
The 8th European Congress on Computational Methods in Applied Sciences and Engineering

ECCOMAS Congress 2022

5-9 June 2022, Oslo, Norway

A VARIATIONAL-BASED MIXED FINITE ELEMENT
FORMULATION FOR LIQUID CRYSTAL ELASTOMERS

Michael Groß1, Julian Dietzsch2 and Francesca Concas3

1 TU Chemnitz, Reichenhainer Straße 70, D-09126 Chemnitz,
michael.gross@mb.tu-chemnitz.de,

2 julian.dietzsch@mb.tu-chemnitz.de,
3 francesca.concas@mb.tu-chemnitz.de.

Keywords: Anisotropy, Finite Element Method, Variational Principle, Mixed Method.

Abstract. Liquid crystal elastomers (LCEs) are soft materials, which are capable of
large deformations induced by temperature changes and ultraviolet irradiation [1]. Since
many years, these materials are under investigation in experimental researches as actu-
ator materials. LCEs arise from a nematic polymer melt, consisting of long and flexible
polymer chains as well as oriented and rigid rod-like molecules, the so-called mesogens,
by crosslinking. In order to numerically simulate LCE materials by using the finite ele-
ment method, a continuum model is necessary, including in a thermo-viscoelastic material
formulation of the polymer chains the orientation effects of the mesogens. This can be
performed by introducing a normalized direction vector as an independent field, and de-
riving from additional (orientational) balance laws independent differential equations [2].
These differential equations describe the independent rotation of the rigid mesogens con-
nected with the flexible polymer chains. The orientation-dependent stress law of LCEs
arises from an anisotropic free energy, comparable with fibre-reinforced materials. But,
in contrast to fibre-reinforced materials, the direction vector of a LCE model has to be
independent. In contrast to [2], we apply a variational principle for deriving a new mixed
finite element formulation, which is based on drilling degrees of freedom for describing
the mesogens rotation [3]. This principle leads to an extended set of balance laws.

1 INTRODUCTION

1.1 Preliminaries

Amorphous polymers are exceptionally deformable irregular networks of long molecule
chains. On the other hand, liquid crystals are liquids with regularly arranged or oriented
molecules. Since this is not a crystal phase nor an isotropic liquid phase, liquid crystals
are anisotropic liquids in the so-called mesophase. If these molecules have a pronounced
anisotropic shape as a rod, the molecules are called mesogens. Polymer chains can be
linked with mesogens by means of chemical reactions to a liquid crystal elastomer (LCE)
network. The simplest form of a mesophase is the nematic phase, because here the
longitudinal axes of the rod-like mesogens are arranged almost in parallel. If liquid crystals
are linked to the polymer chains in the nematic phase, there results a nematic LCE.
In nematic liquid crystalline elastomers, a temperature increase leads to a rotation of



2

polymer chain

mesogen

X

x

B0 Bt

n0

nt

x1

x2

x3

ϕ

χ

F

F χ,Gχ Bχ

W̄

Figure 1: Continuum configurations of a LCE with orientational volume and surface loads.

the mesogens. This leads to a contraction of the LCE material (see Fig. 2 in [1]). The
mesogens in a nematic LCE can be described by an orientation vector n0, with n0 ·n0 = 1
(see Fig. 1), in the nematic initial configuration B0. Hence, the temperature increase
causes the rotation of the orientation vector at the material point X ∈ B0 into the
orientation vector nt at point x ∈ Bt of the current configuration Bt (see Fig. 3 in [1]).
During the crosslinking reaction, rod-like dye molecules as azobenzene can be introduced
as a third component. These materials are called azo-dye-doped nematic LCE materials.
The azobenzene molecules can be transferred from the elongated ‘trans’ shape in the
angled ‘cis’ shape, and vice versa, by irradiation with ultraviolet light (see Fig. 9 in [1]).

