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Abstract

A universal template for a 4-node quadrilateral in plane stress is constructed using a combination of old and new techniques. The use
of natural quantities, strongly advocated by J.H. Argyris since his Continua and Discontinua 1965 exposition, is further expanded. The
qualifier ‘supernatural’ means that all governing equations: kinematic, constitutive and equilibrium, are expressed in both Cartesian and
natural forms. These two sets are used to build different components of the template. With timely help from a computer algebra system,
a template that include all possible quadrilateral elements that pass the Individual Element Test of Bergan and Hanssen emerges. It yields
an infinite number of hitherto undiscovered instances that may be customized to fit special needs. A striking example is the construction
of a two-trapezoid macroelement that is bending exact about one direction, for any amount of distortion. This concludes a five decade
search that begins with the formulation of the wing-cover rectangular panel in Argyris’ 1954 seminal serial on Energy Methods and

Structural Analysis.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper considers the 4-node, 8-DOF quadrilateral element to model a thin flat plate in plane stress. This will be
called the quadrilateral panel for brevity. The main goal is to construct the best possible element of this type, customized
to fit stated needs, using templates. Achieving this goal would conclude a long and seminal road started by John Argyris in
his celebrated 1954 serial [3] and pursued by many investigators over five decades. A historical overview pertaining to the
evolution of this element type as a driver for finite element technology is provided in Section 7.

2. Governing equations

Consider a thin, elastic, homogeneous flat plate in plane stress. This is idealized as a two-dimensional boundary value
problem idealized as sketched in Fig. 1. The two-dimensional mathematical model of the plate occupies domain X with
boundary C. The {x, y, z} axes are chosen as indicated in that figure.

The notation used for internal fields is summarized in Fig. 2. The in-plane displacements are {ux, uy}, the associated
strains are {exx, eyy, exy} and the in-plane (membrane) stresses are {rxx, ryy, rxy}. Prescribed in-plane body forces are
{bx, by}, but these will be set to zero in derivations that involve equilibrium equations. Prescribed displacements and
surface tractions are denoted by fûx; ûyg and f̂tx; t̂yg, respectively.
0045-7825/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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Fig. 2. Notation used for thin plate in plane stress.

Fig. 1. A thin plate in plane stress.
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All fields are considered uniform through the plate thickness h. If h is a function of {x, y}, it should vary only gradually
so that the two-dimensional plane stress idealization remains valid.

The governing plane stress elasticity equations are
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The compact matrix version of (1) is

e ¼ Du; r ¼ Ee; DTrþ b ¼ 0; ð2Þ
in which E is the plane stress elasticity matrix. Assuming this to be nonsingular, the inverse of r = Ee is
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where C = E�1 is the matrix of elastic compliances. These equations are graphically represented in the strong-form Tonti
diagram of Fig. 3.

3. The quadrilateral panel

The focus of the paper is the 4-noded quadrilateral panel element. This configuration is depicted in Fig. 4. The element
occupies the domain Xe and has boundary Ce. The thickness and constitutive properties, defined by the E or C matrices, are
constant over the element. The corner coordinates are {xi, yi}, i = 1, 2, 3, 4. Abbreviations xij = xi � xj and yij = yi � yj

are used for node coordinate differences.
The element has eight external (connective) degrees of freedom (DOF). The node displacement and force vectors are

configured as



Fig. 4. The 4-node quadrilateral panel.
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Fig. 3. Tonti diagram for strong form of the plane stress problem.
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ue ¼ ux1 uy1 ux2 uy2 ux3 uy3 ux4 uy4½ �T;
fe ¼ fx1 fy1 fx2 fy2 fx3 fy3 fx4 fy4½ �T.

ð4Þ

The formulation of the stiffness template is significantly simplified by working out invariant geometric properties of the
quadrilateral. The development is rather lengthly and so is relegated to Appendix A.

3.1. Natural displacements

Table 1 summarizes notation used in the sequel for Cartesian and natural quantities. The Cartesian unit base vectors are
ix and iy. The natural unit basis vectors at a generic point P(n, g) are called a1 and a2. Denote by /1 and /2 the angles from
+x to a1 and from +y to a2, as illustrated in Fig. 5(a). (Positive if counter-clockwise; both angles shown in the figure are
negative.) Then

a1 ¼ ðJ 11=J 1Þix þ ðJ 12=J 1Þiy ¼ cos /1ix þ sin /1iy ;

a2 ¼ ðJ 21=J 2Þix þ ðJ 22=J 2Þiy ¼ � sin /2ix þ cos /2iy ;
ð5Þ
Table 1
Side-by-side Cartesian and natural notation

Quantity Cartesian form Natural form

Components Matrix Components Matrix

Coordinate array {x, y} x {n, g} n

Position vector of point P P(x, y) ~x P(n, g) n

Base vectors {1, 0}, {0, 1} ax, ay See Eq. (6) a1, a2

Displacement field {ux, uy} ~u {ŭn, ŭg} �u

Strain field {exx, eyy, gxy} e f�enn;�egg; �gngg �e

Stress field {rxx, ryy, rxy} e f�rnn; �rgg; �rxigg �r
Elastic moduli {E11, . . . , E33} E f�E11; . . . ; �E33g �E

Elastic compliances {C11, . . . , C33} C f�C11; . . . ; �C33g �C

Elem. node coordinates {x1, y1, . . . , x4, y4} xe {n1, g1, . . . , n4, g4} ne

Elem. node displacements {ux1, uy1, . . . , ux4, uy4} ue {ŭn1, ŭg1, . . . , ŭn4, ŭg4} �ue

Elem. node forces {fx1, fy1, . . . , fx4, fy4} fe f�f n1; �f g1; . . . ; �f n4; �f g4g �fe

~x, ~u are used when manipulations as a vector object are emphasized.
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Fig. 5. Natural displacement field. (a) Base vectors and their angles with {x, y} (in the figure both /1 and /2 are negative), (b) natural displacement
components at an arbitrary point; (c) natural node displacements.
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where the J’s are defined in Appendix A.2. The natural (covariant) displacement components are the projections of the
physical displacement vector~uðn; gÞ at P(n, g) on the natural base vectors: �un ¼~u � a1 and �ug ¼~u � a2 (see Fig. 5(b)). In ma-
trix form
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The inverse is
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Evaluation of ŭn and ŭg at the nodes gives eight natural (covariant) node displacements, which are pictured in Fig. 5(c).
These are collected in array �ue. Cartesian and natural node displacements are linked by the transformation matrix
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ð9Þ
Here Lij is the length of side joining corners i and j whereas areas Aijk are defined in (57).
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3.2. Natural strains

Following Park and Stanley [47,58], the natural strain components with respect to a fixed coordinate basis {a1, a2} are
defined by
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Here �o indicates that metric coefficients are ‘‘frozen’’ when taking partial derivatives. For example,
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In operator matrix form,
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in which �D denotes the natural strain–displacement operator. On expanding as typified by (11), the transformation between
Cartesian and natural strains can be expressed in matrix form as
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The inverse is
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in which J = J11J22 � J12J21. The natural strains (10) do not form a tensor. Some authors have defined tensorial (covariant)
natural strains with respect to a moving base-vector system {a1, a2}. As noted in [47] that complication is unnecessary as it does
not produce better elements. This was confirmed in a recent study of this element type by Lautersztajn and Samuelsson [37].

Since e ¼ Du ¼ �Te�e and u ¼ �Td�u, eliminating e and u yields �e ¼ �T�1
e D�Td�u ¼def �D�u. Thus �D ¼ �T�1
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The entries in (15) gives the expression of o/ox and o/oy in fixed-base-vector natural coordinates. If moving base vectors
were adopted, {n, g} partials of the metric coefficients would appear.

3.3. Natural strain–displacement equations

At this juncture two paths may be followed to construct element-level strain–displacement relations in natural
coordinates:

(1) Interpolate natural displacements isoparametrically and apply (12).
(2) Interpolate Cartesian displacements isoparametrically and transform Cartesian to natural strains.
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The first approach leads to natural displacements that violate interelement compatibility because metric coefficients typ-
ically jump there, see Fig. 6. This is a consequence of natural node displacements being generally misaligned when one con-
siders adjacent elements.

