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Summary

A general methodology for deriving thin plate bending elements with a single
degree of freedom per node is presented. The formulation is based on the combi-
nation of a standard C| finite element interpolation for the deflection field with
an independent approximation of the curvatures which are expressed in terms of
the deflection gradient along the sides using a finite volume-like approach. The
formulation is particularized for the simplest element of the family, i.e. the three
node triangle with three degrees of freedom. The potential of the new element is
shown through different examples of application.

INTRODUCTION

This paper deals with the development of thin plate bending finite elements
using only out-of-plane translational nodal degrees of freedom. Indeed, these el-
ements could be very advantageous over more traditional and complex plate el-
ements, especially in- the field of large size nonlinear problems in statics and dy-
namics.

The idea of using the deflection as the only variable for plate bending analysis
is not new and most Finite Difference (FD) procedures are based on this approach
[1], [11]. The obvious difficulties of FD techniques are the treatment of boundary
conditions and the problems for dealing with non-orthogonal or unstructured grids.

Several authors have tried to derive finite elements with the lateral deflection
as the only nodal variable. So far the methods proposed limit their applicability
to triangular element shapes only. Barnes [2] proposed a method for deriving a
three node triangle with 3 nodal degrees of freedom (DOF) based on the compu-
tation of the curvatures in terms of the normal rotations at the mid-side points



determined from the nodal deflections of adjacent elements. This method has been
extended by Hampshire et al. [3] assuming that the elements are hinged together
at their common boundaries, the bending stiffness being represented by torsional
springs resisting the rotations about the hinge lines. More recently, Phaal and
Calladine [4], [5] have proposed a similar class of triangles for plate and flat shell
analysis. The derivation of these elements is based on the concept of “overlapping
hinged bending elements”. The basic idea is to represent the deflection field us-
ing a complete quadratic polynomial defined over the six nodes patch formed by
three elements which can thus be considered as a six node macro-element. This
procedure requires a careful identification of the element patches, and it involves
the inversion of a 3 x 3 matrix for each patch. Also, fictitious external nodes are
needed to impose the boundary conditions at the plate edges.

In this paper an alternative methodology for deriving thin plate bending ele-
ments with a single degree of freedom per node is presented. The formulation is
based on the interpolation of the deflection field inside each element using a C
approximation. An independent assumed curvature field is then chosen and this is
related to the deflection gradient (i.e. the rotations) along the sides using a finite
volume-like approach. Finally, the deflection gradient along the sides is computed
in terms of the nodal deflections of adjacent elements in a straight-forward manner.

The formulation proposed is completely general and it allows to derive thin
plate bending elements with a single degree of freedom per node of triangular and
quadrilateral shapes with different approximations. For the sake of conciseness
only the simplest element of the family, i.e. the three node triangle with three
degrees of freedom will be derived and assessed in detail here.

The layout of the paper is the following. In next section the basic ideas of the
formulation proposed are presented in their general form. Then the formulation
1s particularized to the development of a simple three node triangular element
with only three nodal degrees of freedom. Details of the derivation of the element
stiffness matrix and the load vector, the imposition of boundary conditions and
the evaluation of stress resultants are also given. Finally, the efficiency of the new
element is checked with some examples of application.

BASIC THEORY

Let us consider a plate with the sign criterion for the vertical deflection w and
the rotations 6,0, as shown in Figure 1. We will assume Kirchhoff’s orthogonality
conditions for thin plate analysis to hold, ie.,
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Under these conditions the curvature field can be expressed as [11]
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Figure 1 Sign convenion for the deflection and the rotations in a plate

with the differential operator L defined as
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The constitutive relationship between bending moments and curvatures can
be written as

with
1 v 0
E¢3
D=—>i——|v 1 0 (4)
21— | g L

where E and v are the Young’s modulus and the Poisson’s ratio, respectively. The
sign criterion for bending moments can be seen in Figure 2.
The Principle of Virtual Work (PVW) is written in its simpler form as

| / /A skTmdA = / /A SwqdA (5)

where virtual curvatures éx and virtual deflections éw are related by éx = Léw,
A is the area of the plate and ¢ the intensity of an uniformly distributed vertical
load.