1.2 Motivation and goals

First constitutive laws for liquid crystals are presented in Reference [4], wherein a free
energy function in dependence on the orientation vector nt is derived. This Frank free
energy increases with the distorsion of the orientation vector field nt(x). It is based on
a quadratic form with respect to the spatial gradient grad[nt], where grad[•] denotes the
partial derivative with respect to x ∈ Bt.
Reference [5] is a first one about a continuum theory for LCE, in which nt is considered
as a global, independent field with boundary conditions. This theory defines balance laws
with an additional kinetic energy with respect to the partial time derivative ṅt as well
as mechanical power of volume and surface forces acting on nt. In this way, the linear
momentum balance law defines the motion of the LCE, and an orientational momentum
balance law the time evolution of nt.
In Reference [2], this approach is extended by the dynamical constraint nt ·nt = 1 in the
sense of a differential-algebraic system. Here, the balance laws are formulated in a La-
grangian description in dependence of the material gradient Grad[nt ◦ϕ], where Grad[•]
denotes the partial derivative with respect to X ∈ B0 and ϕ indicates the deformation
mapping (see Fig. 1). In this work, the free energy includes the Frank free energy. Refer-
ence [6] satisfies the dynamical constraint ‖nt‖ = 1 by means of a second-order rotation
tensor. However, in this way, the balance equation for the direction vector nt takes the
form of a matrix equation.
LCE materials are suitable for contactless actuator components for integration into light-
weight structures. The development of such actuated light-weight structures can be per-
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formed numerically by dynamic finite element methods, if an appropriate mathematical
formulation of the constitutive laws and the time evolution equations is used. Since the
LCE materials are usely thin structures, a locking-free mixed finite element formulation
is recommendable. A special mixed finite element formulation with the orientation vector
nt as independent field is also able to avoid a differential-algebraic equation system or a
rotation tensor equation, respectively, to obtain a normalized orientation vector nt at each
time. More precisely, the pure rotation of the orientation vector nt can be formulated by
local drilling degrees of freedom as in Reference [3]. In order to simulate high-frequent
oscillations of LCE actuators efficiently (see Figs. 24 and 25 in [1]), numerically stable
time integrators based on variational principles are also recommended.
Therefore, in this paper, we present as a point of departure an isothermal variational-based
mixed finite element formulation with (i) drilling degrees of freedom in order to rotate
the orientation vector, (ii) locking-free mixed finite elements, and (iii) a numerically sta-
ble variational-based Galerkin time integration. This mixed finite element formulation
satisfies a number of balance laws numerically exactly during a stable LCE simulation.

2 MIXED FINITE ELEMENT FORMULATION

2.1 Continuum model

We consider the LCE material as a ndim-dimensional continuum in the configuration
B0 ⊂ R

ndim with the orientation vector n0(X) in the material point X ∈ B0 at initial
time t = 0. The deformation mapping ϕ : B0 × T → Bt describes the motion in the
time interval T = [0, T ] of the LCE material into the deformed configuration Bt at time
t ∈ T , and satisfies the identity ϕ(X, 0) = X at each X ∈ B0. The orientation mapping

χ : B0 × T → R
ndim , satisfying χ(X, 0) = n0(X) (1)

at each point X ∈ B0, gives the orientation vector nt(x) in the material point x ∈ Bt.
The deformation mapping results by time integration from the material velocity vector
v(X, t) := ϕ̇(X, t) = ẋ, where the superposed dot denotes the partial derivative with
respect to time t. The orientation mapping arises from the orientational velocity vector

vχ(X, t) := χ̇(X, t) = ṅt (2)

By denoting with ρ0 the mass density of the LCE material in the initial configuration B0,
we obtain the linear momentum vector p := ρ0 v. In accordance with References [2, 3],
we assume a radius of gyration lχ associated with the molecule in direction n0 within the
representative volume element of the edge length l0 at each material point X ∈ B0. In
this way, we arrive at the orientational momentum vector

pχ := ρ0
[

(l2χ − l20)A0 + l20 I
]

vχ (3)

where A0 := n0 ⊗ n0 denotes the second-order structural tensor of the mesophase and
I the second-order identity tensor. During the motion, the infinitesimal line element
dx = F dX at the position x ∈ Bt is given by the deformation gradient F := Grad[ϕ].
Analogously, we introduce the orientation tensor F χ := χ ⊗ n0, which maps the initial
orientation n0 to the current orientation nt (see Fig. 1). Hence, we obain the relation

nt = F χ n0 (4)
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The stretch of the material line element dx during a deformation is measured by the
right Cauchy-Green tensor C := F t g F with respect to the translational metric tensor
g := grad[x]. We denote by the superscript t the transposition of a second-order tensor.
In the same way, the stretch of the material line element dx due to the rotation of the
orientation vector nt is determined by the orientational deformation tensor

Cχ := F t g F χ ≡ F t gχ F (5)

where gχ designates the orientational metric tensor. Note that we indicate by the index
χ the correspondence to the orientation mapping χ.

