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Abstract. The development length needed for tube flows to re-adjust from a uniform to the 

fully-developed velocity profile is usually defined as the length required for the centerline 

velocity to reach 99% of its fully-developed value. This definition, however, may be quite 

inaccurate in non-Newtonian flows with almost flat velocity distributions near the centerline, 

since the velocity far from the axis of symmetry develops more slowly. Shear-thinning and 

viscoplasticity may cause the flow close to the centerline to evolve faster than that closer to the 

walls. Thus, alternative definitions of the development length have been proposed for 

viscoplastic flows. Given that blood exhibits shear thinning, we numerically solve the flow 

development of power-law fluids in pipes and calculate the development length as a function 

of the radius, determining the global development length along with the standard centerline 

estimate. We also consider an alternative definition, based on the evolution of the wall shear 

stress. Results have been obtained for values of the power-law exponent 𝑛 ranging from 0.2 to 

1 (shear thinning regime) and for Reynolds numbers (𝑅𝑒) up to 1000. The numerical results 

demonstrated that the centerline and the global development lengths coincide for 𝑛 > 0.7, i.e., 

the flow indeed develops more slowly at the symmetry axis. This is not the case, however, as 

the fluid becomes more shear thinning. Big differences are observed, which are more 

pronounced at low 𝑅𝑒. The stress entrance length is smaller than the classical centerline 

entrance length except for 𝑛 < 0.4. The implications in blood flow development are discussed. 
 

1 INTRODUCTION 

When fluid particles flowing with a uniform velocity profile enter a long tube, they are 

expected to eventually adjust to the fully developed Poiseuille velocity profile far downstream. 

The required distance is called the development or entrance length. During the development 

phase, the velocity profile evolves, with the velocity near the walls decelerating due to friction 
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and the velocity near the centre accelerating due to continuity. Knowledge of the development 

length is important in the design of pipe flow networks and in studies concerned with transition 

to turbulence [1]. Moreover, it is used in checking the validity of the Poiseuille-flow assumption 

that is often made in order to simplify calculations of parameters of interest, such as the 

maximum velocity and the wall shear stress, in flows of industrial importance as well as in 

flows of biological fluids (biofluids) [2].  

Flow development of Newtonian fluids has been extensively studied via approximate 

analytical, computational, and experimental methods [3]. The standard definition of the 

development length is the length required for the centerline velocity to reach 99% of its fully 

developed (Poiseuille) value, starting from a flat velocity profile at the entrance. Different 

empirical formulas have been proposed relating the development length to the Reynolds number 

Re [3]. Kountouriotis et al. [4] studied the Newtonian flow development in the presence of wall 

slip, and consider also the “wall development length” as the length required for the slip velocity 

to decrease to 1.01% of its fully-developed value. 

Non-Newtonian flow development is of great interest, since most fluids of industrial and 

also biological importance can exhibit a variety of complex behaviour such as shear-thinning 

(or thickening), viscoplasticity, viscoelasticity, and thixotropy. For example, blood exhibits 

each of the aforementioned rheological phenomena to some degree [5,6]. The non-Newtonian 

character of blood is predominant in small arteries and veins where the diameter is close to the 

size of red blood cells [7]. Barnes [8] reports typical shear rate values for blood flow in the 

range 1-1000 s-1. 

It is well established that in the viscoplastic case, the standard definition of the development 

length is not really representative of the actual length needed for the flow to develop fully 

([9,10] and references therein). Recently, Philippou et al. [9] calculated the development length 

as a function of the radial distance, with and without wall slip, and proposed the “global” 

development length which is the maximum development length across the tube or channel.  