The second approach retains interelement continuity and is the one followed here. The resulting natural strain field will
not generally satisfy differential compatibility, but it is precisely that ‘‘compatibility relaxation’’ that makes possible the
construction of high performance elements.

The strain–displacement matrix that relates Cartesian strains e ¼ ½ exx; eyy ; 2exy �T to Cartesian node displacements ue is
eiso = Bisoue, where the subscript ‘iso’ means that the Cartesian displacements ux(n, g) and uy(n, g) are interpolated isopar-
ametrically by the bilinear shape functions Ni of (55). The well-known expression of Biso is

Biso ¼ Bc þ Bh ¼ Bc þ Bd þ Bnnþ Bgg; ð16Þ
where
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ð17Þ

in which J = J11J22 � J12J21 and A is the signed quadrilateral area given by (56). Note that Bc is the mean value of Biso in
the sense that

1

A

Z
Xe

Biso dX ¼ 1

A

Z
Xe

BisoJ dndg ¼ Bc ð18Þ

exactly for any geometry. Passing to natural coordinates: �e ¼ �T�1
e e ¼ �T�1

e Bisoue ¼ �T�1
e Biso

�Tu�u
e ¼def �Biso�ue. Consequently

�Biso ¼ �T�1
e Biso

�Tu. Using (16) and (17) this matrix splits as

�Biso ¼ �Bc þ �Bh; with �Bc ¼ �T�1
e Bc

�Tu; �Bh ¼ �T�1
e ðBd þ Bnnþ BggÞ�Tu. ð19Þ

The entries of �Bc and �Bh are quadratic polynomial functions of n and g (not rational functions, as is the case for Bn and Bg)
and of the geometric invariants introduced in Appendix A. For example,

�Bcð1; 1Þ � �
L21ð A0 � A1 þ A2gÞðA0 þ ðA1 þ A2Þgð ÞÞ

4A0A412L2
68

; �Bhð3; 1Þ �
A234L21 ðA0 � A1Þnþ A2ðgþ 2ngÞð Þ

2A0A412L75L68

; ð20Þ

in which A0, A1 and A2 are defined in (56). The complete set of entries is not listed to conserve space. For a uniform stress
state in which ec ¼ ½ ecxx ecyy 2ecxy �T ¼ Bcuc is constant over the element, the natural strains �ec ¼ �T�1

e ec are not constant
unless A1 = A2 = 0. In fact they are rational functions of n and g.

3.4. Natural stresses and constitutive matrices

The natural stresses energy-conjugate to �enn, �egg and �cng will be denoted by �rnn, �rgg and �rng, respectively. They are col-

lected in a 3-vector �r, and are linked to their Cartesian counterparts by the transformations r ¼ �Trr and �r ¼ �T�1
r r. Let
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U ¼ 1
2
eTEe and U� ¼ 1

2
rTCr denote the strain and stress energy densities, respectively. (U� is also known as the comple-

mentary energy density.) Since eTr ¼ �eT �TT
e r ¼def

�eT�r we must have �r ¼ �TT
e r and r ¼ �T�T

e �r. Consequently the natural stresses
are given by the transformations

r ¼ �Tr�r with �Tr ¼ �T�T
e ; �r ¼ �T�1

r r with �T�1
r ¼ �TT

e . ð21Þ

To get the natural versions of the constitutive matrices, note that 2U ¼ eTEe ¼def
�eT �E�e and that 2U� ¼ rTCr ¼def

�rT �C�r. Apply-
ing the foregoing strain and stress transformations yields

�E ¼ �TT
e E�Te; �C ¼ �TT

r C�Tr ¼ �T�1
e C�T�T

e . ð22Þ

Check: �E�C ¼ �TT
e E�Te

�T�1
e C�T�T

e ¼ �TT
e EC�T�T

e ¼ �TT
e

�T�T
e ¼ I. Note that �E or �C by themselves do not have any direct physical

meaning as their Cartesian counterparts do, since they vary with the metric. They are only a convenience tool for element
invariant derivations.

3.5. Natural equilibrium equations

For zero body forces the Cartesian differential equilibrium equations are DTr = 0, which is (2)3 with b = 0. From (15),
DT ¼ �T�T

d
�DT �TT

e , and from (21), r ¼ �Tr�r ¼ �T�T
e �r. Replacing gives DTr ¼ �T�T

d
�DT�r ¼ 0. If �Td is nonsingular, which from (7)

is seen to hold as long as cos(/1 � /2) 5 0, it is sufficient to require that �DT�r ¼ 0. This expands to the two natural equi-
librium equations

1
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J 2
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�og
¼ 0;

1

J 1

�o�rng

�on
þ 1

J 2

�o�rgg

�og
¼ 0. ð23Þ

Eqs. (23) satisfy differential (pointwise) equilibrium only for elements of constant metric, such as rectangles or parallelo-
grams, since metric coefficients are frozen on taking the �o partials. Differential equations that express pointwise equilibrium
for more general geometries are substantially more complicated than (23), but unnecessary in the sequel. Indeed, for devel-
oping finite element templates ‘‘equilibrium relaxation’’ is a virtue rather than a blemish.

3.6. Useful natural stress fields

A natural stress field that satisfies (23) is �rnn ¼ l1g1ðgÞ, �rgg ¼ l2g2ðnÞ, and �rng ¼ l3. Here l1 through l3 are stress-mode
amplitudes with physical dimension of stress whereas g1 and g2 are arbitrary functions of g and n, respectively. In matrix
form

�rnn

�rgg

�rng

2
64

3
75 ¼

g1ðgÞ 0 0

0 g2ðnÞ 0

0 0 1

2
64

3
75

l1

l2

l3

2
64

3
75; or �r ¼ �Al; ð24Þ

For constructing the flexural (higher order) stiffness the following assumption is the simplest one:

�rnn

�rgg

�rng

2
64

3
75 ¼

g� gN 0

0 n� nN

0 0

2
64

3
75 lh1

lh2

� �
; or �rh ¼ �Ahlh. ð25Þ

In (25) nN and gN are natural coordinates of lines that may be interpreted as ‘‘neutral axes’’ for bending along the natural
directions. If one chooses

nN ¼ nC �
1

3
A1=A0; gN ¼ gC �

1

3
A2=A0; ð26Þ

where nC, gC are the centroid coordinates given by (64), the mean values of field (25) over a constant-metric element vanish.

3.7. Kinematic decomposition

Template development relies on hierarchical divide-and-conquer of the element kinematics. For a 4-node quadrilateral
panel, the appropriate two-level decomposition is sketched in Fig. 7.

At the top level, the total motion is decomposed into rigid and deformational. The latter is in turn split into constant
strain and flexural motions. In the Free Formulation [8–11,14,15,46,55], the notation for the three components is shortened
to r-motion, c-motion and h-motion, where h stands for ‘‘higher order’’ behavior. Those labels will be often used as
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Fig. 7. Kinematic decomposition of quadrilateral in-plane motion for template development: rigid, constant-strain and flexural (higher order). Several
liberties are taken for visualization convenience: (i) motions are actually infinitesimal, (ii) there are no rigid motions from configuration (b) to (c) and from
(c) to (d), so infact the quadrilateral centroid stays in the same location.
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subscripts in the ensuing material. The combination of rigid and constant strain is collectively called the basic motion, and
subscripted by either rc or b.

The total motion of element e is defined by the total node displacements ue. The appropriate decomposition is
ue ¼ ue

r þ ue
c þ ue

h. But this is not particularly useful because it conceals the physics. It is better to describe each portion
in terms of generalized coordinates qr, qc and qh, respectively, which are grouped in a vector q. To each generalized coor-
dinate is associated a kinematic field called a mode for brevity. Thus we speak of r-modes, c-modes and h-modes. Using the
Free Formulation notation we write

ue ¼ Grqr þGcqc þGhqh ¼ Gr Gc Gh½ �
qr

qc

qh

2
64

3
75 ¼ Gq. ð27Þ

For the quadrilateral panel the dimensions of qr, qc and qh are 3, 3 and 2, respectively. Hence the dimension of Gr, Gc, Gh

and G are 8 · 3, 8 · 3, 8 · 2 and 8 · 8, respectively. Notice that the choice of qr, qc and qh is left open as a matter of con-
venience. The obvious picks for qr and qc are the three rigid-body mode amplitudes and the three constant-strain mode
amplitudes, respectively. But for qh the choice is far from obvious if the element has arbitrary geometry. In-plane flexural
motions are attractive candidates, but how should they be defined? Several choices have been explored over the past two
decades.