Remark 2.1 Assuming curvilinear covariant basis vectors Gi, i = 1, . . . , ndim, in the
initial configuration B0, and contravariant basis vectors gi in the current configuration
Bt, the metric tensor gχ := gi ⊗ gi (summation convention is implied) belongs to the
orientational covariant basis vectors gi := F χGi. The covariant basis vectors gi also
defines the translational metric tensor g := gi ⊗ gi. In this notation, the deformation
gradient is given by F := gi ⊗Gi and the orientation tensor reads F χ := gi ⊗Gi with
respect to the contravariant basis vectors Gi associated with the initial configuration B0.
The translational metric tensor G := Gi ⊗Gi then belongs to the initial configuration.

The orientational invariants in Reference [2] for describing the interactive free energy
density Ψi(F

t g χ) := Ψ̂ ori(Iori1 , Jori
2 ) can be then written as

Iori1 := CχA0 : G
−1 Jori

2 := CχA0 : CχA0 (6)

where the symbol : indicates double contraction. Hence, we consider the interactive
free energy Ψ ori(Cχ). The elastic free energy density Ψ ela(C) := Ψ̂ ela(Iela1 , Jela

2 , Iela3 ) in
Reference [2] associated with an isotropic material depends on the invariants

Iela1 := C : G−1 Jela
2 := C : C Iela3 := det[C] (7)

In order to quantify the increase of the Frank free energy density caused by distorsions
from the uniformly aligned initial configuration B0, we introduce the distorsion tensor

Kχ := F t gGχ = F t gK F (8)

with the metric tensor gK := grad[nt]. We refer to Gχ := Grad[χ] as the orientation gra-
dient. Motivated by Reference [3], the distorsion can be then measured by the invariants

Idis1 := (Kχ −Grad[n0]) : G
−1 Jdis

2 := (Kχ −Grad[n0]) : (Kχ −Grad[n0]) (9)

which vanish in the initial configuration B0. Therefore, also simple constitutive laws as
a quadratic St. Venant-Kirchhoff material may be applied as Frank free energy density
Ψdis(Kχ). Accordingly, in this paper, the general form of the free energy reads

Ψ (C,Cχ,Kχ) := Ψ ela(C) + Ψ ori(Cχ) + Ψdis(Kχ) (10)

In a LCE material, the rotation of the orientation vector nt is directly connected with the
deformation of the polymer chain. Stretching the polymer chains, we obtain a stress field
rotating the orientation vector. Such a dissipative reorientation process can be introduced
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by a local evolution equation [7]. Analogous to finite viscoelasticity, we start with the
Clausius-Planck inequality. Here, we obtain

Dint
χ := Nχ : g Ḟ − Ψ̇ ori(Cχ) ≡

[

Nχ − F χ S
t
χ

]

: g Ḟ − F Sχ : g Ḟ χ ≥ 0 (11)

as internal reorientation dissipation Dint
χ . From now on, we require that the orientation

vector nt has unit length ‖nt‖ = 1 at each time t ∈ T . Hence, the velocity rate tensor
g Ḟ χ F

−1
χ is skew-symmetric and can be written as

I
skw : g Ḟ χ F

−1
χ = ǫ · α̇ with α̇ := α̇k gk ◦ϕ(X , t) where 2 Iskw := ǫ · ǫ (12)

Here, ǫ denotes the third-order Levi-Civita tensor. Analogous to the orientation mapping,
we herewith introduce a rotation mapping α : B0 × T → R

ndim, which satisfies the
condition α(X, 0) = 0 at each point X ∈ B0, where 0 designates the zero vector. We
arrive at the reorientation dissipation

Dint
χ :=

[

Nχ − F χ S
t
χ

]

: g Ḟ − τ χ : ǫ · α̇ ≥ 0 (13)

where we denote with τ χ := F Sχ F
t
χ a two-point orientational stress tensor, which we

refer to as orientational Kirchhoff stress tensor. According to the Coleman-Noll pro-
cedure, we define the two-point Piola reorientation stress tensor Nχ := F χS

t
χ, where

the orientational stress tensor Sχ := ∂Ψ ori/∂Cχ is energy-conjugated to the tensor Cχ.
Consequently, the reorientation dissipation Dint

χ is always non-negative with the equation

−
1

2
ǫ : τ χ = Σχ with Σχ = Vχ α̇ (14)

as local evolution equation, and takes the form of the bilinear form Dint
χ := 2Σχ · α̇ ≥ 0.

The parameter Vχ represents a rotational viscosity parameter. Therefore, we introduce
the components αk, k = 1, . . . , ndim, of the axial vector α(X, t) as independent drilling
degrees of freedom at each material point X ∈ B0. The rotation of the orientation vector
nt owing to the reorientation in the LCE material is then given by the global equation

χ̇ = −ǫ · α̇ · χ (15)

The natural constraint ‖nt‖ = 1 for the orientation vector at each point x ∈ Bt is thus
satisfied by the identity χ̇ ·χ = 0 at each time t ∈ T due to the condition n0 · n0 = 1.

