
14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)

19–24 July 2020, Paris, France
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

GMSH-FEM: AN EFFICIENT FINITE ELEMENT LIBRARY BASED ON
GMSH

Anthony Royer1, Eric Béchet2 and Christophe Geuzaine1

1Université de Liège, Institut Montefiore B28, 4000 Liège (Belgium)
{anthony.royer, cgeuzaine}@uliege.be

2 Université de Liège, Département Aérospatiale et Mécanique B52, 4000 Liège (Belgium)
eric.bechet@uliege.be

Key words: Finite Element Library, High-order Methods, Multi-threading, C++11

Abstract. GmshFem is an open source C++ finite element library based on the application programming
interface of Gmsh. Both share the same design philosophy: to be fast, light and user-friendly. This paper
presents the main principles of GmshFem, as well as some scalability results for high-order scalar and
vector finite element assembly on multi-core architectures.

1 INTRODUCTION

A multitude of open source finite element codes and libraries are currently available, with varying degrees
of generality, performance, robustness and user-friendliness. Amongst many others, one can cite e.g.
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]... As with any software, most excel in one or two of these areas;
but compromises are invariably necessary to balance e.g. generality and user-friendliness (the ability to
deal easily with various partial differential equations and physical models, or to integrate the code in
complex workflows) with raw performance. Robustness and code maturity is an additional parameter to
consider, as is community support.

In this work we introduce a new open source C++ finite element library, called GmshFem (https:
//gitlab.onelab.info/gmsh/fem), that is based on the application programming interface (API) of
the popular open source finite element mesh generator, pre- and post-processor Gmsh [15]. GmshFem
exhibits its own particular blend of features to cover the aforementioned areas, as it follows the same
design philosophy as Gmsh: to be fast, light and user-friendly [15].

To be fast, GmshFem is designed to gain the greatest benefits of multi-core CPUs by combining an
efficient multi-threaded parallelization with SIMD vectorization. During all development, particular
attention was paid to data localities resulting in excellent performance on multi-core chips. Moreover,
native support for complex-arithmetic makes it a perfect framework for efficient time-harmonic finite
element solvers.

To be light, GmshFem extensively relies on Gmsh to manage geometries (with direct access to the CAD
boundary representation), meshes (structured, unstructured and hybrid with straight-sided or curved el-
ements, in 1D, 2D and 3D), interpolation (arbitrary order Lagrange or hierarchical bases for H 1 and
H (curl) [16]) and integration (numerical quadratures on all element shapes: lines, triangles, quadran-

1

https://gitlab.onelab.info/gmsh/fem
https://gitlab.onelab.info/gmsh/fem

Anthony Royer, Eric Béchet and Christophe Geuzaine

gles, tetrahedra, prisms, hexahedra, pyramids, ...). GmshFem relies on its own internal sparse matrix
storage, but interfaces with Eigen [17] for dense linear algebra and external solvers like PETSc [18] and
MUMPS [19] for large sparse solvers required for implicit formulations.

Strongly inspired by the design of GetDP [9], GmshFem relies for generality and user-friendliness on
a symbolic, high-level description of weak formulations which allows to define the problem to solve
(including boundary conditions, source terms, etc.) in a natural mathematical manner, and is amenable
to scripting without pre- or re-compilation, like GetDP [9] or FreeFEM++ [8] but unlike most other
libraries [3, 4, 7, 6, 10, 14]. Moreover, this genericity implies neither the hard-coding of particular
classes of PDEs [5], nor the use of a full-blown external scripting language like Python [12, 7].

The paper is organized as follows. In Section 2 we start by describing how to express a finite element
problem in GmshFem, using a simple Helmholtz problem as a guiding example. We then describe
in Section 3 the assembly algorithm for classical continuous Galerkin finite elements, and analyze the
parallel efficiency of the implementation. We conclude with general remarks and perspective for future
work in Section 4.

