [0.15: 0.3] 

 take off speed (kt): [220: 260] 

 Acceleration Altitude (ft): [3000: 6000] 

 Cost Index at Acceleration Altitude: [0: 50] 

 Acceleration Altitude Mach: [0.65: 0.82] 

 Throttle at Acceleration Altitude: [0.5: 0.8 ] 

 Climb rate post-AA (ft/min): [500: 1500] 

 Cruise alt1 (ft): [30000 : 42000] 

 Cruise 1 Mach (kt): [0.75 : 0.8] 

 Climb rate cruise (ft/min): [300: 1000] 

 Cruise alt2 (ft): [30000: 42000] 
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 Descent rate(ft/min): [300: 1000] 

 Cost Index Cruise 1: [0: 100] 

 Cost Index Cruise 2: [0: 100] 

 Single engine taxi: Yes/No 

 

Considering constant values: 

 Reference Fuel Flow; ffr = 1000 kg/h 

 Climb rate to Acceleration altitude; CR2AA = 1000 ft/min 

 Runway length for take off; lr = 2500 m 

 Wind at Take off: wto = 15 kt 

 Wind at Cruise level 1: wc1 = 60 kt 

 Wind at Cruise level 2: wc2 = 40 kt 

 

The NSGA-II optimizer has been configured with the following values: 

- Population size: 100 

- Number of populations: 5000 

- Probability of Crossover: 0,90 

- Probability of Mutation: 0,06 

 

4.8.4 Stochastic and Robust procedure  

 

The Mission Planning problem, based on the criteria described in 4.8.2, has been used 

as basis of the robust optimization.  

 

For the stochastic procedure standard deviation has not been defined as an objective 

function. But, as done in Section 4.7.3, the standard deviation values have been used as 

objective function of the robust procedure, in the same way as the mean values.  

 

4.8.4.1 Problem definition 

 

In this case, some of the parameters are uncertain, it means that have been defined by a 

probability density function, PDF (mean and standard deviation), or they have an 

uncertain term, also defined by a PDF. 

 

Based on a real-case problem, the uncertain definition of the parameters reproduces the 

unknown behaviour of some of the conditions during the mission. Uncertainty on the 

cruise speed, cruise altitude which could be reached due to air traffic restrictions, and 

uncertainty on the weather conditions have been considered through the calculation of 

the fuel consumption, the mission time and the distance. The mission follows the same 

phases as described in the deterministic case. 

 

Two cases have been analysed; the first one is a stochastic optimization problem, which 

considers 3 objective functions that are the mean values of fuel consumption, time, and 

distance. This first case is very similar to the deterministic one, but only considering the 

uncertainty as a perturbation of some of the parameters. The second one is a robust 

optimization problem, which considers 5 objective functions; namely the three mean 

values of fuel consumption, time and distance, and the two standard deviation values of 



UPC-CIMNE  DoCTA 

Doctorat en Ciència i Tecnologia Aerospacial 

 209/261  

fuel and time. The standard deviation of distance has been discarded because previous 

results show an optimal value is reached.  

 

Fuel consumption, fctx, during Taxi phase is now computed as: 

txtxffrtx tthSEfc  )1()1(   4-38 

 

ffr: uncertain fuel flow reference; minimum fuel flow of each engine (kg/h). 

 

Time, tto, is defined as in the deterministic case, and Fuel consumption, fcto, of Take-off 

phase is now computed as: 

towtoffrto thfc
to

  2)10102( 33   4-39 

 

wto: uncertain wind during take-off (kt) 
 

Time, ta2aa, and distance, da2aa, are computed as in the deterministic case, and Fuel 

consumption, fca2aa, of Ascent phase after take off is now computed as: 
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CR2AA: uncertain climb ratio to acceleration altitude (ft/min) 

 

Time, taa, and distance, daa, are computed as in the deterministic case and Fuel 

consumption, fcaa, of flight at acceleration altitude is now computed as: 
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Time, taa2c,  and distance, daa2c, are computed as in the deterministic case and Fuel 

consumption, fcaa2c, of ascent to cruise altitude is now computed as: 
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CA1: Uncertainty added to Cruise altitude 1 (ft) 

wc1: Uncertain wind at cruise level 1 (kt) 

vc1: Uncertainty added to speed at cruise level 1 (Mach) 
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Distance, dc1, is calculated as in the deterministic case. The time, tc1, and Fuel 

consumption, fcc1, of first cruise phase are now computed as: 
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Time, tc2c, distance, dc2c, and Fuel consumption, fcc2c, of ascent/descent from cruise 

altitude 1 to cruise altitude 2 are now computed as: 
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wc2: Uncertain wind at cruise level 2 (kt) 

 

Distance, dc2, is computed as in the deterministic case, while Time, tc2, and Fuel 

consumption, fcc2, of second cruise phase are now computed as: 
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Time, tc2a, is calculated as in the deterministic case. The distance, dc2a, and the Fuel 

consumption, fcc2a, of descent phase to final approach altitude are computed as: 
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The time and the distance are calculated, as in the deterministic case, considering the 

flight phase parameters.  

 

Same simplifications as in the deterministic case have been applied in the robust design. 

Optimization search space is defined using the same range of values as in the 

deterministic case, as well. 

 

Uncertainties are defined as follows: 

 

 ffr: uncertain fuel flow (kg/min) 
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Gaussian distribution, Mean = 1000, Standard deviation = 0.5 

 CR2AA: uncertain climb ratio to acceleration altitude (ft/min) 

Uniform range = [800; 1500] 

 wto: uncertain wind during take-off (kt) 

Gaussian distribution, Mean = 15, Standard deviation = 0.1 

 wc1: Uncertain wind at cruise level 1 (kt) 

Uniform range = [-10; 60] 

 wc2: Uncertain wind at cruise level 2 (kt) 

Uniform range = [-15; 40] 

 CA1: Uncertainty added to Cruise altitude 1 (ft) 

Uniform range = [1500; 2500] 

 vc1: Uncertainty added to speed at cruise level 1 (Mach) 

Gaussian distribution, Mean = -0.02, Standard Deviation = 0.02 

 

- Stochastic definition 

 

Minimize 
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- Robust definition 

 

Minimize 
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4.8.5 Results 

4.8.5.1 Results of the deterministic test case 

 

The obtained results show how the optimizer has been able to define the best route, 

which is shown in Figure 4-79. It is not a strange situation because a shorter route exists 

within the whole set of options. The waypoints defined clearly identify it, and the 

effects of the vertical profile of the mission are not so relevant as to create another 

optimum route. 

 

Figure 4-76 shows a 3D representation of the Pareto Front showing the three objective 

functions. As shown in Figure 4-77, the Pareto front belongs to a parallel plane of the 
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time-fuel plane, due to the fact that the optimal value for distance has been reached and 

it remains constant in the plot.  
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Figure 4-76.- Set of optimal solutions for the three objective functions  
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Figure 4-77.- Set of optimal solutions for the three objective functions  

 

The information from the Pareto front can be translated to an application-specific 

representation. Figure 4-78 shows the profiles of some of the Pareto optimal members. 

It can be observed how climb to cruise level is directly related to cruise altitude in order 

to ensure the minimum fuel consumption. A significant result is that optimal solution 

which has defined the steepest climb to cruise level. In order to maintain low fuel 

consumption the second cruise level is one of the lowest. It demonstrates how the 

optimizer is seeking the best combinations of values to perform the optimal flight 

according to the defined objective functions. 

 

The defined restrictions have enabled to obtain solutions with a long descent phase to 

final approach. In a more realistic scenario, air traffic restrictions would make unable 

such a descent ratio. 
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Figure 4-78.- Mission profiles for the best route  

 

 

 
Figure 4-79.- Best route  

 

4.8.5.2 Results of the stochastic test case 

 

As in previous deterministic solution of the problem, the optimizer has been able to 

reach the optimum route, which minimizes the distance. In both stochastic and robust 

optimization cases the distance is fully optimized even considering uncertainty in the 

input parameters.  

 

Figure 4-80 shows the Pareto Front of the Fuel and Time objective functions obtained 

with the stochastic procedure.  

