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A STUDY OF MESH OPTIMALITY CRITERIA IN
ADAPTIVE FINITE ELEMENT ANALYSIS

E. ONATE AND G. BUGEDA

International Centre for Numerical Methods in Engineering, ETS Ingenieros de Caminos, Canales ¥ Puertos,
Universidad Politécnica de Cataluiia, 08034 Barcelona, Spain

ABSTRACT

The concepts of solution error and optimal mesh in adaptive finite element analysis are revisited. It is
shown that the correct evaluation of the convergence rate of the error norms involved in the error measure
and the optimal mesh criteria chosen are essential to avoid oscillations in the refinement process. Two
mesh optimality criteria based on: (a) the equal distribution of global error, and (b) the specific error over
the elements are studied and compared in detail through some examples of application.

KEY WORDS Adaptive mesh refinement Mesh optimality

INTRODUCTION

The evaluation of discretization error and the design of suitable meshes via adaptive mesh
refinement (AMR ) are nowadays two of the challenging issues in the finite element method (FEM).

The topic of error estimation and mesh adaptivity in the FEM is by no means new!~!®, For
a comprehensive review of the topic see the reference list of Chapter 14 of volume I of Reference 19.

In this paper a methodology for deriving AMR procedures is proposed. The basis of the
approach is the decoupling of the concepts of error measure and mesh optimality criteria. This
leads to the definitions of global and local error parameters from which the element refinement
strategy can be simply obtained. Moreover, this allows to identify clearly the convergence rates
of the global and local error norms, which strongly influence the expressions of the element
refinement parameter. It is shown that an inaccurate evaluation of this important parameter
can lead to oscillations in the refinement process.

The methodology proposed is particularized for two mesh optimality criteria using
Zienkiewicz—Zhu error estimator'*=%, First, the standard criterion of equal distribution of the
global error over ail the elements is studied. We will show here that a careful interpretation of
the concepts of global error and optimal mesh leads in this case to an enhanced expression of
the ¢lement refinement parameter slightly different from that typically used in the literature.

The second mesh optimality criterion studied is based in the equal distribution of the error
per unit area or volume (i.e. the specific error), This strategy allows to concentrate more and
smaller elements in zones where the gradients of the problem unknowns (i.e. stresses in structural
problems) are higher, as it should be expected from the engineering point of view.

0264-4401/93/040307-15%2.00
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ERROR ESTIMATION AND ACCEPTABLE SOLUTION

When dealing with adaptive mesh refinement finite element analysis the following two concepts
should be clearly defined:

(a) Error estimator. Since the ‘exact’ solution is not known, a method to approximately
evaluate the error of the finite element solution should be defined.

(b) Acceptable solution. A finite element solution is ‘acceptable’ if the estimated error satisfies
some prescribed global and/or local conditions.

Both concepts are further extended in the next sections.

Basic equations

 Let us consider the solution of a problem governed by a system of differential equations
written in the general matrix form:

Au)=0 inQ (D
with boundary conditions:
Ba)=0 inT 2)

where O is the area of the analysis domain (for 2D problems) and I" its contour. In (1) and (2)
. wis a vector containing the problem unknowns, i.e. the displacements in a structural problem,
the temperature in a thermal problem, the potential in a field problem, etc.

We will define now the gradient vector ¢ and the corresponding fiow vector ¢ as

e=Lu 3)
o =Ds )

where D is a constitutive matrix depending on material propertics.

Vectors & and o are readily interpreted as the strain and stress vectors for structural problems;
the temperature gradient and the heat flow vectors for thermal problems, etc.

For simplicity the ficlds u, ¢ and ¢ will be identified hereafter with displacements, strains and
stresses for a structural problem,

In the finite element solution the field u is interpolated in the standard form:

i=1
with
N, = NI ~ (5b)

where N, are shape functions, @i, are the values of @ at the nodes of a finite element mesh
and n is the total number of nodes in the mesh?®.