2.2 Variational-based weak formulation

A well-known method for deriving a weak formulation is Galerkin’s method. In this pro-
cedure, we require partial differential equations in advance, which are derived by balance
laws as in [2]. But, in a dynamical framework, stable finite element methods in space and
time are not straightforward with Galerkin’s method, but they can be directly obtained
by a variational principle. Balance laws and partial differential equations follow from the
variational formulation and have not to be known in advance.
Therefore, in this paper, the goal is a variational-based weak formulation with indepen-
dent (mixed) fields. Fields Ũi, i = 1, . . . , s, whose time evolutions have to be continuous
are introduced as time rates. Remainder independent fields Ṽ j, j = 1, . . . , p, are tem-
porally discontinuous, in general. The tilde sign highlights tensor fields as independent
mixed fields. In this way, a discretization in space and time will be energy-consistent, if
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the variational principle is based on the total energy functional H of the continuum. We
choose the mixed principle of virtual power in Reference [3], which can be written as

∫ tn+1

tn

δ∗Ḣ( ˙̃U1, . . .
˙̃
Us, Ṽ 1, . . . Ṽ p) dt = 0 (16)

on any time step Tn := [tn, tn+1] ⊂ T of time step size hn := tn+1−tn. Since the variation
δ is performed with respect to time derivatives of time functions Ũ i (δ1 variations as in
Jourdain’s principle) as well as with respect to time functions Ṽ j itself (δ or δ0 variations
as in D’Alembert’s principle), we consider in the δ∗ symbol the ∗ as a wild card.
We start by defining the virtual power δ∗Pϕ related with the deformation ϕ, given by

δ∗Pϕ := δ∗Ṫϕ(ϕ̇, v̇, ṗ) + δ∗Π̇
ext
ϕ (ϕ̇, R̃) + δ∗Π̇

int
ϕ (ϕ̇, ˙̃F , ˙̃C, P̃ , S̃) (17)

The first term of Eq. (17), associated with the inertia of material points X ∈ B0, reads

δ∗Ṫϕ(ϕ̇, v̇, ṗ) :=

∫

B0

δ∗v̇ · [ρ0 v − p] dV +

∫

B0

δ∗ṗ · [ϕ̇− v] dV +

∫

B0

δ∗ϕ̇ · ṗdV (18)

Here, the velocity v and momentum vector p are introduced as independent (mixed)
fields. The second term of Eq. (17) arises from the introduction of mechanical volume
loads B, traction loads T̄ and prescribed boundary displacements ϕ̄. Here, we obtain

δ∗Π̇
ext
ϕ (ϕ̇, R̃) := −

∫

B0

δ∗ϕ̇ ·B dV −

∫

∂T B0

δ∗ϕ̇ · T̄ dA

−

∫

∂ϕB0

δ∗R̃ · [ϕ̇− ˙̄ϕ] dA−

∫

∂ϕB0

δ∗ϕ̇ · R̃ dA (19)

where R̃ denotes the reaction forces on the Dirichlet boundary ∂ϕB0 := ∂B0 \ ∂TB0

disjunct with the Neumann boundary ∂TB0. The third term of Eq. (17) takes the form

δ∗Π̇
int
ϕ (ϕ̇, ˙̃F , ˙̃C, P̃ , S̃) := δ∗P

int
ϕ with

δ∗P
int
ϕ :=

∫

B0

δ∗P̃ :
[

Grad[ϕ̇]− ˙̃
F
]

dV +
1

2

∫

B0

δ∗S̃ :

[

∂

∂t

(

F̃
t
F̃
)

− ˙̃
C

]

dV (20)

+

∫

B0

δ∗
˙̃
C :

[

∂Ψ

∂C̃
−

1

2
S̃

]

dV +

∫

B0

δ∗
˙̃
F :

[

F̃ S̃ − P̃
]

dV +

∫

B0

P̃ : Grad[δ∗ϕ̇] dV

where P̃ and S̃ denote the independent fields of the first and second Piola-Kirchhoff stress
tensor, respectively. Now, we present the virtual power associated with the orientation χ.
We introduce the micro inertia of the mesogens by the virtual orientational kinetic power

δ∗Ṫχ(χ̇, v̇χ, ṗχ) :=

∫

B0

δ∗v̇χ ·
(

ρ0
[

(l2χ − l20)A0 + l20 I
]

vχ − pχ

)

dV

+

∫

B0

δ∗ṗχ · [χ̇− vχ] dV +

∫

B0

δ∗χ̇ · ṗχ dV (21)