 

Figure 4-81 translates the information for some of the optimal members in the Pareto 

Front into the mission profile. Due to the introduction of the uncertainty on the input 
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parameters, a combination between steeper climb ratio and higher cruise altitude can be 

obtained. The main issue is to ensure the robustness of the solution when facing 

uncertainties in the parameters. 
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Figure 4-80.- Pareto Front for  the stochastic analysis 
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Figure 4-81.- Optimal Profiles for the stochastic analysis 

 

4.8.5.3 Results of the robust test case 

 

Figure 4-82 shows the Pareto Front of Fuel and Time objective functions for the robust 

analysis procedure. The front is no longer a line due to the fact that the problem is 

defined using 5 objective functions (means and standard deviations). Even plotting a 3D 

representation of the Pareto Front it would not be able to plot a Pareto surface because 

the dimension of the space of the solutions is larger than 3. Time and fuel consumption 

have been selected in order to compare with the deterministic and the stochastic results. 
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The definition of the standard deviation as one of the objective functions has produced 

optimum results far away from those obtained in the first case, where only mean values 

have been considered. In the robust analysis case, the solutions have not only taken into 

account the variability of the results, but also the output variability. 
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Figure 4-82.- Pareto Front for  robust optimization analysis 

 

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  200  400  600  800  1000  1200  1400

A
lt

it
u

d
e

 -
 f

t

Distance - NM

Optimal profiles

  
Figure 4-83.- Optimal Profiles for the robust optimization analysis 

 

No significant differences can be detected in Figure 4-83 when it is compared with 

Figure 4-81. When considering the standard deviation as output, in the second case, 

values of climb rate and descent rates are not spread so regularly than in first case. 

4.8.6 Conclusions 

 

Taking into account the simplification that has been applied to the problem definition 

and the mandatory use of partial information to generate the model of the fuel 
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consumption, the results are accurate enough. Engineers from the air carriers have 

confirmed that the real problem behaves as described in this test case.  

 

The study of the obtained results has been simplified thanks to the fact that distance gets 

a single optimum. The problem is simplified from a problem with three objective 

functions to a problem with two objective functions. This results has been obtained due 

to the definition of a low number of waypoints.  

 

However, the test case has provided the opportunity to escape from fluid-dynamics 

applications and expand the application range to a topic with real commercial interest. It 

is directly related to the 2020 Vision (Busquin et al, 2001), which look for an important 

emission reduction, as well as an important noise reduction. Emission reduction is 

directly related to fuel consumption.  

 

The results from the three analysed cases can be compared. Figure 4-84 compares the 

results obtained in the stochastic and the robust optimization procedures. The points 

from the Pareto Front obtained by the stochastic analysis are close enough to the cloud 

of points of the robust optimization analysis, so both results could be considered to be 

similar. But the standard deviation defined as an objective function introduces several 

new solutions. The solutions for the robust analysis do not belong to a 3D space, but to 

a 5D space, making the comparison more difficult. 
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Figure 4-84.- Two non-deterministic case comparison 

 

 

If the deterministic results are added to the comparison, as done in Figure 4-85, the 

reader can observe more differences. The deterministic solution seems to obtain a better 

solution, which minimizes more effectively fuel and time. But the robustness of the 

solution set cannot be ensured. This is the main issue to consider when comparing a 

deterministic solution and one taking into account uncertainty. 

 

The use of a simplified model, based on mathematical relationship of the variables, has 

led to an easy computation of the individuals. Opposite to the previous applications, the 

actual Mission planning application does not present such a huge difference between the 

computational cost of the deterministic and the robust definition. Although the robust 

case is more expensive, now, the cost is not a limiting issue. 
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Figure 4-85.- Deterministic and non-deterministic cases comparison 

 

4.9 General conclusions on Stochastic and Robust 
Optimization 

 

The test cases using CFD analysis tools have provided the opportunity to analyse 

several configurations of the management of uncertainties. The definition of the initial 

population, and of the stochastic set of samples has been taken into consideration. 

Additional test cases have been performed with the definition of a FSI aero-elastic 

problem, and a Mission Planning problem, as well. 

 

The main conclusion come from the comparison between the deterministic and the 

stochastic and robust procedures. The results from all the test cases have demonstrated 

the robustness of the solution obtained by the stochastic and the robust procedures. The 

comparison of the deterministic results with the solutions provided by the Pareto 

members of the robust procedures shows how all the Pareto members are improving the 

robustness of the deterministic solution, even those Pareto members with the largest 

variability or standard deviation. 

 

If the comparison is focussed on the stochastic and the robust procedures, the reader can 

conclude that the stochastic procedures is an intermediate point between the 

deterministic and the robust procedures. The stochastic is dealing with uncertainties but 

is not considering the variability of the results. Although a good performance can be 

obtained by using the stochastic, the robust solutions ensure a better control of the 

robustness, or at least a better measure of the robustness.   

 

The reader should take into account the fact that pure mathematical cases can be easy to 

compute, but CFD or aero-elastic analyses take longer time. Due to the expensive cost 

of hundreds or thousands of evaluations required by an evolutionary algorithm, it is 

important to clearly identify the minimum number of individuals of each population and 

how many populations are required. The performed analysis in previous sections and 

the validation process of the used evolutionary algorithm described in the Appendix I 

help to find the best configuration. 
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Both fluid-dynamics and mission planning problems establish good examples on how to 

apply the stochastic procedure for robust design optimization to other kind of problems. 

The robustness of the solutions has been analysed. Stochastic and robust procedures 

have shown a good performance, dealing with the optimization of the variables involved 

in the phenomena while taking care of the uncertainty of the additional parameters. 

Although the robust procedure ensures the best control, with the definition of 

optimizing criteria based on the standard deviation of the fitness functions, in some 

cases, where the stochastic mean value improves the robust one for some of the Pareto 

members as happens in the multi-objective CFD test case, it can be considered that the 

stochastic procedure performed better. It is clear that the simplification that represents 

the stochastic case compared with the robust case, combined with the characteristics of 

each problem can produce different kinds of behaviour of the results. The engineer 

should carefully evaluate the analysed phenomena and decide which the most 

appropriate method to be applied is. 

 

The stochastic method has been compared with a recent methodology applied for 

uncertainty propagation; the Probabilistic collocation Method. The Probabilistic 

Collocation method is a powerful method, which takes advantages of the probabilistic 

definition of the input variables, to define a multi-point evaluation of the solver. Thanks 

to a limited number of the input variables and its non-intrusive definition, it is a fast 

method to spread uncertainties across the analysis. 

  

It is well known that the cost of the stochastic evaluations is high, due to the total 

number of the single evaluations, or shots, which must be performed. On the other hand, 

the stochastic method has a constant cost when increasing the number of stochastic 

variables and produces robust solutions thanks to its intrinsic variability. It should be 

taken into consideration that the introduction of stochastic samples means a significant 

increase of the total number of evaluations. 

 

Using a surrogate model the cost is reduced, even taking into account the training time. 

Table 4-10 describes the time cost of direct evaluation of the solver or evaluations using 

an Artificial Neural network, including the training and validation time cost. 

 
 Stochastic Evolutionary 

Algorithm coupled to 

ANN 

Stochastic 

Evolutionary 

Algorithm coupled to 

the analysis tool 

Generation of training Values 

(1000 samples) 

30h -- 

Training Process 1h -- 

Validation process 0.5h -- 

EA calculation with 250 

stochastic samples 

29h 190h 

   

Total 60.5h 190h 

 -69%  

Table 4-10: Direct solver evaluations vs ANN evaluations; cost comparison 

 

Engineers need to face the issue to find the best balance between accuracy and fast 

evaluations. The use of a surrogate model is an option. But if a parallelized code is 

available, or new high performance computational resources, like GPU, both of them 
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are also good option to take into account. The final conclusion, anyway, is that robust 

design optimization is an expensive procedure, but it provides robust design solutions 

that ensure the stability of performances. 

 

4.10 Summary 

 

The research in this chapter is mainly devoted to the analysis of the performance of the 

stochastic procedure applied to the Robust Design problem.  

 

Two kind of robust design problems have been defined. The first one does not account 

with the standard deviation as one of the fitness functions. Only mean values are used. It 

is the so-called stochastic method. The second one is the so-called robust method, which 

uses both mean and standard deviation as fitness functions. It ensures that not only the 

nominal value is optimized, but also its dispersion does. 

 

Several test cases have been used. As done in the previous chapter, the Table 4-11 

summarises the main test cases that have been analysed. 

 

The structure of all the test cases is almost the same. A comparison is established 

among deterministic, stochastic and robust solution, in order to get the best 

understanding of the performance and accuracy of the stochastic and robust methods. 