Substituting (5) in (1) and (2) and using standard weighted residual techniques or variational
principles, leads (for static problems) to an equation system of the form:

Ki=f (6)

where the stiffness matrix K and the equivalent nodal force vector f are obtained by assembly
of the element contributions®®. ,
Once the nodal variables have been obtained from {6) the ‘strains’ and ‘stresses’ values are
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approximated as:

&~ é = 2 LNiﬁf : :(73)

Error estimator

One of the most popular error estimators for elliptic problems is based on the error energy
norm expressed as:

lell = { J [o—61"D '[o - &] dﬂ]m 8)
Q

where # are the exact stresses, & are the stress values obtained from the finite element solution
(7b) and e is the displacements error.
Since the exact stresses are usually not known they are approximated by:

o= o* = N,a* ©)
where N, are stress interpolating functions and &* are nodal stress values obtained by either
simple nodal averaging of the finite element values, local or global least square smoothing, or

other adequate nodal stress recovery techniques. A simple approach is to use global smoothing
with a lumped ‘mass’ matrix giving the nodal smoothed values as:

& =Mt j N,é dQ (10)
9]

where M is a diagonal matrix with M;; = [ N,, dQ. Equation {10) can be obviously applied to
solve independently for each individual stress component. It can be verified that (10) yields an
accurate smoothed stress field for linear elements and it is also adequate for quadratic elements
providing some correction factors are introduced. A more accurate recovery technique has been
recently proposed by Zienkiewicz and Zhu?® and this can be used as alternative.

The strain energy U of the exact solution is estimated as:

U= nunzgf 1D~ 1g% dQ+f [a* — 6]'D " ![o* — 6] dQ a1)
Q 9]

Both [le|| and [ulj norms can be evaluated as the sum of their respective element contributions
as:

lel2 =3 lel?  ul?=3 fui? (12)
=1 i=1

where n is the total number of elements in the mesh.

Definition of acceptable solution
It is usually agreed that a solution is ‘acceptable’ if the two following conditions are satisfied:

(a) The global error in energy norm is not greater than a specified value of the total strain
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energy:
lell < niul (13)

where 7 is the user’s specified value of the permissible relative global error.
Equation (6) allows to define a global error parameter £, as:

_ el
#lul

Clearly the values &, < 1 denote satisfaction of the global error criterion, whereas {, > 1
indicates that further refinement is necessary. ‘

A mesh refinement strategy based on ¢, only will lead to an uniform refinement (£, > 1) or
derefinement (¢, < 1) of ail element sizes (with the usual corrections to preserve the dimensions
of the analysis domain). A local error indicator is thercfore needed and this is defined next.

(b) The distribution of elements in the mesh satisfies a ‘mesh optimality criterion’, this local
condition can be expressed as:

& (14)

llell; = Yelis, (15)

where [e]|; is the actual error norm in ¢ach element i and |e|,, is the ‘required’ error norm in
the clement. The local error parameter &, is defined as:
5=tk 16)
_ llell.,

Note that a value of & = 1 defines an ‘optimal’ element size (in the sense of satisfaction of
(15)), whereas & > 1 and & < 1 indicate that the size of element needs further refinement or
derefinement, respectively. The definition of the required error in each element jel,, is a key
issue and it strongly affects the distribution of element sizes in the mesh. This definition can be
based on different mesh optimality criteria and some of these are presented in a later section.

A refinement strategy based only on the local condition (15) is obviously possible and this
will imply the definition of appropriate bounds in the required clement error norm. However,
in practice it is usual to restrict the globat error bound using condition {13). Nevertheless, other
alternatives like a local limitation (i.. |le[i; < #|jull;) are possible and should be explored.

Element refinement parameter

Generally in practice we will aim to satisfy both local and global conditions (a) and (b) defined
in the previous section. This allows to define an element refinement parameter using (14) and
(16) as:

lieli llell;
L= = T 17
g aé? il llely, @7

The element refinement parameter &, was first introduced by Zienkiewicz and Zhu! and since
then it has been used by many authors as the basis for defining the new element size in a general
AMR strategy! ', The expression of ¢; given in (17) can be interpreted as the result of trying
to satisfy the global and local error conditions in a successive manner. Equation (17) provides
all the terms involved in this combined process and they could play individually a very different
role as explained in the next section.
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MESH OPTIMALITY CRITERIA AND AMR PROCEDURES

