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Abstract. In this paper we present a summary of the
splitting technique for both compressible and incom-
pressible flows previously proposed in [22, 23, 7]. Also,
we extend it to the case of a fully implicit treatment
of the viscous and convective terms of the momen-
tum equations. For incompressible flows, this scheme
reduces to classical fractional step methods, except
for a non-standard treatment of the boundary condi-
tions. For compressible flows the continuity equation
involves two variables which must be related through
the equation of state. Convective terms of the conser-
vation equations to be solved are stabilized by means of
a Characteristic - Galerkin scheme. Also, in the pres-
ence of shocks some additional dissipation is needed.
Both numerical techniques are explained here taking
the transport of a scalar quantity as a model problem.

1 INTRODUCTION

The algorithm here described is designed aiming to deal
equally well with a broad spectrum of problems, all of
them physically modeled by the Navier - Stokes equa-
tions of fluids (either viscous or inviscid, compressible
or incompressible, laminar or turbulent and so on). A
fractional step or splitting, a technique first thought
for incompressible flows and proposed by Chorin [3]
and Temam [20], allows the use of equal interpolation
spaces for pressure and velocity fields. Further, the split
of the linear momentum equation produces a stabiliz-
ing effect on the pressure, which eliminates the need
for special interpolation when the incompressible limit
is reached. Therefore not only separate incompressible
or compressible problems can be solved using the same
algorithm, but compressible problems with regions of
very low Mach number can be properly solved too.

In [7] we discuss the semi-implicit version of the
algorithm, in which only the pressure gradient term
is treated implicitly. Here we extend this scheme to
the case in which both the viscous and the convective
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terms of the momentum equation may be treated im-
plicitly. In principle, this introduces a splitting error
in the scheme that will be discussed below. However,
we propose a method for eliminating the splitting error
due to the implicit treatment of the convective term,
and therefore only that due to the viscous term will
remain. This is applicable to all types of flow and in
particular to incompressible cases, when the algorithm
described here reduces to the classical fractional step
or projection methods, except for the treatment of the
boundary conditions.

The reformulation of the equations in a character-
istics co-moving frame provides a consistent artificial
diffusion when space discretization is done. This dif-
fusion, which is similar to that of some other classical
methods, like SUPG, can handle the purely numeri-
cal oscillations that usually appear when the Galerkin
method is applied to equations with dominant con-
vective terms. But if shock waves are present in the
solution (very likely to appear in compressible flows),
the artificial diffusion supplied by the method itself is
not enough to eliminate spurious localized oscilations
produced around the shock in the numerical solution.
Additional “shock capturing” diffusion is needed there.
We use in these cases a numerical diffusion proportional
to the element residual of each of the scalar transport
equations to be solved.

We have organized this paper as follows. In the fol-
lowing section we state the problem and introduce
some notation. Next we describe briefly the explicit
version of the characteristic Galerkin method and the
shock capturing technique used here for each of the
scalar equations of the Navier-Stokes equations. In sec-
tion 4 we describe the splitting method applied to the
continuous equations, and then we obtain their weak
form incorporating boundary conditions. The discrete
problem is analyzed in section 5, where the choice of the
variables in the case of compressible flows is discussed.
Finally, we present some simple numerical examples
and draw some conclusions.



2 NAVIER-STOKES EQUATIONS

Let us picture a fluid contained in a given domain .
Its velocity uw = u(x,t) can be described by means of
a vectorial function of position z, within Q, and time
¢, within [0, c0). To complete the dynamic description,
two of the following three variables are needed: p =
p(z,t), p = p(x,t) and T = T(z,t) which describe its
thermodynamic state variables density, pressure and
temperature respectively. The linear momentum

Ui := pui,
and the total energy
E = pe,

where the total energy per unit mass
=e + 1 TR
€= eo + Fuit,

can be defined as above. Here, the first term e, is the
internal energy, and the second, the kinetic energy.
Different types of fluids (or flows) are described by
their equation of state. In particular, we shall consider
the cases of incompressible flows, barotropic flows and
the flow of ideal gases. In this last case, the state vari-
ables are related according to the following state law:

p = pRT, (1)

where R is the universal gas constant. If, besides, the
gas is polytropic, the internal energy is dependent only
on T linearly

eo = CyT,

with the constant of proportionality C,, the specific
heat at constant volume.

The equations that model the behaviour of a fluid
are known as the Navier-Stokes equations, a problem
that is widely described in many books, for instance,
[1, 16, 9]. This set of differential equations is derived
from general conservation principles of mass, energy
and momentum. In its pure conservative form, they
can be written

oV 9C; 0OD; _
W+EE+——&C{+S—O, (2)

where the conservative variables
V= (P, pu1, puz, pus, Pe)

are transported by means of convection, through the
convective fluxes:

cT = (pui, puiuy + 0:1p, puiua + diap,
puius + diap, ui(pe + p))

and of diffusion, through the diffusive fluxes:
D’,r = (0, —Til, —Ti2, —Ti3,qi — T,'ju_,-).
The source is

ST = (0,91, g2, pgs, plgiui + 1)),

where g; is the acceleration due to gravity, which points
vertically downwards, and 7 is the heat source per unit
mass.

The thermal flux is assumed proportional to tem-
perature gradients, i.e. it is assumed the Fourier law:

oT
qi = —k((l}) St

where k(z) is the thermal conductivity.

The deviatoric (i.e. excluding pressure isotropic
term) stress tensor 7;; is related linearly to velocity
gradients as is usual in newtonian fluids:

ou; all.j 2 Ouy
Tij # (6:1:]' azi 3 a.’Ek H ’ ( )
where p = pv is the viscosity, and v is the kinematic
viscosity. For some types of flow, kinematic viscosity

is found to be temperature dependent through the
Sutherland law:

p= AT*/(T + B),

where A,B,a are given constants.

3 A MODEL PROBLEM:
CONVECTION-DIFFUSION-
REACTION EQUATION

In this section we describe the numerical formulation
employed to stabilize the convective terms of the trans-
port equations to be solved. If this is done, some local
overshoots and undershoots may appear in the vicin-
ity of sharp gradients of the unknowns, in particular
near shocks. A further numerical dissipation needs to
be introduced in these cases. We describe both numer-
ical techniques using the convection—diffusion-reaction
equation as model problem.

3.1 Characteristic based schemes

In orther to unveil one possible solution to the prob-
lem arised by the convective fluxes, consider a general
convection—diffusion equation. In it, these fluxes can be
written as C; = u; V. For that reason

oV dwV) . 9Di(V)

ot ox; Ox; Ta=l
can be re written as
\%4 ov D;(V
LA AP YL L (4)

ot oz; dzr = Om;

As we shall see, the fractional momentum introduced
in section 4 is solution of a time-discrete problem of
this form.