 
Stochastic Robust Optimization 

Name Variables Objectives Method UQ Regime ANN Chapter 

Math Test 

cases 

Math 

variables 

Compare and 

check 

methodologies 

Deterministic 

Robust 
MC -- No 4.3 

Single 

Objective 

CFD 

analysis 

Initial and 

boundary 

flow 

conditions 

Initial test and 

set-up 

configuration 

Deterministic -- Transonic Yes 
4.4.2 

and 4.5 

Multi-

Objective 

CFD 

analysis 

Initial and 

boundary 

flow 

conditions 

Robust design  

Deterministic 

Stochastic 

Robust 

MC 

LHS 

PCM 

Subsonic 

Transonic 
Yes 

4.4.3 

and 4.6 

Multi-

objective 

Aero-elastic 

analysis 

Structural 

and flow 

conditions 

Robust design 

Deterministic 

Stochastic 

Robust 

MC Transonic No 4.7 

Multi-

objective 

Mission 

planning 

Aircraft 

performance 

parameters 

Robust design  

Deterministic 

Stochastic 

Robust 

MC -- No 4.8 

Table 4-11. Summary of analysed cases 
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5 Conclusions and further work 

 

Uncertainty management and quantification is a problem of increasing interest in aeronautics. 

How to deal with uncertainties, taking into account the high computational cost the aeronautical 

related problems tend to face, is a challenging problem.  

 

In this research stochastic procedure has been defined to analyse the sensitivity of the outputs 

with respect to the variability of the input parameters. This procedure has helped to establish 

robust optimization procedures.  

 

The robust procedure has been applied to Computational Fluid Dynamics (CFD) problems, as 

well as to Fluid-Structure interaction (FSI) problems or Aircraft mission planning problems. 

Regarding optimization applications, they can be divided into stochastic applications, where only 

mean values have been taken as output, and robust ones, where the mean and the standard 

deviation values have been used as outputs, increasing the robustness of the solution. 

 

The sensitivity analysis provides the capability to analyse the partial derivatives of the output 

function, without knowing anything about it. It takes advantage of the Monte Carlo Uncertainty 

Quantification method, that is largely used in the robust optimization technique developed in this 

study. 

 

It is fully accepted, that cutting-edge design and optimization methodologies have to account 

with uncertainties. Several methodologies have been tested. Robust design optimization is 

becoming one of the top priorities in engineering design. Several research projects have been 

devoted to uncertainty quantification. The NODESIM-CFD project (Contract number 030959, 

www.nodesim.eu), co-funded by the 6
th

 Framework European program is a clear example. Other 

projects want to define robust design methods and incorporate related tasks. The CRESCENDO 

project (Contract Number 234344), co-funded by the 7
th

 Framework European program is one of 

them.  

 

As already pointed in the partial conclusions of chapter 4, the reader should keep the main 

advantages from the stochastic, and mainly from the robust procedures. Dealing with 

uncertainties is becoming a great advantage when designing a new product. The robustness of the 

design will ensure the best performance in all the situations, which will lead to more confidence 
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by the user. In aeronautical applications, an improved and more stable efficiency in the overall 

flight can help to easily reach the environmental goals of the ACARE 2020 vision (Busquin et al, 

1989). The robust procedures have demonstrated their capabilities to deal with the uncertainties 

in the input parameters, and to seek the most robust solution taking into account the variability of 

the output solutions. 

 

Compared with the deterministic solutions, the stochastic and mainly the robust procedures are 

able to ensure a robust solution, which will provide a more stable behaviour. The more stable 

behaviour means an overall efficiency whatever the working conditions are. The analysed 

aeronautical applications have a working environment which is directly affected by the 

atmospheric weather. Almost all the conditions can be considered as uncertain; the wind speed 

and direction or the presence of air gust are some clear examples. The uncertainty on wind 

conditions will affect the aerodynamic performance of a wing, inducing a different aero-elastic 

behaviour, but also it will affect the fuel consumption and flight time in a commercial scheduled 

route. 

 

The comparison between the stochastic procedure and the robust one concludes that the 

stochastic procedure means an improvement, from the point of view of the deterministic solution, 

but it does not reach the robustness levels of the robust procedure. 

     

Several methodologies have been analysed and compared; Monte Carlo and Latin Hypercube 

stochastic sampling, but also Probabilistic Collocation Method have been used to propagate 

uncertainty and input variability through the CFD and FSI analyses. As shown in Table 3-28, 

each methodology has its own advantages. 

 

The selection of the Monte Carlo method has been based on several issues. The main one is the 

capability to define a set of samples, instead of fixing the evaluation values. The definition of the 

stochastic samples at different steps of the optimization process helps to ensure the robustness. 

Another considered issue is the constant cost whatever the number of uncertainties are defined. It 

is well known that the main drawback of the Monte Carlo method is its high computational cost. 

The reader should keep in mind that other methods exponentially increase their cost with the 

number of uncertainties as happens with the Probabilistic Collocation method. It means that for a 

small amount of uncertainties these methods can provide a better performance regarding 

computational cost, while for a large number of uncertainties the performance decrease and the 

computational cost is not so competitive.  

 

Although Monte Carlo techniques are considered expensive, their cost is almost constant even 

though the number of variables increases. This is an important issue to consider when comparing 

these techniques with newest ones, like Probabilistic Collocation Methods. The user should 

carefully evaluate the number of stochastic variables in his problem, the requirements about 

statistic information and the problem definition to select the most appropriate method.  

 

The use of a surrogate model has been analysed and has demonstrated how it can improve the 

performance of the overall process. The computational cost is drastically reduced using a 

surrogate model, and the integration of the surrogate model with the stochastic process, or with 

the optimization process does not represent a major issue. The FLOOD Artificial Neural Network 

have been selected because the easy-to-use configuration they provide. The training and 

validation process are both an easy task, and they do not greatly increase the computational cost. 

The reader can conclude that the use of a surrogate model, like the neural network used in this 
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research, is quite a mandatory tool to be integrated within a stochastic analysis. But it becomes 

mandatory if an optimization process is performed.   

 

In order  to ensure the robustness of the solution several definitions have been tested. They refer 

to the initial population definition, but also to the definition of the stochastic samples during the 

optimization process. Firstly, regarding the initial population definition, standard methods use a 

random definition. In this research, the effects on pre-defining the initial population in order to 

evaluate the convergence of the solutions and to enable a greater flexibility on the problem 

definition have been tested. On the other hand, regarding the definition of the stochastic samples, 

several definition steps within the process have been evaluated; the first one has been at the 

beginning of the optimization process. Then, the samples remain constant along the whole 

process. The second step has been before each generation, which means that the samples remain 

constant at the generation level, but each generation is using different samples. Finally the last 

tested step has been at the individual level, defining new samples for each individual to be 

evaluated. The first one has been discarded due to the fact that it can be considered a multi-point 

evaluation, and the aim of this study is to ensure the robustness of the solutions. The last two 

ones, are appropriate for ensuring the robustness. The final conclusion points out that defining 

the samples at the level of the generations seems to be the most efficient step. The results do not 

improve when defining the samples at the individual level, and it introduces more complexity to 

the data management. 

 

Optimization analysis usually has a high time cost, and also a high computational cost; both are 

directly related. When dealing with robust design optimization, the computational cost can 

increase one or two orders of magnitude, at least. It is a relevant increment. The use of surrogate 

models can be a helpful tool. The accuracy of the models and their validation are the main issues 

to take into consideration. The cost of the model generation is also relevant, and it should be 

added to the overall cost of the procedure. 

 

But not only surrogate models can lead to a more competitive computational cost. The use of 

parallelized codes, at the level of the analysis tool, or at the level of evaluating the individuals 

within the optimization process, can help, as well. High performance computation resources, like 

GPU or multi-core and multi-nodal computers, are available. If the parallelized code is not 

available, a careful trade-off study should be established in order to evaluate the opportunity to 

parallelize it or not. 

 

Engineers should take into account the best balance between cost and robustness of the solutions. 

The available methods for uncertainty quantification are expensive. To reduce their cost they 

should be limited in their application. Anyway, these methods have demonstrated their capability 

to provide a robust design solution, which ensures the stability of the performances.   