In the Free Formulation, all modes: r, c and h, are explicitly defined as displacement fields. Matrix G is built by evalu-
ation of these fields at nodes, inverted producing H = G�1, and row-wise partitioned to yield

q ¼
qr

qc

qh

2
64

3
75 ¼ Hue ¼

Hr

Hc

Hh

2
64

3
75ue. ð28Þ

For the quadrilateral panel Hr, Hc and Hh are 3 · 8, 3 · 8 and 2 · 8 matrices, respectively. Once (28) is available, the con-
struction of the stiffness matrix is routine.

In the ANDES formulation [16,26,44], the h-field is constructed indirectly by assuming deviatoric strain patterns. That
is, deviations from constant strain states. No attempt is made at constructing a higher order displacement field. This would
be generally impossible because assumed deviatoric strain fields are not necessarily compatible, and thus not integrable.
This relaxation provides additional freedom to element developers.

In the template approach the operational flexibility is taken to the limit. The higher order component is constructed as a
parametrized algebraic expression. As a result, a template can generate all elements that fit the decomposition of Fig. 7. In
particular it embodies Free Formulation and ANDES elements as instances, as well as those produced by other techniques.

3.8. Kinematic filters

A Free Formulation tool that survives in the wider context of templates is the concept of filter matrices. To state the
problem, consider (28). Given ue, the job of matrices Hr, Hc and Hh is to extract the generalized coordinate amplitudes:
qr = Hru

e, qc = Hcu
e and qh = Hhue. This is a kinematic filtering process, hence the name. For an element of given node
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and freedom configuration, the construction of Hr and Hc is the same for all possible element instances, as long as the for-
mulation exactly reproduces rigid body modes and constant strain states. And so it may be done once and for all: Hr and
Hc will be the same today, tomorrow or as long as the Universe endures.

The filter matrix Hh is another matter entirely. It is formulation dependent and can vary from instance to instance. With
a view to unifying all such possibilities into one template, it is convenient to effect a multiplicative decomposition of Hh into
a formulation-dependent weighting matrix (also called a ‘‘h-mode distributor’’) and a formulation-independent filter
matrix that weeds out basic modes. The name Hh will be reserved for the latter. This decomposition is pictured in Fig. 8.

The derivation of Hh and W for a quadrilateral panel of arbitrary geometry was carried out using a variational strain

fitting method described in [25]. This procedure requires extensive use of the invariant relations presented in Appendix A as
well as the higher order natural strain–displacement matrix �Bh defined in (19). The long symbolic computations were done
with Mathematica. Details are omitted to save space. The higher-order pass filter matrix turned out to be

Hh ¼
H 1 0 H 2 0 H 3 0 H 4 0

0 H 1 0 H 2 0 H 3 0 H 4

� �
; ð29Þ

where Hi are the dimensionless area-ratios defined in (65). This matrix is the same for all elements of this type. Matrix W

depends on assumptions made on (generally incompatible) natural flexural strain variations. These are energy fitted to the
compatible strains defined by �Bh. For the simplest assumption of linear variation in n and g a surprisingly simple closed
form emerges. Introducing the abbreviations x12j34 = (x12 + x34)/2, y12j34 = (y12 + y34)/2, x21j34 = (x21 + x34)/2, y21j34 =
(y21 + y34)/2, x32j41 = (x32 + x41)/2 and y32j41 = (y32 + y41)/2, and denoting the lengths of the quadrilateral medians 5–7
and 6–8 shown in Fig. 16(b) by L68 and L57, respectively, one finds

W ¼

x21j34 þ � nx12j34

L2
68

y21j34 þ � ny12j34

L2
68

x32j41 þ � gx12j34

L2
75

y32j41 þ � gy12j34

L2
75

2
6664

3
7775. ð30Þ

Here � n and � g are dimensionless coefficients characterizing the location of ‘‘neutral flexure axes’’ over the element. These
vanish if A1 = A2 = 0. Other fitted-strain distributions would lead to different W entries. All of them, however, can be ex-
pressed in the universal form

W ¼

xW 68

L2
68

yW 68

L2
68

xW 75

L2
75

yW 75

L2
75

2
664

3
775; ð31Þ

in which the numerators have dimensions of length. Their algebraic structure can be left free as part of the template. One
constraint, however, ought to be respected: if the element has constant metric so that A1 = A2 = 0 (rectangle or parallel-
logram), xW68 = x68, yW68 = y68, xW75 = x75 and yW75 = y75.

3.9. Flexural rigidity

The matrix operation v = WHhue depicted in Fig. 8 extracts two flexural-mode natural strain amplitudes: v1 and v2.
These are dimensionless. The corresponding amplitudes of flexural natural stresses are l1 and l2, which have physical
dimension of stress. The 2-vectors v and l are connected by the 2 · 2 flexural rigidity matrix R. This matrix brings up
the higher order constitutive behavior:
W Hh

Weighting
(aka "distributor") 

matrix

HO-pass filter:
projects out
basic motion

Flexural natural 
strain modal 
amplitudes

Element node
displacements

=χ ue

Formulation dependent 
(W is independent for 
constant-metric geometries)

 Formulation independent

Fig. 8. The anatomy of higher-order natural strain extraction for the quadrilateral panel: multiplicative decomposition into a 2 · 2 weighting matrix W

and a 2 · 8 h-mode pass filter (basic-motion-kill projector) Hh.
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l ¼
l1

l2

� �
¼

R11 R12

R12 R22

� �
v1

v2

� �
¼ Rv; ð32Þ

Entries of R have dimension of stress. They can be conveniently expressed from entries of the natural elasticity matrix �E, or
of the natural compliance matrix �C. These in turn can be written in terms of the more accessible Cartesian elasticity or
compliance matrix, respectively, using the inverses of (22).

How is R calculated? Outside the template context this would depend on the formulation. In well-established displace-
ment- and strain-assumed methods, (e.g., shape functions, reduced integration, Free Formulation, ANS or ANDES), R is
built as a generalized bending rigidity matrix. In stress-assumed hybrids, Trefftz or HR-based formulations R emerges as
the inverse of a generalized bending flexibility. In any event R is a consequence of the chosen method and cannot be played
with.

In the template approach, however, R is left unspecified as part of the template. This freedom of choice may be used to
either fit existing elements, or to produced new customized elements.

3.10. Flexural node forces

The final step in dealing with the flexural motion is to arrive to the flexural nodal forces fh. From virtual work, this is
done simply by premultiplying l by WT and HT

h , in that order, and scaling through by the element volume V = Ah to
restore the correct physical units:

fh ¼ V HT
h WTl ¼ V HT

h WTRWHhue ¼ Khue. ð33Þ
Here Kh ¼ V HT

h WTRWHh is the higher order stiffness matrix, which for this element is entirely due to in-plane flexural
motions. The sequence is depicted in Fig. 9, which completes Fig. 8.

4. Templates

After the preparatory work of Section 3, we are ready to present the template for the quadrilateral panel. All 4-node
quadrilateral stiffness matrices that pass the IET (individual element patch-test) of Bergan and Hanssen [7,29] are instances
of the algebraic form

K ¼ Kb þ Kh ¼ V HT
c EHc þ V HT

h WTRWHh; ð34Þ
where most symbols have been previously defined. For the convenience of the reader the ingredients are restated:

Hc ¼
1

2A

y24 0 y31 0 y42 0 y13 0

0 x42 0 x13 0 x24 0 x31

x42 y24 x13 y31 x24 y42 x31 y13

2
64

3
75;

Hh ¼
H 1 0 H 2 0 H 3 0 H 4 0

0 H 1 0 H 2 0 H 3 0 H 4

� �
;

W ¼
W 11 W 12

W 21 W 22

� �
; R ¼

R11 R12

R12 R22;

� �
V ¼ Ah.