Now consider each component of (4) separately and
suppose that the diffusive terms are uncoupled. The
first two terms of (4) compose the material derivative
of V' (now a scalar):

v oV ov

prg E +Uia—$i.



A material derivative of variable V' means the rate of
change of V, as it is observed from a reference sys-
tem in which the fluid is locally and instantaneously
at rest: the co-moving reference frame. In it, the con-
vective terms disappear. As was said early, equations
containing convective terms are often satisfied by non-
smooth solutions. In this case, the usual Galerkin finite
element method loses accuracy and can produce a nu-
merical solution with spurious effects, very far away
from the physical one (cf. [14]). But if we want to solve
the transport equation for the variable V' taking proffit
of the fact that the convective term vanishes in a dif-
ferent coordinate frame, the equation must be wholy
reformulated in the co-moving system. If we note

aD;(V) Ouy,
) ket A A Sk
Lvy: Oz; +V6:1:k’
then (4) is simplified to
1%
Z—+L(V)+S—O (5)

Until the end of the section we consider the source S
as zero to simplify the algebra. Let us label a particle
and follow it as it wanders within the fluid. Then, its
motion can be described by the characteristics equation

B0 — ua), ©

where the tilde means “the trajectory of a particle of
fluid that was at a reference point ,ef at a refence time
trer”. This statement is in fact the initial condition for
the equation (6):

:.i’(tref) = Tref-

Time integration of this ordinary differential equation
with this initial condition would solve the problem of
tracking particles of fluid, the “carriers” of co-moving
frames. In this form, equation (5) can be restated in
that frame. Let S be the fixed reference spatial system,
with origin pinned at x.es. Let S’ be the co-moving
frame. If the origin of &’ coincides at time #.f with
that of S, i.e., @ref, then

ov ov ]

— —_— U; ——
Trefrtref [ ot 'O

@),

)
Trefrtrer

so that
av . -
I @(0,0) + LV @(),0) =0.
This equation can be time - discretized using the

trapezoidal rule:

1
At(
OL(V(z™*, ")) +

V@ELET) V(@) + (7

(1 - G)L(V(in7tn)) =0,

where At = t"*! —t" (assumed constant, for simplicity

of notation) and " is an approximation to &(t*), k = n
and k =n+1.

Once the time - discretization is done, it is necessary
to choose the pair Trer, tref according to it. If S’ coin-
cides with @™, the trajectory of our particle of ﬂuid is
integrated forwards in time usmg the values at £". And
backwards if .t := ", expanding from the val-
ues at 2", A point between them can be used too.
We choose ‘@er := 2"t (fig. 1). As was said above,
Galerkin method is going to be used to discretize the
space because in the co-moving frame the convective
terms disappear. For that reason, the space conver-
gence for Galerkin method is optimal, but in frame S’
(i.e. (Az")?). If = 1/2 is chosen (Crank-Nicholson) in
(8), the trapezoidal rule gives the highest possible order
in time: O(A#?). Then, as (Az')? = (Az)? + (uAt)?,
second order in space, but in S (i.e. O(Az?)) is reached
in the streamline direction.

Through four successive steps, a second order time-
discretized transport equation can be obtained in the
co-moving frame, but with values obtained at the same
point in the same, fixed, reference frame:

1. Integrate trajectory backwards, with O(At?):

"~ &" - Atu(@" T, )
~ x — Atu".

2. Approximate velocity of this particle at (Z™,t"):

u(@",t") = u (¢ — Atu”™ , t")
n Ou™

L Oz;

~ u" — Atul

3. Integrate trajectory backwards, now with O(A#%):

n - At - -
"~ " - 5 [w(@ !, ) +u(@",t")]

Eun-’rl _ ﬁun + At2 nauﬂ

mrET 2 2 " g
At® , Ou”
~ — At n+1/2 u®
:c v 2 " B
where u"+1/? = (™! 4+ um) /2.

4. Calculate the variable V at (z",t"):

V(@E",t") =V (z - Atut/?
At2 n
+T’U«? %’LL +O(At ) >
n_ nt1/20V"
=V Atu; _61‘j
2 Ouj V™"
+T[ Oz; Oz;
n+1/2, n+1/2 o’V 3
b 6:13]] +O0(A).
As w2 = 4™ + O(At) and
nyn SV
" Oxi0m;
o (" 0 v
La.’L‘i J 5:1:]‘ ! 6:n,- a:L‘j ’
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Figure 1. The co-moving reference frame.

we have for the variable V:
2 0V"

VE't") =V B

— AtutY
j

At? 0 ( av"
+_

P — | —=—— At?). 8
2 b oz; Y Ozx; > +Ot ) (8)
To find an approximation for L(V(&",t")), it is done

L(V(@",t") =L (Vﬂ — Atu} % i + O(At )>

BL( ")
Oz;

Finally, using (8) and (9) in (8)

= L(V") — Atu} +0(ALY). (9)

Vn+1 _ Vn _ -—At I: n+1/26‘
Oz

At? d v "
- 55 g (v +200) |

which can be now approximated evaluating all the right
hand side explicitly or implicitly.
In brief, if we note

+ L(V"“”)]

ov
R(V) = - u,aT = L(V)
the continuum equation
ov
5= = R(V) (10)

is discretized in time, according to the methodology
hitherto exposed, as:

At* L OR(V)"
2 ! 6a:,-
with 6 € [0, 1], that is: time - discretization of transport
equation (10) using this method has led us to conclude

AV = AtR(V)™*? —

(11)

that the temporal variation of V is controlled by both
the residual of the equation (at first order) and the con-
vective derivative of it (at second order).
Consider now the operator L(V') purely as diffusive,
only to fix the main ideas, and also take § = 0. Thus
v 9’V
BYV) = v 0 ~ ¥ paedar’

with & > 0. Assuming that R(V') vanishes on the
boundary I" we have that

/VV ;aR( ) dQ
Q Ox;

0
= / niWu;R(V)dT — / D (wu) R(V) a9
r q Oz

- / (ugiv) R(V) dO — / (W%) R(V) d9
. :

for all test functions W. Using this fact, the weak form
of the time-discrete equation to be solved is

/ wvrtl 4o = / wVv™ dQ
Q Q

v oW av "

—Ath [/Q (m%) R(V) dQ

/n (Wg—;f:) R(V) dQ} " At /F W
(12)

for all test functions Wvanishing on I'p, where I'p and
I'n means respectively contours with a Dirichlet’s con-
dition and with a Neumann’s condition (normal deriva-
tive = g).