Mixed formulation

The PVW can be rewritten substituting Eq.(3) into Eq.(5) to give

/ /A 5T DrdA = / /A SwqdA (6)



Figure 2 Sign criterion for bending moments and shear forces in a plate element

Eq.(2a) can be written in integral form using the method of weighted residuals

to give
//WT[n—Lw]dA:O (7a)
A
where
Wy 0 0
W=|0 W, 0 (70)
0 0 Ws

with W; being arbitrary weighting functions.
Eq.(7) can be simplified by making

Wi ={ o 1o &

where Ag is an arbitrary subdomain of the plate, and then integrating by parts
the term involving the deflection to give

/ /A i = /P TVwdr (8)

where

ng 0
ny Uz

o
Y } (9)
y
and I's is the boundary of the subdomain A;.
Egs. (6) and (8) are the basis for the finite element discretization presented in
the next section.

Remark 1. The choice of W; leading to Eq.(8) is typical of finite volume
methods (FVM), extensively used in thermal and fluid flow problems [6], [7],



[10].For a recent discussion of the FVM in the context of structural mechanics
see references [8] and [9].

Remark 2. Note that Eq.(8) is satisfied for any patch of area As surrounded
by a boundary T'.

Remark 3. Note also that Eq.(8) involves the computation of the deflection
gradient along the boundary I's of the subdomain considered. This poses some
difficulties when a Cj finite element approximation is used for the deflection,
as this leads to a discontinuous gradient of w across boundaries of adjacent
elements. This problem can be overcome by computing the deflection gradient
in an element boundary as the average of the gradients contributed by the two
elements sharing the boundary. More details of this averaging procedure are
given in the next section.

FINITE ELEMENT DISCRETIZATION

The plate is discretized in a mesh of Cj finite elements in the standard form
[12], [13]. The deflection field is written in terms of the nodal deflections as

n
w =Y Nub; = Nyt (10)
=1
where w; are nodal deflection values, @ = [wy,..., u_)n]T y Ny, is the shape function

of node ¢ and n is the number of nodes in the mesh.
The three curvatures can now be interpolated over the mesh using a Cj con-
tinuous approximation as

p
1=1

where pis the total number of interpolating points in the mesh; &; are the curvature
values at the i-th interpolating point; N, is the curvature interpolating function
for point ¢; I3 is the 3 x 3 unit matrix and

Ny = [NyIs,... . Ny ] 5 R=[&],...&0)T (12)

Substitution of Eqs. (10) and (11) in Eq. (8) gives

[ [ wan]a=[[ 1o =1 "

where A; and I'; are respectively the area and the boundary corresponding to the
“domain” associated with the i-th curvature interpolating point (see Remark 3).
Eq.(13) can be written in matrix form as

Pk = Ho (14)



where P and H are 3p x 3p and 3p X n matrices respectively, given by

By = / /A Ny, T3d0 (15a)

H;; = /I: T(Vij)dF (150)

1

Eq.(14) allows to obtain the discrete curvature variables in terms of the nodal
deflections as

=P 'Ho (16)
Substituting Eq.(16) into Eq.(11) yields
x =B (17)
where the “strain matrix” B is given by
B=N,P!H (18)

A similar procedure can be followed to obtain the relationship between virtual
curvatures and virtual deflections as

bk = Béw (19)

where B coincides with that of Eq. (18).
Substituting Eqs.(10), (17) and (19) into Eq.(6) allows to derive the global

matrix equilibrium equations for the plate in the standard form
Kw=f (20)

where the stiffness matrix and the equivalent nodal force vector for the whole mesh
are given by

K= / /A BTDBd4 (21a)

fz//ANquA (210)

Remark 4. There are multiple options to define the area A4; and the boundary
I'; of the “domain” associated to each curvature interpolating point, and here
again the finite volume methodology can be used [8], [9]. Figure 3 shows
some alternatives based on the assumption that p = =, i.e, the curvature
interpolating points coincide with the nodes and thus NV, = Ny;. Note that
in the so-called “vertex centered” approach the computation of the deflection




gradients along interelemental sides requires the adequate averaging of the
gradients contributed from the two element sharing the side, as mentioned in
Remark 2. This aspect will be further detailed later.