ð35Þ
R

HO-"unpass filter":
lumps stresses to forces 

& distributes
onto all DOFs

Element
volume

where

Redistributes
natural stress

amplitudes

 Modal amplitudes
of flexural natural 
strain (cf. Figure 7)

Modal amplitudes
of flexural

natural stress

Node
forces due
to flexural 

motion

Bending
rigidity
matrix

= = χμμfe

Formulation dependent 
(W is independent for 
constant-metric geometries)

 Formulation independent

Hh
T

h WTV

Fig. 9. Roadmap from flexural natural strains, through natural stresses, ending in node forces: continuation of Fig. 8.
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Fig. 10. The template for the 4-node quadrilateral panel, highlighting formulation dependent and independent parts.
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Hc and Hh are the same for all quadrilateral models. Note that Hc, the constant-strain pass filter, agrees with the mean
isoparametric strain–displacement matrix Bc in (17). This is not an accident. The coalescence holds for any element in
which constant strain implies constant stress [19]. This is the case here because the element is assumed to have uniform
thickness and constitutive properties.

Both R and W are formulation dependent. For constant metric shapes, namely rectangles and parallelograms, W is diag-
onal and formulation independent [27]. The important point is that the element derivation affects only part of the stiffness
expression, as highlighted in Fig. 10.

4.1. Template terminology

The algebraic form characterized by (34) and (35) is called a finite element stiffness template, or template for short.
Matrices Kb and Kh are called the basic and higher-order stiffness matrix, respectively, in accordance with the fundamental
decomposition of the Free Formulation. These two matrices play different and complementary roles. The basic stiffness Kb

takes care of consistency and element-type-mixing. In the Free Formulation a restatement of the basic stiffness (34) is
preferred:

Kb ¼ V �1LELT; ð36Þ
where L is called the force lumping matrix, or simply lumping matrix. If the element has uniform thickness and material
properties, L = Hc/V.

The higher order stiffness Kh is a stabilization term that provides the correct rank and may be adjusted for accuracy. This
matrix is orthogonal to rigid body motions and constant strain states. To verify the claim for this template introduce the
basic-mode matrix Grc of the Free Formulation, which merges Gr and Gc of (27) column-wise:

Grc ¼

1 0 y1 x1 0 y1

0 1 �x1 0 y1 x1

1 0 y2 x2 0 y2

0 1 �x2 0 y2 x2

1 0 y3 x3 0 y3

0 1 �x3 0 y3 x3

1 0 y4 x4 0 y4

0 1 �x4 0 y4 x4

2
66666666666664

3
77777777777775

. ð37Þ

Columns of Grc span node-evaluated rigid body modes and constant strain states. These are not orthonormalized as that
property is not required here. It is readily checked that HhGrc = 0. Hence those modes, and any linear combination thereof,
are orthogonal to the higher order stiffness: KhGrc = 0 for any W and R. The role of Hh as a ‘‘higher-order pass filter’’
displayed in Fig. 8 is confirmed.

4.2. Requirements

An acceptable template fulfills four conditions: (C) consistency, (S) stability (correct rank), (I) observer invariance and
(P) parametrization. These are discussed at length in other papers [18–24]. Conditions (C) and (S) are imposed to ensure
convergence as the mesh size is reduced by enforcing a priori satisfaction of the Individual Element Test. Observer invari-
ance has to be checked by rotating the {x, y} axes and verifying that both Kb and Kh transform correctly. Condition (P)
means that the template contains free parameters or free matrix entries. In the present template the simplest choice of
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parameters are the matrix entries of R and W. As these always appear in the combination WTRW, some indeterminacy
arises because adjustments in W can be moved to R or vice-versa. To fulfill stability, R11 > 0, R22 > 0 and
R11R22 � R2

12 > 0. Parametrization facilitates performance optimization as well as tuning elements, or combinations of ele-
ments, to fulfill specific needs.

Using the IET as departure point it is not difficult to show [45] that the given template, under the stated restrictions on
R, includes all elements of this type that satisfy the IET and stability.

4.3. Instances, signatures, clones

Setting free parameters to specific values yields element instances. This set is called the template signature, a term intro-
duced in 1999 [22,23]. Borrowing terminology from biogenetics, the signature may be viewed as an ‘‘element DNA’’ that
uniquely characterizes it as an individual entity. Elements derived by different techniques that share the same signature are
called clones, except for the first born.

One of the ‘‘template services’’ is automatic identification of clones. If two elements fitting the template (34), (35) share
R and W, they are clones. Inasmuch as most FEM formulation schemes have been tried on this element, it should come as
no surprise that there are many clones, particularly for the rectangular shape specialization discussed next.

5. Specialization 1: The rectangular panel

A template such as (34), (35) may be on first sight disconcerting to the reader. This is not the usual way in which ele-
ments are presented in FEM textbooks. The dominant tradition is to develop individual elements in total (nondecomposed)
form using specific methods. More about this practice is said in Section 8.

The specialization of the general template to a rectangular panel, often abbreviated to RP in the sequel, has been effec-
tively used by the writer as a tutorial device in graduate level FEM courses. This geometry is simple enough to be amenable
to complete analytical development, even for anisotropic material behavior, but it possesses a nontrivial template.

In addition, the rectangular panel serves as a convenient vehicle to teach the phenomenon of shear locking and explain
the use of reduced integration within a template perspective. The material in this and the next section is extracted from
course notes as well as from a recent expository article [27].

5.1. Stiffness template

The rectangular panel is depicted in Fig. 11. The {x, y} axes are aligned with the sides for conveniency. The in-plane
dimensions are a and b = a/c, where c = a/b is the side aspect ratio. The thickness h and elasticity matrix E are constant
over the element. For this geometry,

Hc ¼
1

2ab

�b 0 b 0 b 0 �b 0

0 �a 0 �a 0 a 0 a

�a �b �a b a b a �b

2
64

3
75;

Hh ¼
1

2

1 0 �1 0 1 0 �1 0

0 1 0 �1 0 1 0 �1

� �
;

W ¼
1=a 0

0 1=b

� �
; R ¼

R11 R12

R12 R22

� �
; V ¼ abh.

ð38Þ
Fig. 11. The rectangular panel.
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The only freedom left in the template is the choice of R11, R22 and R12. Three prototypical instances that serves as guide in
this choice are

• the stress-assumed model StressRP,
• the strain-assumed model StrainRP,
• the displacement-assumed bilinear isoparametric model DispRP.

The derivation of StressRP and StrainRP is covered in detail in the tutorial [27], whereas that of DispRP is standard text-
book material. For these models R becomes Rr, Re and Ru, respectively, where

Rr ¼
1

3

C�1
11 0

0 C�1
22

" #
; Re ¼

1

3

E11 0

0 E22

� �
; Ru ¼

1

3

E11 þ
a2E33

b2

bE13

a
þ aE23

b
bE13

a
þ aE23

b
E22 þ

b2E33

a2

2
664

3
775. ð39Þ

As narrated in Section 7, beginning in the mid-1950s most FEM formulation methods have been tried on the rectangular
panel, as well as its plane strain and axisymmetric counterparts. Thus it should be no surprise that after five decades many
clones exist, particularly of the stress element. Those published before 1990 are collected in Table 2. For example, the
incompatible mode element Q6 of Wilson et al. [62] is a clone of StressRP. The version QM6 of Taylor et al. [60], which
passes the patch test for arbitrary shape, reduces to Q6 for rectangles and parallelograms. Even for this exceedingly simple
geometry, recognition of some of the coalescences took some time, as recently recollected by Pian [53].

5.2. Finding the best

The obvious question arises: among the infinity of elements that a template such as (38) can generate, is there a best one?
By construction all instances verify exactly the IET for rigid body modes and uniform strain states. Hence the optimality
criterion must rely on higher order patch tests. The obvious tests involve response to in-plane bending along the side direc-
tions. This leads to comparisons in the form of energy ratios. These have been used since 1984 to tune up the higher order
stiffness of triangular elements [10,14,16,26]. An extension introduced here is consideration of arbitrary anisotropic material.