The main features of this last equation are two.
First, the terms linear in At are integrals evaluated
over all the domain and boundary terms coming from
boundary conditions. And second, the terms quadratic
in At are a SUPG-like term (see 2, 12, 13]), different
only in that the intrinsic time (1) of SUPG is here re-
placed by a linear function of time, plus a term which
depends on velocity divergence, and for that reason,
mainly active in the case of compressible flows. Al-
though the final outcome of SUPG is very similar, its
starting point is quite different: in its simpler formula-
tion, the test functions are slightly modified by adding
to them a term linear in its convective derivative. See
[6] for a further discussion about different stabilization
techniques for transport equations.

3.2 A DISCONTINUITY
CAPTURING TECHNIQUE

Although the method proposed adds artificial diffusion
needed when the physical diffusion vanishes in the dif-
ferential equations of the type here considered, local-
ized overshoots and undershoots can appear around



the strong discontinuities that could be present at the
solution. For that reason, some techniques have been
developed in order to deal consistently with them.

One of these techniques (proposed in [4, 5]) consists
of adding an anisotropic diffusion tensor in that par-
ticular places where it is not enough the streamline
diffusion of the Characteristic-Galerkin method. It is
based on two concepts. First, to preserve consistency,
this diffusion tensor must be proportional to the resid-
ual of the equation evaluated within each of the ele-
ments. Second, it must be small where the convection
is small.

If a convection—diffusion-reaction (CDR) equation

1% 1% i
+u k

Bt i&; = *—amkazk +sV =0Q, (13)

is considered, to the artificial elementary diffusion due
to the Characteristic-Galerkin (CG) method, given by

1AL ,
kcg=§—2~u y

where 4?2 = wu;u;, we propose to add a numerical, dis-
continuity capturing elementary diffusion

h
ke = Lagn BV

2 Vvt

where R(V") is the residual (only spatial terms con-
sidered) of (13) and
2%|VV"
Q4c = max O,C—ﬂh—l) .
hR(V™)

C is a constant depending on the interpolation order
(0.7 if linear and 0.35 if quadratic). Supraindex “h”
means that it belongs to the discretized usual FEM
space.

But while the former only acts along the streamlines,
the latter do it in all directions, taking into account
both of the previous concepts. Like the streamline CG
diffusion, the final discontinuity capturing tensor dif-
fusion is not diagonal: in the streamline direction it is
compared to the CG diffusion. So, the terms added to
the right hand side of equation (12), once space dis-
cretization in N elements is done, are:

%‘: L oW vt
— Ja- 4oz Y Oz;

W™ fuju;\ OVh
+ (ksl—kdc)——‘azi ( o ) oz,

] aQ, (14)

where kg = max (0, kac — keg).

As in the preceding section, in order to apply these
concepts to Navier-Stokes equations, they must be
rewritten in a CDR form. Then, those same identifi-
cations can be done.

4 FRACTIONAL STEP METHOD
FOR THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS

In this section the basic algorithm is presented. We
start with the formulation of the splitting technique for
the continuous equations and then we obtain the weak
form of each of the equations to be solved incorporating
boundary conditions. This weak form is the starting
point for the finite element discretization.

4.1 Splitting

Let us write the conservation equations for the momen-
tum U; := pu; and the density p (continuity equation)
as

oU; Op

—é-t—‘ = A/[; = a—zl— = Ri, (15)
dp  OU;
E - 0.’1:1' ' (16)

where R; is the i-th component of the steady-state
residual and we have used the abbreviation

0
M; = 55 (puin; — 7ij) = pgi. (17)

The convective contribution u;0(pu;)/dz; appearing
in M; could lead to numerical instabilities if the stan-
dard Galerkin formulation is used to discretize the
space. In order to stabilize this effect, we first dis-
cretize (15) in time along the characteristics of the to-
tal derivative 0/0t + u;0/0z; as explained in section
2. This leads to the following equations:

AUP nto,  OP"t%2 At L ORP
b= M9 _ZE . 2, nlh
A =M o " 2 w9
Ap” 3 ann+01
At Oz (19)

where At is the time step size (assumed to be con-
stant for simplicity), the Superscripts denote time step
level, 01, 62,63 € [0,1] and we use the notation f**+° =
Of" T + (1 —0)f, Af™ = f*+1 — f™ for any function
fand 6 € [0,1].

Observe that in (18) the term coming from the dis-
cretization along the characteristics has been treated
explicitly, but the rest are allowed to be treated im-
plicitly. In [7] we described the same algorithm as here
but with 3 = 0, that is, treating explicity the con-
tribution from the viscous and convective terms. The
case 03 > 0 will introduce an important difference, as
will be shown below.

A deeper insight of the implicit treatment of M; can
be achieved by separating its convective and viscous
parts. We define them respectively as

7]
Me,i = ~ s (u;Ui), (20)

0

A/[vi = 5—Tij,
) aij] (21)



so that
M; = Mc,; + My, — pgi.

In order to avoid the need for solving a nonlinear prob-
lem within each time step, we take

ME = — 2 (pUpts), (22)
i
that is, the convective velocity is evaluated at the pre-
vious time step. This approach is used for example in
[19] for incompressible flows.
Let

_ n+62
ATP = AU + 0282

(23)

i

Having introduced this new variable, (18) and (19) can
be written as

AP At ,dRP!

_ n+3 _ =20
o = M; 7 Uk B (24)
A,Dn _ 0 n rrn ap"'+92
At T om <Uf OV - 0BT ) (29
AU AU 9p™t®
At T At Oz; (z6)

Hereafter, we shall refer to Ut := UP 4+ AU as the
fractional momentum.

In principle, the term M; in (24) must be com-
puted using U7, If this is done, (24), (25) and (26)
are exactly equivalent to (18) and (19) for the continu-
ous in space problem that we consider for the moment.
However, the use of U;H‘l in (24) prevents from the pos-
sibility of computing directly the fractional momentum
from this equation. This can be avoided by replacing
JVI[‘+93 by ]\Zfi"+93, which is obtained by computing M;
with f];”’l instead of UJ’.‘+1. This introduces of course
a splitting error.

