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SUMMARY

The purpose of this paper is to study the effect of the bulk modulus in the iterative matrix for
the analysis of quasi-incompressible free surface fluid flows using a mixed Lagrangian finite element
formulation and a partitioned solution scheme. A practical rule to set up the value of a pseudo-bulk
modulus a priori in the tangent bulk stiffness matrix for improving the conditioning of the linear
system of algebraic equations is also given. The efficiency of the proposed strategy is tested in several
problems analyzing the advantage of the modified bulk tangent matrix with regard to the stability of
the pressure field, the convergence rate and the computational speed of the analyses. The technique has
been tested on the FIC/PFEM Lagrangian formulation presented in [19] but it can be easily extended
to other quasi-incompressible stabilized finite element formulations. Copyright c© 2010 John Wiley
& Sons, Ltd.
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1. Introduction

Various approaches have been developed in the last years for approximating fluid flows by
means of a quasi-incompressible material. In practice, they all consider the Navier-Stokes
problem with a modified mass conservation equation where a slight compressibility is added
to the fluid.

In previous works, see for example [7, 24, 30, 34], the fluid compressibility was introduced
by relaxing the incompressibility contraint by means of a penalty parameter α in the following
manner:

εv =
1

α
p (1)
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2 A. FRANCI, E. OÑATE AND J.M. CARBONELL

where εv is the volumetric strain rate and p is the pressure (assumed to be positive in tension).
The classical mass conservation equation for a fully incompressible fluid can be recovered from
Eq.(1) by considering α→∞.

Alternatively, the small compressibility in the fluid can be introduced by considering the
actual bulk modulus of the fluid κ, which gives this operation a physical meaning, [8, 13, 34].
The mass conservation equation is now written as:

εv =
1

κ

∂p

∂t
(2)

where κ = ρc2, being ρ the density and c the speed of sound in the fluid. In this work, the
latter approach is followed.

The success of quasi-incompressible formulations in fluid mechanics relies on their important
advantages from the numerical point of view. The most obvious one is that both Eq.(1) and
Eq.(2) give a direct relation between the two unknown fields of the Navier-Stokes problem, the
velocities and the pressure. This is extremely useful if the problem is solved using a partitioned
scheme because the velocity-pressure relation is crucial for deriving the tangent matrix of the
momentum equations. Furthermore, another important drawback of the fully incompressible
schemes is eluded. In fact, the incompressibility constraint leads to a diagonal block of a
zero matrix in the global matrix system. Consequently, a pivoting procedure is required to
solve numerically this kind of linear system. It is well known that the computational cost
associated to this operation is high and it increases with the number of degrees of freedom of
the problem. The compressibility terms that emanate from Eqs.(1) or (2) fill the diagonal of
the global matrix overcoming these numerical difficulties.

On the other hand, quasi-incompressible schemes insert in the numerical model parameters
that have typically high values and can lead to different numerical instabilities. For example,
large values of the penalty parameter or, equally, physical values of the bulk modulus, can
compromise the quality of the analyses or even prevent the convergence of the solution scheme,
[34]. For this reason, generally, the value of the actual bulk modulus is reduced arbitrarily to
the so-called pseudo bulk modulus. Nevertheless, an excessively small value of the pseudo bulk
modulus changes drastically the meaning of the continuity equation of the original Navier-
Stokes problem; in other words, the incompressibility constraint would not be satisfied at all.
Furthermore, the bulk modulus is proportional to the speed of sound propagating through the
material. Hence, it has to be guaranteed that the order of magnitude of the velocities of the
problem is several times smaller than the velocity of sound in the medium.

In this paper, we present a new numerical solution scheme for nearly incompressible fluids
that has excellent convergence and mass preservation features.

The method is based on using a pseudo-bulk modulus κp in the tangent matrix used for the
iterative solution of the discretized momentum equations written in a Lagrangian form (using
for instance the finite element method (FEM) [34]), while the actual physical value of the bulk
modulus κ is used for the numerical solution of the mass conservation equation.

The pseudo-bulk modulus κp is defined “a priori” as a proportion of the actual bulk modulus
of the fluid (i.e. κp = θκ with 0 < θ < 1). A simple procedure for computing the scaling factor
θ is presented.

The method proposed in this work is an improvement in terms of mass conservation and
overall efficiency of the numerical solution scheme versus other similar methods that use an
arbitrarily defined pseudo-bulk modulus in both the continuity and the mass conservation
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ON THE EFFECT OF THE BULK TANGENT MATRIX IN PARTITIONED SOLUTION SCHEMES 3

equations [26–29].

The method presented can be also related to the so-called Augmented Lagrangian (AL)
procedures for solving the Navier-Stokes equation for incompressible [2, 3, 9, 10, 32] and
weakly compressible [4, 31] flows. A key problem in AL procedures is the definition of the
AL parameter used for modifying the original set of momentum equations and defining the
adequate preconditioning matrix.

In the method here proposed the pseudo-bulk modulus plays the role of the AL parameter in
the momentum equations. On the other hand, the “compressible” form of the mass conservation
matrix is used together with an adequate stabilization procedure based on the Finite Calculus
(FIC) technique [16, 17, 23, 25]. The FIC stabilization method ensures the correctness of the
solution for quasi and fully incompressible situations when equal order interpolation is used
for the velocities and the pressure, as it is the case in this work where a linear interpolation is
used for all variables.