 

Of course, the defined procedure has drawbacks. Parallelization is a big issue to take into 

consideration, which will improve the time cost. Uncertainty quantification models are the 

second big issue. Monte-Carlo methods are expensive, but produce full statistics, on the other 

hand collocation methods have a great dependency on the number of stochastic variables and 

they do not produce full statistics. Other methods, like fuzzy logics, could be evaluated. A 

specific statistical analysis concerning which kind of method better fits each kind of problem 

should be done. 
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5.1 Main contributions of this research 

 

This research has focussed the attention of the reader on robust design and robust optimization 

techniques. The main contributions can be listed as follow: 

 

- Implementation of a stochastic procedure based on Monte Carlo techniques 

- Implementation of the stochastic procedure to stochastic and robust optimization 

- Implementation of a methodology to reduce the computational cost of such procedure 

based on Artificial Neural networks 

- Establish a comparison point between standard optimization methodologies, based on 

deterministic procedures, and new implementation of the stochastic and robust 

optimization methodologies. 

- Apply the stochastic procedure, as well as the stochastic and the robust optimization 

procedure to Computational Fluid Dynamics (CFD), Fluid-Structure Interaction (FSI) and 

mission planning (MP) problems as a validation point. 

 

5.2 Further research 

 

The present research has opened lots of new questions to be investigated. As a summary of what 

is planned as future investigations the following list briefly describes the step forward: 

 

- development of a parallelized code (or GPU) which can deal with solver evaluations 

reducing the required computational time. 

- implementation of the stochastic and the robust optimization procedures to other 

optimization methods, such as Gradient-based ones, in order to compare the requirements 

from Evolutionary techniques and Gradient-based methods. 

- integrate Self Order Maps (SOM) methodologies to analyse results when large number of 

output variables has been defined. 

- further developments related to Uncertainty Quantification techniques should be 

investigated. In particular, further development of Monte Carlo techniques, which helps 

to reduce their computational cost but enabling the statistical accuracy of the results. 
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6 Appendix I: Numerical Methods and Tools 

6.1 Introduction 

 

This research is not devoted to the development of new numerical methods. It takes 

advantages of already existing methods and tools. However, the robust design and the 

robust methodologies developed in this work extensively use all these methods and 

tools, so it quite mandatory to briefly introduce them. 

 

This section describes the tools used during the development of the present work. 

Numerical tools as the pre and post-processor GiD, and the CFD solvers TDYN and 

PUMI, or the aero-elastic code are described. A description of the artificial neural 

network is also provided.  

 

The implementation of NSGA-II optimization algorithm is also described and validated. 

Some mathematical test cases are solved and validated with the available literature. 

Finally, a description of STAC, the stochastic management tools, is developed as an 

important milestone of the computations presented and discussed.  

 

6.2 STAC description 

 

STAC is a stochastic analysis management tool. Based on the developments by Zárate 

and Hurtado (1998), CIMNE team has created a tool which provides a very friendly and 

easy to use user interface, and which provides pre and post-processing capabilities. 

 

The pre-processing capabilities include file management; i.e., selection of files 

containing input and output values, work folders definition, and number of total and 

error shots permitted. Finally, it can be included as a pre-processing capability the 

solver management. 

 

Several probability density functions can be applied to the input variables. Gaussian, 

uniform, t-student, are some of the continuous variable distributions, and Binomial and 

Poisson two of the discrete ones.  
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The post-processing capabilities include statistical analysis of the input and output 

values, evolution of means and dispersion plots. 

 

The most important capability is, without hesitation, the solver management. It provides 

the ability to apply the defined input values, and to execute all the required steps in 

order to correctly obtain the output data. All necessary calls to several programs, 

management of extra files, etc, can be defined in the batch file of STAC. Each one of 

STAC run, or shot, follows all the batch file instructions. STAC is able to manage any 

kind of solver that can be called from the command line, in windows as well as in Linux 

operating systems. 

 

6.2.1 STAC Batch file 

 

In order to better understand how to define a STAC batch file, an example is provided; 
 

(1)  c: 
(2)  cd C:\DOCUME~1\JORDIP~1\MISDOC~1\Doctorat\tesis\RAE2822\treball\ 

(3)  varatm 
(4)  del r2822n1.fla 

(5)  copy r2822n2.fla r2822n1.fla 

(6)  cd C:\Users\JORDIP~1\DOCUME~1\Doctorat\Tesis\RAE2822\rae2822cp.gid 
(7)  del rae2822cp.flavia 

(8)  copy C:\Users\JORDIP~1\DOCUME~1\Doctorat\Tesis\RAE2822\treball\r2822cp1.fla rae2822cp.flavia 

(9)  C:\PROGRA~1\COMPAS~1.8R3\PROBLE~1\Tdyn5.016\scripts\Tdyn.exe -2D -name rae2822cp.flavia 
(10) cd C:\Users\JORDIP~1\DOCUME~1\Doctorat\Tesis\RAE2822\treball\ 

(11) copy C:\Users\JORDIP~1\DOCUME~1\Doctorat\Tesis\RAE2822\rae2822cp.gid\rae2822cp.flavia.for bezier.for 

(12) lda_5 
(13) del bezier.for   
 

First of all, it is advisable to ensure you are in the appropriate location; lines (1) and (2) 

defines the path of work folder. Line (3) shows the call of the first program, including 

the required file management in the next lines. If it is required temporarily change the 

work directory it can be done, as in line (6), mainly to ensure a proper call of the second 

solver (line (9)). But come back to the working solver (10) is always required, in order 

to ensure the proper shot running.  

 

It can be observed that what a list of command-line commands based in DOS standard 

language is provided. So, one of the STAC limitations come from this point: it is 

required that all solver or programs can be called using command line. 

 

6.2.2 Stochastic definition 

 

The most significant tool that STAC provides to the user is the capability to define input 

values according several probability density functions (PDF) embedded into STAC. 

From the defined probabilistic information input values samples are generated and 

applied to the solver in each single run, or shot. 

 

Sampling techniques available are both Monte Carlo and Latin Hypercube, for all the 

available PDF.  

 

STAC can also be used as a stochastic generator thanks to the generation of a file 

containing all the samples of the input values. 
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6.3 GiD and TDYN description 

 

GiD is a pre and post-process software developed by CIMNE. All the simulations 

require three main steps: the first one is the so called pre-process which consists on the 

definition of the problem to be solved; the geometry, materials, boundary conditions 

definition and the mesh generation. The second one is the simulation itself, done by the 

solver. After the calculation is done, the presentation of its solution is needed in order to 

analyze and conclude whether it is correct and acceptable, thanks to the post-process of 

the results. 

 

GiD provides the necessary capabilities to perform the first and third required steps for a 

FEM simulation; the so-called pre- and post-process. GiD is an easy-to-use geometric 

user interface, which includes cutting-edge mesh generation capabilities. The GiD 

environment can be customized to adapt the presentation, menus and windows in order 

to accelerate the definition of the geometry, its verification, and the generation of the 

mesh. It enables the definition of the boundary conditions, the problem data, and the 

mesh parameters, and always adapting this information to the solver requirements. 

Related to the post-process capabilities, GiD enhances the visualisation capabilities with 

powerful tools to show the analysis result. Almost all the used solvers on this work used 

GiD as its pre-processor. TDYN, PUMI and the Aero-elastic solver are based on a GiD 

customization mainly focused on creating the geometry and applying initial conditions 

to it, so the mesh will be generated and used by the solver. 

 

At the first stages of this work, TDYN has been the selected solver. TDYN is a fluid 

dynamics solver developed by Compass and CIMNE in its initial version. It is based on 

the finite elements analysis method. TDYN solves the three dimensional, 

incompressible and slightly compressible Navier-Stokes equations. The spatial 

discretisation of the Navier-Stokes equations has been done by means of the finite 

element method, while for the time discretisation an iterative algorithm that can be 

considered as an implicit two steps ―Fractional Step Method‖ has been used. Problems 

with dominating convection are stabilised by the so called ―Finite Increment Calculus‖ 

method. TDYN, as many other solvers, are completely integrated with GiD. All the 

menus, and operations required by TDYN are called from GiD, so it is extremely easy 

to use, and friendly. 

 

Both codes, GiD and TDYN, can be called using the STAC command line. In the GiD 

case, the definition of a batch file, which contains all the instructions to be performed, 

enables to avoid the interaction through the graphical interface. The language used in 

the batch file has a macro-style, so it is easily understandable, and it enables the 

definition of every single operation the user can call using the graphical user interface.  