There is the possibility of eliminating the error com-
ing from the fact that the convective contribution to
M; is computed with the fractional momentum and
not with the momentum itself. Using (22) and (23) it
is found that, up to second order accuracy for the pres-
sure term,

n-+63

o
n+6z __ nrrn
Mo = ~or; (v7UT)
a n rrn a napn
b g (4 ATF) +6:¢ oy <u, aa;,-)
- i) op™
= n.-}-Bg n D )
B + 05 (uJ =) 27)

The last term corrects the splitting error in the convec-
tive fluxes and only that corresponding to the viscous
fluxes will remain.

Ifin (24) M™% is replaced by M3, using the cor-
rection given by (27) or not, we obtain an equation for
the fractional momentum alone, which can be solved.
Once this is done, (25) may be used to compute either

p" Tl if @2 = 0 or p™*! if B > 0. In this last case, the
equation of state is needed to express p"** in terms of
p™ 1. This point is treated in the following section.
Finally, (26) can be used to compute the momen-
tum U]*!. The important point is the substitution
of AU in (25) using (23), all this at the continuous
level. This will lead to a stabilizing pressure dissipation
term in the discrete finite element scheme that allows
to use this scheme for incompressible flows with the
same velocity-pressure finite element interpolation if
the semi-implicit version of the algorithm is employed.

4.2 Fractional momentum equation

Let us obtain now the weak form of (24), (25) and (26).
Considering first (24), let W; be the i-th component
of the test function for the fractional momentum. We
shall compute it in the problem domain 2 and also on
its boundary I' = 09, and therefore I¥; is subject to no
conditions. Multiplying (24) by W;, integrating over Q
and integrating the viscous term and the term coming
for the discretization along the characteristics by parts
we get

/ W, AU 4 = / Wi M2 dQ
Q At Q '

aij Ti 0x;
+ / Wipgi — / OWi ntos 4q 4 / Win;775T% dr
61‘. 1] ¥
Q Q J r

+£/ i(u’m/,-)R? dQ, (28)
Q

—93At/ aVViu?(?p dQ—i—%At/mu;ﬁ’iap dr
Q r

2 Oz

where 7 is the unit outward normal to I' and we have
assumed that R = 0 on I". Observe that the two terms
in the second row correspond to the modification intro-
duced in (27).

If in (28) the viscous stresses defined in (3) are all
computed at n 4+ 63, this equation couples all the com-
ponents of the fractional momentum, that is to say, it is
a system of d coupled scalar equations and d unknowns,
d = 2 or 3 being the number of space dimensions. In
order to avoid this coupling, we evaluate the part of the
viscous stresses that couples the d equations explicitly.
Also, in order to avoid the need for using the density
at n + 63 (which is unknown at the moment of solving
(28)) we also evaluate it explicitly. After doing this, the
viscous stresses are approximated by

Frtos o £ p 03 9P"
Y pr Oz (pr)2 7" Oz
Ouj 2 Qu}
+ 122 <a—$l - § amk 51]> 0 (29)

Boundary conditions expressed in terms of traction
can be (weakly) prescribed in (28). Apart from the pre-
scription of the momentum itself (directly or by impo-
sition of the velocity), we consider the following possi-
bilities of boundary conditions:



a) The whole traction prescribed on I'r: —pn;+n;7i; =
ti (given).

b) Only the pressure component of the traction pre-
scribed on I'p: —pn; = t¥ (given).

c) Free part of the boundary I'r.

Conditions a) and b) are standard, especially a).
However, condition c) is not as clear as the others. The
idea is to leave I'r free, without any prescription nei-
ther on the velocity nor on the traction or part of it.
This approach has been commonly used in compress-
ible flow problems at supersonic outflows, but can be
used as an outflow boundary condition for other types
of flow (see [17]).

The prescription of boundary conditions a) in (28),
taking the pressure at time step n, leads to replace

/ Win; 7579 dT
by

/ Win; 73178 dT + / Wi(ti + p"ni) dT. (30)
r—-Tp Ty

It is observed that boundary integrals have to be eval-
uated if the fractional momentum is to be computed
also on the boundary.

4.3 Continuity equation

Let us consider now (25) and weight it by a test func-

tion Wy,. We have that
Ap™ ou?
/QVV,, AL dQ = —/ W 92 dQ

n+6g
+ 6, / oW, <AU" N ) do
o Oz oz;

_ apn-{-&g
- el/ani AT - A ) dr. (31)
r

i

As a boundary condition, we impose that the normal
component of (26) be also verified on T, a condition
equivalent to impose that the normal component of the
momentum equation (18) be verified on I'. This leads
to

- n+0o
n; <AU,~” At
Oz;

> = TL,AU,” (32)

on the part of the boundary I'c where the test function
for the continuity equation W, doesn’t vanish. Observe
that if §2 > 0 both the pressure and the density appear
n (31). Either of these can be chosen as the variable
for the continuity equation, as will be discussed in the
following section. Thus, I'c is the part of I where either
p or p are free, depending on which variable is used.
Suppose for example that the choice is p. According to
the type of boundary conditions above, we have that

a) OnT'r:p= niTijn; — Nit;.

b) On T'p: p = n;t!.

In both cases, we have a Dirichlet type of bound-
ary condition for the pressure, so that W, = 0 on that
part of I' and I'c =I' — 't — I'p. On the other hand,
AU is also known on the part of the boundary where
the momentum is given. The problem arises on I'p,
that is, for condition c) stated above. In this case, nei-
ther W, = 0 nor AU[* is known. If (32) is used in
the boundary integral of (31), we obtain an equation
that involves U™, which is not yet known. Therefore,
this equation becomes coupled with the weak form of
(26) discussed next. In order to avoid this coupling,
we take n; AU[* as 0. For transient calculations, if the
normal component of the momentum varies on I'r this
will be an approximation of order At. In any case, the
steady-state solution (if reached) will be correct. Re-
call that this approximation is needed only when I'r is
not empty, that is, when the non-standard boundary
condition c) is used.

Let I'p be the part of I' where the momentum is
known. Using (32) and the approximation just de-
scribed, (31) can be written as

/W,,Alft dQ_—/Wp%ZI o

n—+6o
+ 6 / £y (AU" N ) aQ
Q E)a:,- a:L‘i

- 91/ I/VpniAUin dr. (33)
T'p

This is the weak form of the continuity equation that
we use, either if the unknown is the pressure or the
density. In the second case, the pressure may be con-
sidered known where the density is given by using the
equation of state and a guess for the temperature, if
required.

