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Abstract. This work presents a comprehensive methodology for early detection of rotor im-
balance is crucial for maintaining the reliability and operational efficiency of wind turbines.
It uses accelerometer data, focusing solely on vibration responses, and employs advanced ma-
chine learning, particularly the extended isolation forest. The process involves collecting and
processing accelerometer data to extract relevant features that capture the characteristic pat-
terns of the vibration signals associated with rotor imbalance. An extended isolation forest
model is trained exclusively on data from healthy wind turbines, enabling precise anomaly de-
tection and proactive maintenance. Experimental validation on a controlled rotor imbalance
in a laboratory-scale wind turbine demonstrating the feasibility and effectiveness of the pro-
posed methodology. Results emphasize its capability to detect and diagnose rotor imbalance
faults, providing an early warning system for turbine operators. This approach addresses the
main objective of detecting rotor imbalance and contributes to the advancement of predictive
maintenance strategies in the wind energy industry.
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1 INTRODUCTION

In today’s world, the global pursuit of sustainable and renewable energy sources has fueled
significant advancements in wind energy technologies. Wind turbines (WTs), by harnessing
the kinetic power of the wind to produce electricity, play a pivotal role in green energy genera-
tion. The continued viability of wind energy hinges on ensuring the reliability and operational
efficiency of these complex machines, where the correct operation of WTs is paramount in the
context of renewable energy generation. However, WTs encounter various environmental and
mechanical challenges throughout their operational lifespans, and among these challenges, rotor
imbalance emerges as a critical, can result in efficiency losses and decreased lifetime of bearings
and other components, leading to system fault and significant safety risk [1, 2]. As the global
reliance on wind energy continues to grow, so does the importance of addressing the issue of
rotor imbalance. Nevertheless, rotor imbalance is omnipresent in all rotating machinery, posing
serious threat to machine life and operation [3] which poses a substantial threat to the perfor-
mance and longevity of WT systems. Hence, the early detection of rotor imbalance takes on
even greater significance, as it is the linchpin for ensuring the continued reliability and opera-
tional efficiency of WTs in the pursuit of sustainable energy sources. Left unaddressed, rotor
imbalance can lead to severe consequences, including increased wear on critical components,
reduced energy generation efficiency, and structural damage to the WT [4].

In the realm of rotor imbalance detection, diverse methodologies have been investigated to
enhance the identification and resolution of this issue. A notable contribution is the work of
Cacciola et al. [5], which introduced an innovative approach utilizing harmonic analysis of rotor
responses in the fixed frame to discriminate between various imbalance sources. Furthermore,
recent research by Wisal and Oh [1] has introduced a novel approach that integrates ResNet and
CNN techniques, resulting in significantly improved accuracy in classifying rotor imbalances.
These advancements contribute to the field of rotor imbalance detection by providing more
effective and accurate methods for addressing this critical concern.

This work addresses the critical challenge of rotor imbalance detection in WTs by introducing
an innovative approach that combines accelerometer data for vibration responses with advanced
machine learning techniques, specifically the Extended Isolation Forest (EIF) algorithm, known
for its efficacy in anomaly detection. The methodology is rigorously validated through experi-
ments on a laboratory-scale WT with controlled rotor imbalance, showing its great effectiveness
in detecting rotor faults. Furthermore, considering the time series nature of the data, it was
possible to clearly distinguish between healthy situations and faults. These results support the
capability of early anomaly detection, results that not only have critical implications in terms of
maintenance efficiency, but also reduce repair costs and ensure the long-term operation of wind
turbines. Timely identification of imbalance issues allows for proactive maintenance strategies,
minimizing downtime, reducing repair costs, and ensuring the long-term functionality of WTs.

The document is organized in the following manner. Section 2 describes the experimental
setup, of the laboratory-scale WT. Section 3 details the methods used to build the EIF-based
damage detection model. Section 4, describes the obtained results. Lastly, Section 5 provides
the main conclusions and outlines directions for future research.
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2 EXPERIMENTAL SETUP

In this Section, the experimental setup is described. First, a small WT is used, namely the
E30Pro WT, which is specifically adapted for laboratory needs; see Figure 1. The turbine is
conditioned to be powered by electric current, which makes it possible to control its start-up,
facilitating the collection of data.