Indeed the procedure for computing the pseudo-bulk modulus in this work can be applied
for estimating the AL parameter for nearly incompressible fluids.

The method has been tested on the analysis of quasi-incompressible fluids using the
stabilized Lagrangian FIC-FEM formulation presented in [19]. In the mentioned work, a
particular class of Lagrangian FEM termed the Particle Finite Element Method (PFEM,
www.cimne.com/pfem) [6, 14, 15, 22] is used. The PFEM treats the mesh nodes as particles
which can freely move and even separate from the main fluid domain representing, for
instance, the effect of water drops. A mesh connects the nodes discretizing the domain
where the governing equations are solved using a stabilized FEM. A linear interpolation is
adopted for both the pressure and velocity fields. This choice does not fullfil the so-called
LBB inf − sup condition [5, 8, 33]. As mentioned above, the required stabilization is provided
by the Finite Calculus (FIC) method [16, 17, 23, 25].

The lay-out of the paper is the following. In the first section the governing equations for
quasi-incompressible Lagrangian fluids are given. The fully discretized form is derived using
finite elements for space and a Newmark scheme for time. Then the FIC-stabilized form [19]
of the problem is introduced into the numerical model. After that, the incremental solution of
the discretized equations is derived. Once the formulation has been described, the effect of the
bulk modulus on the solution scheme is studied. In particular, its effect on the linear solver
convergence, the quality of the solution of the pressure field, the rate of convergence of the
scheme and the mass conservation of the fluid are analyzed. An efficient method to predict
the optimum value of the pseudo bulk modulus is then proposed. The particularization for
fully incomprensible fluids is briefly described. In the last part of the paper some numerical
results for water flows obtained with the method proposed are shown. The good properties of
the numerical scheme in terms of general accuracy and computational efficiency are discussed.

2. Lagrangian formulation for quasi-incompressible fluids

2.1. Governing equations and fully discretized form

The governing equations of the problem are the linear momentum balance equations and the
mass conservation equation for a quasi-incompressible fluid. In the Lagrangian description, the
equations read:
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4 A. FRANCI, E. OÑATE AND J.M. CARBONELL

Linear momentum balance equations

ρ
Dvi
Dt
− ∂σij
∂xj

− bi = 0 , i, j = 1, ns in Ωt × (0, T ) (3)

where vi and bi are the velocity and body force components along the ith Cartesian axis, ρ is
the density of the fluid, ns is the number of space dimensions (i.e. ns = 3 for 3D problems)
and σij are the components of the Cauchy stress tensor.

Mass conservation equation

εv −
1

κ

∂p

∂t
= 0 , in Ωt × (0, T ) (4)

where εv is the volumetric strain rate and κ is the bulk modulus of the fluid.

Boundary conditions

vi − vpi = 0 on Γv (5a)

σijnj − tpi = 0 on Γt (5b)

where vpi and tpi , i = 1, ns are the prescribed velocities and prescribed tractions on the Dirichlet
(Γv) and Neumann (Γt) boundaries, respectively.

The governing equations are discretized in space using linear shape functions for both the
velocity and pressure fields according to the standard Galerkin Finite Element Method (FEM)
[33]. The time discretization is performed using the classical trapezoidal rule [1]. The fully
discretized form of the problem reads:(

2

∆t
Mv + K

)
v̄n+1 + Qp̄n+1 = fn (6a)

1

∆t
Mp (p̄n+1 − p̄n)−QT v̄n+1 = 0 (6b)

where:

fn = fv + Mv

(
2

∆t
v̄n + ˙̄vn

)
(6c)

In the previous equations, the subindices refer to the time step when the variable is computed
and the upper bar denotes the nodal values of the unknowns. For example, p̄n are the nodal
pressures at time tn = n∆t.

All the matrices introduced in (6) are assembled from the element contributions given in
Box 1.
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ON THE EFFECT OF THE BULK TANGENT MATRIX IN PARTITIONED SOLUTION SCHEMES 5

Mvij =

∫
Ωe

ρNT
i NjdΩ , Kij =

∫
Ωe

BT
i DBjdΩ , Qij =

∫
Ωe

BT
i mNjdΩ

Mpij
=

∫
Ωe

1

κ
NiNjdΩ , fvi =

∫
Ωe

NT
i bdΩ +

∫
Γt

NT
i tdΓ

with

Bi =



∂Ni

∂x
0 0

0
∂Ni

∂y
0

0 0
∂Ni

∂z
∂Ni

∂y

∂Ni

∂x
0

∂Ni

∂z
0

∂Ni

∂x

0
∂Ni

∂z

∂Ni

∂y


and Ni =

 Ni 0 0
0 Ni 0
0 0 Ni



where Ni are the linear shape functions

D = µ


4/3 −2/3 −2/3 0 0 0

4/3 −2/3 0 0 0
4/3 0 0 0

2 0 0
Sym. 2 0

2

 , m = [1, 1, 1, 0, 0, 0]T

where µ is the dynamic viscosity of the fluid

Box 1. Element form of the matrices and vectors in Eqs.(6)