2 SYMBOLIC DEFINITION OF THE PROBLEM

To illustrate how a finite element problem is set up in GmshFem, let us consider the scattering of a
time-harmonic incident acoustic plane wave uinc by a hard obstacle Ωscat of boundary Γscat. To solve the
associated Helmholtz equation in terms of the complex-valued scattered field u, the unbounded domain
R3\Ω− is truncated and a Sommerfeld absorbing boundary condition is imposed on the fictitious bound-
ary Γinf, leading to the following problem on the bounded domain Ω of boundary Γscat and Γinf (the time
dependence is assumed of the form of e−iwt):

(∆+k2)u = 0 in Ω,
∂nu =−∂nuinc on Γscat,
∂nu− iku = 0 on Γinf,

(1)

where i2 = −1, ∆ is the Laplacian operator, k = w/c is the wave number with c the speed of sound and
∂n is the normal directional derivative with n the outgoing normal to Ω. In weak form, (1) writes: Find
u ∈H 1(Ω̄) such that∫

Ω

(k2uv−grad u ·grad v) dΩ−
∫

Γscat

∂nuinc v dΓscat +
∫

Γinf

ikuv dΓinf = 0 (2)

holds for every test function v ∈H 1(Ω̄).

The following sections describe how (2) is transcribed in the GmshFem library. All the classes and
functions used in the examples below are defined in the gmshfem namespace, which has been omitted for
conciseness (i.e. as if “using namespace gmshfem;” was used).

2.1 Domain class

In GmshFem, all the data related to the geometry, the mesh and the topology is manipulated with the
help of Domain objects, which are based on the notion of physical group in Gmsh [15]. For example,

2

Anthony Royer, Eric Béchet and Christophe Geuzaine

each time a function is piece-wise defined over a part of a mesh, a Domain object is involved. Amongst
other operations, Domain objects can be manipulated using binary operations of set algebra: the union,
the intersection and the complement of domains are respectively defined using the bitwise OR operator
|, the bitewise AND operator & and the bitwise NOT operator ∼. The bitwise OR assignment operator
|= and the bitwise AND assignment operator &= are also overloaded.

To model our scattering problem, three discrete domains corresponding to the volume Ω, the surface of
the scattering object Γscat and the fictitious boundary Γinf are needed. Listing 1 shows how to declare
them: here these simple domains are directly linked to the physical groups defined in Gmsh, referenced
by their dimension and their unique tag.

domain :: Domain omega(3, 3), gammaScat(2, 1), gammaInf(2, 2);

Listing 1: Domain needed to model the scattering problem.

2.2 Function class

All symbolic mathematical expressions in GmshFem are managed with the help of Function classes (e.g.
ScalarFunction, VectorFunction or TensorFunction). These classes are templated on an algebraic
structure (the real or complex set) with a desired precision (single or double precision). Functions store
symbolic expressions in a tree structure that is evaluated at runtime, e.g. during pre-processing, assembly,
residual calculation or post-processing.

On the one hand these classes are very versatile, which allows to write a wide variety of functions
such as transcendental functions, interpolation functions, mesh coordinates evaluations, finite element
field evaluations, etc. The C++ arithmetic operators are overloaded for these classes, which makes it
possible to write expressions in a compact form close to their mathematical definition. New functions
can of course be added by users, going as far as hard-coding the full terms necessary for e.g. assembling
complex weak formulation or post-processing computations. This can for example be advantageously
used for multilevel methods, where a function can embed another solver; or for optimization or inverse
problems, where automatic differentiation engines can be efficiently interfaced.

On the other hand, the tree structure allows to write external parsers that can directly feed complex
functional expressions to GmshFem, allowing to embed GmshFem in other codes and benefit from its
high-performance C++ numerical kernel without having to recompile the library; and still keep the user-
friendliness and flexibility of a scripted code, without incurring the runtime costs of scripted languages.
This is directly inspired by the design of GetDP [9], where all expressions are analyzed once during a
parsing phase, and executed at runtime later on.

Listing 2 shows how the function ∂nuinc can be defined, when uinc = eikx.

function :: ScalarFunction <std::complex <double >> duInc =
- k * function ::sin(k * function ::x<std::complex <double >>()) +
im * k * function ::cos(k * function ::x<std::complex <double >>());

Listing 2: Definition of a scalar function used as boundary condition on the surface of the scattering object.

3

Anthony Royer, Eric Béchet and Christophe Geuzaine

2.3 Field class

The Field class is designed to store information about a finite element field and its associated discrete
function space. To write any finite element problem based on it weak form, one or several instantiations
of the Field class are employed. Once the interpolation coefficients have been computed, these Field
objects can be evaluated, for instance to be used in other formulations, to be saved as post-processing
views with the Gmsh API, or to be exchanged across subdomains in domain decomposition algorithms.