Remark 5. The fields w and & must satisfy certain compatibility conditions
which ensure the existence of the solution for the mixed problem [12]. These
conditions can be summarized as

ng > N (22)
where nz and ng denote the number of available degrees of freedom for the

curvature and deflection fields (after discounting the prescribed values). The
proof of this condition can be seen in the Appendix.

Cell centered Vertex centered

Figure 3 Cell centered and vertex centered domains surrounding a node 1

DISCONTINUOUS APPROXIMATION OF THE CURVATURES FIELD

The procedure presented above requires the inversion of the global matrix P
and this can be expensive for practical purposes. A way to overcome this difficulty
is to define a discontinuous approximation of the curvatures field. Thus Eq.(11)
can be written individually for each element as

9 =3 NGRS - NEPRE (23)
3=1

where n. is the number of curvature interpolating points within element e; N.gf)

are discontinuous shape functions and all other terms of Eq.(23) have the same

meaning as in Eq.(11), but now they are referred to an individual element.
Eq.(8) can now be particularized for an individual element to give



/ / (€A = / TVw(®)dr (24)
ASC) PS:)

where Age) and I‘Ee) are now the area and the boundary of the domain associated
to the ¢-th curvature interpolating point within the element. Some examples of
typical “vertex-centered domains” for piece-wise constant and linear discontinuous
curvature interpolations in triangular and quadrilateral elements are shown in

Figure 4.
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Figure 4 Typical vertex-centered domain for piece-wise constant and linear
discontinuous curvatures interpolations over triangles and rectangles

Eq.(24) requires necessarily the computation of the deflection gradient along
the element sides. This poses some difficulties due to the discontinuous nature
of the term Vw between elements. As mentioned earlier, a simple method to
overcome this problem is to compute the deflection gradient at a point of an
element side as the average value of the gradients contributed to the point from
the two elements sharing that particular side. Thus, the computation of the r.h.s.
of Eq.24) for each element involves necessarily the nodes included in the patch
formed by this element and all adjacent elements. Figure 5 shows typical patches
associated to linear triangular and bilinear quadrilateral elements with a single
curvature interpolating point using a vertex centered type approach.

Substituting Egs.(10) and (23) into Eq.(24) allows to relate the element cur-
vature variables to the nodal deflections of the patch associated to each element
as

pe)g(e) — ple)4(e) | (25)



Figure 5 Typical patches associated to linear triangular and bilinear quadri-
lateral elements with a single curvature interpolating point (vertex-
centered approach)

where a(¢) = [Wq,9,... 'u_)np]T and np is the number of nodes involved in the patch
formed by element e and all adjacent elements sharing the sides of this element.
Matrices P(¢) and H(®) are obtained as

Pg?):/ [ lsdd =1 ne 5 j=1,.,n (26)

HS) = /r(e) T [aVN&? +,3VN1S,§)] ar i=1,...,m¢ 3 j=1,...,mp (27)
where o = 1 and 8 = 0 for the part of the domain boundary I‘Ee) located within
(e)

1

the element, and o = 8 = % for the part of T'
element e and an adjacent element f.

In Eq.(27) ng,ej) denotes, as usual, the shape function of node j defined locally
over element e.

coinciding with the side shared by

Remark 6. Note that if a single curvature interpolating point at the element
mid-point is used, the domain area and its boundary coincide with the element
area and its boundary, respectively, i.e. Az(e) = A(®) and I‘Ee) = T(e) (see
Figures 3 and 4).

Remark 7. The simple averaging procedure for estimation of the deflection
derivative along the sides could be obviously improved by using more sophisti-
cated derivative approximation procedures. Here the use of special smoothing
techniques [15], derivative recovery methods [16] or diffuse approximation [17]

could prove to be advantageous and they should be explored.