2.2. Stabilization procedure using FIC

The interpolation orders of the velocity and pressure fields do not fullfil the so-called
LBB inf − sup condition [5]. Consequently the numerical scheme needs to be stabilized. The
required stabilization is introduced via the Finite Calculus (FIC) technique presented in [19]. In
the mentioned work, a FIC-based stabilized finite element formulation for quasi-incompressible
Lagrangian fluids is presented and successfully applied to the analysis of several free surface
flow problems. The formulation shows excellent mass preservation properties. The details of
this formulation lie outside the objective of this work and can be found in [19]. Basically, the
linear momentum equations do not change while the stabilized mass conservation equation
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6 A. FRANCI, E. OÑATE AND J.M. CARBONELL

reads: ∫
Ω

q

κ

Dp

Dt
dΩ +

∫
Ω

q
τ

c2
D2p

Dt2
dΩ−

∫
Ω

qεvdΩ +

∫
Ω

τ
∂q

∂xi

(
∂

∂xi
(2µεij) +

∂p

∂xi
+ bi

)
dΩ

−
∫

Γt

qτ

[
ρ
DvN
Dt
− 2

hN
(2µεN + p− tN )

]
dΓ = 0

(7)

where index (·)N denotes the normal projection of the variables and τ is the stabilization
parameter given by:

τ =

(
8µ

h2
+

2ρ

δ

)−1

(8)

where h and δ are characteristic distances in space and time, respectively. In practice, h and δ
have the same order of magnitude of the element size and the time step increment, respectively
[19].

The discretized form of the stabilized mass conservation equation reads:(
1

∆t
Mp +

1

∆t2
Mpp + L + Mb

)
p̄n+1 −QT v̄n+1 = gn (9)

where:

gn = fp +
1

∆t
Mpp̄n +

1

∆t
Mpp

(
p̄n

∆t
+ ˙̄pn

)
(10)

All the matrices and the vectors introduced by the stabilization terms are assembled from
the element contributions given in Box 2.

Mppij
=

∫
Ωe

τ

c2
NiNjdΩ , Lij =

∫
Ωe

τ
(
5TNi

)
5NjdΩ , Mbij =

∫
Γt

2τ

hN
NiNjdΓ

fpi
=

∫
Γt

τNi

[
ρ
DvN
Dt

− 2

hN
(2µεN − tN )

]
dΓ−

∫
Ωe

τ5TNibdΩ

Box 2. Element form of the stabilization matrices and vectors in Eqs.(9) and (10).

2.3. Linearization of the linear momentum equations and incremental solution

The quasi-incompressible form of the mass conservation equation (2) is useful for the
linearization of the linear momentum equations as it yields a direct relation between the
pressure increments and the velocities. In this way, it is easy to split the unknowns and solve
the global system by means of a partitioned and incremental scheme. The iterative matrix for
solving the momentum residual vector can be referred to the nodal velocities only, while the
nodal pressures appear in the momentum residual vector in the right hand side.

The linearized form of the momentum equations for a time step at the (i + 1 ) -th iteration
reads:

Hi
v∆v̄i+1 = −r̄im (11)
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with the momentum residual vector r̄m and the iteration matrix Hv given by

r̄im = Mv ˙̄v
i
+ Kv̄i + Qp̄i − fiv (12a)

Hv = Mt + K + Kv (12b)

where Mt is the mass contribution to the iteration matrix that is computed as:

Mtij =

∫
Ωe

NT
i

2ρ

∆t
NjdΩ (13)

and Kv is the so-called bulk (or volumetric) matrix computed in the following way:

Kv =

∫
Ωe

BTm∆tκpm
TBdΩ , with κp = θκ (14)

where κp is a pseudo-bulk modulus and θ is a positive number such that 0 < θ ≤ 1 . It
will be shown in the next sections that this parameter has the key-role of preventing the ill-
conditioning of the iteration matrix Hv. Notice that this matrix is an approximation of the
exact tangent matrix for an Updated Lagrangian scheme [18].

Concerning the notation, the upper indices denote the iteration in the convergence loop and
the subindices denote the time step when the variable is computed.

Considering the time interval [n, n+ 1] for each iteration the following steps are carried out:

Step 1. Compute the nodal velocity increments ∆v̄

Hv∆v̄ = −r̄im → ∆v̄ (15)

Step 2. Update the nodal velocities

v̄i+1
n+1 = v̄i

n+1 + ∆v̄ (16)

Step 3. Compute the nodal pressures p̄i+1

Hi
pp̄

i+1
n+1 =

1

∆t
Mpp̄n +

1

∆t2
Mpp(2p̄n − p̄n−1) + GT v̄i+1

n+1 + f̄ ip → p̄i+1
n+1 (17)

with

Hp =
1

∆t
Mp +

1

∆t2
Mpp + L + Mb (18)

Step 4. Update the nodal positions

x̄i+1
n+1 = x̄i

n+1 +
1

2
(vi+1

n+1 + vn)∆t (19)

Step 5. Check convergence
Verify:

ri+1
v =

‖∆v̄‖
‖v̄n‖

≤ ev (20a)

ri+1
p =

‖p̄i+1
n+1 − p̄i

n+1‖
‖p̄n‖

≤ ep (20b)
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8 A. FRANCI, E. OÑATE AND J.M. CARBONELL

where ev and ep are prescribed error norms for the nodal velocities and the nodal pressures,
respectively. In the examples solved in this work, ev = ep = 10−4 has been fixed.