 

6.4 PUMI description 

 

TDYN only manages slightly compressible problems, for more compressible problems 

PUMI has been used. PUMI is a CFD solver mainly addressed to obtain fast solutions 

for problems containing complex geometries. PUMI is a CIMNE development made by 

Dr. Roberto Flores. PUMI looks for the code efficiency in order to deal with complex 

geometries problems avoiding high computational demands, id est.; minimum memory 

requirements, fast single-treaded performance, and a good parallel scaling. 
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PUMI is structured as other CIMNE in-house codes. It uses a problem type that can be 

coupled with GiD, so the geometry and the problem conditions definition, even results 

visualization can be performed through GiD user interface. GiD interface is mainly used 

to create the mesh file. Other important files can be edited using notepad application, in 

order to define the calculation parameters like Mach number, number of time steps, 

turbulence model, and so many other parameters to set up the calculation. Again, it is an 

important fact the capability of use the command line.  

 

PUMI is based on the solution of Euler equations, and uses a stabilization technique 

added to Galerkin scheme in order to avoid non physical solutions. An explicit multi-

stage Runge-Kutta scheme has been selected as the time integration scheme so an 

increase of solution robustness is obtained. More details about PUMI solver can be 

found in Flores and Ortega (2007).  

 

6.5 The Aero-elastic code 

 

The used aero-elastic code is based on the Finite Point method. In this method, the 

computational domain  is discretized by a set of points only identified by their spatial 

coordinates.The numerical approximation to the strong form of the problem equations is 

computed in subdomains i called cloud of points (local approximation). Each cloud of 

points is composed by a point xi called ‗star point‘ (where the approximation is sought) 

and a collection of neighbour points which provide the support for the numerical 

approximation. 

 

A particular case of the Weighted Least-Squares techniques (WLSQ), where the 

weighting function is fixed at each cloud, is employed in order to obtain the local 

approximation (Fixed Least-Squares). The Complete Polynomial Basis is used, which 

uses a collocation technique to select the evaluation points. If it is not accurate enough, 

the minimization problem is solved by a QR-factorization based algorithm in 

conjunction with an iterative adjustment of the weighting function parameters. The local 

cloud can also be enlarged if the quality test are not satisfied, (Ortega, 2007). Regarding 

the generation of the cloud of points, a suitable number of xi neighbouring points are 

sought. A local Delaunay grid of the points falling into the search area is performed and 

the first layer of nearest neighbours is retained, (Lohner, 2002). The cloud is completed 

adding further points closest to xi (restrictions are applied to boundary points). 

 

The flow solver takes advantage of the Euler equations, which are solved in an ALE 

framework of reference. The equations are given by 
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where w denotes the velocity of the points. The conservative variables vector U and the 

convective flux vectors F are 
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In addition, proper initial and boundary conditions must be defined. 

 

Using the low-order semi-discrete scheme 

 

  
 













ij j

k

j

k

ij

i

k

i

k

ij

k

iji w
x

N
UFF

x

N

t

U
2  6-4 

 

Where Fij are the approximation Riemann solver of ROE. 
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MUSCL extrapolation scheme plus limiters is used to increase spatial accuracy, 

(Ortega, 2009), (Lohner, 2002). 

 

For time integration Jameson‘s dual time-steeping scheme (1991) is used. 

 

The structural model is a 2 DoF (pitch and plunge) typical wing section model. In non-

dimensional form this can be written as 
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Where 
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The coupling between the aerodynamic and structural models is performed as follows 

 

do while structural time <  maximum structural time 

tn+1 = tn + t 

1. Predict aerodynamic forces: F* = 3Fn - 3Fn-1 + Fn-2   (F=[Cl,Cmea]) 

2. Solve structure and compute body displacements (update points position) 

3. Solve fluid in pseudo-time step 

4. Re-compute aerodynamic forces. Go to step 2 if convergence is not achieved 

end do 

 

According to the problem under consideration, if the structural time increment is not 

large, inner iterations can be neglected without affecting the accuracy of the numerical 

results. 

 

6.6 Meta-modelling 

 

The optimization techniques and the meta-models usually work together. The use of 

meta-models are a good solution when the main solver requires long time calculations. 

The use of the meta-models provides an efficient way to obtain accurate results 

drastically decreasing the computation time. The Response Surfaces techniques, Kriging 

models or Artificial Neural Networks are some examples of them. Taking care of the 

definition of the constitutive parameters of models, and with appropriate initial values to 

define them, accuracy can be assured. 

 

As mentioned, they are extensively used as an auxiliary tool on optimization 

procedures. Jeong, Murayama and Yamamoto (2004) have implemented a Kriging 

model in a Genetic Algorithms in order to optimize a 2D multi-elements airfoil. Chiba 

et al (2003) use an artificial neural network in order to model Navier-Stokes solver 

results avoiding calculation extra time on the first generations of the genetic algorithm 

progress. Papadrakis, Lagaros and Tsompanakis (1998) substitute the structural solver 

by a neural network, and applied it to an evolution strategy optimization problem. They 

saved computational resources within an acceptable accuracy.   

 

6.6.1 Artificial Neural Networks 

 

The multilayer perceptron model is an evolution of the perceptron model by Frank 

Rosenblatt, who developed a 3-layer model that used step transfer functions. In 1986, 
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David Rumelhart, Geoffrey Hinton and Ronald Williams used Rosenblatt‘s model to 

develop an improvement that used non-linear, but differentiable, transfer functions. It 

provided the ability to easily train the network, so it became more applicable. 

 

Speaking about Neural Networks usually refers to a Multilayer Perceptron Network 

(López, 2008). However, there are many other types of neural networks, namely 

Probabilistic Neural Networks, General Regression Neural Networks, Radial Basis 

Function Networks, Cascade Correlation, Functional Link Networks, Kohonen 

networks, Gram-Charlier networks, Learning Vector Quantization, Hebb networks, 

Adaline networks, Heteroassociative networks, Recurrent Networks and Hybrid 

Networks.  

 

6.6.1.1 The Multilayer Perceptron Neural Network Model  

 

The Perceptron model uses a multilayer scheme. Each layer contains neurons, which are 

inter-connected with other neuron in the previous and the next layer. Each neuron 

executes a mathematical operation that in conjunction with all the other neurons will 

provide the solution or solutions. Briefly speaking, a multilayer scheme contains an 

input layer, where it can be assimilated each neuron to an input variable, and output 

layer, associated to output values, plus a number of intermediate layers, called hidden 

layers, that operate until the solution is reached. Although multilayer scheme can use 

several hidden layers, a 3-layer scheme is sufficiently accurate to face almost any 

problem. The 3-layer scheme is commonly used, so it is taken as example. The diagram  

in Figure 6-1 illustrates a perceptron network with three layers:  

 

Figure 6-1. Perceptron scheme 

 

This network has an input layer (on the left of the figure) with three neurons, one hidden 

layer (in the middle) with three neurons and an output layer (on the right) with three 

neurons.  

 

There is one neuron in the input layer for each input variable. The main function of each 

layer is as follows: 

 Input Layer — a vector of input variable values (x1...xp) is presented to the input 

layer. The input layer, or just before it in some cases with external processing, 

standardizes these values by subtracting the median and dividing by the 

http://www.dtreg.com/pnn.htm


UPC-CIMNE  DoCTA 

Doctorat en Ciència i Tecnologia Aerospacial 

 232/261  

 

interquartile range as a first step. It distributes the values to each of the neurons 

in the hidden layer as a second step. The inputted value to the neuron in the 

hidden layer is the weighted sum of the standarized input values.  

 Hidden Layer — arriving at a neuron in the hidden layer, the value from each 

input neuron is multiplied by a weight (wji), and the resulting weighted values 

are added together producing a combined value uj. The weighted sum (uj) is fed 

into a transfer function, σ, which outputs a value hj. The outputs from the hidden 

layer are distributed to the output layer. Transfer function can be linear or non-

linear (López 2008), depending on the case under study.  

 Output Layer — arriving at a neuron in the output layer, the value from each 

hidden layer neuron is multiplied by a weight (wkj), and the resulting weighted 

values are added together producing a combined value vj. The weighted sum (vj) 

is fed into a transfer function, σ, which outputs a value yk. The y values are the 

outputs of the network.  

 

If a regression analysis is performed with a continuous target variable, then there is a 

single neuron in the output layer, and it generates a single y value.  

 

Mainly, the setup of a Neural Network includes the definition of the number of hidden 

neurons in each hidden layers of the network. For nearly all problems, one hidden layer 

is sufficient. Two hidden layers are required for modelling data with discontinuities 

such as a saw-tooth wave pattern. Using two hidden layers rarely improves the model, 

and it may introduce a bigger risk of converging to a local minima. There is no 

theoretical reason for using more than two hidden layers. 