The x bending test is depicted in Fig. 12. A Bernoulli–Euler plane beam of thin rectangular cross-section with height b

and thickness h (normal to the plane of the figure) is bent under applied end moments Mx. The beam is fabricated of
Table 2
A clone gallery for the rectangular panel

Name Description Clones and sources

StressRP 5-Stress-mode element Direct derivation: Turner et al. [61], Gallagher [28]
Pian 5-mode stress hybrid [50,49,53]
Wilson–Taylor–Doherty–Ghaboussi Q6 [62]
Taylor–Wilson–Beresford QM6 [60]
Belytschko–Liu–Engelmann QB [6]
SRI of iso-P model with elasticity split (50)

StrainRP 5-Strain-mode element MacNeal QUAD4 [40,38]
SRI of iso-P model with elasticity split (52)

DispRP Bilinear iso-P element Argyris [3] as edge stiffened rectangular panel
Taig–Kerr [59] as specialization of quadrilateral

Note 1: Many plane stress models listed above were derived for quadrilateral geometries, and a few as membrane component of shells. The right-hand-
column classification only pertains to the rectangular panel specialization. For example, Q6 and QM6 differ for variable-metric shapes.
Note 2: Instances of the extra-stress-mode-hybrids and displacement-bubble-function ‘‘futile families’’ are covered in [27].
Note 3: Post-1990 clones (e.g. EAS [54]) omitted to save space. See [37] for a recent survey.

Fig. 12. The in-plane constant-moment bending test along the x direction.
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anisotropic material with the elasticity matrix (1)2. The exact solution of the beam problem (from both the theory-of-elas-
ticity and beam-theory standpoints) is a constant bending moment M(x) = Mx along the span. The associated stress field is
rxx = �Mxy/Ib, ryy = rxy = 0, where Ib = hb3/12, and the energy taken over a length a is Ubeam

x ¼ 6aC11M2
x=b3h. For the 2D

element tests, each beam is modeled with one layer of identical 4-node rectangular panels of aspect ratio c = a/b. By anal-
ogy with the exact solution, all rectangles in the finite element model will undergo the same deformations and stresses. We
can therefore consider a typical element as shown in the figure. A simple calculation shows that the element node displace-
ment vector is

ubx ¼
12MxC11a

b2h
�1 0 1 0 �1 0 1 0½ �T ð40Þ

and that the energy taken by the element is Upanel
x ¼ 1

2
uT

bxKubx. The energy ratio is defined by rx ¼ Upanel
x =Ubeam

x . This happens
to be the ratio of the exact (beam) displacement solution to that of the rectangular panel solution. Hence rx = 1 means that
we get the exact answer under Mx, that is, the panel is x-bending exact. If rx > 1 or rx < 1 the panel is overstiff or overflex-
ible in x bending, respectively. A completely analogous test can be set up for y bending, by stacking elements along that
direction, and the corresponding energy ratio is called ry.

5.3. The optimal panel

If rx = 1 and ry = 1 for any aspect ratio c = a/b and arbitrary material properties the element is called bending optimal. If
rx� 1 for a� b and/or ry� 1 for a	 b the element is said to experience aspect ratio locking along the x or y direction,
respectively. This is called shear locking in the FEM literature because it is traceable to spurious shear energy, as shown
below.

Applying the tests to the rectangular panel template yields rx = 3C11R11 and ry = 3C22R22. Clearly to get rx = ry = 1 for
any aspect ratio we must take

R11 ¼
1

3
C�1

11 ; R22 ¼
1

3
C�1

22 . ð41Þ

Since R12 is absent from (41) one can set R12 = 0 for convenience. Comparing to the list (39) shows that StressRP (and
clones) is the bending-optimal rectangular panel. For isotropic material R11 = R22 = E/3.

5.4. The strain element does not lock

It is interesting to apply the foregoing test to other template instances. The StrainRP element generated by the Re of (39)
gives

rx ¼ C11E11; ry ¼ C22E22. ð42Þ
If the material is isotropic, C11 = C22 = 1/E and E11 = E22 = E/(1 � m2). This yields rx = ry = 1/(1 � m2), which varies
between 1 and 4/3 if Poisson’s ratio ranges from 0 to 1/2. For an orthotropic body with principal material axes aligned
with the rectangle sides, E11 = E1/(1 � m12m21), E22 = E2/(1 � m12m21), C11 = 1/E1, C22 = 1/E2, and rx = ry = 1/
(1 � m12m21). These are independent of the aspect ratio c. Consequently StrainRP and its clones do not lock, although
the element is not generally optimal. Note that if C11E11 and/or C22E22 differ widely from 1, as may happen in highly aniso-
tropic materials, the bending performance will be poor. The benchmark example of Section 5.9 displays this effect vividly.

5.5. But the displacement element does

Instance DispRP is generated by the Ru in (39). Inserting this into the energy ratio yields

rx ¼ C11ðE11 þ E33c
2Þ ¼ ðE22E33 � E2

23ÞðE11 þ E33c2Þ
detðEÞ ;

ry ¼ C22ðE22 þ E33c
�2Þ ¼ ðE11E33 � E2

13ÞðE22 þ E33c�2Þ
detðEÞ ;

ð43Þ

in which detðEÞ ¼ E11E22E33 þ 2E12E13E23 � E11E2
23 � E22E2

13 � E33E2
12. For an isotropic material

rx ¼
2þ c2ð1� mÞ

2ð1� m2Þ ; ry ¼
1þ 2c2 � m
2c2ð1� m2Þ . ð44Þ

These relations clearly indicate aspect ratio locking for bending along the longest side dimension. For instance if m = 0 and
a = 10b, whence c = a/b = 10, then rx = 51 and DispRP is over 50 times stiffer in x bending than the Bernoulli–Euler beam
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element. Expressions (43) make clear that locking happens for any material law as long as E33 5 0. Since this is the shear
modulus, the name shear locking used in the FEM literature is justified.

5.6. Multiple element layers

Results of the energy bending test can be readily extended to predict the behavior of 2n (n = 1, 2, . . .) identical layers of
elements symmetrically placed through the beam height. If 2n layers are placed along the y direction in the configuration of
Fig. 12 and c is kept fixed, the energy ratio becomes

rð2nÞ
x ¼ 22n � 1þ rx

22n ; ð45Þ

where rx is the ratio for one layer. If rx � 1 then r2n
x � 1 so bending exactness is maintained, as can be expected. For exam-

ple, if n = 1 (two element layers), rð2Þx ¼ ð3þ rxÞ=4.

5.7. SRI in template context

It is illuminating to study a well-known ‘‘shear unlocking’’ device from the standpoint of templates. Full Reduced Inte-
gration (FRI) and Selective Reduced Integration (SRI) emerged during 1969–72 [13,36,48,64] as tools to improve the in-
plane bending behavior of isoparametric displacement models. Initially labeled as ‘‘variational crimes’’ by Strang [56,57]
they were eventually justified through lawful association with mixed variational methods [30–33]. They turned out to be
particularly useful for legacy and nonlinear FEM codes because they allow shape function and numerical integration mod-
ules to be reused. For the 4-node rectangular panel only SRI is of interest because FRI leads to rank deficiency:
R11 = R12 = R22 = 0. An interesting question is: can a given template (in particular, StressRP) be reproduced for any mate-

rial law by a SRI scheme? It will be shown that the answer is yes if R12 = 0. Split the plane stress elasticity matrix E into
E = EI + EII. A general parametrization of this splitting that retains symmetry is

E ¼ EI þ EII ¼

E11q1 E12q3 E13s2

E12q3 E22q2 E23s2

E13s2 E23s2 E33s1

2
664

3
775þ

E11ð1� q1Þ E12ð1� q3Þ E13ð1� s2Þ

E12ð1� q3Þ E22ð1� q2Þ E23ð1� s3Þ

E13ð1� s2Þ E23ð1� s3Þ E33ð1� s1Þ

2
664

3
775; ð46Þ

in which q1, q2, q3, s1, s2 and s3 are dimensionless coefficients to be chosen. To apply SRI to the isoparametric bilinear
model, insert (46) into E of that formulation to get