If both conditions (20) are satisfied, the next time step is considered.

Further details of the solution scheme for analysis of fluid flows using PFEM can be found in
[19]. Applications of the scheme to thermally-coupled flows, problems and industrial forming
process are reported in [20, 21].

Remark 1. The good behavior of the FIC-FEM formulation above described in terms of
accuracy and mass conservation for analysis of quasi-incompressible fluids was verified
in [19]. A study of the effect of the different stabilization terms in the mass conservation
feature of the formulation was also performed in [19]. In particular the relevance of the
stabilization matrix Mb, involving computations on the Neumann boundary and the time
derivative of the normal velocity term in the fp vector was highlighted. Also the effect of
the stabilization matrix Mpp was found to be negligible in the examples analyzed.

3. Study of the effect of the physical bulk modulus in the iterative matrix

The linearized system described in the previous section suffers from numerical instabilities due
to the ill-conditioning of the iteration matrix Hv (12b). This problem was already pointed out
in previous works where similar partitioned schemes were used [26–29]. The ill-conditioning
of the iterative matrix of the linear momentum equations orginates from the different orders
of magnitude of its two main contributions: the mass matrix Mt (13) and the bulk matrix
Kv (14) (the contribution of the viscous matrix K (12b) is negligible for low values of the
viscosity). Typically the terms of the bulk matrix are orders of magnitude larger than those
of the mass matrix.

A reliable measure of the quality of a matrix is the condition number [1]. For a general
matrix A, the condition number is defined as:

C = cond(A) =‖ A ‖ · ‖ A−1 ‖ (21)

where, in this work, ‖ A ‖ denotes the norm-2 of matrix A.

The condition number C gives an indication of the accuracy of the results from the matrix
inversion and the linear equation solution. Values of C close to 1 indicate a well-conditioned
matrix.

The deterioration of the quality of matrix Hv affects directly the convergence of the iterative
linear solver. In this work, the iterative Bi −Conjugate Gradient (BCG) solver has been used
and its tolerance has been fixed to 10−6.

The time step increments affect highly the conditioning of the iterative matrix Hv. In fact,
Mt is inversely proportional to the time increment while Kv depends linearly on it (see Eqs.(13)
and (14)). For this reason, Hv is well-conditioned only for a tight range of time increments.

The objective of this section is to show the drawbacks of an ill-conditioned matrix in the
iterative solution scheme. For the sake of clarity, a numerical example is used to visualize and
quantify these inconveniences. The problem chosen is the 2D water sloshing in a rectangular
tank. The initial geometry of the problem and the finite element mesh used for the analysis
are shown in Figure 1. All the data of the problem are collected in Table I.
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Figure 1: 2D water sloshing. Initial geometry
and finite element mesh.

number of elements 705
number of nodes 428
average mesh size 0.4 m

H1 7 m
H2 3 m
D 10 m

viscosity 10−3 Pa·s
density 103 kg/m3

bulk modulus 2.15·109 Pa

Table I: 2D water sloshing. Problem data.

To highlight the importance of the time step on the conditioning of the iterative matrix,
the problem has been solved for two different time increments without reducing the value of
the modulus in matrix Kv (θ = 1). Using a time step of ∆t=10−3s, the iterative matrix has
a condition number C=41 while, for ∆t= 10−2s, the condition number is C=3009. If a larger
time step is used, the linear system can not even be solved. This deterioration is reflected by
the number of iterations of the linear BCG solver: for the former case the average number of
iterations is around 20, while for the latter around 177. Clearly, this also leads to a significant
increase of computational time for solving a time step.

The ill-conditioning of the linear system also affects the rate of convergence of the iterative
loop of the scheme given in Eqs.(15 - 20). In the graph of Fig. 2 the convergence rates ’r ’ for
the pressure and the velocity fields at t=1.75s are displayed. These values have been obtained
using Eqs.(20) and considering a time step increment of ∆t=10−2s.convergenceCOmparison

Page 1

1 5 9 13 17 21 25
0.00001

0.0001

0.001

0.01

0.1

1

velocity
pressure

iteration

r

Figure 2: 2D water sloshing (θ=1). Convergence of the velocities and pressures at t=1.75 s.

It can be observed that, especially for the pressure field, the convergence criteria of Eqs.(20b)
is not satisfied. In fact, the pressure error after 25 iterations is still larger than the pre-defined
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10 A. FRANCI, E. OÑATE AND J.M. CARBONELL

tolerance of ep = 10−4. The lack of a good convergence for the pressure field produces two main
inconveniences: the pressure solution is not accurate and mass conservation is not preserved.

The pressure contours at t=1.75 s are shown in Fig. 3.

Figure 3: 2D water sloshing (θ=1). Pressure contours at t=1.75 s.