A Field object has two templates: the first one indicates the algebraic structure and desired precision of
the interpolation coefficients, and the second defines the mathematical nature of the field. For instance,
0-forms (scalar fields) are needed in our acoustic scattering example, while 1-forms will be needed for
the electromagnetic test-case analyzed in Section 3.3. The simplest fields are instanciated in GmshFem
with three parameters: a name, a domain of definition (through a Domain object), and the identifier of
a discrete function space. For non-isoparametric interpolations, a fourth argument specifies the desired
interpolation order. GmshFem currently supports both Lagrange basis functions and arbitrary order,
hierarchical basis functions for H 1 and H (curl) [16].

In our simple acoustic scattering example, the discrete scalar field uh approximating the solution u of
the weak form (1) is transcribed into a Field object templated over the body of complex numbers using
double precision floating point arithmetic, as shown in Listing 3. It is defined over the closed discrete
domain approximating Ω with its boundary, and is interpolated with hierarchical basis functions of order
6.

field::Field <std::complex <double >, form::Form0 >
u("u", omega|gammaScat|gammaInf , functionSpaceH1 :: HierarchicalH1 , 6);

Listing 3: 0-form field defined to model the acoustic wave scattering problem.

2.4 Formulation class

The Formulation stores the symbolic representation of the weak formulation of the problem, and can
evaluate linear and bilinear forms, store the corresponding matrix systems, and request their solution
through external linear algebra packages [19, 18]. The Formulation class must be templated on the
same algebraic structure and precision as the different objects it references, i.e. functions and fields.

For continuous Galerkin finite elements formulations, the Formulation object provides the galerkin
function, whose two first Function arguments are the arguments of the inner product describing one
term in the weak formulation: the first can involve any linear function of the unknown field, denoted
by dof(); the second must involve a linear function of the test function, denoted by tf(). If the first
argument involves an unknown field, it leads to the evaluation of a bilinear form; otherwise it leads to
the evaluation of a linear form. The third argument specifies the Domain over which the integration is
performed, and the fourth specifies the quadrature rule (e.g. Gauss12 for a Gauss quadrature suited for
integrating 12th order polynomials). An arbitrary number of galerkin terms can be specified: they are
all summed to produce the final discrete weak formulation. This symbolic expression of the weak form
is identical to the one introduced by GetDP [9], and allows to seamlessly handle coupled and mixed
formulations. For simple implicit formulations, the Formulation provides three functions encapsulating
the pre-processing phase, i.e. the identification of degrees of freedom and constraints (pre), the assembly

4

Anthony Royer, Eric Béchet and Christophe Geuzaine

of the linear system (assemble) and the solution of the linear system (solve).

In our acoustic scattering example, all objects are templated over the std::complex<double> type.
Three bilinear terms (two in the volume, one on the artificial boundary) and one linear term (on the
scatterer boundary) encode the discrete version of the weak formulation (2): see Listing 4.

problem :: Formulation <std::complex <double >> formulation("helmholtz");

formulation.galerkin(equation ::grad(equation ::dof(u)),
equation ::grad(equation ::tf(u)), omega , "Gauss12");

formulation.galerkin(- k * k * equation ::dof(u),
equation ::tf(u), omega , "Gauss12");

formulation.galerkin(- im * k * equation ::dof(u),
equation ::tf(u), gammaInf , "Gauss12");

formulation.galerkin(-duInc , equation ::tf(u), gammaScat , "Gauss12");

formulation.pre();
formulation.assemble ();
formulation.solve();

Listing 4: Definition of the formulation for the acoustic wave scattering problem.

2.5 Post-processing functions

Once a problem is solved, fields can be post-processed with the help of any Function, using a variety
of operations. The simplest operation consists in exporting the data as a Gmsh post-processing view.
Listening 5 shows two simple post-processing operations for our example problem, to export the field
and its gradient and save them to disk in the default file format (a Gmsh .msh file).

post::save(u, omega , "u");
post::save(function ::grad(u), omega , "grad_u");

Listing 5: Some example of post-processing operations.

The full code is available in Listing 6 in the appendix.