Shear-thinning is a rheological phenomenon that is exhibited by most non-Newtonian fluids, 

is relatively easy to measure and to model, and in some applications is the only non-Newtonian 

behaviour that needs to be accounted for in order to get a sufficiently accurate picture of the 

flow.  Shear thinning is considered to be the predominant non-Newtonian characteristic of blood 

and other biofluids. The decrease of viscosity with the shear rate is attributed to the destruction 

of rouleaux and the disaggregation of red blood cells (RBCs) which orient themselves in the 

direction of the flow. For example, Barnes [8] provides data showing that blood viscosity is 

reduced from 0.1 Pas at a shear rate �̇�=0.1 s-1 to 0.01 Pas at �̇�=100 s-1. Many different models 

describing shear-thinning behavior have been proposed in the literature. As far as blood is 

concerned, the constitutive equations that have been used include the power-law, Carreau, 

Carreau-Yasuda, Powell-Eyring, Cross, modified-Cross, Walburn-Schneck, and Ballyk models 

[11,12]. 

The power-law model is the simplest non-Newtonian constitutive equation able to describe 

shear thinning. The viscosity takes the following form [13]. 

1nk  −=  (1) 
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Table 1: Values of the power-law material parameters used in different studies for blood 

Reference k (Pa sn) n 

Baaijens [14] 0.028 0.63 

Neofytou [15]; Karimi et al. [11]; 

Mendieta et al. [16] 

0.01467 0.7755 

Shibeshi and Collins [7] 0.017 0.708 

Johnston et al. [17]; Soulis et al. [18] 0.035 0.6 

Sequeira and Janela [19] 0.042 0.61 

Li et al. [20] 0.035 0.61 

 

where k is the consistency index, n is the power-law exponent, and   is the magnitude of the 

rate of strain tensor, γ , defined by : = γ γ . For 𝑛 = 1, the viscosity is constant and the 

Newtonian model is recovered. The fluid is shear-thinning when n<1 and shear-thickening 

when n>1. According to Shibeshi and Collins [7], the material parameters k and n are dependent 

on the constituents of blood, such as hematocrit, fibrinogen and cholesterol, and on temperature. 

Table 1 lists indicative values used in the literature for these two material parameters. Note, in 

particular, that the values of n vary from 0.6 to 0.78. Chandran et al. [21] also note that 

rotational-viscometer data on blood for shear rates in the range from 5 to 200 s-1 are 

satisfactorily fitted with power-law exponents between 0.68 and 0.8. 
In most studies of flow development of shear-thinning fluids, the power-law model has been 

used [1], but other models have also been employed [22]. To our knowledge, in all these studies, 

the standard definition of the development length has been used, assuming that the 

centerline/midplane velocity is a sufficient indicator of the flow development. Poole and Ridley 

[1] showed that at low Reynolds numbers the development length depends on the shear-thinning 

(or thickening) exponent, similarly to the dependence of the development length of viscoplastic 

flows on the yield stress. In particular, they found that, in the creeping flow limit, shear thinning 

causes the development length to increase, up to a shear-thinning exponent of about n=0.4; 

below this value, further strengthening of the shear-thinning behaviour causes a rapid reduction 

of the development length, as the fully developed velocity profile becomes more plug-like and 

similar to the inlet profile, as for the viscoplastic case.  

In the present work we investigate whether the standard definition of the development length 

provides an accurate criterion for the full development of the flow of shear-thinning fluids. The 

behaviour of shear-thinning fluids is known to be in some respects similar to that of viscoplastic 

fluids [23]. The stronger the shear-thinning is, the more qualitatively similar (plug-like) the 

fully developed velocity profile is to the corresponding viscoplastic one. Therefore, monitoring 

the velocity field only at the centerline may be misleading, as in the viscoplastic case. Our study 

investigates numerically the development of the flow of power-law fluids for exponents n 

ranging between 0.2 and 1 (shear thinning regime) and Reynolds numbers up to 1000.  