The discontinuous nature of the curvatures field allows to eliminate the element
curvature variables &(¢) in terms of the nodal deflection of the patch from Eq.(25)
as

RO = [PO)] T HEa0 (28)



The curvature matrix for the element is finally obtained substituting Eq. (28)
into Eq.(23) to give

k(€)= N(©) [p(e)] THO ) — 5@, (29)
with
B() = N(©) [P(e)] O (30)

Substituting Eq.(30) into Eq.(6) yields the discretized equilibrium equations
for the element in terms of the “patch” nodal deflection variables a(®) in the
standard form [13] as

K(©4(0) _ g(e) _ gfe) (31)

where q(e) are the equilibrating nodal forces needed for global assembly purposes
only and the stiffness matrix and the equivalent nodal force vector for the element
are given by

K — / / [B<e>]TDB<e>dA (32)
Ale)

f(e):// [N(G)T,o,...,o] qdA (33)
Ale)

The columns of zeros in vector £(€) take into account the effect of the patch
elements adjacent to element e, which obviously should not contribute to the nodal
forces of this element.

The global equilibrium equations are obtained by assembly of the element
contributions in the standard manner [12], [13].

Remark 8. Note that the equilibrium equation (31) for the element involve
the nodal deflection variables of the patch formed by element e and all adjacent
elements sharing the sides of that element. This naturally leads to a wider
bandwidth in the global equations system after assembly than that arising
from the standard finite element method.

The procedure presented is completely general and it allows to derive plate
bending elements with a single degree of freedom per node of quadrilateral and
triangular shapes of any order. To clarify concepts the formulation will be par-
ticularized next to derive the simplest element of the family, i.e., the three node
triangle with only 3 degrees of freedom, which shows a promising behaviour for
plate analysis.



DERIVATION OF A THREE NODE TRIANGULAR PLATE ELE-
MENT WITH 3 DOF

The geometry of the element is shown in Figure 6 , where the patch of elements
surrounding a particular element e with nodes 1, 7, k is shown.

o{w}
x{k}

Figure 6 Patch of three node triangles associated to a vertex-centered domain 1, j, k

The deflection field is linearly interpolated within each element using standard
linear shape functions of the form

- 1 e e e
N = 2A(e)(“§ )48z + o{y) o)
where
o =iy — gy, ) =g~y ) =2y — o, (34b)

and z;,y;, etc. are the coordinates of the element nodes. The superindex (e) is
()

; » etc. since node ¢ can be shared by different elements.
The curvature field within each element is now expressed using a piece-wise

needed in a

constant approximation, i.e. N,gf) = 1 in Eq.(23), which naturally gives from
Eq.(26) ‘

P = 401, (35)

As mentioned earlier, this curvature approximation corresponds to a vertex-
centered approach in which the “domain” surrounding each curvature interpolating
point coincides with that of a single element.

The derivation of matrix H() follows the lines explained in the previous
section. This involves a simple procedure if we first note that the external unit
normal vector to a side ¢j of length l;; (see Figure 5) is given by



1

_ T
n= ]

[yij, —T5 (36a)

with
Yij =% —Y; , Tij =T —Tj (360)
The line integrals along the element sides of some characteristic terms of

Eq.(27) are simply expressed in terms of “patch” variables following the averaging
procedure explained in the previous section. Thus, for side ij we have

Ow o Yid [3@) L 300y (5 . 70)y 7(e) 7(b) n
/lnma_mdr—#[(bz +bi )’(bj +bj ))b abl aO:O] a() (37)
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/I ny 2ar — _"id (@) +&), @ +a§b)),a,(j),a§b),o,o] a® (38

where
(¢) (€)
_(e) — bi _(.e) = Ci t
YOI 24 > 7 )
and
a(e) = [whw.’iawkawl,wm’wn]T (40)

is the nodal deflections vector of the four elements patch corresponding to element
. . . . . a a

e. A similar expression can be obtained for the integral flij (ny% + ng ﬁ) dr.