Figure 1: E30Pro scaled-down version of a WT.

The main focus of the methodology employed in this work is to exclusively use vibration mea-
surements. To carry out these measurements, eight triaxial accelerometers (PCB® Piezotronic
model 356A17) are installed in the turbine structure, as illustrated in Figure 2. These ac-
celerometers are connected to six National Instruments™ cartridges (NI 9234 model), that
are inserted in the National Instruments chassis cDAQ-9188. Finally, the Data Acquisition
Toolbox™ is used to configure the data acquisition hardware and to log and analyze the data
into the Matlab® environment.

This work addresses the problem of detecting a fault due to an imbalance of the rotor of a
WT by adding a mass of 575 g on one of the blades. This scenario represents realistic rotor
imbalance situations that can occur during the operation of a WT. On the other hand, there
is also the reference state, or healthy state, which is obtained when none of the blades has an
additional mass.

3 METHODOLOGY

In this section of the methodology, an overview of the key steps followed in the research is
presented. It begins by detailing the data acquisition process, followed by the reorganization
of the data for further analysis. Then, it is explained how relevant features are extracted from
these data. Next, the construction of a characteristic matrix essential for analysis is described.
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Figure 2: Location of the accelerometers on the WT.

It goes on to explain how the data are divided into training, validation and test sets, and how the
values are normalized. Finally, the use of the EIF algorithm for accurate anomaly detection in
the WT data is highlighted. These methodological steps provide a solid foundation for research,
enabling rigorous analysis of the health and performance of the WT, which is critical in the
context of wind asset engineering and management.

3.1 Hypothesis

This section shows the hypothesis on which the proposed rotor fault detection methodology
is based. The online methodology involves acquiring an initial set of healthy data that is used
to train the model and define a fault detection threshold. A second set of data is then collected,
just to validate the model and ensure that it generalizes and that its hyperparameters are well
selected. For a new diagnosis of the turbine rotor, several groups of data (test set) of 60 seconds
each are collected. Finally, based on the test set of experiments, the diagnosis of the state is
made.

3.2 Data Acquisition

A total of 55 experiments are performed, of which 50 are with the completely healthy WT
and the rest simulating the added mass. A detailed description of the experiments performed
is presented below:

• Fifty experiments in healthy conditions of the structure, that is, without alterations of
the WT blades.

• Five experiments with 575 g weight increase in only one blade.
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The duration of each experimental trial for data acquisition is 60 seconds, with a sampling
rate of approximately 1706, 66 kHz. As a result, each of the 24 sensors records 102400 data
measurements. Finally, the data associated to the k-th experiment is stored in matrix X(k)

with coefficients x
(k)
n,m (n = 1, . . . , N , m = 1, . . . ,M) that reads as

X(k) =


x
(k)
1,1 x

(k)
1,2 . . . x

(k)
1,M

x
(k)
2,1 x

(k)
2,2 . . . x

(k)
2,M

...
...

. . .
...

x
(k)
N,1 x

(k)
N,2 . . . x

(k)
N,M

 , (1)

considering k ∈ [1, K], where K is 55. The two subindices, in the matrix coefficients, are related
to the time instant (row) and sensor (column), respectively. More precisely,

• n = 1, . . . , N identifies the time stamp, while N is the number of time stamps per exper-
iment, equal to 102400;

• m = 1, . . . ,M represents the measuring sensor, while M is the total number of sensors,
equal to 24.

As a result, each experiment matrix X
(k)
N,M ∈ M(k)

102400×24(R).

3.3 Data Split

The X(k) matrix, which houses the acquisition data, as shown in Eq. 1, consists of a total of
55 experiments, is subjected to a splitting strategy into three distinct groups. The assignment
of data to each group is performed as follows:

• Thirty-seven healthy experiments, equivalent to 75% of the healthy dataset are allocated
to train the EIF model. This training dataset enables the EIF model to learn and capture
patterns specific to normal WT operating conditions.

• Five healthy experiments equivalent to 10% of the healthy dataset are reserved for vali-
dating the EIF model. This portion of data is used to fit the EIF model hyperparameters
and ensure proper generalization to unseen data.