K ¼
Z

Xe
hBT

isoEIBiso dXþ
Z

Xe
hBT

isoEIIBiso dX ¼ KI þ KII. ð47Þ

where Biso is given by (16). The two matrices in (47) are computed through different numerical quadrature schemes, labeled
(I) and (II). For this element (I) and (II) will be the 1 · 1 (one point) and 2 · 2 (4-point) Gauss product rules, respectively.
Carrying out the symbolic calculations and comparing to (38) shows that a template with R12 = 0 and arbitrary {R11, R22}
can be matched by taking

q1 ¼
1� 3R11

E11

; q2 ¼
1� 3R22

E22

; s1 ¼ s2 ¼ s3 ¼ 1. ð48Þ

Since q3 does not appear, it is convenient to set q3 = 1 to get a diagonal EII. The resulting split is

EI þ EII ¼
E11 � 3R11 E12 E13

E12 E22 � 3R22 E23

E13 E23 E33

2
64

3
75þ

3R11 0 0

0 3R22 0

0 0 0

2
64

3
75; ð49Þ

To get the optimal element (StressRP) set R11 ¼ 1
3
C�1

11 and R22 ¼ 1
3
C�1

22 :

EI þ EII ¼
E11 � C�1

11 E12 E13

E12 E22 � C�1
22 E23

E13 E23 E33

2
664

3
775þ

C�1
11 0 0

0 C�1
22 0

0 0 0

2
664

3
775; ð50Þ
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For isotropic material this becomes

EI þ EII ¼
E

1� m2

m2 m 0

m m2 0

0 0 1
2
ð1� mÞ

2
64

3
75þ E

1 0 0

0 1 0

0 0 0

2
64

3
75. ð51Þ

To match the (suboptimal) StrainRP, in which R11 ¼ 1
3
E11 and R22 ¼ 1

3
E22 the appropriate split is

EI þ EII ¼
0 E12 E13

E12 0 E23

E13 E23 E33

2
64

3
75þ

E11 0 0

0 E22 0

0 0 0

2
64

3
75. ð52Þ

For isotropic material this becomes

EI þ EII ¼ E

0 m 0

m 0 0

0 0 1
2
ð1� mÞ

2
64

3
75þ E

1 0 0

0 1 0

0 0 0

2
64

3
75; ð53Þ

which agrees with (51) for zero Poisson’s ratio, as may be expected. Some FEM books suggest using the deviatoric and
dilatational elasticity laws for EI and EII, respectively. As can be seen, that recommendation is incorrect for this element.

5.8. Slender isotropic cantilever

No matter how good it looks on paper, any new quadrilateral element should be first tested on the slender cantilever
benchmark depicted in Fig. 13. This is primarily intended to confirm the results of the energy ratio test. The 16:1 cantilever
beam of Fig. 13(a) is fabricated of isotropic material, with E = 7680, m = 1/4 and G = (2/5)E = 3072. The dimensions are
shown in the figure. Two end load cases are considered: an end moment M = 1000 and a transverse end shear P = 48000/
1027 = 46.7381. Both tip deflections dC = uyC from beam theory: ML2/(2EIz) and PL3/(3EIz) + PL/(GAs), in which
Iz = b3h/12 and As = 5A/6 = 5bh/6, are exactly 100. For the second load case the shear deflection is only 0.293% of uyC;
thus the particular expression used for As is not important.

Regular meshes with only one element (Ny = 1) through the beam height are considered. The number Nx of elements
along the span is varied from 1 to 64, giving elements with aspect ratios from c = 16 through c ¼ 1

4
. The root clamping

condition is imposed by setting ux to zero at both root nodes, but uy is only fixed at the lower one thus allowing for Pois-
son’s contraction at the root.

Tables 3 and 4 report computed tip deflections uyC for several element types. The first three rows list results for the three
rectangular panel models of Table 2. The last three rows give results for selected triangular elements. BODT is the Bending
Optimal Drilling Triangle: a 3-node membrane element with drilling freedoms studied in previous papers [2,16,17,26].
Thickness h = 1(a)

(b)

2 C

y

x M P

Load case 1    Load case 2

32

Fig. 13. Slender cantilever beam for benchmark tests discussed in Sections 5.8 and 5.9. A 16 · 1 FEM mesh with c = 1 is shown in (b).

Table 3
Tip deflections (exact = 100) for slender isotropic cantilever under end moment

Element Mesh: x-subdivisions · y-subdivisions (Nx · Ny)

1 · 1 2 · 1 4 · 1 8 · 1 16 · 1 32 · 1 64 · 1
(c = 16) (c = 8) (c = 4) (c = 2) (c = 1) (c ¼ 1

2) (c ¼ 1
4)

StressRP 100.00 100.00 100.00 100.00 100.00 100.00 100.00
StrainRP 93.75 93.75 93.75 93.75 93.75 93.75 93.75
DispRP 0.97 3.75 13.39 37.49 68.18 85.71 91.60
ALL-EX 0.04 0.63 7.40 35.83 58.44 64.89 66.45
CST 0.32 1.25 4.46 12.50 22.73 28.57 30.53
BODT 100.00 100.00 100.00 100.00 100.00 100.00 100.00



Table 4
Tip deflections (exact = 100) for slender isotropic cantilever under end shear

Element Mesh: x-subdivisions · y-subdivisions (Nx · Ny)

1 · 1 2 · 1 4 · 1 8 · 1 16 · 1 32 · 1 64 · 1
(c = 16) (c = 8) (c = 4) (c = 2) (c = 1) (c ¼ 1

2) (c ¼ 1
4)

StressRP 75.02 93.72 98.39 99.56 99.86 99.94 99.97
StrainRP 70.35 87.88 92.26 93.35 93.63 93.71 93.73
DispRP 0.97 3.75 13.39 37.49 68.16 85.69 91.58
ALL-EX 0.24 0.69 6.36 35.18 59.59 65.70 67.03
CST 0.48 1.41 4.62 12.66 22.88 28.73 30.69
BODT 75.20 93.37 98.20 99.55 99.93 100.12 100.15

5332 C.A. Felippa / Comput. Methods Appl. Mech. Engrg. 195 (2006) 5316–5342
ALL-EX is the exactly integrated 1988 Allman triangle with drilling freedoms [1]. CST is the Constant Strain Triangle, also
called linear triangle and Turner triangle [61]. Both ALL-EX and BODT have three freedoms per node whereas all others
have two. To get exactly 100.00% from BODT under a end-moment loading requires paying particular attention to force
lumping [17].

StressRP is exact for any c under end-moment and converges rapidly under end-shear. The performance of BODT is
similar, inasmuch it is constructed to be bending exact in rectangular-mesh units. (In the end-shear load case StressRP
and BODT, which morph to different beam templates, converge to slightly different limits as c! 0.) StrainRP is about
6% stiffer than StressRP, which can be expected since 1/(1 � m2) = 16/15. DispRP, as well as triangles ALL-EX and
CST, locks as c increases.

The response for more element layers through the height can be readily estimated from Eq. (45). Thus those results are
omitted. For example, to predict the DispRP answer on a 8 · 4 mesh under end-moment, proceed as follows. The aspect
ratio is c = 8. From the c = 8 column of Table 3 read off rx = 100/3.75 = 26.667. Set n = 2 in (45) to get rð4Þx ¼
ð15þ rxÞ=16 ¼ 2:60417. The estimated tip deflection is 100/2.60417 = 38.40. Running the program gives dC = 38.3913 as
average of the y displacement of the two end nodes. Predictions for the end-shear-load case will be less accurate but suf-
ficient for quick estimation.

5.9. Slender anisotropic cantilever

Benchmarks with anisotropic material properties are rarely reported in the FEM literature. A particularly insidious one
results by taking the beam of Fig. 13(a) as fabricated of anisotropic material with the elasticity properties

E ¼
880 600 250

600 420 150

250 150 480

2
64

3
75; C ¼ E�1 ¼ 1

35580

1791 �2505 �150

�2505 3599 180

�150 180 96

2
64

3
75. ð54Þ

That these are physically realizable can be checked by getting the eigenvalues of E: {1386.1, 387.3, 6.63}, whence both E
and C are positive definite. The load magnitudes are adjusted to get beam-theory tip deflections of 100: M = 2.58672 and
P = 0.121153. Since E11C11 = 44.297 the energy ratio analysis of Sections 5.4 and 5.5, through (42) and (43), predicts that
the strain and displacement models will be big losers, because rx P 44.297. This is verified in Tables 5 and 6, which report
computed tip deflections uyC for the three models of Table 2. While StressRP shines, the strain and displacement models are
way off, regardless of how many elements are placed along x.