3 ASSEMBLY PROCESS ALGORITHM

For implicit, low order continuous Galerkin finite element formulations, the most time consuming part
of the finite element process (CAD and meshing aside...) resides in the solution of the resulting large,
sparse linear systems. For high-order finite element methods, however, which are increasingly used
for complex simulations to alleviate the slow grid convergence of the state-of-the art (usually second
order) methods provided by most industrial codes, the mere process of assembling the finite element
matrices, or computing the residuals or the time iterates, rapidly becomes a bottleneck in the computer
implementation.

While high-order finite elements naturally lead to increased arithmetic intensity, since the local element-
wise matrices become larger and more dense, the number of quadrature points also dramatically in-
creases. The best way to achieve good performance in such cases is to reformulate all the quadratures
as dense matrix-matrix products [7, 20], and by pre-computing as many of the underlying matrices as

5

Anthony Royer, Eric Béchet and Christophe Geuzaine

possible. While a natural decomposition resides in the separation of the metric-dependent and metric-
independent parts in the Galerkin terms [20], many codes trade-off accuracy and generality for perfor-
mance, by assuming for example that all parts of the integrands are interpolated using the same bases as
the unknown fields [7]. This is not suitable for e.g. strongly nonlinear problems or multiscale problems,
though, as the coefficients don’t have the same regularity. The cost of pre-computing and storing local
matrices is exacerbated when using hierarchical bases, or vector-valued basis functions for e.g. H (curl)
or H (div), where the basis functions depend on the orientation of the elements [16, 20]. Storing all
unassembled matrices in such cases rapidly leads to prohibitive memory requirements, even in cases
where the matrix is eventually factorized by direct linear solvers.

In GmshFem the efficient evaluation of linear and bilinear forms is based on a compromise between
processing time and memory usage, where good parallel performance is obtained by the careful analysis
the effect of spatial and temporal data locality.

3.1 Pre-processing Phase

Before any evaluation of linear or bilinear forms can take place, GmshFem performs a pre-processing
phase, which builds a dictionary of degrees of freedom (identified by keys), based on the input mesh, the
fields and their associated function spaces, and the finite element formulation. A unique tag is associated
with each unknown DoF, which corresponds to an equation number. Tags are chosen for example such
that “bubble” degrees of freedom (which only depend on the element, and are not shared between mesh
entities) are explicitly identified, which helps assembling them without locks due to their one-element
locality. For implicit formulations, the pre-processing phase also allocates the arrays used to store the
finite element matrices in a compressed row storage (CRS) format. The sizes of these arrays are known
by computing the pattern of the finite element matrix, by assuming that all local matrices (resulting from
the integration over one element) are dense. The parallel efficiency of the pre-processing is limited by the
performance of the hash map used to identify DoFs, and locks required by the calculation of the global
matrix pattern.

3.2 Assembly Algorithm

The assembly process can be seen as an algorithm that combines information of different nature and
stores the result in a finite element matrix. For instance, let us consider the following local stiffness
matrix over the element Ωe, where f (x) is any function, φi or φ j are the basis functions associated with
degrees of freedom i or j, and J = ∂xi/∂u j is the Jacobian matrix mapping the reference coordinates (u) of
the reference element to the mesh coordinates (x):

Ai j =
∫

Ωe

f (x)(J−Tgrad φi)
T (J−Tgrad φ j)detJ dΩe. (3)

The integrand is a combination of geometric, i.e. metric-dependent, information (the Jacobian matrix J
and its determinant detJ), metric-independent basis function data (grad φi and grad φ j), and arbitrary
function evaluations (f (x)). This integral is evaluated using a numerical quadrature rule, leading to a

6

Anthony Royer, Eric Béchet and Christophe Geuzaine

weighted sum (with weights wq) of evaluations of the integrand at integration points xq:

Ai j ≈
Q

∑
q=1

f (xq)
[
J−T

q grad φi(uq)
]T [

J−T
q grad φ j(uq)

]
detJqwq. (4)

Four kinds of data are therefore needed to assemble such a term over an element:

1. Integration points and weights,

2. Geometric information represented by the Jacobian matrix and its determinant evaluated at inte-
gration points,

3. Basis functions evaluation at integration points,

4. Arbitrary function evaluated at the integration points.

GmshFem retrieves the first three data directly from the Gmsh API. For efficiency, Gmsh and GmshFem
deal with such data for groups (“buckets”) of elements of the same type, so that data can be accessed
efficiently in contiguous chunks of memory, suitable for optimized vectorized operations. Three criteria
define these buckets.