• Eight healthy experiments equivalent to 15% of the healthy dataset and the entire fault
dataset (comprising 5 experiments) are employed in the testing phase of the algorithm.
This combined dataset is utilized to assess the algorithm’s effectiveness in detecting fault
conditions while also verifying its robustness in identifying data under normal operating
conditions.

It is critical to emphasize that both training and validation are performed exclusively on
healthy data, allowing the EIF model to robustly learn normal operating characteristics.
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3.4 Data Reshape

In this section, data reshaping is being carried out to properly obtain multiple measurements
from each sensor, providing greater insight into the state of the WT. The procedure is as follows:

1. Each column of the original matrix from Eq. (1) is divided into 32 sequences, where each
one forms a row vector composed of 3200 consecutive measurements.

2. This is repeated for all columns, generating submatrices for each sensor.

3. Finally, the submatrices are concatenated one next to the other (maintaining the same
order of the sensors).

Therefore, a new matrix Z(k) is obtained as shown in Eq. (2).

Z(k) =
[
Z(k),1 Z(k),2 Z(k),3 Z(k),4 · · · Z(k),M

]
, (2)

where each submatrix Z(k),m is represented by

Z(k),m =


x
(k)
1,m · · · x

(k)
O,m

x
(k)
O+1,m · · · x

(k)
2·O,m

...
. . .

...

x
(k)
(J−1)·O+1,m · · · x

(k)
J ·O,m

 =


z
(k),m
1,1 · · · z

(k),m
1,O

z
(k),m
2,1 · · · z

(k),m
2,O

...
. . .

...

z
(k),m
J,1 · · · z

(k),m
J,O

 , (3)

where O represents the length of a sequence, which is determined by considering the time
intervals during which the blade can complete a 180-degree turn while minimizing the inclusion
of unused observations, and j = 1, . . . , J identifies the sequence number, while J is the number
of sequences per experiment, equal to 32. As a result, each matrix Z(k),m ∈ M32×3200(R).

This data-reshaping process enhances the richness of available information and significantly
contributes to the next steps of the proposed methodology.

3.5 Feature Extraction

In the pursuit of gaining deeper insights into the behavior of the gathered WT data, the
process of feature extraction emerges as a pivotal stage in data processing and signal analysis.
These features serve as quantitative metrics, delivering pertinent insights into the nature of the
recorded signals. The detailed descriptions of the three functions utilized within this framework
are delved below. Each of these functions is meticulously applied to each of the matrices from
Eq. (3).

3.5.1 Permutation Entropy

Permutation Entropy (PE) serves as a robust metric in time series analysis, offering insights
into the probability distributions of potential system states and, consequently, the inherent
information within them [6]. The concept of PE is built upon the Eq. (4):

PE(z
(k),m
j,· ) = −

n!∑
l=1

p(πl) log(p(πl)), (4)

where:
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• PE(z
(k),m
j,· ) represents the PE of the jth row of Z(k),m matrix.

• n! is the factorial of n, indicating the total number of possible ordinal patterns or permu-
tations of length n.

• p(πl) is the relative frequency of the lth permutation πl in the time series.

This Eq.(4), as introduced by Bandt and Pompe [7], forms the foundation of this analysis.
The selection of the dimension n and the delay τ is pivotal for accurate computation. Guided
by the comprehensive study by Audun Myers, et al. [8], which delves deep into the optimal
parameter choices, this analysis adopts n = 6 and τ = 1 as part of the feature extraction
methodology. Here, n = 6 signifies the consideration of all feasible permutations of six con-
secutive values within each data segment. Concurrently, the τ = 1 delay ensures a meticulous
assessment of the relationships between successive data points in the series.

3.5.2 Fractal Dimension

Fractal dimension (FD) algorithms serve as powerful tools to analyze chaotic behavior in
irregular time series, often represented as waveforms. These algorithms extract information
about their geometrical structure at multiple scales.[9]. In this context, the FD is computed
using the formula proposed by M. Katz [10], as shown in Eq. (5).

FD(z
(k),m
j,· ) =

log(O)

log

(
d(z

(k),m
j,· )

L(z
(k),m
j,· )

+ 1

) , (5)

where

• FD(z
(k),m
j,· ) denotes the Katz’s fractal dimension for the jth row of Z(k),m matrix.

• L(z
(k),m
j,· ) represents the length of the curve for the jth row, calculated as the cumulative

sum of the Euclidean distances between successive points in the signal.