Putting more layers through the height will help StrainRP and DispRP but too slowly to be practical. For example, a
128 · 8 mesh of StrainRP (or clones) under end moment will have rð8Þx ¼ ð63þ 44:297Þ=64 ¼ 1:676 and estimated
uyC = 100/1.676 = 59.647. Running that mesh gives uyC = 59.65. So using over 2000 freedoms in this fairly trivial problem
the results are still off by about 40%.
Table 5
Tip deflections (exact = 100) for slender anisotropic cantilever under end moment

Element Mesh: x-subdivisions · y-subdivisions (Nx · Ny)

1 · 1 2 · 1 4 · 1 8 · 1 16 · 1 32 · 1 64 · 1
(c = 16) (c = 8) (c = 4) (c = 2) (c = 1) (c ¼ 1

2) (c ¼ 1
4)

StressRP 100.00 100.00 100.00 100.00 100.00 100.00 100.00
StrainRP 2.26 2.26 2.26 2.26 2.26 2.26 2.26
DispRP 0.02 0.07 0.25 0.76 1.53 2.08 2.25



Table 6
Tip deflections (exact = 100) for slender anisotropic cantilever under end shear

Element Mesh: x-subdivisions · y-subdivisions (Nx · Ny)

1 · 1 2 · 1 4 · 1 8 · 1 16 · 1 32 · 1 64 · 1
(c = 16) (c = 8) (c = 4) (c = 2) (c = 1) (c ¼ 1

2) (c ¼ 1
4)

StressRP 74.95 93.68 98.37 99.54 99.84 99.92 99.96
StrainRP 1.70 2.12 2.22 2.26 2.26 2.26 2.26
DispRP 0.02 0.07 0.25 0.75 1.52 2.06 2.23
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6. Specialization 2: The trapezoidal panel

The rectangular panel template has instructional value, but none as new technology driver. The optimal element of this
geometry, StressRP, was published in 1956 [61] and it has been cloned many times since, as Table 2 makes clear.

Template power as generator of new customized elements emerges when one passes to more general geometries. The
trapezoidal panel (TP) pictured in Fig. 14(a) is a case in point. A trapezoid has two parallel opposite sides but the angles
x1 and x2 are arbitrary. What is the bending-optimal element of this shape? This question can be answered by studying the
repeating macroelement shown in Fig. 14(b). It is obtained by gluing two mirror-image trapezoids to form a parallelogram.
By ‘‘repeating’’ is meant that this macroelement can tile the entire {x, y} plane by repetition.

If a� b and x1 5 x2 the assumed stress fabricated macroelement (StressTP) rapidly becomes overstiff and overflexible
in x- and y-bending, respectively. For example if a/b = c = 8, x1 = 0, tanx2 = 1/2 and isotropic material with m = 1/4 the
bending ratios are rx = 11.97 and ry = 0.1414. For the anisotropic elasticity matrix (54), rx = 6.93 and ry = 0.0792. If an
elongated macroelement is supposed to model unidirectional x-bending correctly, the overstiffness caused by x1 5 x2 is
called distortion locking. This phenomenon has been widely studied since the MacNeal-Harder test suite gained popularity
[39].

Using the template (34), (35) it is possible to construct an element that is exact in unidirectional x bending when con-
figured to form a repeatable macroelement as in Fig. 14(b), for any aspect ratio c = a/b as well as arbitrary angles x1 and
x2. This instance will be called UBOTP (for Unidirectional Bending Optimal Trapezoidal Panel). If x1 = x2 = 0 this
reduces to the optimal rectangular panel StressRP discussed in Section 5.1, as can be expected. However this particular
element cannot be constructed by any formulation currently known to the writer. It simply results from appropriately set-
ting the entries of W and R so that exact bending response is reproduced. The expression of R is considerably simplified by
writing it in terms of entries of the natural compliance matrix �C introduced in Section 3.4. Detailed expressions are given in
the Appendix of [27].

It is not difficult to prove, using a computer algebra system, that WTRW for UBOTP is positive definite as long as the
trapezoid is convex. Not only that: its condition number is bounded, which is another way of saying that the inf–sup—also
called LBB condition—is verified. Consequently the element stiffness is nonnegative, and has the correct rank.

Fig. 15 presents results for a widely used mesh distortion test, which involves applying an end moment to one macroel-
ement of the type discussed. Results for six element instances: UBOTP, StressTP, StrainTP, DispTP, Q6 and QM6 are
shown. The percentage of the correct answer is of course 100/rx. Each model but Q6 was implemented as instance of
the template (34), (35), whereas Q6 (which is not a template instance because it fails the patch test) was coded separately.
All computations were done symbolically by the same Mathematica module and the deflection was returned as an analyt-
ical function of e/b. This explains why the curves in Fig. 15 are smooth.

Of these six models only Q6 fails the patch test, but otherwise works better than all others but UBOTP. StressTP,
StrainTP and QM6 give similar results, as can be expected, whereas DispTP is way overstiff even for zero distortion.
UBOTP gives the correct result for all distortion parameters from 0 through 5, since rx � 1. If the aspect ratio of the can-
tilever is changed to, say 2a/b = 10, the differences between elements become more dramatic.
1 2

34
M Mx x
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y

Constant thickness h
and elasticity matrix E

b = a/γ

a

ω1

ω2

(a) (b)

Fig. 14. Trapezoidal panel shape: (a) individual trapezoid geometry; (b) a two-trapezoid repeatable macroelement.
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Fig. 15. A well-known plane stress distortion benchmark. Dashed lines mark elements that fail the patch test (only Q6 in this particular test set).
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For distortion performance results on other models such as Pian–Sumihara and Enhanced Assumed Strain, see [37].
There exists a penalty-augmented modification of the Pian–Sumihara quadrilateral constructed by Wu and Cheung [63]
that achieves distortion insensitivity at the cost of rank deficiency.

At first sight the existence of UBOTP contradicts a theorem by MacNeal [41], which says that four noded quadrilaterals
cannot simultaneously pass the patch test and be insensitive to distortion. The escape hatch is that y-bending optimality
(along the skew angular direction x1 of the macroelement) is not attempted. If one tries imposing rx = ry = 1, the solutions
for {R11, R12, R22} become complex if c� 1 as soon as the angular difference x2 � x1 deviates slightly from zero.

7. Historical overview

The 4-node, 8-DOF membrane (plane stress) flat quadrilateral is one of the most interesting finite elements from the
standpoint of its persistent influence on theory and practice of ‘‘finitelementology.’’ In what follows ‘‘panel’’ as usual is
an abbreviation for ‘‘thin plate in plane stress.’’

7.1. The rectangular panel

As an assumed displacement model the 4-noded rectangular panel was first published by J.H. Argyris in his celebrated
1954 serial [3]. It appears on page 62 of the Butterworths reprint. The model incorporated edge reinforcements, since it was
intended to model stiffened cover plates in aircraft wings and fuselages. The derivation of the stiffness matrix used Casti-
gliano’s first theorem to produce the stiffness influence coefficients. This is a classical tool in structural mechanics. The
novel ingredient was the kinematic assumption: a bilinear interpolation of in-plane displacements in Cartesian coordinates
aligned with the rectangle edges. The first continuum-based, displacement-assumed element was born.

At that time the issue of interelement continuity had not arisen. It became important much later, especially as the idea
was extended to plate bending. In Argyris’ model, inter-rectangle conformity was automatically met because the bilinear
displacement variation reduces to a linear one over each side.

A 4-node flat rectangular panel was constructed in 1952–1953 by Turner’s research group at Boeing [12] but was not
published until 1956 [61]. The derivation method was completely different. It begins with interelement stress-flux assump-
tions combining five ‘‘load states’’ that if extended into the element would produce three constant stress and two bending
stress modes. From these a flexibility matrix is obtained and inverted to furnish a deformational stiffness. This is expanded
with rigid body modes to yield the free–free stiffness matrix. In current terminology, it was a stress-assumed element, and
coincides with the so-called StressRP template of Section 5. As shown there this is the optimal rectangular panel, which is a
tribute to the physical insight of that small but high-caliber research team.