The first distinction is made on the type and geometrical order of the elements (e.g. lines, triangles, quad-
rangles, tetrahedra, ..., straight-sided or curved). Indeed, the integration points expressed in the reference
coordinate system and their associated weights are identical for a given type if the same quadrature order
is used. Furthermore, before assembling elements of the same type using the same quadrature order,
basis functions can be pre-computed at integration points for all possible orientations. Then during the
assembly process, each element has a tag that identify its orientation.

The second distinction is made by geometrical entity, for which metric-dependent information is com-
puted in a single pass by Gmsh. Moreover, as weak form integrals are defined over geometric entities,
mathematical functions appearing in their integrands can be pre-computed as well for all integration
points at this stage.

The third distinction depends on the formulation. When a bilinear term is defined, it involves a pair
of fields; an unknown field and test functions associated to the same field, or to another field. Once
the problem is discretized, this pair corresponds to a block in the finite element matrix. Therefore, it is
suitable to assemble terms pair by pair to avoid unnecessary displacements in memory that will negatively
impact the cache efficiency of the program.

Once this data is pre-computed (in parallel) and stored in arrays, the assembly proceeds in parallel for
elements belonging to the same bucket. Each thread is responsible of contiguous elements; and on
each element, linear algebra operations are handled by the third part C++ template library for linear
algebra, Eigen [17]. As threads assemble contiguous elements, they combine contiguous parts of the
pre-computed data. Spatial memory locality is maximized as data needed to process an element is always
close to each other and temporal memory locality is also maximized as needed data to assemble the next
element is close to the data used to assemble the current one.

Finally, the local matrix elements are pushed into the global matrix stored in CRS format at locations
given by pre-computed indexed arrays. An single atomic addition directive is applied to avoid race
condition, except for bubble degrees of freedom as mentioned above. The whole assembly procedure is
summarized in Algorithm 1.

7

Anthony Royer, Eric Béchet and Christophe Geuzaine

Figure 1: The Falcon plane used as the scatterer in our numerical test on the left. An acoustic and an electromag-
netic scattered field computed on this mesh on the right. The front of the plane shows the acoustic scattered field of
a 1m wavelength incident plane wave hitting the plane considered as a hard object; the back of the plane shows the
electromagnetic scattered field of a 1m wavelength incident plane wave hitting the plane considered as a perfect
electric conductor.

Algorithm 1 Pseudo-code of the assembly algorithm.
for all elementTypes do

basisFunctionsData← ComputeNeededBasisFunctions();
entities← GetEntitiesHavingCurrentElementType();
for all entities do

precomputedNeededFunctions();
geometricData← ComputeNeededGeometricData();
fieldPairs← GetFieldPairsDefinedOverCurrentEntity();
for all fieldPairs do

dofIndices← ComputeDOFIndices();
AssembleAndStoreInMatrix(basisFunctionsData, geometricData, dofIndices);

end for
end for

end for

3.3 Parallel Efficiency

The parallel efficiency is studied on a toy 3D scattering problem, consisting in bouncing a plane acous-
tic or electromagnetic wave on a simplified Falcon airplane, considered respectively as a hard acoustic
scatterer or a perfect electric conductor. The acoustic scattering problem corresponds to (1). The elec-

8

Anthony Royer, Eric Béchet and Christophe Geuzaine

100

101

102

103

104

W
al

lt
im

e
(s

)

0.5

0.6

0.7

0.8

0.9

1

Pa
ra

lle
le

ffi
ci

en
cy

0 2 4 6 8 10 12 14 16
101

102

103

Number of threads

W
al

lt
im

e
(s

)

0 2 4 6 8 10 12 14 16
0.5

0.6

0.7

0.8

0.9

1

Number of threads

Pa
ra

lle
le

ffi
ci

en
cy

Figure 2: Wall time (left) and parallel efficiency (right) of the assembly process for the acoustic (top) and electro-
magnetic (bottom) case. The acoustic case uses basis functions of order 2 (squares), 4 (crosses) and 6 (circles) and
the electromagnetic case uses basis functions of incomplete order 2 (diamonds) and incomplete order 3 (triangles).
The dashed curves in the wall time graphs represent the pre-processing time, while the plain ones represent the
assembly time.