We introduce volume loads Bχ and boundary loads W̄ acting on the orientation χ (see
Fig. 1) by the virtual orientational external power δ∗Π̇

ext
χ (α̇, χ̇, Z̃, τ̃ n, ν̃) =: δ∗P

ext
χ with

δ∗P
ext
χ := −

∫

B0

δ∗χ̇ ·Bχ dV −

∫

∂W B0

δ∗χ̇ · W̄ dA−

∫

∂χB0

δ∗Z̃ · [χ̇− ˙̄χ] dA−

∫

∂χB0

δ∗χ̇ · Z̃ dA

−

∫

∂χB0

2 δ∗τ̃ n · ν̃ dA−

∫

∂χB0

2 δ∗ν̃ · τ̃ n dA+

∫

B0

2 δ∗α̇ ·Σχ dV (22)
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The volume loads Bχ model a penetrating action on the mesogens in each material point
x ∈ Bt, whereas the loads W̄ on the Neumann boundary ∂WB0 model a non-penetrating
action only on the outer mesogens. For the sake of completeness, we also introduce a
prescribed orientation χ̄ on the disjunct Dirichlet boundary ∂χB0 := ∂B0 \ ∂WB0. The
last term denotes the virtual internal reorientation dissipation. Finally, the functional
form of the virtual orientational internal power is given by

δ∗Π̇
int
χ (α̇, χ̇, ˙̃F , ˙̃F χ,

˙̃
Gχ,

˙̃
Cχ,

˙̃
Kχ, τ̃ n, P̃ χ, P̃K , S̃χ, S̃K) := δ∗P

int
χ (23)

where

δ∗P
int
χ :=

∫

B0

δ∗
˙̃
F :

[

F̃ χ S̃
t

χ + G̃χ S̃
t

K

]

dV +

∫

B0

2 δ∗τ̃ n · [χ̇+ ǫ · α̇ · χ] dV

+

∫

B0

δ∗P̃ χ :
[

χ̇⊗ n0 −
˙̃
F χ

]

dV +

∫

B0

δ∗P̃K :
[

Grad[χ̇]− ˙̃
Gχ

]

dV

+

∫

B0

δ∗S̃χ :

[

∂

∂t

(

F̃
t
F̃ χ

)

− ˙̃
Cχ

]

dV +

∫

B0

δ∗S̃K :

[

∂

∂t

(

F̃
t
G̃χ

)

− ˙̃
Kχ

]

dV

+

∫

B0

δ∗
˙̃
Cχ :

[

∂Ψ

∂C̃χ

− S̃χ

]

dV +

∫

B0

δ∗
˙̃
Kχ :

[

∂Ψ

∂K̃χ

− S̃K

]

dV

+

∫

B0

δ∗
˙̃
F χ :

[

F̃ S̃χ − P̃ χ

]

dV +

∫

B0

δ∗
˙̃
Gχ :

[

F̃ S̃K − P̃K

]

dV

+

∫

B0

P̃ χ : [δ∗χ̇⊗ n0] dV +

∫

B0

P̃K : Grad[δ∗χ̇] dV

+

∫

B0

[

1

2
ǫ : τ χ − τ̃ n · ǫ · χ

]

· 2 δ∗α̇ dV +

∫

B0

2 τ̃n · δ∗χ̇ dV

We obtain S̃χ as Lagrange multiplier of the weak definition of C̃χ. This weak definition
of strain and stress tensors guarantees the energy-consistent time integration [3]. In the
same way, we introduce the distorsion stress tensor S̃K energy-conjugated to K̃χ. Further,
weakly defined stress tensors are P χ := F Sχ and PK := F SK , which we refer to as
Piola orientational stress and Piola distorsion stress, respectively. The vector field 2 τ n

is the Lagrange multiplier of Eq. (15). We call this vector the rotation stress vector.
The weak forms of the considered continuum problem arise from the application of the
variational principle in Eq. (16) to the virtual power functional

δ∗Ḣ := δ∗Pϕ + δ∗Ṫχ(χ̇, v̇χ, ṗχ) + δ∗P
ext
χ + δ∗P

int
χ (24)

We obtain three main weak forms coupled in the deformation ϕ, the orientation χ and
the rotation stress vector field 2 τn. We solve these weak forms with a monolithic solution
strategy. The deformation ϕ is determined by the weak balance of linear momentum