Mesh optimality criterion based on the equal distribution of the global error

A very popular criterion for elliptic problems is that a mesh is ‘optimal’ if the distribution of
the energy norm is equal between all elements!*~%!?, On the basis of this assumption the
required error for each element can be defined as the ratio between the global error and the
total number of elements in the mesh., Thus noting that only the square of the error norm is
additive (see (12)) we have:

fel, = 11 (18)

J

Combining (16) and (18) yields the expression of the local error parameter as:

po el )

" fefn=2

The element refinement parameter is obtained, viz. (17) as:

el
G=8 =t 20)

The parameter £, can now be readily interpreted as the ratio between the element error and
the distributed value of the permissible error over the mesh. Clearly ; > 1 will indicate that the
element should be further refined, whereas £; < 1 implies that both the local and global error
conditions are satisfied.

Expression (20) is in fact identical to that used in Reference 1. However, the multiplicative
form (17) allows to derive the correct AMR strategy. For that purpose, the convergence rates
of the element and global error norms will be considered next.

Let us assume that m is the degree of the shape function polynomials in (5) (m = 1 for linear
elements, m = 2 for quadratic elements, etc.) and that only first derivatives of u are involved in
the strain operator L of (3). It is then easy to find for the global error norm (8):

lell = [ J O(h™)D~10(h™) dﬂ}m =~ O(h™) (21)
Q

where h is the average element size of all the elements in the mesh. For the element error norm
it is obtained:

172
lefl; = [ I oD~ O(hT) dﬁ] = O(hT 2 ~ O+ %) (22)
o _

where h; and 4 are, respectively, the existing element size and the number of dimensions of the
problem (d = 1,2, 3 for 1D, 2D and 3D problems, respectively).

Equations (21) and (22) are essential to define the new element size k; in terms of the existing
size using the expression:

_

B, =
Bi

(23)
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with
By = &mEyemeD (24)

The expression of the element size parameter f; as given by (24) takes into account the different
convergence rates of the element and global error norms,

Note that (24) can be interpreted as equivalent to applying a two step refinement (or
derefinement) process in which the element sizes are first changed to fulfil the local mesh optimality
criterion and then changed again to satisfy the global error criterion,

Zienkiewicz and Zhu'-*-%, followed by others”*°, use a simpler expression for f; based directly
on the element refinement parameter ¢; as:

B = (CEy™ ' (25)

where C is a relaxation factor (generally C = 1 is taken*) and m’ = m except for elements adjacent
to singularities where m = 1 is used (A being the singularity strength). '

The authors have found that the computation of g; as given by (25) with C =1 and w’ = m
leads to a non-consistent mesh refinement. This is due to the violation of the convergence rate
of the global and local error norms which enables the simultaneous satisfaction of both norms
using a single element size parameter. This is shown by an oscillatory re- and de-refinement of
some mesh zones in the AMR process.

Mesh optimality criterion based on the equal distribution of the specific error

An alternative criterion is to assume that a mesh is optimal if the square of the error per unit
area (or volume) is the same over the whole mesh. It is clear then that in the optimal mesh:
2 2
lel? _ lel 6)
Obviously in (26) £, and Q denote the element and total area (or volume) respectively,
Comparing (26)and (15) gives the expression of the required error norm for each element as:

Q\12
.= lelll = 27
lell,, = 1l II(Q) 27)
The local error parameter &, is obtained now using (17) and (27) as:

Ileils[ilell]_1 Ilelli(ﬂ)”"
- h€ily = Elif 2 28
“ QL] el \&; 9

The element refinement parameter &, is obtained from (14), (17) and (28) as:
ell; (Q)”"
L=88,= -~ 29
R i\

Note that (20) and (29) coincide if Q/Q; = n, i.e. all elements are equal in size. This is, however,
not the case for unstructured meshes which results in quite different mesh distributions for the
two optimality criteria considered, as shown in the examples.

The way the optimal element error is now defined eliminates its dependence with the element
area, and the convergence rate of the specific clement error can be deduced from (22) to be:

llell;

o = 0) (30)
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Note the coincidence of the convergence rates of the Iocal and global error norms (21) and (30).
The new element size is obtained from (23) with the element size parameter f; given now by:

Bi= (G = (gt (31)

The expression for the element refinement parameter coincides with that given by (25) for
C = 1 and m’ = m. Note, however, that (25) was introduced in the context of the mesh optimality
criterion based on the equal distribution of the global error. The different forms presented here
clarify the correct expressions of §; to be used for each mesh optimality criterion chosen.