Concerning the mass conservation of the fluid, Fig. 4 shows the accumulated mass variation
in absolute value versus time. After 20 seconds of simulation, the percentage of mass loss is
9.8% which corresponds to a mean volume variation of 4.9 · 10−3% for each time step.

Figure 4: 2D water sloshing (θ=1). Accumulated percentage of mass variation in absolute value
versus time.
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4. Optimum value of the parameter θ

In the previous section it has been shown that by using θ = 1 in matrix Kv, the iteration
matrix Hv (12b) can be ill-conditioned for certain range of time step increments. The principal
consequences of this are the limitation in the choice of the time step increment and the bad
convergence of both the linear iterative solver and the iterative loop described in Eqs.(15 - 20).

These inconveniences were overcome in previous publications [28, 29] by substituting the
physical bulk modulus with a smaller pseudo bulk modulus κp. In this way, it is possible
to extend the applicability of the partitioned scheme to a larger range of time increments.
However, this strategy is based on heuristic criteria and can not be used widely because each
problem requires a specific value for κp. In other words, a pseudo bulk modulus that works
well for a certain analysis can fail for a different one.

In this section, we present a general technique for predicting a priori the value of the
parameter θ defining the pseudo bulk modulus κp in Eq.(14) (κp = θκ). It will be shown that
the strategy improves substantially the conditioning of the linear system. The enhancement is
highlighted by solving the same problem of the previous section and comparing the respective
results.

As pointed out in the previous sections, the numerical problem associated to the iteration
matrix Hv (12b) is due to the different orders of magnitude of the contributions given by Kv

(14) and Mt (13).

The parameter θ in Eq.(14) arises from the linearization of the pressure term in the
momentum equations [19] and it can be used to scale ad hoc the contribution of Kv in order
to guarantee the well-conditioning of the system. It will be shown that this operation does
not interfere with the mass conservation of the fluid. The reason is that the modification only
affects the quality of the iterative matrix and the rate of convergence of the linear momentum
equations, while the continuity equation, where the mass conservation constraint is imposed,
is not modified. This feature represents an innovation versus previous approaches where the
pseudo bulk modulus is also used in the mass conservation equation.

In our work, the parameter θ is computed as:

θ =
mean(|Mt |)
mean(| K̂v |)

(22)

where the operator (| · |) denotes the mean of the absolute values of the non-zero matrix
components and

K̂v =

∫
Ωe

BTm∆tκmTBdΩ (23)

The parameter θ enforces the terms contributed by Kv to the iteration matrix Hv to have
the same order of magnitude as those of Mt.

For a uniform mesh of elements of characteristic size h, θ can be estimated as follows:

θ ≈ 2N2
c · ρ · h2

κ ·∆t2
(24)

where Nc is the value of the shape function Ni at the element center.

If water is considered (ρ = 103kg/m3 and κ = 2.15 · 109Pa) and linear triangles are used
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Prepared using nmeauth.cls



12 A. FRANCI, E. OÑATE AND J.M. CARBONELL

(Nc = 1/3), θ has the following dependency with the mesh size and the time step.

θ ≈ 10−7 ·
(
h

∆t

)2

(25)

Typically, the parameter θ is calculated at the beginning of the time step at the first iteration
of the non linear loop. It can also be computed at every time step, at certain instants of the
analysis or only once at the beginning of the analysis. This is so because the order of magnitude
of θ does not vary during the analysis, unless the time step is changed, or a refinement of the
mesh is performed. In these cases, θ needs to be calculated again because it has a square
dependency on both parameters h and ∆t. The numerical results presented in this paper have
been obtained by computing θ via Eq.(22) only at the beginning of the analyses.

The parameter θ can be computed and assigned locally to each element or globally to the
whole mesh. If it is calculated globally, all the elemental bulk contributions to the iteration
matrix will have the same value of θ, otherwise the computation of Eq.(22) is performed
considering separately each element of the mesh; i .e. each element will have a different value
of θ. The former approach has a reduced computational cost but it works worse than the local
approach for non uniform finite element discretizations. In particular, it is recommended to
use the local approach when a refinement of the mesh is performed (in the next section, a
problem with a refined zone is studied). In this paper, unless otherwise mentioned, the global
approach for computing θ is used.

5. Particularization for fully incompressible fluids

For fully incompressible fluids κ = ∞ and matrix Mp vanishes from the discretized form of
the mass conservation equations (Eq.(6) and Box 1). The use of a large but finite value of the
pseudo-bulk modulus κp in the expression of the volumetric matrix Kv is still useful in these
cases, as it helps to obtaining an accurate solution for the velocities and the pressure with
reduced mass loss in few iterations per time step. A good estimation for κp in these cases can

be obtained as κp = 100
(

h
∆t

)2
.

6. Numerical results

The objective of the section is to assess the enhancement in the solution given by the bulk
matrix scaled a priori by using the parameter θ computed with Eq.(22). The method is tested
by solving two representative free surface problems involving the flow of water: the sloshing
problem introduced in Section 3 and the collapse of a water column against a rigid obstacle
presented in [12]. The so-called dam break problem has been chosen to demonstrate that the
strategy does not affect the incompressibility contraint at all and the method is able to simulate
problems of impact of fluids. The numerical results will be compared with the experimental
ones. For both the sloshing and the dam break problems, a comparison of the performances of
the scaled bulk matrix and the scheme with θ =1 is given.