∫

Tn

∫

B0

δ∗ϕ̇ · [ṗ−B] dV dt −

∫

Tn

∫

∂T B0

T̄ · δ∗ϕ̇ dA dt

+

∫

Tn

∫

B0

P̃ : Grad[δ∗ϕ̇] dV dt =

∫

Tn

∫

∂ϕB0

R̃ · δ∗ϕ̇ dA dt (25)

The rotation stress 2 τn is associated with the weak balance of orientational momentum
∫

Tn

∫

B0

δ∗χ̇ ·
[

ṗχ + 2 τ̃n −Bχ

]

dV dt−

∫

Tn

∫

∂W B0

W̄ · δ∗χ̇ dA dt (26)

+

∫

Tn

∫

B0

P̃K : Grad[δ∗χ̇] dV dt +

∫

Tn

∫

B0

P̃ χ : [δ∗χ̇⊗ n0] dV dt =

∫

Tn

∫

∂χB0

Z̃ · δ∗χ̇ dA dt
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Table 1: Energy and momentum functions of the LCE extended continuum.

Kinetic energy Kinetic energy of orientation Potential energy

T (t) :=

∫

B0

1

2
v · p dV Tχ(t) :=

∫

B0

1

2
vχ · pχ dV Π int(t) :=

∫

B0

Ψ dV

Linear momentum Angular momentum Momentum of orientation

L(t) :=

∫

B0

pdV J(t) :=

∫

B0

ϕ× pdV Lχ(t) :=

∫

B0

pχ dV

Moment of momentum Reorientation function Total energy

Jχ(t) :=

∫

B0

χ× pχ dV Cori(t) :=

∫

B0

[

‖χ‖2 − 1
]

dV H := T + Tχ +Π int +Πext

Finally, the orientation χ or the orientation vector nt, respectively, is determined by the
weak balance of orientation rate vector

∫

Tn

∫

B0

2 δ∗τ̃ n · [χ̇+ ǫ · α̇ · χ] dV dt =

∫

Tn

∫

∂χB0

2 δ∗τ̃ n · ν̃ dA dt (27)

The vector field ν̃ represents a reaction due to a prescribed orientation on the boundary
∂χB0. We refer to this vector field as reaction velocity field. The local evolution equation
in Eq. (14) is solved on the element level with an elementwise space approximation and a
consistent linearisation as the finite viscoelasticity in Reference [3].

2.3 Balance laws

The weak formulation in Section 2.2 satisfies different balance laws associated with energy
and momentum functions defined in Tab. 1 in consequence of symmetry properties of the
time evolutions pertaining to ϕ, χ and τ̃ n with respect to Euclidean transformations.
Therefore, by choosing specific variations as test functions, we obtain balance laws.
First, the balance law of linear momentum describes a symmetry of the LCE material
with respect to virtual translations along a constant vector c ∈ R

ndim. This balance law
is obtained by choosing the test function δ∗ϕ̇ = c, leading to

L(tn+1)− L(tn) =

∫

Tn

∫

B0

B dV dt +

∫

Tn

∫

∂T B0

T̄ dA dt +

∫

Tn

∫

∂ϕB0

R̃dA dt (28)

In the same way, we obtain a balance law of orientational momentum by choosing the test
function δ∗χ̇ = c, where c ∈ R

ndim denotes any constant orientation. We arrive at

Lχ(tn+1)− Lχ(tn) =

∫

Tn

∫

B0

[Bχ − 2 τ̃ n − P̃ χ n0] dV dt +

∫

Tn

∫

∂χB0

W̄ dA dt +

∫

Tn

∫

∂χB0

Z̃ dA dt

(29)
A further symmetry property of the deformation ϕ is associated with a virtual rotation
of the LCE material around a constant axial vector c ∈ R

ndim, introduced by the test
function δ∗ϕ̇ = c × ϕ. Here, we apply the definition t1 × t2 := ǫ : [t1 ⊗ t2] of the cross
product of two vectors t1 and t2. This balance law of angular momentum is given by

J(tn+1)− J(tn) =

∫

Tn

∫

B0

ϕ×B dV dt+

∫

Tn

∫

∂T B0

ϕ× T̄ dA dt +

∫

Tn

∫

∂ϕB0

ϕ× R̃ dA dt

+

∫

Tn

∫

B0

[F̃ χS̃
t

χ + G̃χS̃
t

K ]× F̃ dV dt (30)
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by taking into account the cross product T 1 × T 2 := ǫ : [T 1 · T
t
2] of two second-order

tensors T 1 and T 2. Without introducing an orientation vector nt, the last term in Eq. (30)