To our knowledge the criterion of equal distribution of the specific error was first introduced
in the form given here by Bugeda'® and it has been used in the context of optimum structural
design problems by Bugeda and Oliver'®"> and for the AMR analysis of structures by the
author’s group! 24817 This criterion can also be shown to be equivalent to that of equal error
in stresses mentioned earlier?.

EXAMPLES

Four examples have been chosen to compare the different AMR strategies presented: (1) thick
cylinder under internal pressure, (2) cylindrical shell roof under self weight, (3) perforated
cylindrical shell under axial loading, (4) incompressible potential flow around an airfoil. In all
the examples the following notation is used for the different AMR strategies.

Strategy A. This is based on the criterion of equal distribution of the global error between
all elements and the value of the element size parameter f, given by (25) with C = Landm' = m.

Strategy B. It uses the same mesh optimality criterion as strategy A with the expression for
the clement size parameter as given by (24).

Strategy C. It is based on the criterion of equal distribution of the specific error with the
element size parameter as given by (31).

Analysis of a thick cirenlar cylinder under internal pressure

The first example is the analysis of the thick circular cylinder under internal pressure shown
in Figure 1. Due to the symmetry of the problem only a quadrant has been studied under plane
strain conditions. Linear elastic behaviour has been assumed with E = 1.0 x 10° and v = 0.3.
A value of the permissible plobal error of # = 5% has been chosen. Standard 3 nodal linear
triangular elements are used in the analysis. This example is typical of elliptic problems and it
has many analogies in heat flow, ground water flow, etc. Figure 2 shows the sequence of refined
meshes obtained with the three AMR strategies previously mentioned. First column of Figure
2 shows the results obtained with strategy A. Note the oscillations in the AMR process clearly
shown by the alternative re- and de-refinement of some mesh zones.

Second column of Figure 2 shows the results obtained with strategy B. Note that the refinement
oscillations disappear and the AMR process converges in a consistent manner.

Third column shows the results for strategy C. It can be clearly seen that: (a) the AMR process
converges without oscillations, and (b) this AMR strategy concentrates more and smaller elements
in the vicinity of the internal edge (where the error is greater due to the higher stress gradients),
whereas in the rest of the mesh bigger elements than in the previous case are allowed. The price
to be paid is the increase in the total number of elements with respect to strategies A and B for
the same global accuracy as shown in Table 1.
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Figure 1 Thick circular cylinder under internal
pressure— geometry and loads

Table 1 shows some characteristic results for each solution like the number of elements, the
global error parameter &,, the average value of the local error parameter (&7), and its mean
deviation (£7), over each mesh for the three AMR strategies used. From the numbers shown in
this Table we deduce:

— all AMR strategies converge to the global permissible error chosen;

— the mean deviation of strategy A oscillates and does not converge to zero;

— strategies B and C converge to an ‘optimal mesh’ characterized by the appropnate values
(&%), = 1.0 and (&), = 0.0. However, the number of elements and its distribution in each
mesh is very different for these two AMR strategies.

Reference 16 shows results for the analysis of the same problem under diametrical loads with
identical conclusions to the case presented here.

Cylindrical shell roof under self weight

The second example is the classical Scordelis cylindrical roof shown in Figure 3 together with
the initial mesh of 48 triangular facet shell elements. The element used termed TLQL is based
on an assumed shear strain formulation with linear interpolation for the displacements, quadratic
interpolation for the rotations and linear interpolation for the shear strains'?. The error energy
norm in this case is expressed in terms of membrane forces n, bending moments m and shear
forces s as:

|[e!|2=-[ {[n—A]"D, '[n—fi]+ [m—m]"D; [m—h]+[s—8]"D; {[s—§1} dQ  (32)
Q

where D,,, D, and D, are the standard membrane, bending and shear constitutive matrices®?
The strain energy of the exact solution is estimated as:

fuli? zj {n*'D n* + m*'D, 'm* + S*TD; 'S*} dQ + |ie|® (33)
a :

where (- )* denotes smoothed resultant stress values.
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Figure 2 Thick circular cylinder under internal pressure—sequence of meshes obtained with
AMR strategies A, B and C