In addition to the standard centerline and global development lengths, which are based on 

the evolution of the velocity, we introduce an alternative definition based on the evolution of 

the wall shear stress: it is the length after which the wall shear stress lies between 0.99 and 1.01 

times its fully-developed value. In many applications, including blood flows, the wall shear 

stress is more crucial than the velocity – for example, blood vessels are lined with endothelial 

cells, whose growth, remodelling and function can be modified by the flow stresses [24].  
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Figure 1: Flow development in a cylindrical tube: geometry and boundary conditions 

2 GOVERNING EQUATIONS AND NUMERICAL METHOD 

We consider the entrance flow of a shear thinning fluid in a long cylindrical tube of radius 

R and length L, where the fluid enters with a uniform velocity 𝑈. It is assumed that the fluid 

obeys the power-law constitutive equation [13], whose tensorial form is as follows: 

1nk −=τ γ  (2) 

where 𝝉 is the viscous stress tensor. It is also assumed that the flow is steady, incompressible, 

and isothermal. The continuity and momentum equations governing the flow then read: 

0 =u  (3) 

and 

p  = − +u u τ  (4) 

where u and p are the velocity and pressure fields, respectively, and ρ is the constant density. 

We non-dimensionalize the physical flow problem by scaling lengths by the tube radius R, the 

velocity by the uniform velocity U at the inlet of the tube, 𝜸 ̇  by U/R, and the stress tensor and 

the pressure by 𝑘 𝑈𝑛/𝑅𝑛. For the sake of simplicity, we keep the same symbols for the 

dimensionless variables. Therefore, the dimensionless continuity equation is the same as Eq. 

(3), while the constitutive and momentum equations become 

1n −=τ γ  (5) 

and 

Re p = − +u u τ  (6) 

where 

2 n nU R
Re

k

 −

=  (7) 

is the Reynolds number. 
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The flow geometry and the boundary conditions are illustrated in Fig. 1. Cylindrical 

coordinates centered at the symmetry axis of the tube constitute the natural choice for the 

coordinate system. At the wall (𝑟 = 1) the no-slip, no-penetration conditions are applied and 

thus both the axial and radial velocity components, 𝑢𝑧 and 𝑢𝑟, vanish. The usual symmetry 

conditions are applied at the symmetry axis (𝑟 = 0). At the inflow plane (𝑧 = 0), the axial 

velocity is uniform (𝑢𝑧 = 1), while 𝑢𝑟  is zero. Finally, the outflow plane is taken sufficiently 

far downstream so that the length of the domain, Lmesh, is much longer than the calculated 

development lengths. In this case, the normal stress and radial velocity components are 

essentially zero.  

The system of the z- and r-components of the momentum equation and the continuity 

equation is solved using the finite element method [4]. The Newton method is used in solving 

iteratively the resulting non-linear system of the discretized equations and the convergence 

tolerance has been set to 10-4.  

 

3 NUMERICAL RESULTS 

We have obtained results for power-law exponents ranging from 0.2 to 1 (Newtonian fluid) 

and for Reynolds numbers from zero up to 1000. The convergence of the numerical results has 

been confirmed using meshes of different refinement and different lengths. All the results 

presented below have been obtained with a rather long mesh with Lmesh=1120, which was found 

to be adequately long for the highest value of the Reynolds number considered here. The 

distribution of the development length across the pipe, 𝐿(𝑟) has been calculated by determining 

the distance beyond which the velocity for a given value of 𝑟 lied between 0.99-1.01 times its 

fully developed value. Thus, the standard centerline development length is simply 𝐿𝑐 = 𝐿(0) 

and the global development length is 𝐿𝑔 = max
0≤𝑟≤1

𝐿(𝑟). We have also calculated the wall shear 

stress development length, 𝐿𝑡. To facilitate comparisons with the literature, the development 

lengths are scaled by the diameter of the tube. However, all other length quantities are scaled 

by the radius and the Reynolds number is expressed in terms of the radius too; see Eq. (6). 