• d(z
(k),m
j,· ) is the maximum distance from any point in the signal to the initial point, es-

sentially indicating the largest difference between the signal values in the jth row of the
Z(k),m matrix and the initial signal value.

The interplay between L(z
(k),m
j,· ) and d(z

(k),m
j,· ) offers invaluable insights into the fractal struc-

ture of the signal. Such understanding is pivotal for interpreting the nature of data acquired
by specific sensors in the WT. Characterizing the signal in terms of its fractality is paramount
to unveiling the underlying patterns and regularities. This, in turn, enhances the efficacy of
WT performance analysis and monitoring.

3.5.3 Kurtosis

Kurtosis (Kurt), in the context of this study, is a statistical measure used to assess the shape
of the data distribution, and is defined by the Eq. (6). This metric is applied individually to
each row of the Z(k),m to quantify the ”sharpness” or ”flatness” of the corresponding signal.
The following is the mathematical formula for computing kurtosis.
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Kurt(z
(k),m
j,· ) =

1

O

O∑
o=1

(
z
(k),m
j,o − z̄

(k),m
j,·

σ
(k),m
j,·

)4

, (6)

where

• Kurt(z
(k),m
j,· ) denotes the kurtosis for the jth row of Z(k),m matrix.

• z̄
(k),m
j,· is the mean of the row z

(k),m
j,·

• σ
(k),m
j,· is the standard deviation of the row z

(k),m
j,·

3.5.4 Construction of the Characteristic Matrix

In this section, we elucidate the construction of the final matrix, symbolized as Ẑ, as depicted
in (7). This matrix encapsulates the calculated metrics.

Ẑ(k),m =


PE(z

(k),m
1,· ) FD(z

(k),m
1,· ) Kurt(z

(k),m
1,· )

PE(z
(k),m
2,· ) FD(z

(k),m
2,· ) Kurt(z

(k),m
2,· )

...
...

...

PE(z
(k),m
J,· ) FD(z

(k),m
J,· ) Kurt(z

(k),m
J,· )

 , (7)

where each row within Ẑ(k),m contains the PE, FD, and Kurt metrics computed for the 3200
consecutive measurements of Eq. 3. Finally, a new matrix is obtained, as shown in the following
Eq. 8:

Ẑ(k) =
[
Ẑ(k),1 Ẑ(k),2 Ẑ(k),3 Ẑ(k),4 · · · Ẑ(k),M

]
. (8)

This matrix architecture offers a systematic approach to scrutinizing the temporal variations
of these metrics and their association with individual sensors. The meticulous arrangement
of PE, FD, and Kurt values within each sensor-specific submatrix augment the detection of
patterns, trends, and potential anomalies in the WT’s behavior. Serving as the analytical
foundation, Ẑ(k) is indispensable for a comprehensive understanding of the WT’s operational
performance and health. It further aids in pinpointing potential issues, be it in individual
sensors or the turbine’s holistic operation. Finally, each matrix Ẑ(k) ∈ M1760×72(R).

3.6 Normalization

Normalization is performed using the Z-score method to standardize the characteristics,
ensuring that they all contribute equally to the data analysis. This method, widely used in
statistics and data analysis, is used to normalize variables, thus simplifying data comparison
and processing. The Z-score is applied individually to each of the 72 columns of the Ẑ(k) matrix
in the training data set. Subsequently, the training mean and standard deviation values are
used to normalize the validation and test sets (this is to avoid information leakage from training

data to the other data sets). This ensured consistent normalization of all columns of the Ẑ(k)

matrix, preserving the relationship between the data in each column.
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3.7 Extended Isolation Forest

Accurate anomaly detection is pivotal in this study, achieved through the application of the
EIF algorithm, an extension of the Isolation Forest (iForest). EIF improves upon iForest by
using hyperplanes with random slopes to separate the data, which effectively solves problems re-
lated to anomaly determination [11]. EIF constructs binary trees through random subsampling
of the dataset, promoting a flexible approach to modeling anomalies. These trees divide the
data based on randomly selected attributes, eventually reaching nodes with only one instance,
which significantly enhances the isolation of anomalies. The anomaly score, reflecting the path
length through the tree and ranging from 0 to 1, provides a clear indication of anomalies, with
higher scores signifying their presence [12]. This extended approach introduces substantial im-
provements to anomaly detection, allowing for the identification of subtle anomalies in complex
datasets, ultimately contributing to our study’s comprehensive results and robust anomaly de-
tection capabilities. The extension level can be adjusted based on the number of feature axes,
which in this study ranges from 0 to 71, allowing for precise adaptation to the 72 available
features. This range was chosen considering that a ”fully extended” level would encompass all
features but without redundancy, ensuring a tailored model fitting the data’s feature count.