In order to show the applicability and generality of the method, very different average mesh
sizes and time steps are considered for both problems. It is to be noted that the dynamics of
the sloshing problem is completely different from the dam break one.
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6.1. Water sloshing in a tank

The problem of Fig. 1 is solved using the parameter θ computed as in Eq.(22). For ∆t=10−3s,
θ = 0.154, while for ∆t=10−2s, θ=0.0053. For both time step increments, the resulting
condition number of the the iterative matrix is C =23 and the average number of iterations of
the linear BCG solver is around 15. The improvement versus the non reduced scheme is evident,
if compared with the numbers presented in Section 3. Reducing the number of iterations of
the linear solver, also reduces the computational time. For example, for the problem solved
with ∆t=10−2s for a duration of 20s, the total computational time for the case with θ=1 is
2746s while for θ=0.0053 it reduces to 1600s.

Also the convergence of the non linear loop improves with the correct value of θ. In Figs.
5 and 6 the convergence of the velocity and pressure fields, respectively, obtained with θ=1
and θ=0.0053, is compared. The faster convergence of the solution using a smaller value of θ
is noticeable. convergenceCOmparison

Page 1

1 5 9 13 17 21 25
0.00001

0.0001

0.001

0.01

0.1

1

 = 1ϑ
optimum ϑ

iteration

r(v)

Figure 5: 2D water sloshing. Convergence of the velocities at t=1.75s for θ=1 and θ=0.0053.

In Fig. 7 the pressure solution at time t=1.75s obtained with θ=0.0053 is illustrated. It can
be appreciated a remarkable enhancement with respect to the case of θ=1 (see Fig. 3). It is
to be noted that the elements generated in the free surface region adjacent to the boundaries
are due to the coarseness of the mesh and the remeshing criteria and not to the computation.
For obtaining a better result, a smaller average mesh size or a refined mesh in the free surface
region should be used.

As stated in Section 3, the convergence in the continuity equation affects the conservation
of mass of the fluid. It has been just shown that the convergence of the pressure improves
with a good prediction of θ. Consequently, also the mass conservation is better ensured using
θ=0.0053 instead of θ=1.

In the graph of Fig. 8 the percentage of accumulated mass variation (in absolute value)
versus time obtained with θ=1 and θ=0.0053 are compared. The better mass preservation of
the solution with the smaller value of θ is remarkable.
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Figure 6: 2D water sloshing. Convergence of pressures at t=1.75s for θ=1 and θ=0.0053.

Figure 7: 2D water sloshing (θ=0.0053). Pressure contours at t=1.75s.

In the graph of Fig. 9 the accumulated mass variation obtained with θ=0.0053 is illustrated.
After 20 seconds of simulation, the scheme with the reduced value of θ has an accumulated
mass variation of 0.52% which corrensponds to a mean volume variation for each time step of
1.7·10−3%. The solution with θ=0.0053 guarantees a better conservation of mass than the case
with θ=1. This represents another evidence that the (quasi)-incompressibility constraint is not
affected by the reduction of the bulk matrix in the iterative matrix for solving the momentum
equations.

Variation on the mesh size
In order to verify the applicability of the method, the sloshing problem has been solved for
∆t=10−3s and different mesh sizes. In particular, the following average mesh sizes have been
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Figure 8: 2D water sloshing. Accumulated mass variation in absolute value along the duration of the
analysis. Solution for θ=1 and θ=0.0053.

Figure 9: 2D water sloshing (θ=0.0053). Accumulated mass variation versus time.

chosen: h =0.1m, 0.15m, 0.2m, 0.3m and 0.4m.

The problem was solved setting θ=1 and computing a priori its reduced value using Eq.(22).
The table of Fig. 10 collects all the data and the results. The number of iterations of the linear
solver has been considered as a quality indicator of the analyses. As shown in the previous
sections this value is related to the condition number of the iterative matrix.

The curves in Fig. 10 show, as it was foreseeable, that the reduced value of θ guarantees
better results with respect to using θ = 1. For all meshes, the number of iterations required by
the linear solver to reach a converged solution is smaller. Furthermore, the results show that
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16 A. FRANCI, E. OÑATE AND J.M. CARBONELL

the strategy is applicable to coarse and fine meshes.

average degrees of freedom number of iterations
mesh size (velocities) θ=1 optimum θ

0.4 682 20 15 (θ=0.535)

0.3 1220 27 15 (θ=0.304)

0.2 2782 41 15 (θ=0.136)

0.15 5002 55 16 (θ=0.0801)

0.1 5840 70 15 (θ=0.0361)

Figure 10: 2D water sloshing. Number of iterations of the linear solver for different numbers of
velocity degrees of freedom. Results for θ=1 and the optimum value of θ.

Variations on the time step
The problem of Fig. 1 has been solved for different time steps: 0.0001s, 0.0005s, 0.001s, 0.005s,
0.01s, 0.02s. The mesh used has a mean size of 0.15m. The numerical results obtained with
the reduced value of θ and by setting θ=1 are compared. The table of Fig. 11 summarizes the
problem data and the results. Once again, the iterations of the linear solver is the parameter
chosen to indicate the quality of the analyses: the smaller this value is, the better conditioned
the linear system is.