The distribution of the development length 𝐿(𝑟) at zero Reynolds number is illustrated in 

Fig. 2 for 𝑛 = 1 (Newtonian fluid) and 𝑛 = 0.3. One observes that the centerline and global 

development lengths coincide in the former case, which implies that the flow readjustment is 

indeed slower at the centerline. This is not the case for low values of the power-law exponent, 

as in Fig. 2b. This is somehow expected since the velocity profile becomes more flattened as 

the power-law exponent is reduced. Indeed, the fully-developed dimensionless velocity 

distribution is given by [13]: 

( )1/ 13 1
1

1

n

z

n
u r

n

++
= −

+
 (8) 

Hence, the velocity tends asymptotically to a flat profile as n approaches zero. The maximum 

(centerline) velocity takes the values 2 and 1.4615 for 𝑛 = 1 and 𝑛 = 0.3, respectively. The 

development of the velocity for these two values of the power-law exponent is illustrated in 

Fig. 3, where the distributions of the axial velocity at different distances from the inlet plane 

are plotted. As the power-law exponent is reduced, the fluid particles at the symmetry axis have 

to travel a shorter distance in order to accelerate up to the fully-developed maximum velocity.  
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                                        (a)                                                               (b) 

Figure 2: Distribution of the development length, 𝐿(𝑟), in axisymmetric flow of a power-law fluid at 𝑅𝑒 = 0: 

(a) 𝑛 = 1 (Newtonian fluid, the centreline and global development lengths coincide); (b) 𝑛 = 0.3  

 
                                        (a)                                                               (b) 

Figure 3: Velocity profiles at 𝑧 = 0, 0.02, 0.05, 0.1, 0.2, 0.40, 0.81 and 20 in axisymmetric flow development of 

a power-fluid at 𝑅𝑒 = 0: (a) 𝑛 = 1 (Newtonian fluid); (b) 𝑛 = 0.3 

 
                                        (a)                                                               (b) 

Figure 4: Wall shear stress distributions in axisymmetric flow development of a power-law fluid at 𝑅𝑒 = 0: (a) 

𝑛 = 1 (Newtonian fluid); (b) 𝑛 = 0.3. The vertical line denotes the stress development length, 2𝐿𝑡   
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Figure 4 shows the distribution of the wall shear stress and the corresponding stress 

development lengths at zero Reynolds number for 𝑛 = 1 and 0.3. Given that Lt is scaled by the 

diameter and z by the radius of the pipe, the former is multiplied by a factor of 2. Due to the 

sudden change in the velocity at the inlet plane (the velocity changes abruptly from unity to 

zero when the fluid particles hit the wall), the wall shear stress, defined by 

1

1

n

z
w rz r

r

du

dr
 

=

=

 
= =  

 
 (9) 

is singular. Initially it becomes infinite and then converges, not necessarily monotonically (in 

some cases undershoots are observed), to the fully-developed value 

1
3

n

w
n

 

 
= + 
 

 (10) 

We observe that 𝐿𝑡 increases with shear thinning, as the wall shear stress needs to adjust to a lower fully-

developed value (𝜏𝑤∞ = 4 for 𝑛 = 1 and 𝜏𝑤∞ = 1.74 for 𝑛 = 0.3). 
In most flow development studies, the nondimensional development length is expressed as 

a function of the Reynolds number [3]. The effects of the power-law exponent and the Reynolds 

number on the three development lengths considered in this work are illustrated in Figs. 5 and 

6. In Fig. 5, the development lengths are plotted versus the power-law exponent for 𝑅𝑒 = 0, 10 

and 100. We observe that 𝐿𝑔 and 𝐿𝑐 essentially coincide for 𝑛 > 0.7. Below this value, 𝐿𝑔 is 

higher than 𝐿𝑐. The difference between these two lengths becomes more pronounced at lower 

values of 𝑛 and 𝑅𝑒, which implies that the flow is not fully developed at a distance equal to the 

standard development length. While 𝐿𝑔 is a decreasing function of the power-law exponent, the 

behavior of 𝐿𝑐 is non-monotonic. The standard development length appears to initially increase 

with the power-law exponent, exhibiting a maximum after which it decreases merging 

eventually with 𝐿𝑔. The stress development length appears to be smaller than the other two 

lengths at moderate and high Reynolds numbers and the differences become bigger as the 

power-law exponent is reduced. At low values of the Reynolds numbers, however, 𝐿𝑡 becomes 

bigger than 𝐿𝑐 in the regime where the latter is an increasing function of the power-law exponent 

(Fig. 5a). 