Some statistical results of the AMR processes based on the

equal distribution of the global error (strategies A and B) and the specific error (strategy C)

Strategy A Strategy B Strategy C
NE [ & &, NE &, &L @, NE & . &
MO 200 4,133 1.000 8.401 200 4,133 1000 B401 200 4133 1190~ 1537
M1 2820 0919 1000 8.469 2180 0839 1000 0.604 3028 0884 2224 2071
M2 2711 0907 1000 2.197 1838 0909 1.000 0.189 6359 - 0796 1204 0.163
M3 2758 (0.839 1000 4484 1797 0925 1.000 0.193 6026  0.835 1.206 0.151
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L =600.0

R =300.0
thickness = 3.0
E =3.0x10°
v =10.0

B.C.:in diaphragm « =0, w =0
Load : Self weight, ¢ = 0.625

Initial global error parameter £, = 6.2295

Figure 3 Cylindrical shell roof under self weight. Symmetric quadrant used in the analysis and initial mesh of 48
triangular assumed shear strain facet shell elements

A value of the global permissible error # = 10% has been chosen in this case.

Figure 4 shows the sequence of refined meshes obtained with the three AMR strategies used
together with the total number of clements and the global error obtained in each case.

First column shows the results obtained using strategy A. Note the oscillations in the AMR
process clearly shown by the alternative re and de-refinements of some mesh zones.

Results labeled as strategy B in Figure 2 have been obtained using now the correct expression
for f; (strategy B). Note that the refinement osciflations disappear and the AMR process converges
in a consistent manner. '

Third column shows the resuits obtained using strategy C.

It can be clearly seen that: (a) the AMR process converges without oscillations, and (b) the
AMR strategy C concentrates more and smaller elements in the vicinity of the free edge (where
the error is greater due to the higher membrane stress gradients) whereas in the rest of the mesh
bigger elements than in the previous case are allowed. The price to be paid is again the increase
in the total number of clements with respect to strategies A and B for the same global accuracy.

Further details of this example and of the general AMR strategy for plates and shells can be
found in References 11 and 12.

Analysis of a cylindrical shell with a circular hole under axial loading

Figure 5 shows the geometry, material properties of the shell and the initial mesh used. The
analysis has been performed using the same facet shell element as in previous example. A value
of the permissible global error # = 10% has been taken,

Figure 5 aiso shows the sequence of refined meshes obtained with the criterion of
equal-distribution of the global error and the correct value for the element size parameter f; as
given by (24) (strategy B}, and also with the criterion of equal distribution of the specific error
with §; given by (31) (strategy C). ' :

Table 2 shows some characteristic results for the two AMR strategies used. From the numbers
shown in this Table we deduce: both AMR strategies converge to the global permissible error
chosen; both AMR processes converge to an ‘optimal mesh’, characterized by the appropriate
values (£2), = 1.0 and (£%), = 0.0. However, the number of elements and its distribution in each
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Strategy A Strategy B Sirategy C

NE =881 £;=1.046 NE=1.043 {, = 0.877 NE =821 § =1113

893 1.041 749 1.007 1.594 1.183
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Figure 4 Symmetric quadrant of a cylindrical shell reof nnder self weight. Sequence of meshes
obtained with AMR strategies A, B, and C. For each mesh is shown the number of elements
(NE) and the value of the global error parameter £,

Table 2 Symmetric guadrant of a tractioned cylindrical shell. Some statistical results of the AMR processes based on
the equal distribution of the global error (strategy B) and the specific error (strategy C)
Strategy B Strategy C

NE & (538 €. NE ' & €5,
MO 96 1.776 1.000 1.413 96 1.776 1.728 8.668
Mt 234 1.078 . 1000 0.613 393 0.993 1.545 3.432
M2 262 0.959 1.000 0.518 593 0.991 1.166 0.684
M3 266 0.968 - 1.000 0.384 729 0979 1.050 . 0.381
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Figure 5 Analysis of a cylindrical shell under uniform traction. Sequence of meshes obtained

with AMR strategies B and C
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mesh is very different for the two AMR strategies and again that based on the equal distribution
of specific error (strategy C) tends to concentrate more and similar elements in the vicinity of
the central hole where stress gradients are higher (see Figure 5).