The graph of Fig. 11 shows that the accuracy of the method does not depend on the time
step increments, when the suitable value for θ is used. For each value of ∆t, the number of
iterations is 16 and the condition number does not change. Furthermore, using the correct
value of θ allows us to solve the problem for each time increment, while if θ is fixed to 1, the
results are acceptable only until ∆t=0.005s. For larger time steps the results for θ=1 are not
accurate or the analyses do not even converge.
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∆t (s)
number of iterations

θ=1 optimum θ

0.02 failed 16 (θ=2.00 ·10−5)

0.01 523 16 (θ=8.01 ·10−4)

0.005 244 16 (θ=3.20 ·10−3)

0.001 55 16 (θ=8.01 ·10−2)

0.0005 30 16 (θ=3.89 ·10−1)

0.0001 6 16 (θ=8.01 )

Figure 11: 2D water sloshing. Number of iterations of the linear solver for different time step
increments. Results for θ=1 and the optimum value of θ.

Mesh with a refined zone
As mentioned in the previous sections, the parameter θ has a square dependency on the mesh
size (see Eq.(24)). For this reason, if the discretization is not uniform the global estimation
of θ might not guarantee the well-conditioning of the linear system. In these cases, a local
computation of θ is recommended. The sloshing problem is here solved again using the mesh
shown in Fig. 12 and ∆t = 0.01s. The spatial discretization has two different mean sizes:
in the center h=0.1m while h=0.4m elsewhere. The problem is solved both for θ=1 and by
computing its optimum value globally and locally. The mean number of iterations required
by the linear solver to converge for each of these three options is 319, 21 and 17 respectively.
Hence, the local approach guarantees the best result for this type of non-uniform meshes. In
Fig. 13 the solution at time t = 0.1s obtained with the local approach is illustrated.

Case with high viscosity
A high viscosity may improve the conditioning of the iteration matrix Hv. In fact, the
contribution of K has opposite sign versus that of Kv. The sloshing problem is solved once

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–6
Prepared using nmeauth.cls
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Figure 12: 2D water sloshing. Finite element mesh with a refined zone.

Figure 13: 2D sloshing with a refined zone. Solution at time t = 0.1s obtained with the local approach.

more for a value of the dynamic viscosity µ=102Pa·s. The time increment is ∆t = 10−2s. In
Fig. 14 the solutions at t = 5 .5s obtained by the two approaches are illustrated. The strategies
converge to almost the same numerical value. This shows that the proposed method can also
be used for highly viscous fluids. The condition number of Hv using θ =1 is C=2318 (note
that, as expected, this value is lower than that obtained for the water sloshing case) while for
θ = 5.35 ·10−3 is C=23. In conclusion, for highly viscous fluids, the proposed method not only
works but also leads to better conditioned tangent matrices than for θ =1.

6.2. Collapse of a water column on a rigid obstacle

In this section, the collapse of the water column induced by the instant removal of a vertical
wall is studied. As for the previous example, the problem is first solved with a very coarse mesh.
Then a comparison with the solution obtained for θ=1 is given. After that, the same problem
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Figure 14: 2D high viscous fluid sloshing. Pressure contours at t = 5 .5s. Left: numerical results for
θ = 1. Right: results for θ = 5 .35 · 10−3 .

Figure 15: 2D dam break. Initial geometry.

L 0.146 m
H 0.048 m
D 0.024 m

viscosity 10−3 Pa·s
density 103 kg/m3

bulk modulus 2.15·109 Pa

Table II: 2D dam break. Problem
data.

is solved for different mean sizes and different time step increments. The results obtained with
the optimum value of θ are compared with the experimental results presented in [11]. The
objective is to show that the reduction of the bulk modulus in the iteration matrix does not
affect the numerical solution of this class of impact problems which can be solved also with a
larger time step.

The initial geometry of the problem is illustrated in Fig. 15. In Table II all the data of the
problem are collected.

The problem is first solved with a coarse discretization (mean element size h=0.0125m).
The solutions obtained with the optimum value of θ and with θ=1 are compared in terms of
the condition number of the iteration matrix and the number of iterations of the linear solver.
For ∆t=10−4s, matrix Hv has condition numbers C=1028 and C=60, for θ=1 and θ=0.0535,
respectively, which correspond to 1251 and 14 iterations of the linear solver, respectively.
For the same discretization and a time increment of ∆t=10−3s , Eq.(22) yields a value of
θ=0.000535. The condition number of Hv and the iterations of the linear solver are the same
as using a time step increment ten times smaller. Conversely, for θ=1, the condition number
grows to C=102090 and the iterative scheme does not converge.
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Variation on the mesh size
The problem of Fig. 15 has been solved for ∆t=10−4s using unstructured meshes with the
following mean element sizes: h= 0.004m, 0.005m, 00075m, 0.01m, 0.0125m. The problem was
solved both setting θ=1 and computing a priori its optimum value via Eq.(22). As for the
previous section, the number of iterations of the linear solver has been considered as the quality
indicator of the analysis. In the table of Fig. 16 all the data and the results are collected.