4.4 Momentum equation
Finally, for (26) we have that

/Wl B dQ—/WAU 0
Q A Q

A
n+68s
= / w222 a0, (34)
Q 8z,-

where W; is the i-th component of the test function. In
this equation all the components of the momentum can
be prescribed. This is possible due to the fact that the
fractional momentum has been computed precisely by

imposing that (26) be also satisfied on the boundary.
In summary, the equations that we have now are
(28), (31) and (34), and the boundary conditions that
have been introduced are the traction conditions and
(32), that can be considered as the normal component
of the momentum equations. Moreover, since the frac-
tional momentum is also computed on the boundary,
all the components of the momentum itself can be pre-
scribed on it. However, the momentum is usually not




directly fixed for compressible flows, but instead the
velocity is given as boundary condition. We use the
common approach of taking the momentum as pre-
scribed using the given velocity values and the density
computed in the current time step. This prescription
is performed at the end of this step.

4.5 Energy equation

Once (28), (31) and (34) are solved, we have the mo-
mentum and either the pressure or the density at the
current time step. It remains to compute the total en-
ergy. For that, one can solve explicitly or implicitly the
last scalar equation in the vector equation (2). To sim-
plify the exposition, we use here the former option with
a discretization along the characteristics, which leads
to

AE™ . At ,ORE
At —RE_—Q—uk oz’

where Rg is defined as

(35)

0 oT
Rp := _6_1‘,' ['u.,-(E +p) - ka—xz - Tij’u.j] .
Weighting this equation by a test function Wg, inte-
grating the diffusion and heat production terms by
parts, setting Rg = 0 on the boundary and prescribing
the total heat flux (from production and from conduc-
tion) to H on a part of the boundary I'u we get

/VVEAE dQ =
a At
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On I' — 'y we assume that Wg = 0, that is, the en-
ergy is known there. As for the momentum, the total
energy is not normally prescribed, but instead of this
the temperature is given. In this case, we prescribe the
total energy using the values already known of velocity
and density and the prescribed temperatures.

If the solution of the flow equations has no shocks,
instead of the energy equation written in conservation
form one can solve the heat equation

B_T_R -——u‘6T+1 B(BT)
ot T T TMag Cup 0z; \ Oz
1 Ou;
+ md’i_ja—zj. (37)

Usually, this equation is written with the heat capacity
Cyp multiplying the temporal derivative of the temper-
ature. However, this would prevent the possibility of

using a constant diagonal approximation to the mass
matrix (via nodal numerical quadrature, for example)
in the case of variable densities.

If an explicit time approximation along the charac-
teristics is used for (37) we get

T AT o At ,O0R%
At = d = 7uk oz

(38)

Let us weight now this equation by a test function Wr,
integrate the diffusion term by parts, set Rt = 0 on
the boundary and prescribe the conduction heat flux
to H on a part of the boundary I'y. The result is

AT™
/QPVTTt dQ =
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The temperature is assumed to be known on I" — I'y.

4.6 Time increment calculation

Based on stability criteria, the time increment can
be calculated for Convection-diffusion-reaction (CDR)
equations [4, 10]. Then, to be used here, Navier-Stokes
terms must be identified with the analogue terms in a
CDR equation. In this case, for the whole set of equa-
tions we use the same time increment. This is evaluated
for each node using the following:

FTI
At= e o (40)

where At. is the “crosswind” time increment, calcu-
lated using the diffusive limit for the 1-D CDR equa-
tion and At, is the “upwind” one, calculated using
the general form of for the 1-D CDR equation, which
depends on a ratio between diffusion and convection
(through Péclet or Reynolds number). FT! is a factor
that for explicit advance can be considered as a safety
factor, always lower than 1.0. For implicit treatment
this factor can be larger than 1.0. In the numerical
diffusion which comes from Characteristic - Galerkin
method the At which appears divided by two is evalu-
ated using F™' = 1.0 in all cases.



5 DISCRETE PROBLEM AND
SOLUTION STRATEGIES

With the weak form of the differential equations al-
ready established, we can proceed to discretize the
space. We do this using the standard Galerkin method,
since the term coming from the discretization in time
along the characteristics will stabilize the convective
terms. This means that we take all the test functions
Wi, Wy, Wi, Wg and Wt equal to the shape functions.
Also, some additional shock-capturing viscosity will be
needed in the presence of discontinuities or sharp gra-
dients of the solution, as explained in Section 3.2.

Let us consider first the equations for the fractional
momentum (28) and for the end-of-step momentum
(34). For the sake of simplicity, we take 83 = 0 in what
follows. Once the spatial discretization has been per-
formed, the discrete version of these equations can be
written in matrix form, the structure of which is

CAT" o
—  =F,-KU 41
M i 1 , (41)
=N
AUg AU, A
=M -G 24, (42
M,—— ~ 0=A; 0P + Fy. (42)

Vectors of nodal unknowns have been indicated by a
boldface character and an overbar. Matrices M, K and
G are the standard mass matrix for vector fields, the
matrix coming from the viscous and convective terms
in the equation for the fractional momentum and the
matrix coming from the gradient operator, respectively.
Subscript naught in the previous equations refers to not
prescribed degrees of freedom for the momentum (in
the sense indicated above), and F'» contains precisely

the contribution from AU and ATU™ corresponding to
the prescribed degrees of freedom for the latter. Here
and below we use F' with subscripts to denote a vector
which is known at the moment of solving a particular
equation.

The discrete version of the energy equation written
in conservation form (36) or the heat equation (39) can
be solved at the beginning or at the end of the time
step. These equations have the structure

e alll —n
Aﬂit = FT and MS,OAAEt
where M is the mass matrix for scalar unknowns and
M its modification to account for Dirichlet bound-
ary conditions.

It remains to write the discrete version of the con-
tinuity equation (33). We consider different cases ac-
cording to the type of flow being analyzed. We will see
that it is useful to introduce the matrices M, and Lg,
of components

Mo = Fg, (43)

]\/Ia,]=/aNN dqQ,
ON; 6NJ
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where IV; is the shape function associated to the i-th
node of the finite element mesh with which we assume

that all the variables are interpolated and o and g are
functions that depend on the type of flow.

5.1 Incompressible and slightly
compressible flows

These two types of flows can be defined by the relation
Ap" = alAp”, (44)
with a = 0 for fully incompressible flows and a = 1/c?

(a positive constant) for slightly compressible flows. In
this case, (33) can be written as

n+6qo
/ oW, 22 4q 1 6, At / IWp 0P ™ 45—
o At
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Once the finite element discretization of this equation
has been done, the matrix form of the discrete problem
is

M, —— ap” L 01 AtLep" 2 = Fq, (46)
At

with o the parameter appearing in (44) and 3 =1 in

this case. In (46) we have introduced

Fc:=—-DU" +6,G*'AU" + Fp,

where F'p is the vector coming from the last term in
(45) that is, from the boundary values of the momen-
tum, and D is the matrix coming from the divergence
operator. Dirichlet boundary conditions for the pres-
sure are assumed to be included in (46).