The derivation of matrix H(®) of Eq.(30) is straight-forward and its explicit form

is given in Table 1.a.

The curvature matrix for the element is obtained using Eq.(30). The simple
curvature approximation chosen for the element allows to write

1

(e) —
B Ale)

H() (41)

The stiffness matrix for the element is then simply obtained (for homogeneous
material properties) as

K — ﬁ [H(C)JT DH() (42)

and the equivalent nodal force for an uniformly distributed load of intensity q is

(e) .
£le) — %[1,1,1,0,0,0]7“ (43)



The global equilibrium equations are assembled in the standard manner from
the element contributions, taking into account that the equation for an individual
element relate the six nodal deflection variables of the corresponding four elements
patch.

Remark 9. An alternative procedure for deriving matrix H(®) can be based in
the definition of the deflection gradients along a side in terms of the tangential
and normal rotations along that side. Since the tangential rotations are con-

tinuous along the side (i.e. %154|Z] = E'ILW’) only the normal rotations need
ij

to be averaged using the values from the two adjacent elements. For shortness

reasons the 3 DOF plate triangle above derived will be termed hereonwards
BPT (for Basic Plate Triangle) element.

IMPOSITION OF THE BOUNDARY CONDITIONS

The practical application of the plate bending element described above requires
the consideration of the various types of boundary conditions which are usual in
plate bending analysis, that is, free edges, simply supported edges, clamped edges
and fictitious symmetry edges.

A plate bending element which lies along a boundary belongs to a “patch”
where one of the contributing elements is missing (see Figure 7). For the purpose
of derivation let us suppose that the element edge along the boundary is I;;, and
so, element b and node [ are the ones missing in the corresponding patch. In
this situation, a possible expression to compute the deflection gradient along the
boundary side I';; is

Vulp,, = Vw(e)lrij (44)

- In practice this implies making @ =1 and 8 = 0 in Eq.(27) for the part of the
()

line integral over I}’ coinciding with T'y;.

Remark 10. This approximation can be obviously used if more than one
side of the element lies along the boundary of the plate (corner nodes). The
extension to these cases is straight-forward.

Free and simply supported edges

Consequently with the approximation in Eq.(44) the line integrals along the
side I';; of the terms appearing on the right hand side of Eq.(11) will be evaluated
as

Bw 7le) 7le) tle e
/li_%%dr:yij 3,89, 59,0,0,0] ) (45)

Ow _(e) _(e) _(e e
[ w2 =y 49,60, 0,0,0] 0



o{w}

x{k

boundary line

Figure 7 Triangular element lying along a boundary line

instead of using the expressions of Eqgs. (37) and (38).

The derivation of matrix H(¢) for this case is again straight-forward and its
explicit form is given in Table 1.b.

The conditions for a simply supported edge are simply obtained using this
modified H(¢) matrix and constraining the corresponding deflection degrees of

freedom to a zero value. This can be done at the global equations solution level
in the standard fashion [12].

Remark 11. The conditions of zero bending moments and zero equivalent
shear forces along a side (free edge) are natural in this formulation, as it derives

from the PVW [12], [13].

Fictitious symmetry edge

If the fictitious symmetry edge lies along a line parallel to the global y axis
the symmetry condition is simply

ow
70 I, =0 (47)

and the corresponding terms on the right hand side of Eq. (45) have to be zeroed.

This is simply accomplished by setting Ege) = Bg-e) = Egce) = 01n all the terms where
these coefficients appear when evaluating the contribution of side I';j to matrix
H(). The corresponding H(€) matrix can be then easily evaluated and its explicit
form is given in Table 1.c.

If the fictitious symmetry edge lies along a line parallel to the global z axis

then the symmetry condition is
=1 =0 (48)

and this is enforced by making E(-e) = Eg-e) — Egce) = 0 in =l the terms where these

7



coeflicients appear when evaluating the contribution of side TI';; to matrix H(e)
(see for instance Eq. (46)).