Fig. 16 confirms that the efficiency of the method is not affected by the mesh size. In other
words, the well-conditioning of the iterative matrix is guaranteed for coarse and fine meshes
indifferently.

average degrees of freedom number of iterations
mesh size (velocities) θ=1 optimum θ

0.0125 618 70 17 (θ=0.0536)

0.01 978 82 18 (θ=0.0345)

0.0075 1694 100 16 (θ=0.0205)

0.005 5002 163 16 (θ=0.00868)

0.004 6106 196 17 (θ=0.00559)

Figure 16: 2D dam break. Number of iterations of the linear solver for different numbers of velocity
degrees of freedom. Results for θ=1 and the optimum value of θ.

Variations on the time step
The same problem was solved with different time steps: ∆t=0.00005s, 0.0001s, 0.0005s, 0.001s,
0.0025s. The mesh used has a mean size of h=0.005m. Table 17 collects the problem data and
the resulting number of iterations for all the analyses solved with θ=1 and with the optimum
value of θ.

Fig. 17 confirms the conclusions of the previous section. The strategy is not affected by the
time step and, contrary to the case with θ=1, it does not impose limitations to the range of
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time step increments for solving the problem. For example, for the present problem, the time
step increment is constrained by the geometry and the dynamics of the problem only. In other
words, the maximum time step increment is the one that guarantees that the fluid particles do
not cross the boundaries. For the present problem and the chosen mesh, the maximum time
step increment was ∆t=2.5 · 10−3s.

In Fig. 18 the pressure field and the comparison with experimental results [11] at t = 0 .1s,
t = 0 .2s and t = 0 .3s are shown. Very good agreement is obtained.

∆t (s)
numer of iterations

θ=1 optimum θ

2.5 · 10−3 failed 15 (θ=1.39 ·10−5)

1.0 · 10−3 failed 15 (θ=8.68 ·10−5)

5.0 · 10−4 1000 16 (θ=3.47 ·10−4)

1.0 · 10−4 163 16 (θ=8.68 ·10−3)

5.0 · 10−5 79 16 (θ=3.47 ·10−2)

Figure 17: 2D dam break. Number of iterations of the linear solver for different time steps. Results
for θ=1 and the optimum value of θ.

7. Conclusions

In this work, an analysis of the effects of the physical bulk modulus on the iteration matrix of
a partitioned Lagrangian finite element scheme for analysis of quasi-incompressible fluids has
been presented. It has been shown that the resulting linear system can be ill-conditioned for
certain time step increments. It has been shown that the reason of this is the different order of
magnitude of the contributions of the bulk and mass matrices in the solution system. Typically,
the bulk matrix terms are larger than the mass ones. A consequence of the ill-conditioning
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Figure 18: 2D dam break. Pressure contours and comparison with experimental results/left [11] at
t = 0 .1s, t = 0 .2s and t = 0 .3s. Numerical results obtained with ∆t = 0.0025s and θ = 1 .39 · 10−5 .

of the algebraic equations is that the convergence of both the linear iterative solver and the
iterative loop is deteriorated.

A general, efficient and easy to implement strategy to overcome these problems has been
proposed. The technique is based on using a pseudo bulk modulus κp = θκ where 0 < θ < 1
in matrix Kv in order to improve the conditioning of the global iteration matrix Hv. An
expression for computing the optimum value of the reduction parameter θ has been given. The
optimum value of θ can be computed locally or globally, and at each time step or only at the
first solution step. Depending on the problem, one of these alternatives can be preferable. The
parameter θ has the function to scale the bulk matrix terms in the iteration matrix so that
they have the same order of magnitude than the mass matrix ones.

Numerical examples have shown that the proposed technique improves the stability of the
pressure field, the convergence rate of the iterative solution and also the computational speed
of the analysis of the iterative system. It has also been illustrated that the strategy is not
affected by changes in the time step and the mesh. Furthermore, it has been shown that the
method has also advantages for viscous fluids and locally refined meshes. For the latter case,
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a local computation of the parameter θ is recommended.
Finally, it has been shown that it is possible to simulate impacts of fluids with very reduced

values of θ without affecting the actual compressibility of the fluid.
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[6] J.M. Carbonell, E. Oñate, and B. Suarez. Modeling of ground excavation with the particle
finite-element method. Journal of Engineering Mechanics, 136:455–463, 2010.

[7] A.J. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems.
Journal of Computational Physics, 135:118–125,1997.

[8] J. Donea and A. Huerta. Finite Element Methods for Flow Problems. Wiley, 2003.

[9] H.C. Elman, D.J. Silvester and A.J. Wathen. Finite element and fast iterative solvers with
applications in incompressible fluid dynamics. Oxford Series in Numerical Mathematics
and Scientific Computation. Oxford University Press, Oxford, 2005.

[10] M. Fortin and R. Glowinski. Augmented Lagrangian: application to the numerical solution
of boundary value problems. North-Holland, Amsterdam, 1983.

[11] D.M. Greaves. Simulation of viscous water column collapse using adapting hierarchical
grids. International Journal of Numerical Methods in Engineering, 50:693–711, 2006.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–6
Prepared using nmeauth.cls
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