9

Anthony Royer, Eric Béchet and Christophe Geuzaine

tromagnetic problem is formulated in terms of the electric field e:
(curl − k2)e = 0 in Ω,
γT (e) =−γT (einc) on Γscat,
γ t(curl e)+ ikγT (e) = 0 on Γinf,

(5)

where γT : v 7→ n×(v×n) is the tangential component trace operator and γ t : v 7→ n×v the the tangential
trace operator. The Silver-Müller radiation condition is enforced on the fictitious boundary Γinf to ensure
that the electric field e is outgoing.

The wall clock time and the parallel efficiency for different orders of hierarchical H 1 (for the acoustic
problem) and H (curl) (for the electromagnetic problem) elements is reported on Figure 2. (Computations
were run on 2.0GHz Intel SandyBridge CPUs, using an unstructured mesh made of 219.477 first-order
tetrahedra and 42.569 first-order triangles.) The parallel efficiency for the incomplete 3th order elements
and for the 4th and 6th order elements is excellent, around or above 95% for 16 threads. It degrades
slightly for lower orders, down to about 82% for 16 threads at orders 2. The wall clock time of the
assembly process for H (curl) elements is of course higher at the same order than for H 1 due to the
larger number of DoFs, but the scaling is very similar. These results are coherent with the observations
made above: on the one hand, the arithmetic intensity increases with the order, which leads to better
parallel efficiency; and on the other hand, the ratio of “bubble” degrees of freedom increases with the
element order, leading to a decrease of locking events. Finally, the pre-processing time for H 1 elements
is always much smaller than the assembly time, while it could still be improved for H (curl) elements.

4 CONCLUSIONS

In this paper we introduced GmshFem, an open source C++ finite element library based on the Gmsh API.
After an introduction to the basic philosophy of the software, its parallel efficiency was demonstrated for
high-order scalar and vector problems.

While GmshFem is still very much a work in progress, it is already used to solve extreme-scale finite ele-
ment problems on massively parallel, distributed computer architectures in the context of high-frequency,
time-harmonic acoustic, elastic and electromagnetic wave problems in conjunction with new optimized,
high-order domain decomposition methods [21, 22, 23]. Work is ongoing on the integration of discon-
tinuous Galerkin methods and the efficient offloading of linear algebra on GPUs.

A APPENDIX

#include <gmshfem/GmshFem.h>
#include <gmshfem/Function.h>
#include <gmshfem/Formulation.h>

using namespace gmshfem;

int main(int argc , char **argv)
{

common :: GmshFem fem(argc , argv);

gmsh::open("mesh.msh");

10

Anthony Royer, Eric Béchet and Christophe Geuzaine

domain :: Domain omega(3, 3), gammaScat(2, 1), gammaInf(2, 2);

double k = 1;
std::complex <double > im(0, 1);
function :: ScalarFunction <std::complex <double >> duInc =

- k * function ::sin(k * function ::x<std::complex <double >>()) +
im * k * function ::cos(k * function ::x<std::complex <double >>());

field::Field <std::complex <double >, form::Form0 >
u("u", omega|gammaScat|gammaInf , functionSpaceH1 :: HierarchicalH1 , 6);

problem :: Formulation <std::complex <double >> formulation("helmholtz");
formulation.galerkin(equation ::grad(equation ::dof(u)),

equation ::grad(equation ::tf(u)), omega , "Gauss12");
formulation.galerkin(- k * k * equation ::dof(u),

equation ::tf(u), omega , "Gauss12");
formulation.galerkin(- im * k * equation ::dof(u),

equation ::tf(u), gammaInf , "Gauss12");
formulation.galerkin(-duInc , equation ::tf(u), gammaScat , "Gauss12");

formulation.pre();
formulation.assemble ();
formulation.solve();

post::save(u, omega , "u");
post::save(function ::grad(u), omega , "grad_u");
return 0;

}

Listing 6: Full code for the small acoustic scattering example.

REFERENCES

[1] G. Dhondt and K. Wittig. CALCULIX: A free software three-dimensional structural finite element
program. www.calculix.de.