 

Another parameter to set-up is the number of hidden neurons. This value defines the 

precision of the solution, but high numbers produce an over-constrained function that 

does not approximate the function between two known points. A 2D example is shown 

in the Figure 6-2, where it can be appreciated that an over-constrained function perfectly 

approximates the known points but could not adjust the function in these areas where no 

points are defined. 

 

6.7 Description and customization of the Neural network 

 

The neural network used in this research is based on the FLOOD neural network open 

source code, by López (2007). FLOOD code provides all the capabilities and functions 

required to train, to evaluate and to validate the network. Additionally, FLOOD 

provides some pre-defined solutions to be used in typical test cases or problems like 

data linear regression application or Mean Squared Error application. 

Everything is already defined and only a few work of customization is required. Mainly, 

the customization steps include the definition of the number of hidden neurons of the 

network, and the required definition of the number of input and output neurons. 

  

The preliminary work before the use of the neural network is to define the number of 

hidden neurons. As explained, the number of hidden neurons defines the precision of 

the solution, but the use of high numbers produce an over-constrained function that does 

not approximate the function between two known points. Figure 6-2 is a clear example 

where can be appreciated that an over-constrained function perfectly approximates the 
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known points but produces an undesirable behaviour in these areas where no points are 

defined. 

 

 

Figure 6-2. Function approximation 

 

In order to define the best number of hidden neurons some tests have been performed. 4, 

5, 6, 7, 8, 9, 10, 11 and 12 hidden neurons neural networks have been validated against 

the real values. The best results are obtained using an 11-hidden neurons network. 

Hidden neurons are directly related to the problem definition; its number directly 

depends on the number of inputs and outputs of the problem. Depending on the problem 

complexity, several layers of hidden neurons can be defined, so even if a preliminary 

guess can be done this neural network parameter should be check every time. Table 6-1 

summarizes the values of correlation during the training process. Two outputs values 

have been considered, so each correlation and their mean value are considered. 

 

Hidden Neurons Correlation Cl Correlation Cd Mean Correlation 

4 0,9885 0,9704 0,9795 

5 0,9963 0,9956 0,9960 

6 0,9988 0,9992 0,9990 

7 0,9993 0,9992 0,9993 

8 0,9997 0,9990 0,9993 

9 0,9995 0,9995 0,9995 

10 0,9987 0,9983 0,9985 

11 0,9996 0,9997 0,9997 

12 0,9980 0,9989 0,9985 

Table 6-1. Correlation values 

 

Figure 6-3 shows the evolution of the correlation values of each test.   
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Figure 6-3. Correlation evolution 

 

The training process needs sample data from real calculations of the solver. It is a usual 

practice, as done by Papadrakakis, Lagaros and Tsompanakis (1998) and Quagliarella 

and Vicini (1999), to train the artificial neural network using the previous generation 

data. When enough data is generated, it is used to train the neural network. The training 

process is embedded into the general optimization procedure. It should be taken into 

account the  time required to train the network, and compared with the total time of the 

optimization process. Sometimes it is better to train the neural network independently of 

the general procedure, so advantage of previously calculated sample data can be taken 

in order to save computing time. 

 

In this work, the usual procedure has been to previously train the neural network, 

because it is quite easy to obtain the required sample data from previous analysis, for 

example.  

 

6.8 Evolutionary algorithm description 

 

The core of the optimization procedure defined in this research is based on Evolutionary 

Algorithms techniques. Based on the Non-dominated Sorting Genetic Algorithm 

(NSGA-II) code described by Deb et al (2000), Deb et al (2000), Deb and Goel (2000), 

Deb, Pratap and Moitra (2000), the developments here implement several solutions to 

the core code. 

 

Chafekar et al (2003) defined new approaches for solving constrained problems, which 

need to deal with a large number of constraints. It is not our case at this point of the 

research, but both approaches can improve NSGA-II results when the number of 

constraints increases.  

 

The Evolutionary algorithms are considered stochastic optimization methods due to the 

random definition of the initial population and the mutation, and crossover strategies 
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that produce new members. But in the understanding of the present developments, it is 

considered that the evolutionary algorithms are deterministic processes. From the point 

of view of this work, all the methods which lead to an optimum point, without 

considering a stochastic probabilistic definition of the input parameters or uncertainties 

on the parameters, are considered as deterministic. Only those, defining a probability 

associated to the input values, or considering some kind of uncertainty on them has been 

considered as stochastic. 

 

6.8.1 Validation of NSGA2 

 

Introduction and objectives 

 

NSGA-II algorithm is a development by K. Deb (Deb et al, 2000; 2003). It has been 

implemented as the optimizer to be used during this research. . In order to ensure the 

best performance on the applications, a validation process has been set-up.  

 

These results complement those in section 4.3 where two mathematical test cases have 

been solved. 

 

Procedure 

 

The lift and the drag coefficient of a NACA0012 profile have been used as objective 

functions of the optimization process. Several tests have been established defining a 

different amount of generations and a different amount of individuals in each 

generation. The results have been compared by means of the convergence of the 

optimization. 

 

The analysed cases include three different cases for the number of generations, and 

three cases for the number of individuals in each generation. The probabilities of 

mutation and cross-over have been fixed at the same value; cross-over equals to 0,92 

and mutation equals to 0,16667.  

 

Results of the validation with a General problem 

 

Two main comparisons have been established. From the results, it can be noticed how 

an increase of the number of generations produces an increase of the total amount of 

points, but maintaining the same amount of points on the Pareto front. It can be also 

observed that the total amount of points near the frontier increase as effect of increasing 

total number of points, but without affecting the accuracy of the best solutions.  

 

Analysing the whole population no major differences can be found, but if it is carefully 

checked the obtained frontiers, it can be evaluated the effect of the random definition in 

Genetic Algorithm, because each one of the frontier is slightly different from the others. 

In figure 6-4 to 6-6 it can be noticed these slight differences. Figure 6-7 is a comparison 

of the three Pareto Fronts. 
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Figure 6-4.- 100 generations analysis 
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Figure 6-5.- 500 generations analysis 
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Figure 6-6.- 1250 generations analysis 
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Figure 6-7.- Pareto front comparison; 100, 500 and 1250 populations 

 

The analysis of the effect of increasing the number of individuals, and populations, 

reveals that, although the obtained results are quite similar, the Pareto front is better 

drawn when increasing the number of individuals. 

 

In figure 6-7 the free parameter is the number of generations, and in figure 6-8 the free 

one is the number of members in each population, so the Pareto frontiers can be 

compared. Plotted values are pretty similar, and Pareto fronts are almost the same, 

which means that only the amount of best choices increase, but neither gain nor loss of 

accuracy is obtained.  
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Figure 6-8.- Pareto front comparison; 12, 36 and 72 members per population 

 

Of course, the definition of the required members, and generations is a problem-related 

issue. It means that accuracy is not related with the defined values. 

 

Increasing the number of members and population the accuracy of the method is 

increased, but the time consumption is increased, as well. Analysing the shape of the 

Pareto fronts obtained when different number of members or populations are defined it  

can be observed that, even a clear difference is detected, it is not a great difference. It 

can be concluded, that if necessary the number of population can be reduced in order to 

decrease the computational effort without degrading the accuracy in a major way. 
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7 Appendix II: Aerodynamics 

7.1 Introduction 

 

In order to support the decisions taken during the developments of this research some 

aerodynamics concepts are introduced in this appendix. These concepts are well-known 

for people in the aerodynamical field, but could not be so clear for those coming from 

other fields. 

 

7.2 Aerodynamic profiles 

7.2.1 Definitions 

 

a) Airfoil section: shape which results from cut the wing with a parallel plane of 

longitudinal axe of the aircraft. 

b) Leading Edge: line that includes all initial points of all airfoil sections of the 

wing. 

c) Trailing Edge: line that includes all final points of all airfoil sections of the 

wing. 

d) Chord: fictitious line that joints the leading edge and the trailing edge. 

e) Angle of attack: angle between the chord line and the direction of the relative 

wind. The relationship between lift and angle of attack depends on the airfoil 

shape, although the general shape of the function is the same in all airfoils. 
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Figure 7-1. Polar curve 

 

In all cases, the lift (or the coefficient of lift, which is the same in this context) 

increases while angle of attack also increases its values. When angle rounds 

approximately 13-17º, the lift no longer increases and it begins to decrease. This 

point is known as critical angle of attack. Critical angle of attack is a 

characteristic of each airfoil (see Figure 7-1). 