Of special interest is the case of fully incompressible
flows, that is, @ = 0. It is well known that in this case
the velocity and pressure finite element interpolations
must satisfy the Babuska-Brezzi conditions when the
classical U-p approach is used. This is not the case
using the type of fractional step methods that we are
considering. We justify this in the following. To sim-
plify the discussion, we assume that U is prescribed to
zero on the whole boundary T'.

Omitting the subscript 8 for a moment (it is 1), the
matrix form of (41), (42) and (46) can be written as

AU, —n
M, At" = F] - KUy, (47)
0.AtLp™ %2 = —DoUg +6,GYAT, + F*, (48)
- =n
AUQ AUO —n+6
M = - ’
0 M, R Gop + F'5. (49)

Now subscript naught refers to de§rees of freedom of in-
terior nodes. Matrices Do and Gy are the submatrices
of D and G* correspondmg to these nodes. They are
related by Do = —GY§. Vectors F; and F* have been



introduced to take into account the boundary values of
the fractional momentum.
From (49) we get that

AU, = AUG + AtMG Gop™ % — AtM ;' Fs,

and using this in (47) and (48) we obtain

MoAg + KoUG + Gop™t?2 = F} + Fy,

DoUG*" + 614t (L — GEM'Go) p"H% = Fg,
(50)

with
Fg:=F" -0 AtGo My ' F.

Clearly, we must have §; > 0 and 62 > 0 in order to
have a solvable problem.

The important point in (50) is the presence of the
matrix B := L — G§M ;' Gy, that can be understood
as the difference between two discrete Laplacian oper-
ators. This matrix provides additional stability and, in
particular, allows to use equal velocity pressure finite
element interpolations in the incompressible case, as it
had been noticed for example in [18] and [15]. This is so
because this matrix is positive semidefinite. The proof
of this fact can be found in [7].

5.2 Barotropic flows

Let us consider now the flow of compressible barotro-
pic fluids, that is to say, fluids for which there is an
equation of state that involves only the density and the
pressure, and not the temperature. In general, we write
this equation as p = p(p), but we will particularize it
to the case

b= AP’Y) (51)
where A and +, the adiabatic ezponent, are physical
constants. This situation is found for example in the
case of isentropic flow of perfect gases.

In the case of incompressible or slightly compress-
ible flows we have formulated the continuity equation
in terms of the pressure only. However, now we have the
possibility of choosing either the density or the pres-
sure as unknown of the problem. Let us start with the
former option:

Density as variable If we choose to write the
continuity equation (33) using the density we have to
express the pressure gradient in terms of the density.
For this we use the approximation

- (dp>

The approximation relies on the fact that we evaluate
the derivative of p with respect to p (the square of the
speed of sound) at n instead of at n + 8. This may be
thought of as a linearization of the problem.

apn+02
8z,-

apn+02

yp" 8p"to
(3:1:l - ’

" Oz

(52)
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Using (52) in (33), it is found that the discrete con-
tinuity equation can be written in this case as:

YA N
At

now with @ = 1 and 8 = vp™/p™. Observe that this
equation has the same structure as (46) but with the

density being the unknown instead of the pressure.

= Fqg, (53)

Pressure as variable If instead of using the den-
sity we use the pressure, the approximation that we

employ is

which is of order O((Ap )

ey

and the discrete continuity equation can now be writ-
ten again as

). This approximation leads

Ap™
At

pTI Apn.
T A

Ap™
At

Ap"
At

that is, exactly as (46), but now with o« = p™/(yp")
and 8 = 1.

For this type of flows, unlike the incompressible case,
the continuity equation (53) or (54) can be solved ex-
plicitly (62 = 0) also. The fully explicit form of the al-
gorithm allows very fast calculations at each time step,
for matrix inversions are avoided. On the other hand,
smaller time increments are to be used which leads to
a poorer convergence rate to stationary states.

M, + 6, AtLp" 2 = Fo, (54)

5.3 Perfect gases

In this case the equation of state involves not only the
pressure and the density, but also the temperature.
This equation is (1). The appearence of the temper-
ature in it complicates a little the treatment of the
continuity equation. As before, we may use either the
density or the pressure as variables.

Density as variable Again, if §; > 0 we need
to relate the pressure gradient to the density. We have
that

apn+92 apn+92 +6 4o aTn+92
=-—"———RT™""2 TR R
a:l:,‘ a:l:,; * P B aCIJi

Clearly, if #2 = 0 the pressure gradient term is on the
right hand side of the continuity equation, and it is
entirely evaluated in the previous time step explicitly.
But for 62 > 0, if we use directlty this expression in
(33) the continuity equation will be coupled to the en-
ergy (or heat) conservation equation. In order to avoid
this, for the implicit solution of this equation we use
an iterative strategy based on assuming that T2 is
known and then correcting it. There is also another as-
pect that is computationally inconvenient. If we take

(55)



p"*%2 as unknown in the second term of the RHS of
(55) this will lead to a non-symmetric matrix (see (33)).
This can be circumvented if we also assume that p"+%2
is known and then we correct it.

Let then Ty be a guess for T™+% within the time step
under consideration and pg a guess for p”+62. Equation
(55) may be replaced by

apn+52
oxi

The second term in this equation contributes to the
RHS of the discrete continuity equation. If we denote
by F', this contribution, this discrete equation is

A—n

Mo — + 61 AtLep" %2 = Fo + F,.

(56)

with @ = 1 and 8 = RTg. This equation is similar
to (53). Apart from the coefficients o and (3, the only
difference is the term F',, which comes from the spatial
derivative of the temperature.

Pressure as variable As for the case of barotro-
pic flows, we may also use the pressure as the unknown
of the continuity equation. For that we only need to use
the equation of state (1), from which we have

pn+1
= RTT

n+1
p

(57)

As in the previous case, we need to guess the value of

T™*! by T in order to uncouple the resulting conti-

nuity equation and the energy equation. We may then
Ap" " _ P

write
~ &L, " [RTg N RT"] '
The bracketed term term contributes to the RHS of

the discrete continuity equation with a vector F'p. This
equation can be written as

n

Ap"

AP | 0 At = Fo + F,,

Mo
At

(58)

with @ = 1/(RTg) and 8 = 1. Again, this equation has
the same structure as (54) with a modification of the
RHS due to the variation (now in time) of the temper-
ature.