[2] Electricité de France. Finite element Code Aster, analysis of structures and thermomechanics for
studies and research. Open source on www.code-aster.org, 1989–2017.

[3] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper,
T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, and
D. Wells. The deal.II library, version 9.1. Journal of Numerical Mathematics, 27(4):203–213,
2019.

[4] A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger. A generic interface for parallel and adaptive
discretization schemes: abstraction principles and the Dune-Fem module. Computing, 90:165–196,
2010.

[5] P. Råback, P.-L. Forsström, M. Lyly, and M. Gröhn. Elmer - finite element package for the solution
of partial differential equations, 2007. Poster presentation.

[6] C. PrudHomme, V. Chabannes, V. Doyeux, M. Ismail, A. Samake, and G. Pena. Feel++: A compu-

11

www.calculix.de
www.code-aster.org

Anthony Royer, Eric Béchet and Christophe Geuzaine

tational framework for galerkin methods and advanced numerical methods. In ESAIM: Proceedings,
volume 38, pages 429–455. EDP Sciences, 2012.

[7] M. S. Alnæs, J Blechta, J Hake, A Johansson, B Kehlet, A Logg, C Richardson, J Ring, M. E.
Rognes, and G. N. Wells. The FEniCS Project Version 1.5. Archive of Numerical Software,
3(100):9–23, 2015.

[8] F. Hecht. New development in FreeFem++. J. Numer. Math., 20(3-4):251–265, 2012.

[9] P. Dular and C. Geuzaine. GetDP reference manual: the documentation for GetDP, a general
environment for the treatment of discrete problems. http://getdp.info.

[10] Y. Renard and K. Poulio. GetFEM: Automated fe modeling of multiphysics problems based on a
generic weak form language. 2020. hal-02532422.

[11] MFEM: Modular finite element methods library. mfem.org.

[12] J. Schöberl. C++11 implementation of finite elements in NGSolve. Technical report, Institute for
Analysis and Scientific Computing, Vienna University of Technology, 2014.

[13] F. McKenna, M. H. Scott, and G. L. Fenves. Nonlinear finite-element analysis software architecture
using object composition. Journal of Computing in Civil Engineering, 24:95–107, 2010.

[14] A. Halbach. Sparselizard - the user friendly finite element c++ library. www.sparselizard.org,
2017.

[15] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in
pre-and post-processing facilities. International journal for numerical methods in engineering,
79(11):1309–1331, 2009.

[16] P. Solin, K. Segeth, and I. Dolezel. Higher-order finite element methods. CRC Press, 2003.

[17] G Guennebaud, B Jacob, et al. Eigen v3. eigen.tuxfamily.org, 2010.

[18] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener,
V. Eijkhout, W. Gropp, et al. PETSc users manual. 2019.

[19] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. MUMPS: a general purpose distributed
memory sparse solver. In International Workshop on Applied Parallel Computing, pages 121–130.
Springer, 2000.

[20] N. Marsic and C. Geuzaine. Efficient finite element assembly of high order Whitney forms. IET
Science, Measurement & Technology, 9(2):204–210, 2015.

[21] Y. Boubendir, X. Antoine, and C. Geuzaine. A quasi-optimal non-overlapping domain decompo-
sition algorithm for the Helmholtz equation. Journal of Computational Physics, 231(2):262–280,
2012.

[22] M. El Bouajaji, B. Thierry, X. Antoine, and C. Geuzaine. A quasi-optimal domain decomposition
algorithm for the time-harmonic Maxwell’s equations. Journal of Computational Physics, 294:38–
57, 2015.

[23] A. Modave, A. Royer, X. Antoine, and C. Geuzaine. A non-overlapping domain decomposition
method with high-order transmission conditions and cross-point treatment for Helmholtz problems.
Submitted to CMAME, 2020.

12

http://getdp.info
mfem.org
www.sparselizard.org
eigen.tuxfamily.org

	INTRODUCTION
	SYMBOLIC DEFINITION OF THE PROBLEM
	Domain class
	Function class
	Field class
	Formulation class
	Post-processing functions

	ASSEMBLY PROCESS ALGORITHM
	Pre-processing Phase
	Assembly Algorithm
	Parallel Efficiency

	CONCLUSIONS
	APPENDIX