Each airfoil is optimized in order to obtain the best relationship between lift and 

drag (or their coefficients) for the application to be developed. 

 

f) Lift coefficient: dimensionless parameter that relates lift force and dynamic 

pressure; 

2vq
LCL 


 

g) Centre of pressure or aero-dynamical centre: point where the aero-dynamical 

forces are applied. 

h) Centre of gravity: point where mass forces are applied. 

i) Aero-dynamical Forces: Four are the main aero-dynamical forces; Lift, Drag, 

Thrust and Weight. Third and fourth, which are thrust and weight, are a general 

characteristic of all aircraft and its engine. First and second, lift and drag, are 

airfoil characteristic. All four forces have a clear relationship for each of the 

stage of flight. In linear and straight flight, non-accelerated flight, thrust will be 

equal to drag, and weight equal to lift. In upward stage, weight should be 

considered as its components in longitudinal and transversal direction related to 

aircraft axis. 
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Figure 7-2. Aerodynamic Forces 

 

Figure 7-2 shows force representation for some angle of attack. Lift and drag are always 

perpendicular and parallel to flow direction.  

 

7.2.2 Bernoulli’s principle 

 

The Bernoulli‘s principle defines the equation that relates the amount of flow of a fluid, 

its pressure and its velocity.  

 

kzg
Pv


2

2

 7-1 

 

First developed for the study and analysis of the fluid flow in a pipe, the equality of its 

formulae  stands for the sum of the kinetic energy (related to velocity), the flow energy 

(related to pressure), the potential energy (related to its height) that is equal to a constant 

value k. The final meaning of the Bernoulli equation is that velocity and pressure of the 

fluid flow are related. Although there are several applications of the Bernoulli equation, 

some in aeronautical related applications like Pitot tube (Venturi application), if it is 

applied to an airfoil, the effect of the term g·z is negligible, so it can be understood that 

if the velocity increases, then the pressure decreases.  
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The shape of an airfoil produces an increment of the velocity in its upper surface and it 

can produce a decrement in its lower surface, producing lower pressures in the upper 

side and high pressures in the lower one. The total amount of the differential of pressure 

on the surfaces produces the lift force. 

 

Although the Bernoulli principle is a good explanation of how the lift force is created, 

and it is used in many physics and aerodynamics courses to explain this phenomena, the 

theory cannot properly explain why the airflow in the upper side increases its velocity, 

even using geometrical reasons. 

 

7.2.3 Newton’s theory 

 

The aerodynamic forces can be explained more efficiently using the Newton‘s laws. 

 

Second Newton‘s law states that all action has its own reaction. Using this statement it  

can be completely justified the lift force, otherwise the action is missed. The lift is the 

reaction of the force produced by the downwash. The big amount of air diverted down 

by a wing changes the momentum of the air stream around the airfoil, and lift force is 

the reaction produced by the change in air momentum. Because the momentum is the 

product of the mass and the velocity of the air, the lift force is proportional to the 

amount diverted down and its velocity. Then the lift produced by a wing can be 

increased increasing the amount of air or increasing its velocity. 

 

Of course, it must be taken into consideration other effects to completely understand the 

aerodynamics of a wing. From the previous explanation it can be guessed that 

increasing the amount of diverted air the lift can be increased, so increasing the angle of 

attack it increases. It must be observed that increasing angle of attack, drag is also 

increased due to the bigger surface facing the flow, which increases the pressure 

reaching maximum values in a bigger area. A second effect is that separation point 

approximates to the leading edge, increasing the turbulent flow area, which increases 

drag and reduces lift. 

   

7.2.4 Potential Flow 

 

All the above theories study the flow as a whole, but if the evaluation of pressure or the 

velocity distribution is required, the flow characteristics should be studied on each point 

of the control volume.  

 

In this case, the governing equations are the laws of the mass conservation, the 

conservation of momentum and the conservation of energy. Including the viscosity 

effect, it will be obtained the Navier-Stokes equations that provide with the solution of a 

low viscous flow.   

 

In order to finally obtain the potential flow equation the conservation of mass equations 

must be applied to a portion the control volume: 

 

In x direction the input and output flow are: 
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In the same way, in direction y are: 
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And in z direction are: 
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So the total flow is: 
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Considering the Reynolds transport theorem and the conservation of mass equation 

together, it can be obtained the continuity equation, which the only consideration is that 

velocity and density should be continuous in the portion of control volume considered. 

 

The Reynolds transport theorems states: 

 

0
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Then the continuity equation is as follows: 
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In some cases, where rotational movement or radial motion flows are involved it is easy 

to uses the same equation but in cylindrical coordinates: 
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Particular cases of the continuity equation are those where it is considered steady flow, 

or incompressible flow. Steady flow removes from general equation the time, so it 

states: 
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That is the same in cylindrical coordinates: 
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The incompressible flow means that density is a constant value, so it can be simplified 

both equations to: 
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Alternatively, in cylindrical coordinates: 
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Notice that incompressible flow uses the same equation both for steady and unsteady 

flow. 

 

From this continuity equation the general Laplace equation can be obtained, introducing 

the concept of velocity potential. 
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Or that is the same as, in cylindrical coordinates: 
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Then the Laplace equation can be obtained, or the Potential flow equation: 
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As in many other cases, the Laplace equations will provide with the solution of the flow 

around the airfoil. From this equation, it can be obtained the streamline equation, for the 

2D and 3D case. 

 

The 2D case really defines a line;  

 

0 dyvdxu  7-16 

 

But the 3D case defines stream-surfaces; 

 

0 dzwdyvdxu  7-17 
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Stream functions restrict the flow to be tangential to streamlines or surfaces, there is no 

flow across the streamline. 

 

In order to calculate the lift around a body, it is calculated the pressure distribution 

combining Bernoulli equation, Lagrange equation and the circulation around the body 

 , defined as the total rotation around the body. 

 

The conclusion is the Kutta-Jouskowski theorem, that states 

 

 VLift   7-18 

 

So, lift per area is: 

 

2

2

1
vCLift L    7-19 

 

and in the same way, drag per squared area is:  

 

2

2

1
vCDrag D    7-20 

 

Potential flow has largely studied; Theodorsen (1940) and Theodorsen and Garrick 

(1949) describe the definition of equations to be used in numerical solutions. Working 

with the mathematical equations and comparing with experimental data, they develope a 

general theory that provide a clearer perspective, as mentioned by the authors.  

 

7.2.5 Dimensionless coefficients 

 

A tool to compare aerodynamic forces and momentum are the dimensionless 

coefficients. They were first developed to check similitude between scaled models and 

real ones. Dimensionless coefficients define equivalence between both models in order 

to estimate the forces in the full-scale model from the forces in scaled model. The main 

coefficients related with forces and moment are CL, the lift coefficient, CD, the drag 

coefficient, Cp, the pressure distribution coefficient, and Cm, the moment coefficient. 

There are other important coefficients; namely Mach number, M, Reynolds number, Re. 

Prandlt number, Pr, that are not so usual values as previous ones. 

7.2.5.1 Lift Coefficient 

 

The lift coefficient relates lift force, the dynamic pressure and the area of the airfoil. 

Equation 7-19 is the expression of lift per planform area of the airfoil. 

 

The panform area is the orthogonal projection of the wing area in the horizontal plane. 

 

Figure 7-1 shows a common polar curve. It represents the relationship between the lift 

and the angle of attack. As shown in the figure 7-1, lift tends to increase until stall 

angle, where a sudden and fast decrement of the force occurs.  
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Figure 7-1 represents lift versus angle of attack of a symmetric airfoil. When the angle 

of attack is zero, a symmetric airfoil does not produce any lift force. If the airfoil is not 

symmetric, for example chambered airfoils, its polar curve does not cross axes on the 

origin. Even angle of attack were zero, the airfoil is producing lift force due to its 

asymmetric shape. 

 

7.2.5.2 Drag coefficient 

 

The drag coefficient is the value that quantifies the drag of an object into a fluid flow. 

From the equation 7-21, the lower drag coefficient leads to lower drag force. The drag is 

related to the area faced against flow movement. This force has two main origins; skin 

friction and form drag. Form drag is related with the shape of the object, and skin 

friction is related to viscosity forces over the surface of the object.  