From numerical experiments we have found that this
approach doesn’t work well in the presence of strong
shocks, in the sense that we haven’t been able to obtain
a converged steady state solution in these cases. We
attribute this to the appearence of the temperature
as a denominator in the function c. This makes the
coefficients of M, difficult to evaluate numerically and
with possibly high variations from one time step to the
other in the vicinity of shocks.

For the case 62 = 0, in general compressible cases,
the algorithm scheme is:

1. Solve for the fractional momentum (41).
2. Advance the rest of the variables, all at a time.
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Step 2 is different for barotropic flow because no
energy or heat equation is needed. Besides, the fully
explicit algorithm is not correct for incompressible flow.

On the other hand 0> > 0 leads to a more com-
plex although more general scheme. If we use either the
pressure or the density as unknown, within each time
step we need an iterative scheme to correct the tem-
perature that has been guessed. This iterative scheme
is:

Solve the energy equation or the heat equation (43).
Solve for the fractional momentum (41).

Guess a temperature Tj.

. Solve the continuity equation (58) for p"** (or (56)
for p"T1).

Obtain p"*! from the equation of state (57) (or
p"t1, if p"*! has been used in 4).

Solve for the end-of-step momentum (42).

Correct T, using T and pg using p™ 1, if needed.
Check convergence. If-not, go to 4.

00 O =

% N

In the case of barotropic or incompressible flow at
constant temperature, only steps 2, 4 and 5 are to be
done in this order. Let us make some remarks about
this algorithm. The first concerns the use of the heat
equation in step 1. If this is done, we already have
T+ and therefore there is no need to iterate at all.
However, we have found that this approach may yield
wrong results in the presence of shocks, with a wrong
location for them and/or without satisfying the jump
conditions. It is well known that in these situations
it is necessary to use the energy equation written in
conservation form. By doing this, after step 1 we have
E™*!. A natural way to compute Ty is to use this and
the density and velocity of the previous time step.

There is the possibility of not checking convergence,
that is to say, take Tz computed as indicated before as
T™*! in the continuity equation and also pg as p"*! in
the vector F', if the density is used as unknown. This
is an approximation of order O(At) that works well if
only the steady-state is of interest.

The steady-state is reached slightly faster and time
steps slightly larger can be used if a couple of itera-
tions of the previous scheme are performed. We have
found almost no difference neither in the numerical re-
sults nor in the convergence behavior if more than two
iterations are done.

Again, if 2 = 0 and the explicit scheme is used,
smaller time steps are allowed and convergence rates
to steady states can be worsened. However, due to the
smaller amount of arithmetic operations per time step
this is the best option for compressible flow, unless
more terms are implicitly treated in the equations (viz.
convective or diffusive terms, using 63 > 0).

5.4 General expression of the
continuity equation

For all the type of flows considered we have written
the continuity equation in a very similar way. Using



the pressure as variable the general form is
Ap™

“ At

with 4 =1 and

M + 61AtLap" % = Fy,

0 for incompressible flows

- for slightly compressible flows
&= ;% for barotropic flows

RLTg for perfect gases

and Fg = F¢, except in the case of perfect gases, for
which Fg = Fg + Fp.

The density can be used as variable only for baro-
tropic fluids and perfect gases. In this case the discrete
continuity equation is

MuA—p + 91AtLﬁi)n+82 = Fle
At
now with o =1 and
B= 1’%" for barotropic flows
RT; for perfect gases

and F'g = F¢ for barotropic fluids and Fg = Fc+F,
for perfect gases.

In all the cases, the matrix of the algebraic system
of equations to be solved is symmetric and positive-
definite (for incompressible confined flows a pressure
needs to be specified). We use the conjugate gradient
method to solve it. In general, very few iterations are
needed to converge, since the unknown at the previous
time step is a good initial guess for its value at the
current one.

6 NUMERICAL EXAMPLES

In this section some numerical results are shown. These
few examples are presented in order to show the cor-
rect behavior of the algorithm under different regimes
of flow. More examples can be seen in [21, 22, 23, 7].
Even though some of these examples are very simple,
we have considered convenient to include them, since
the algorithm presented herein has several original fea-
tures.

6.1 Incompressible flows

In these two examples no volume forces are considered
and the problems are solved keeping the temperature
constant in all the domain. Parameters 8; and 6, are
fixed to one in both cases, whereas 63 varies according
to the case analyzed.

6.1.1 Inviscid flow passing a wing profile

In this example inviscid flow passing a NACA 0012 air-
foil, placed at an attack angle of 5° is modeled. It is well
known (see, for instance, [11]) that although no condi-
tion is imposed in the circulation around the airfoil (the
so called Kutta condition) the final stationary solution
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Figure 2. NACA 0012 profile. Detail of the mesh

around stagnation point.

reached is that corresponding to the viscous problem,
viz. with the downstream stagnation point at the very
trailing edge. This fact seems to violate Kelvin’s theo-
rem, because if the initial condition is circulation free
then if no diffusion is present, the final stationary state
must be also circulation free. However, this is not the
case, and a circulation which is different from zero ap-
pears around the airfoil. The mechanism that triggers
this process is the artificial diffusion added by the nu-
merical method, which in turn is supposed to be small.
Therefore, the convergence rate to the final state could
be very poor unless the equations are treated implicitly.
For that reason, this is a good problem for testing the
behaviour and possible advantages of the implicit form
of the scheme. As no energy equation must be solved,
time factors F™' (see (40)) much larger than 1.0 can
be used improving the convergence to the steady state.

The 2-D domain is discretized using a mesh made of
15075 P1 elements (7838 nodal points) slightly refined
from the exterior, far from the wing, to the profile itself
(fig. 2). The velocity is fixed to 1.0 at the inflow and
the pressure to 0.0 at the outflow. Normal component
of the velocity is prescribed to 0.0 at the airfoil and at
the upper and lower boundaries.

Parameters 02 and 63 are in this case 1.0 (both frac-
tional momentum and pressure equations are solved
implicitly). If this is done, the time factor F'! can be
between two and three orders of magnitude greater
than in the case 02 1.0 and 63 0.0. Although
an additional linear system of equations needs to be
solved per time step, the time step size may be taken
much larger, making the total CPU time needed much
smaller. This fact strongly favours the use of an im-
plicit method for solving this equation in most of the
types of flow. The stationary state reached is shown in
fig. 3.