Potential flow around an airfoil

The applicability of the AMR presented to fluid flow problems is shown in the analysis of
the 2D flow around a classical Korn airfoil, An incompressible potential flow model with Iifting
has been used for this analysis. Details of this model can be found in Reference 17, The angle
of attack has been taken equal to zero, the analysis domain has been discretized using standard
6 noded triangular elements. The exterior boundary of the domain has been defined at a distance
of 10 chords from the profile.

The error energy norm and the energy of the exact solutions have been estimated as:

fleil? '—“J. [v* — 917 [v* — 9140 (34)
Q

N2 zj v¥Ty* dQ + J [v* — 1" [v* — ¢1dQ (35)
ol Q :

In (34} vis the velocity vector obtained from the final continuous potential solution as v = V.
Also, as usual, ¢ and v* denote velocities obtained directly from the finite element solution and
after a nodal smoothing technique, respectively.

This case has been used to compare two different meshes with a similar number of degrees
of freedom, but each one obtained using a different optimality criteria.

Figure 6 shows the mesh obtained after two remeshings using strategy B and using a permissible
global error of 7 = 0.02%. This mesh has 2162 degrees of freedom and 1038 quadratic elements.
In fact, the results from the first remeshing have a global error smaller than the
permissible one but a new remeshing has been performed in order to get a better error distribution
over the domain,

Figure 7 shows the mesh obtained after two remeshings using strategy C and using a permissible
global error of # = 0.2%. This mesh has 2133 degrees of freedom and 1019 quadratic elements.
Again, the results from the first remeshing have a global error smaller than the
permissible one.
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Figure6 Analysis of a Korn airfoil. Mesh obtained with ~ Figure 7 Analysis of a Korn airfoil. Mesh obtained with
AMR strategy B (i = 0.02%). 2162 quadratic triangles AMR strategy C (y = 0.2%). 2133 quadratic triangles
and 1038 DOF and 1019 DOF
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. Figure 8 Analysis of a Korn airfoil. C, distribution around the leading edge obtained using strategies B and C

The computational cost to solve the problem is very similar for both cases because the
number of degrees of freedom for each one is practically identical. Looking at Figures 6 and 7
it can be observed that strategy C concentrates more and smaller elements in the vicinity of the
leading edge (where the gradients of the velocities are higher), whereas in the rest of the domain
the elements are bigger. ’

Figure 8 shows a plot of the C, distribution obtained with both meshes around the leading
edge. The mesh obtained with strategy B has a smaller global error norm (as prescribed), but
this error is concentrated in the zone where the gradients of the velocities are higher, as it can
be observed from the oscillations in Figure 8. It is remarkable that although the mesh obtained
with strategy C has a higher global error norm, the C, distribution around the leading edge is
more accurate and no oscillations are observed.

From the last comments we conclude that for the same computational cost, strategy B leads
to a smaller global error norm, but strategy C gives better results in the most interesting zones
of the analysis domain,

CONCLUDING REMARKS

The definition of the mesh optimality criterion has proved to be an essential point in the design
of an effective AMR process.

The use of the criterion of equal distribution of error over the elements leads to a ‘smooth’
distribution of the element sizes. This can be useful to prevent the use of meshes with large
number of elements, However, this criterion is unable to concentrate elements in zones of high
gradients only. It has been also shown that oscillations in the refinement process can appear in
this case unless the clement size parameter is consistently computed.

The criterion of equal distribution of specific error concentrates more and smaller elements
-in zones where important changes in the solution occur. This provides a more accurate solution
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in these regions which, in fact, are those of interest for the engineer. Therefore, this criterion
seems to be the one to be recommended for practical purposes. The only drawback of this
criterion is the large number of elements involved (this number tends to infinity if singularity
points exist!). This can be overcome by appropriately prescribing the minimum element size or
by introducing some limitations on the local error. These alternatives are currently explored by
the authors.
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