Clamped edge

If the boundary edge is clamped the conditions that must be satisfied are

wllp,; =0 (49)
ow
a—TLHFij =0 (50)

where n is the direction normal to the boundary I';;. Condition (49) can be
imposed at equation solution level as in the simply supported case. If this condition
holds, it is also true that

Jw
EHF”‘ =0 (51)

where s is the direction parallel to I';;. Now, considering Eqs.(50) and (51) together
one can simply write

Vuwlp,, = Vo[, =0 (52)

Then it is obvious that the corresponding H(¢) matrix will be constructed as
on Eq.(27), but disregarding the contribution from side I';;. (Its explicit form is
given in Table 1.d.)

EVALUATION OF STRESS RESULTANTS

The constant bending moment distribution within each single DOF triangle is
obtained by the standard expression

m(®) = DB(E) () (53)
where matrix B(®) is given by Eq.(30)

The computation of shear forces is not so straight-forward. The relationship
between shear forces and bending moments is given by

9 9 M,
Q . 0 3 < "
- { Q“’ =1, 2 ¥ My » =Lm (54)
v Iy ]W:cy

The sign criterion for shear forces is shown in Figure 2.



A procedure to evaluate the shear forces is to smooth the discontinuous bending
moment field and then to apply Eq.(54) to the resulting continuous field.

An alternative procedure is to use a similar methodology to that used to ap-
proximate the curvature field. Thus, integrating Eq.(54) over each element domain

gives
// qu:// f,mdA:/ T T mdrl (55)
Ale) Ale) r(e)

Choosm% now a constant interpolation for the shear forces within each element
= Izq( , glves

ale) _ 1 T '
q i /(e)T mdA (56)

Eq.(56) requires the evaluation of the bending moments along the element
sides. This can be done for the discontinuous bending field case by simple averaging
of the corresponding bending moment values contributed by the two adjacents
elements sharing each side.

Obviously, the case of a continuous bending field poses no difficulty and Eq.(56)
can be directly applied to give the shear forces within each element.

EXAMPLES

The efficiency of the BPT element presented is assessed through different ex-
amples of application.

Simply supported square plate under uniform and point loads

The geometry of the plate is shown in Figure 8 where some of the meshes used
for the analysis are shown.

A quarter of the plate has been discretized only for symmetry reasons. Note
that only structured meshes have been used in this case with the two orientations
shown in the Figure 8.

Numerical results for the central deflection, the central bending moment M, =
My and the corner vertical reaction for the uniform load case are shown in Table
2 for meshes of 5 x 5, 10 x 10, 20 x 20, and 30 x 30 BPT elements in a quarter
of plate (for symmetry reasons) and the two different mesh orientations shown in
Figure 8. Good convergence to the theoretical exact values [11] is obtained in all
cases.

Figure 9 shows the convergence plots for the central deflection, the central
bending moment and the corner reaction versus the number of degrees of freedom
involved in each solution. Numerical results obtained by Batoz et al. [14] using
the standard DKT element are also shown for comparison.

The results for the point load case are shown in Table 3 where the convergence
of the central deflection and the corner reaction values is shown again for the two



mesh orientations considered. Good results are also obtained in this case with the
BPT element.

Figure 10 shows the convergence plots for the central deflection and the corner
reaction. The results compare well with those obtained by Batoz et al. [14] using
the DKT element also shown in the same figure.

5X5 10x10 20x20

L. i

Orientation A Orientation B

i i

Figure 8 Square plate. Different meshes used in a quarter of plate for symmetry.
Mesh orientations A and B

Clamped square plate under uniform and point loads

The second example corresponds to the analysis of the same plate of the pre-
vious example with clamped edges.

Numerical results for the central deflection, the central bending moment and
the mid-side moment under uniform load for different meshes are shown in Table
4.

The convergence plots of these values is shown in Figure 11 for the purpose of
comparison with the DKT results for the same problem [14].

Table 5 shows the results for the central deflection and the mid-side moment
for different meshes. The same values are plotted in Figure 12 where results
obtained using the DKT element are also shown [14]. Convergence plots shown
in Figure 12 indicate that the 3 DOF plate triangle proposed is less sensitive to
mesh orientation than the DKT element.