vanishes due to the symmetry property P̃ F̃
t
= F̃ P̃

t
. But, bearing in mind the rotation

of the orientation vector nt during reorientations, we obtain distributed couples.
Analogous to the angular momentum balance law, the test function δ∗χ̇ = c × χ leads
to a balance law associated with a virtual rotation of the orientation vector around any
direction c ∈ R

ndim . This balance law of moment of orientational momentum reads

Jχ(tn+1)− Jχ(tn) =

∫

Tn

∫

B0

χ×Bχ dV dt +

∫

Tn

∫

∂WB0

χ× W̄ dA dt +

∫

Tn

∫

∂χB0

χ× Z̃ dA dt

−

∫

Tn

∫

B0

[F̃ χS̃
t

χ + G̃χS̃
t

K ]× F̃ dV dt−

∫

Tn

∫

B0

χ× 2 τ̃n dV dt (31)

All distributed couples in the LCE material are eliminated by adding Eqs. (30) and (31),
with exept of the couples χ× 2 τ̃ n generated by the normalized reorientation of nt.
Second, we obtain energy balance laws as symmetry with respect to virtual translations
along the time axis. Choosing δ∗ϕ̇ = ϕ̇, we obtain the balance law of kinetic energy

T (tn+1)− T (tn) =

∫

Tn

∫

B0

B · ϕ̇ dV dt +

∫

Tn

∫

∂T B0

T̄ · ϕ̇ dA dt +

∫

Tn

∫

∂ϕB0

R̃ · ϕ̇ dA dt

−

∫

Tn

∫

B0

[S̃ : ˙̃
F tF̃ + S̃χ : ˙̃

F tF̃ χ + S̃K : ˙̃
F tG̃χ] dV dt (32)

depending on external loads, but also on the stress power in the LCE material. Since
we assume a micro inertia of the mesogens, we also obtain a balance law of orientational
kinetic energy by inserting the test function δ∗χ̇ = χ̇. This leads to the relation

Tχ(tn+1)− Tχ(tn) =

∫

Tn

∫

B0

Bχ · χ̇ dV dt +

∫

Tn

∫

∂ϕB0

W̄ · χ̇ dA dt +

∫

Tn

∫

∂ϕB0

Z̃ · χ̇ dA dt

−

∫

Tn

∫

B0

[S̃χ : F̃
t
(

˙̃
F χ + ǫ · α̇ · F̃ χ

)

+ S̃K : F̃
t ˙̃
Gχ +Dint

χ ] dV dt (33)

by taking into account the variational form of the evolution equation in Eq. (14).
The potential energy balance law of a continuum follows from the time derivative of the
total potential energy Π := Π int + Πext, and is the consequence of a path-independent
material and loads. In this paper, we apply path-independent volume dead loads, such
that we obtain the external potential energy

Πext(t) := −

∫

B0

B · ϕ dV dt −

∫

B0

Bχ ·χ dV dt (34)

The time derivative Π̇ of the potential energy then leads to the balance law

Π(tn+1)−Π(tn) =

∫

Tn

∫

B0

[S̃χ :
∂

∂t

(

F̃
t
F̃ χ

)

+ S̃K :
∂

∂t

(

F̃
t
G̃χ

)

+ S̃χ : F̃
t
(ǫ · α̇)F̃ χ] dV dt

+

∫

Tn

∫

B0

[

S̃ : ˙̃
F tF̃ −B · ϕ̇−Bχ · χ̇

]

dV dt (35)

Accordingly, the presented reorientation formulation leads to the well-known total energy
balance law by adding Eq. (32), Eq. (33) and Eq. (35), which coincides with the first
law of thermodynamics depending only on the power of non-conservative loads and the
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reorientation dissipation Dint
χ . This dissipation only vanishes in the total energy balance

of a non-isothermal formulation, which is also analogous to finite thermo-viscoelasticity.
The last balance law is the balance law of reorientation pertaining to the function Cori.
Choosing the test function δ∗τ̃ n = χ, we arrive at the balance law

Cori(tn+1)− Cori(tn) ≡

∫

Tn

∫

B0

2χ · χ̇ dV dt =

∫

Tn

∫

∂χB0

2χ · ν̃ dA dt (36)

pertaining to the length of the orientation vector ‖nt‖ = ‖n0‖ ≡ 1 on each time step Tn.