As time increments are here so large, our suggestion
for correcting the splitting error (see (27) and (28))



Figure 3. NACA 0012 profile. Pressure contours around

airfoil.

is also tested: fig. 4 and fig. 5 show the difference in
pressure level contours around the stagnation point ei-
ther if it is taken into account or not. The analytical
value for the pressure at the stagnation point is 0.5. If
the correction is done, the value is 0.515. If not, the
pressure value reached there is 0.309 being much more
diffusive due to the splitting error. This becomes more
apparent when larger F''! are used, due to the fact that
this error is O(At).

Figure 4. NACA 0012 profile. Pressure contours around
stagnation point. Splitting error of stationary state
corrected.
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Figure 5. NACA 0012 profile. Pressure contours around
stagnation point. Splitting error of stationary state
produces an overdiffusive result.

6.1.2 Flow passing a cylinder at Re=100

In this case the mesh is made of 2000 Q1 elements (2100
nodal points). An inlet horizontal velocity of norm 1 is
prescribed, whereas the outlet is left free. There, pres-
sure is fixed to n;7i;n;. The no slip condition is pre-
scribed on the cylinder. At this Reynolds number, the
stationary state is oscillatory: a trail of vortexes is left
behind the cylinder. The onset of the oscillatory be-
haviour was produced by a small initial perturbation
on the velocity. Fully developed flow is shown in fig. 6.

In this problem we have used 63 = 0, i.e. the semi-
implicit form of the algorithm, which has no splitting
€error.

The period obtained is around 5.7, which is very
close to that obtained in [19]. The period can be evalu-
ated in many ways: through the evolution of a variable
at a point behind the cylinder or the net force over it,
or through the evolution of the error norm, etc. In the
example shown here, one period of time is covered in
approximately 270 time steps.

6.2 Compressible inviscid flow passing
a cylinder

In this example, flow at Mach 3 reaches a cylinder and

a steady shock is formed upstream of it. At the inflow,

velocity, density and temperature are prescribed, for it

is a supersonic inlet. The normal velocity on the cylin-

der is fixed to zero. The domain is discretized using a

uniform mesh of 5351 P1 elements (2772 nodal points)
Pressure coefficient

=2(p — Pret)
pvgef '

where reference values are those of the inflow, and
Mach number level contours are shown in fig. 7. Also

P =



Figure 6. Flow passing a cylinder, Re=100. Streamlines

and pressure contours.

their profile along a horizontal cut through the mid
point of the domain is shown in fig. 8. It can be seen
in this last graph that at the stagnation point (which
correspond to = coordinate 3.0) the Mach number is
slightly larger than zero, being the reason for that both
a non-symmetric mesh and the interpolating procedure
of the variables along the cut.

6.3 Compressible viscous flow over a
flat plate

The supersonic flow over a plate (Carter’s Flat Plate
Problem) develops many different features that can ap-
pear when solving the complete Navier-Stokes equa-
tions, like boundary layers and shocks, and the inter-
action between them.

The Mach number at the inflow is Mo, = 3.0. The
viscosity p depends on the temperature according to
Sutherland’s law:

_0.0906T*
K= T70.0001406

Prandtl number (Pr = pCp/k) is in this case 0.72,
where Cp = vC, is the specific heat at constant pres-
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Figure 7. Supersoninc flow passing a cylinder, Mach 3.
Left: pressure coefficient. Right: Mach number.

sure, C, = 715 and y = 1.4. The state law is that of
an ideal gas.

The domain is divided using a uniform mesh of 112 x
64 (7168) Q1 elements, corresponding to 7345 nodal
points. If the coordinates origin is at the left bottom
corner, the domain goes from 0.0 to 0.8 vertically and
from 0.0 to 1.4 horizontally. Density, temperature and
velocity are prescribed at the inflow, because this inlet
is supersonic. The values prescribed at the inflow are
1.0 and 2.8 x 10™* for the first two and (1.0;0.0) for
the horizontal and vertical components of the velocity.
The non-slip condition is imposed at the floor of the
plate, which starts at z = 0.25.

The stagnation temperature is calculated according
to:

v-—1

Tstag =Tw (1 + D)

M),

which is the prescription of this variable along the
plate. No prescriptions are made at the outflow. This
point must be remarked, because most of the outlet
is subsonic, eventually requiring a prescription on the
density. Nevertheless, the only prescribed node of the
outflow is that of the right bottom corner which is con-
sidered belonging to the plate, with its boundary con-
ditions on temperature and velocity.

In fig. 9, fig. 10, fig. 11 and fig. 12 the results ob-
tained for this example are shown. Note the sharpness
of the shock and the gradual change of the variables
along the boundary layer. In fig. 11 and fig. 12 a com-
parison with the original results of Carter (as appearing
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Figure 8. Supersoninc flow passing a cylinder, Mach 3.
Top: Mach number. Bottom: pressure coefficient. The cut
is done horizontally at half of domain, normal to the
shock.

in (8]) is made, showing a good agreement with them.
These figures correspond to the profiles of some vari-
ables along a cut at z = 1.25. Density, pressure and
temperature are normalized using their inflow values.

For the velocity, density and temperature, the only
and slight difference is in the very maximum value at
the shock. Carter’s pressure profile is not shown be-
cause it presents some oscillations. In this problem,
shock capturing diffusion is artificially put according
to section 3.2. It is activated for all the equations. The
algorithm works equally well for both the strong and
low compression regions of the domain, viz. the shock
and the boundary layer respectively.

7 CONCLUSIONS

In this paper we have presented an overview of the
splitting technique that we have developed for both
compressible and incompressible flow problems. We
have also extended it to the case in which the frac-
tional momentum equation is treated implicitly and
discussed some implementation issues related to the
implicit treatment of the viscous and convective terms.
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Figure 9. Flow over a flat plate. Contour levels. Top:
density. Bottom: pressure.

Besides the split of the momentum equation, the
basic ingredients of the numerical formulation are the
use of an explicit version of the Characteristic-Galerkin
scheme together with the introduction of a nonlinear
shock capturing diffusion for each scalar equation de-
pending on the spatial residual.

Numerical examples have shown that these tech-
niques are effective to solve convection dominated
flows. Shocks have been reproduced with their correct
strength and without local oscillations.

Two important aspects of the model presented are
the treatment of boundary conditions and the correc-
tion of the splitting error coming from the convective
term when it is treated implicitly. Both can be ap-
plied to incompressible cases as well, thus improving
the original fractional step method.

From the numerical examples presented it can be
concluded that the formulation proposed here works
well in very different flow regimes, compressible and
incompressible, viscous and inviscid.
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Figure 10. Flow over a flat plate. Contour levels.

144.

Top:
temperature. Bottom: Mach number.
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