The variation of the development lengths with the Reynolds number in the range 0-1000 is 

illustrated in Fig. 6 for 𝑛 = 1 and 0.5. In Newtonian flow (𝑛 = 1), centerline and global 

development lengths coincide while the stress development length is smaller, especially at low 

values of the Reynolds number. The difference of 𝐿𝑡 from the other development lengths is 

reduced as 𝑅𝑒 is increased and the three curves eventually merge for 𝑅𝑒 > 20. The situation 

changes with shear thinning fluids. As illustrated in Fig. 6b, when 𝑛 = 0.5, 𝐿𝑡 < 𝐿𝑐 < 𝐿𝑔. The 

difference between 𝐿𝑔  and 𝐿𝑐 is more pronounced at low values of 𝑅𝑒 (𝑅𝑒 < 10) and reduces 

as 𝑅𝑒 is increased. The difference between 𝐿𝑡 and 𝐿𝑐 is small, especially at low Reynolds 

numbers.   
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                         (a)                                             (b)                                             (c) 

Figure 5: Variation of the centerline (𝐿𝑐), global (𝐿𝑔), and stress (𝐿𝑡) development lengths with the power-law 

exponent: (a) 𝑅𝑒 = 0; (b) 𝑅𝑒 = 10; (c) 𝑅𝑒 = 100 

 
                                     (a)                                                                       (b) 

Figure 6: Variation of the centerline (𝐿𝑐), global (𝐿𝑔), and stress (𝐿𝑡) development lengths with the Reynolds 

number: (a) 𝑛 = 1 (Newtonian fluid); (b) 𝑛 = 0.5 

 

4 CONCLUSIONS 

It has been demonstrated that the stress development length in a cylindrical tube is always 

shorter than the centerline development length, except when 𝑛 < 0.4 and the Reynolds number 

is low. The use of this development length may be more meaningful in other geometries. In 

their study of Newtonian flow development in the presence of wall slip, Kountouriotis et al. [4] 

demonstrated that, in channel flow the slip-velocity development length is higher than the 

centerline one, in contrast to pipe flow. Given that the slip velocity generally increases with 

wall shear stress [25], it is anticipated that the behavior of the stress development length is quite 

similar. The investigation of the flow development of a power-law fluid in a channel is the 

subject of our current research efforts. 

In this numerical study, we have investigated the flow development of power-law fluids in 

an axisymmetric tube. In addition to the standard definition of the development length, 𝐿𝑐, 

which is based on the centerline velocity, we also considered the global development length, 
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𝐿𝑔, defined in terms of the axial velocity distribution, and the stress development length, 𝐿𝑡, 

based on the development of the wall shear stress. The numerical results for 0.2 < 𝑛 ≤ 1 and 

0 ≤ 𝑅𝑒 ≤ 1000 indicate that the standard development length is a reliable index of flow 

development for values of the power-law exponent greater than 0.7, independently of the 

Reynolds number. For more shear-thinning fluids, however, the centerline development length 

is misleading, since the flow develops more slowly far from the symmetry axis. The relative 

differences are more striking at low Reynolds numbers at which 𝐿𝑔 can be four times 𝐿𝑐. Hence, 

attention must be paid when using the assumption of fully developed flow for shear thinning 

fluids in tubes when the Reynolds number is small, e.g., for flows of blood or other biofluids in 

small vessels.  
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