3 SPACE-TIME DISCRETIZATION

As in Reference [3], we introduce in Eq. (24) Galerkin time approximation polynomials
with respect to the normalized time α(t) := (t− tn)/hn ∈ [0, 1] associated with Tn.
As mentioned above, in the time approximation, we distinguish between the time rate
variables φn ∈ {ϕn, vn,pn, F̃

n
, C̃

n
,χn, vn

χ,p
n
χ,α

n, F̃
n

χ, G̃
n

χ, C̃
n

χ, K̃
n

χ} and the remainder
mixed fields. A time rate variable field φn on the n-th time step Tn is approximated in
time by k-order Lagrange polynomials MI(α), I = 1, . . . , k+1. Then, we approximate the
remainder mixed fields and variations φ̃n on the n-th time step by k − 1 order Lagrange
polynomials M̃J (α), J = 1, . . . , k, such that

φn
α :=

k+1
∑

I=1

MI(α)φ
n
I φ̃n

α :=

k
∑

J=1

M̃J(α) φ̃
n
J (37)

We temporally discretize the time integrals by a k-point Gaussian quadrature rule. In
Eq. (24), we apply a globally continuous space discretization with hexahedral elements,
based on local finite element shape functions Na(ζ), a = 1, . . . , nnode, defined on the parent
domain B✷ := [−1, 1]× [−1, 1]× [−1, 1], and the associated quadrature rules to the fields
Φ ∈ {ϕ, v,p, R̃,χ, vχ,pχ, τ̃ n, Z̃, ν̃, δ∗ϕ̇, δ∗v̇, δ∗ṗ, δ∗R̃, δ∗χ̇, δ∗v̇χ, δ∗ṗχ, δ∗τ̃ n, δ∗Z̃, δ∗ν̃}. Re-

mainder fields Φ̂ on the e-th finite element are globally discontinuously approximated in
space by local finite element shape functions N̂b(ζ), b = 1, . . . , n̂node, well-defined on the
domain B✷, so that on the e-th finite element in space, e = 1, . . . , nel, we apply

Φe
ζ :=

nnode
∑

a=1

Na(ζ)Φ
e
a Φ̂e

ζ :=

n̂node
∑

b=1

N̂b(ζ) Φ̂
e
b (38)

The local shape functions N̂b(ζ), b = 1, . . . , n̂node, also fulfill a completeness condition.
Motivated by Reference [8], we apply for α and δ∗α̇ local finite element shape functions
Ñc(ζ), c = 1, . . . , ñnode, which are generally different from Na(ζ) and N̂b(ζ). In order to
satisfy the property in Eq. (35) also in a discrete sense, we extend the stress approxima-
tions (cp. [3]). Further, we implemented the dyadic product χ̇⊗n0 in a special way, such
that a special B̄-operator has arisen. We report about these details in a follow up paper.

4 NUMERICAL EXAMPLE

As summarized in Section 2.3, the reorientation of the mesogens or the orientation vectors,
respectively, directly affects the deformation of a continuum body. This is obvious by
a closer inspection of the balance laws. The balance law of linear momentum is not
influenced by the Frank free energy and the interactive free energy, whereas in the balance
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law of angular momentum, we obtain distributed couples which affects the motion. Since
the reorientation process is dissipative, we obtain a decreasing total energy due to the
internal reorientation dissipation. In order to demonstrate this behaviour, we initiate a
free rotation of a thin strip of LCE material (0.3× 12.5× 75 [mm]). The rotation around
the center of mass is initiated with an initial angular velocity ω = 32 [1/s] around the
z-axis. In Fig. 2, we compare this motion without (left) and with (right) reorientation.
Without a dissipative reorientation, the strip steadily rotates as expected anti-clockwise in
the x−y-plane and the momenta and total energy are conserved. However, the distributed
couples of reorientation leads to an unsteady right-left-rotation with large deformations,
and the reorientation dissipation Dint

χ leads to a decreasing total energy.

5 CONCLUSIONS

The reorientation of the mesogens can be formulated by a variational principle as a dis-
sipative process analogous to finite thermo-viscoelasticty. Therefore, the extention of the
present formulation to the non-isothermal framework is possible and the next step.
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Figure 2: Comparison of time evolutions without (left) and with (right) reorientation. As in [3],
Na belongs to a 20-node serendibity hexahedral element (H20) and N̂b to a 12-node prismatic
element (P12). Motivated by [8], Ñc belongs to a 8-node Lagrangian hexahedral element (H8).

Colours in the left top plot indicate the Kirchhoff stress τ = P̃ F̃
t
, where in the right, finite

elements are coloured by the skew-symmetric part of τχ. The LCE material is defined by
polyconvex free energy functions with ρ0 = 0.00176 [g/mm3 ], Vχ = 1 [kPa · s], Young’s modulus
E ≈ 0.914 [MPa], Poisson’s ratio ν ≈ 0.493. Further, the initial orientation n0 = ey is used.