4 RESULTS

This section shows the obtained results. First, the hyperparameters for the EIF algorithm’s
architecture are determined using the training and validation datasets. To streamline this
process, the Python framework Optuna is utilized for automated hyperparameter tuning. The
hyperparameters outlined in Table 1 are obtained.

Table 1: Hyperparameters of the EIF algorithm.

Number of Trees Size of subsample Extension Level
369 1024 65

The results are presented using boxplots, where each Ẑ(k) matrix corresponds to a one
experiment. To evaluate the performance of the EIF algorithm, it is essential to use the
training data as a reference. As can be seen in 3 (left) the maximum median of the anomaly
score boxplots from all training experiments is equal to 0.48. This value is defined as the
fault detection threshold for the validation and testing data set. Since the model is trained
exclusively on data considered as ”healthy”, this threshold becomes a key reference. Any data
falling below this threshold is classified as ”healthy”, while those above it are considered as
”anomalous” or indicative of a fault. On the other hand, as can be seen in Figure 3 (right),
none of the boxplots of the validation experiments exceed the predefined threshold, showing
that the model generalizes well with the selected EIF hyperparameters.

To evaluate performance in healthy operating situations, test data corresponding to normal
conditions are analyzed. In Figure 4, it can be seen that two healthy experiments are classified
as anomalies. This does not mean that there exists a fault, since as indicated above, the
detection is based on the analysis of the entire group of testing experiments.

On the other hand, Figure 5 depicts the analysis of test data related to rotor faults. In this
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Figure 3: Boxplot of anomalies in training and validation data. The horizontal red dashed line represents the
threshold value.

Figure 4: Boxplot of anomalies in health testing data. The horizontal red dashed line represents the threshold
value.

case, it is observed that only one experiment falls below the established threshold. This does
not mean that the rotor is healthy.

Figure 5: Boxplot of anomalies in fault testing data. The horizontal red dashed line represents the threshold
value.

Since all of these data are time series, a grouping of all experiments considered ”healthy” and
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Iván González, Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

those with WT faults has been performed. This grouping has been performed to calculate an
average anomaly score for each set, both for healthy running data and for data with faults. By
considering the time-series nature, this approach allows us to gain a more robust perspective on
the behavior of the WT throughout its normal operation and ultimately determine if it is faulty.
These results are effectively represented in Figure 6. In this Figure, it is clearly seen that the
mean of the anomaly scores for the ”healthy” data is below the previously established threshold.
On the other hand, the mean of the anomaly scores for the data classified as a ”fault” is above
the threshold. Furthermore, the separation between the two data sets is strikingly evident.

Figure 6: Classification of WT performance data. The horizontal red dashed line represents the threshold
value.

These findings support an effective classification of the data, indicating that the EIF model
is able to distinguish between normal operating situations and WT faults with a high degree
of accuracy.

5 CONCLUSIONS

This paper has successfully addressed the critical challenge of early detection of rotor im-
balance in WTs by implementing the EIF algorithm. The results obtained demonstrate the
effectiveness of EIF in distinguishing between normal operating situations and faults in WTs
with high accuracy. This approach has significant implications in terms of efficient maintenance
and extended lifetime of wind turbines, thus contributing to the advancement of sustainable
wind power generation. Future research could focus on optimizing this approach and its im-
plementation in practical wind turbine monitoring applications on a larger scale.
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[2] Á. Encalada-Dávila, B. Puruncajas, C. Tutivén, Y. Vidal, Wind turbine main bearing
fault prognosis based solely on scada data, Sensors 21 (6) (2021) 2228.

[3] N. Ahobal, et al., Study of vibration characteristics of unbalanced overhanging rotor 577 (1)
(2019) 012140.
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