 

For lifting surfaces, a third component appears. It is called induced drag, and is a 

consequence of the needed difference of pressure between upper and lower surfaces of 

the airfoil. 

 

7.2.5.3 Pressure coefficient 

 

The pressure coefficient is the ratio between relative pressure in a point and the dynamic 

pressure of the flow. For incompressible flows: 
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p: pressure at analysed point 

p∞: pressure of the free stream 

ρ∞: density of the free stream 

v∞: freestream velocity  

 

It can also be written as:  
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The point with Cp equal to 1 is and stagnation point, where the velocity is equal to zero. 

 

When the compressible effect cannot be neglected the formula above cannot be applied. 

In compressible case, Cp can be bigger than 1, meaning supersonic flow. 

 

Cp and Cl are strongly related; 

 

    

TE

LE

pupll
c

x
dxCxCC  7-23 
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Cpl: is the pressure coefficient in the lower surface of the wing 

Cpu: is the pressure coefficient in the upper surface of the wing 

LE: means the leading edge 

TE: means the trailing edge 

 

7.2.5.4 Mach number 

 

The Mach number is the relation between the velocity of an object and the velocity of 

the sound in the medium. 

 

u

v
M   7-24 

 

v: velocity of the object 

u: sound speed in the medium where object is travelling 

 

Due to its dependence on the sound speed in the medium, the Mach number does not 

represent a constant value. It depends on temperature mainly.  

 

The Mach number is a useful parameter because, even though it does not mean the same 

speed of the object, the fluid behaves similarly at the same Mach number, whichever the 

conditions are.  

 

Using Mach number it can be defined the subsonic flow, M<0,5, the sonic flow, M=1, 

the transonic flow, M=[0,5-1,2], the supersonic flow, M=[1,2-5], and the hypersonic 

flow, M>5. 

 

The transonic flow case is quite particular. In these conditions, flow usually presents 

zones where it is subsonic, zones where it supersonic, and a lines where flow speed is 

sonic (M=1), creating a normal shock. When this M=1 line reaches the trailing edge the 

normal shock becomes a weak oblique shock. When an aircraft exceeds Mach 1, it 

creates a great difference of pressure just in front, the so-called shock wave. The shock 

wave propagate backwards creating the so-called Mach cone. 

 

In supersonic incompressible flow it can be computed Mach number using the 

following formulae: 
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qc: impact pressure 

P: static pressure 

γ: ratio of specific heats 

 

In a supersonic compressible flow: 
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qc: impact pressure behind the normal shock. 

 

7.2.5.5 Reynolds number 

 

The Reynolds number is the dimensionless coefficient expressed by the ratio of the 

inertial forces and the viscous forces. It is used for both the dynamic and the thermal 

analysis, and it characterises the flow regime. For low Reynolds number flow is 

laminar, and it is turbulent for high values of Reynolds number.  

 



vl
Re  7-27 

 

µ: dynamic viscosity 

ρ: density of the fluid 

v: velocity of the flow 

l: characteristic dimension; diameter for pipes, chord length for airfoils for example. 

 

The Reynolds number is an important value for dynamic similitude. Using the same 

Reynolds number it can be tested an aircraft wing in a wind tunnel; if the linear 

dimensions of scaled model are 1/n times, the scaled model requires to adjust a velocity 

n times bigger than the real case.  

 

In the case water tank is used instead of wind tunnel, a scaled model thirteenth the size 

in all dimensions must be used in order to maintain the same Reynolds number. 

 

It is also important to define the drag characteristics of a defined body, an important 

parameter when optimizing cruise speed for low drag and long range profiles for 

example. 

 

7.2.5.6 Prandlt number 

 

The Prandlt number is the dimensionless coefficient that relates kinetic viscosity and 

thermal diffusity. It is the ratio of the viscous diffusion rate and the thermal diffusion 

rate. 

 

k

cp




Pr  7-28 

 

υ: kinetic viscosity 

α: thermal diffusity 

cp: specific heat 

µ: dynamic viscosity 
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k: thermal conductivity 

 

In 2D case, where turbulence appear into the flow, the turbulent Prandlt number can be 

used. It relates the momentum eddy diffusity and the heat transfer eddy diffusity. In 3D 

turbulence it has no sense because both diffusities cannot be defined. 

  

7.2.6 Compressible and incompressible flow 

 

From its initial development regarding structural analysis, finite element method was 

first implemented in fluid problem during 70‘s. Viscous dominant, or non-viscous flows 

without considering convection (high Reynolds numbers), nor compressibility, were the 

first applications.  

 

Nowadays, the finite element method (FEM) is largely applied in fluid dynamics 

problems, ranging over all kind of fluid problems. FEM has proven its better 

performance than the Finite Difference method or the Finite Volume method (Taylor 

and Zienkievicz, 1994). 

 

The Navier-Stokes and The Euler equations are the basis of the development. Each one 

is better suited to a specific problem. Mainly speaking, the Euler equation is a 

simplification of the Navier-Stokes equation for non-viscous cases without heat transfer. 

 

Navier-Stokes equation can be expressed as: 
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Where U is the velocity vector, F the forces matrix, G the viscosity matrix, and Q the 

massic forces matrix. 

 

Euler equation can be expressed as: 
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Both equations, the Navier-Stokes and the Euler one, are the origin of several particular 

cases. If the incompressible non-viscous flow is analysed, the starting point are the 

following equations, directly derived from Navier-Stokes. 
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The formulation of the velocity potential needs to be introduced in order to improve the 

numerical solution.  

 

U  7-32 
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So it can be easily deducted that 

 

02    7-33 

 

The need of the velocity potential imposes the irrotationality condition. The 

combination of the previous formula, equations 7-31, 7-32 and 7-33, it is obtained 
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P is the massic forces potential. 
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p is the pressure. 

 

Equation 10-34 can be expressed in isothermic conditions as 

 

  ctP
p

wvu
t








 222

2

1
 7-36 

 

That is another confirmation that velocity potential has to exist. It becomes the 

Bernoulli equation in stationary state. It can be easily understood if it is considered the 

effect of the gravity, which convert P into gz.  

 

Another typical case is Stokes problem, the viscous incompressible flow at low 

velocity. State equations can be written as 
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The study of the compressible flow is a complete chapter by itself. The finite element 

method provides the ability to better adjust to complex geometries and to make local 

mesh refinements in critical zones. But the first compressible flow solvers were based 

on the finite difference and the finite volumes methods. 

 

It is considered that compressibility effects appears from Mach 0,3, but up to Mach 0,6 

compressibility can be neglected without great lost of accuracy. From Mach 0,6 shock 

can appear creating discontinuities into the flow.  

 

General equation for this case is: 
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Where ideal gas equation can be applied in order to evaluate density variation with 

pressure and temperature. 
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8 Appendix III: Shape Parametrization 

8.1 Introduction 

 

A short introduction to Bezier curves is presented in this appendix. The Bezier curves 

are extensively used in aerodynamical shape parametrization thanks to the capability 

they provide to accurately control the curves with small number of parameters. 

 

8.2 Bezier Curves 

 

Bezier curves were developed by Paul de Casteljau after defining the so-called 

Casteljau‘s algorithms. They are parametric curves first used by Renault engineer Pierre 

Bezier in the field of automotive design in 1962. 

  

The Bezier curve can be written as: 
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Where  
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n is the number of control points, Pi. 
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The polynomial bi,n(t) are the so-called Bernstein polynomials. Using lines to join each 

one of the control points Pi with the next one creates a polygon called the Bezier 

polygon or the control polygon. The final Bezier curve will be located on the convex 

side of the control polygon. 

 

Some interesting characteristics of Bezier curves are: 

- Endpoint interpolation property: First and last control points are the first and last 

points on the curve. 

- If and only if all the control points are aligned the curve will be a straight line. 

- Bezier curve is tangent to the first and last section of the control polygon. 

- All the divisions of a Bezier curves are new Bezier curves. 

- Every quadratic Bézier curve is also a cubic Bézier curve, and more generally, 

every degree n Bézier curve is also a degree m curve for any m > n. In detail, a 

degree n curve with control points P0, …, Pn is equivalent (including the 

parametrization) to the degree n + 1 curve with control points P'0, …, P'n + 1, 

where  
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Some of these characteristics are very helpful when defining the aerodynamic shape of a 

profile. It can be ensured the tangency of two curves defining appropriate initial and 

final sections of their control polygon.  Then it can be created smoother shapes that will 

avoid turbulence, high drag values or flow separation, for instance. 
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