Circular plates under uniform loading

The geometry of the circular plate is shown in Figure 13 together with the

different meshes used.

Numerical results obtained for the simply supported and clamped cases are

shown in Table 6.a and 6.b.

Excellent results are obtained with relatively coarse meshes for both the central
deflections and the central bending moments as it can be seen in these Tables.
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Figure 13 Circular plate. Different meshes used in a quarter of plate for sym-

metry

CONCLUDING REMARKS

A general methodology for deriving thin plate elements with only a transla-
tional degree of freedom has been presented. The methodology can be applied to
derive new single nodal degree of freedom plate elements of triangular and quadri-
lateral shapes with different approximations. The efliciency of the simple 3 DOF
triangle proposed has been shown with different examples of applications. This
element (termed BPT) has a promising future for more complex plate and shell
problems involving dynamics and nonlinear effects.

One of the key issues of the proposed approach lays in the evaluation of the
deflection gradient along the element sides. Indeed other more accurate techniques
than the simple derivative averaging procedure used in this paper could be used to
enhance the element approximation. Among these special finite difference energy
techniques [15], derivative recovery procedures [16] or diffuse element methods
[17] could be effectively combined with the approach proposed in this paper for

enhanced derivative computation leading to improvements in the BPT element

performance.
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APPENDIX

Let us assume the following interpolations for the actual deflection and curva-
tures and their respective virtual fields

W= ijf) ; dw = Nw(ﬁjf) (A1)

Substitution of (A.1) in the equilibrium equation (5) and the weighted form of
the curvature-deflection relationship (2a) (for both the actual and virtual fields)
leads to

/ §RTNTmdQ = / swl NLqd0 (A.2a)

Q Q

[ / W?Nydﬂ] R = / WTL(Nw)dQ| ® (A.2b)
Q L/ Q2 i

[ / WgNdeJ 8k = / WIL(Nw)d| 6w (A.2¢)
Q L/ 2 _

Choosing now W1 = Wy = I3 and integrating by parts the integrals of the
r.h.s. of (A.2b) and (c) leads to

Pk =Hw (A.3a)
Pék = Héw (A3.D)
where P;; = fI‘i I3Ny;dl' and
H,; = j{ T(V Ny, )dT (4.3)
Iy

with T as defined in (9).
Substituting é& from (A.3b) in (A.2a) gives, after elliminating the virtual
displacements,

[ / BTDNde} k= / NLqd0 (4.4)
Q Q2

with
B =N,P~'H (4.5)

Eqs.(A.3a) and (A.4) form a system of equations which can be written in

matrix form as
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where

A= / BTDN,dQ (A.7q)
Q

f= / NZqdQ (A.7b)
Q

Solution of (A.6) will only exist if the following condition is satisfied

Ng = N (A.8)
i.e., the number of K variables is greater than that of available nodal deflections
(after discounting prescribed values).

The proof of (A.8) can be found in [12]. A simple heuristic evidence of (A.8)
can be deduced by noting that ng > ng would simply imply that the curvatures
K can be directly deduced from (A.4) by selecting the appropriate number of rows
of A giving a square matrix. This would obviously lead to multiple options for
obtaining K and to wrong solutions.

Solution of (A.6) can, in fact, be attempted in a two step approach. First the
nodal curvatures are obtained from the first row as

k=P Hw (A.9)

Substitution of (A.9) in the second row gives (noting that P and H are inde-
pendent of the coordinates)

Ko = f (A.10)

where

K=AP 'H (A.11)

It can be easily shown that the form of matrix K given above coincides with

that of Eq.(21a)
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Figure 10 Simple supported square plate under central point load. Convergence plots
of central deflection (1) and corner reaction (2) for the two mesh orientations
A and B shown in Figure 8
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Figure 12 Clamped square plate under point loading. Convergence plots of central
deflection (1) and mid-side bending moment (2) for the two mesh
orientations A and B shown in Figure 8
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SIMPLY SUPPORTED SQUARE PLATE UNIFORM LOAD
CENTRAL DEFLECTION | CENTRAL MOMENT CORNER REACTION
MESH A B A B A B
59X o 0.7925-02 | 0.8076-02 5.4773 5.5416 6.7674 6.4969
10 x 10 0.8272-02 | 0.8307-02 5.7614 5.7651 7.4118 7.0948
20 x 20 | 0.8462-02 | 0.8470-02 5.8773 5.8756 7.7443 7.4369
30 x 30 0.8527-02 | 0.8531-02 5.9138 5.9095 7.8615 7.5634
Exact [11] | 0.8664-02 | 0.8664-02 5.9875 5.9875 8.125 8.125
EFE=2040 v=03 ¢=02 a=50 ¢=5.0

Table 2 Simple supported square plate under uniform loading. Numerical results obtained using the 3 DOF triangle with meshes of two
different orientations A and B (Figure 8)



SIMPLY SUPPORTED SQUARE PLATE UNDER POINT LOAD

CENTRAL DEFLECTION CORNER REACTION
MESH A B A B

5 XD 0.1969-02 0.2012-02 1.0841 1.0136
10 x 10 0.1947-02 0.1961-02 1.1391 1.0852
20 x 20 0.1955-02 0.1959-02 1.1744 1.1281
30 x 30 0.1961-02 0.1963-02 1.1880 1.1435

Exact [11] 0.1979-02 0.1979-02 1.219 1.219

E=20+4+0 v=03 t=02 a=50 P=10.0

Table 3 Simple supported square plate under central point load. Numerical results obtained using
the 3 DOF triangle with meshes of two different orientations A and B (Figure 8)



CLAMPED SQUARE PLATE UNDER UNIFORM LOAD
CENTRAL DEFLECTION | CENTRAL MOMENT CORNER REACTION
MESH A B A B A B
9 XD 0.2965-02 | 0.3099-02 2.8097 2.9665 -5.8427 -6.2811
10 x 10 0.2765-02 | 0.2794-02 2.8550 2.8900 -6.1985 -6.4349
20 x 20 0.2715-02 | 0.2722-02 2.8614 2.8700 -6.3224 -6.4472
30 x 30 0.2705-02 | 0.2709-02 2.8624 2.8663 -6.3561 -6.4427
Exact [11] | 0.2698-02 | 0.2698-02 | 2.8875 2.8875 -6.4125 -6.4125
E=2040 v=03 ¢=02 a=50 ¢=5.0

Table 4 Clamped square plate under uniform load. Numerical results obtained using the 3 DOF triangle with meshes of two different
orientations A and B (Figure 8)



CLAMPED SQUARE PLATE UNDER POINT LOAD
CENTRAL DEFLECTION MIDI-SIDE MOMENT
MESH A B A B

5 X9 0.1091-02 | 0.1149-02 -1.1323 -1.2036
10 x 10 0.9971-03 | 0.1014-03 -1.2112 -1.2523
20 x 20 0.9689-03 | 0.9739-03 -1.2406 -1.2603
30 x 30 0.9629-03 | 0.9654-03 -1.2475 -1.2607

Exact [11] 0.9555-03 | 0.9555-03 -1.257 -1.257

E=20+40 v=03 ¢t=02 a=50 ¢=50 P=10

Table 5 Clamped square plate under point load. Numerical results obtained using the 3

DOF triangle with meshes of two different orientations A and B (Figure 8)

a) SIMPLY SUPPORTED

MESH DOF wo M? M?
1 96 39105.4 5.0186 5.0186
2 341 39518.2 5.1075 5.1075
3 736 39611.5 5.1275 5.1275
Exact [11] 39813.7 5.1562 5.1562

b) CLAMPED

MESH DOF Wo M? M
1 96 9914.84 1.9820 1.9820
2 341 9790.91 2.0147 2.0147
3 736 9768.17 2.0219 2.0219
Exact [11] 9765.62 2.0312 2.0312

E=1092 v=03 t=01 R=5.0 ¢g=1.0

Table 6 Circular plate under uniform loading. Results for a simple supported (a) and
clamped (b) plate '