Thus two dual formulation approaches: assumed stress versus displacement, or equilibrium versus kinematics, can be
seen in action since the mid-1950s for this particular element configuration. Questions of consistency, convergence and
bounding were not yet well understood. The missing ingredient was connection to direct variational methods and in par-
ticular Rayleigh–Ritz. The link was clearly established in Melosh’s thesis of 1962 [42] and his subsequent paper [43].

7.2. The quadrilateral panel

Extension to parallelograms is not difficult using skew Cartesian coordinates. A closed form solution, discussed in detail
by Gallagher in his 1963 review [28], is possible. The extension to quadrilateral shapes was, however, slow in coming. In the
meantime the modeling need had been alleviated by using macroelements fabricated with four Turner triangles, an
approach also presented in [61]. This has the benefit of automatically taking care of warped panels, in which the four
corners do not lie on a plane.
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A direct construction with assumed displacements was pursued by I.C. Taig at English Electric Aviation (later British
Aerospace) since 1957 [35, p. 520]. The element was finally presented at an AGARD 1962 meeting, and appeared in print
two years later [59]. The key enabling tool was the use of bilinear interpolation in body-fitted dimensionless coordinates.
These were labeled n and g, as quadrilateral natural coordinates now are, but ran from 0 to 1. The stiffness matrix was
derived in closed form, which was an amazing tour de force in days before computer algebra systems. (This grueling effort
may have partly accounted for the long publication delay.)

In the same AGARDOgraph volume Argyris et al. [4] used a Cartesian expansion to attack the general quadrilateral
shape. They recognize the lack of interelement continuity—the effects of which were only beginning to be understood—
and remark that a solution such as Taig’s could be used to remedy that problem.

Bruce Irons, who was aware of Taig’s work while at the Rolls Royce aircraft division (the FEM world, then nucleated in
Aerospace, was tiny; everybody was aware of what others were doing) developed the far-reaching isoparametric extension
for arbitrary elements upon moving to Swansea [34,35].

7.3. Hybrids

The novel hybrid stress formulation of Pian appeared in the mid-1960s [49,50]. A theoretical basis in the form of var-
iational principles was presented in 1970 by Pian and Tong [51]. For this particular element the formulation was initially
restricted to the rectangular shape, since lack of invariance (due to use of stress assumptions in Cartesian coordinates)
made extensions difficult. The end result for the rectangular panel was identical to that obtained by Turner et al. in
1956 [61]. Curiously the coalescence was not fully explained until 36 years later [53]. The first correct and invariant hybrid
formulation for general quadrilateral geometry using natural stresses, by Pian and Sumihara, appeared in 1984 [52]. This
was an influential discovery that finally placed the stress-assumed approach on a par with isoparametrics.

7.4. Unlocking remedies

The poor performance of the Taig quadrilateral for in-plane bending due to ‘‘shear locking’’ motivated investigators to
introduce a number of cures: selective and reduced integration, incompatible modes, assumed strains, the �B formulation for
near-incompressible materials, etc. Most of them are well covered in Hughes’ textbook [33]. Several of those remedies were
subsequently extended to more general structural models such as plate bending, shells and three-dimensional solids. Thus
the quadrilateral panel did serve both as motivator and testbed of new finite element technologies.

In addition to shear locking, both original and improved 4-node quadrilateral models were observed to be prone to dis-

tortion locking. This is bending overstiffness caused by deviation from a rectangular or parallelogram shape. An important
result of MacNeal, hinted at in [40] and published as a theorem in 1987 [41], sets out a serious limitation: a four noded plane
stress element cannot both pass the patch test for any configuration and be insensitive to distortion when subject to in-plane
bending. Indeed all elements published to date do comply with the theorem, as surveyed in [37]. The UBOTP element dis-
cussed in Section 6, which passes the patch test, circumvents it only partially, in that in-plane bending optimality is obtained
only along one direction. (This is not much of a limitation, because in high-aspect-ratio quadrilaterals flexural overstiffness
tends to be more pronounced along the long element direction, which can be found by comparing the two median lengths.)

7.5. Tradeoffs

A interesting open question in recent element-level research concerns the tradeoff between two desirable requirements:
passing the patch test for arbitrary geometries versus low distortion sensitivity. Physically the patch test enforces mean flux
conservation conditions across interelement boundaries. Such conditions work as constraints that may impede desirable
element motions in distorted elements.

As noted above, for the 4-noded quadrilateral panel an in-depth study was recently reported in [37]. The focus of that
survey was on the classical distortion benchmark of Fig. 15. As can be expected from MacNeal’s theorem, elements that
did not pass the patch test, such as Q6, did relatively well compared to those that pass it for any geometry. An argument
advanced by several authors in favor of alleviating distortion sensitivity is that the patch test need only be passed in the
limit of a mesh subdivision process that eventually converges to elements of parallelogram or rectangular shape. Conse-
quently enforcing the patch test for any geometry seems overly restrictive. Arguments on either side of the issue can be
expected to come forward in the near future.

The writer’s opinion is that requiring satisfaction of the patch test for arbitrary shapes should take first priority, because
often this is the only way to check individual elements as well as (even more importantly) interfacing different element types
such as shells, solids and beams. Furthermore in many engineering projects involving complex structures meshes are never
refined, so the argument of indefinite subdivision becomes tenuous. The design of templates, which enforce the IET of [7] a
priori, responds to this assessment of priorities.
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8. Conclusions

This is the second stiffness template developed by the writer using the ‘‘supernatural’’ approach, in which all element
field equations: kinematic, equilibrium and constitutive, are expressed in both Cartesian and natural coordinates. The first
template pertains to a 3-node triangle with drilling corner freedoms, recently reformulated in [26]. Although it can be
argued that two case studies do not make a representative sample, it seems appropriate to summarize here what has been
learned so far. Certainly going natural all the way involves additional preparatory work. This can be arduous and exacting,
as the Appendix material makes clear. (In fact that work would have been impossible without the help of a computer alge-
bra system.) The obvious question comes up: is this extra effort worthwhile?

The answer has to be qualified. Recall that a template such as (34) is the sum of two components: basic and higher order
stiffness. There is no doubt in the writer’s mind that the natural approach simplifies the construction of the latter, and that
the extra preparation pays off handsomely in the end. Obtaining a form such as that of Fig. 10, which displays the sepa-
ration of formulation dependent and independent parts, would be exceedingly difficult—not to say impossible—in a Carte-
sian framework.

For the basic stiffness component, however, another factor comes into play. Does the element possess a constant natural
metric, as is the case for 3-node triangles and 4-node parallelograms, or can it have variable metric, as in arbitrarily shaped
quadrilaterals? The two cases must be distinguished because the basic stiffness characterizes the response to uniform states.

(1) Constant element metric means that a uniform Cartesian strain state maps to constant natural strains. The basic stiff-
ness should be exactly the same with either approach. The Cartesian framework, however, does not entail extra prep-
aration work and ought to be favored for expediency.

(2) Variable element metric means that a uniform Cartesian strain maps to a variable natural strain field. The mapped
field can be exceedingly complicated, for example rational functions of the natural coordinates. But if the developer
mistakingly replaces it by a constant natural strain state, the patch test may be violated. So the safest choice is to stay
Cartesian.

The recommended strategy is clear-cut: stay Cartesian for the basic stiffness, but go natural for the higher order one. Histor-
ical tradition, however, clouds this advice. Most element formulations are designed to produce the total stiffness in one
shot, without decomposition. Developers who follow this well-traveled path are soon caught in a dilemma:

(C) Stay Cartesian all the way. This risks getting mired with poorly performing or noninvariant elements. (The latter
defect actually held up advances of stress hybrids for 20 years.)

(N) Go natural all the way and risk violation of the patch test.

In practice a compromise may be struck: go natural part way but revert to Cartesian at a certain point of the derivation.
The isoparametric formulation of Irons and coworkers provides an early example. Shape functions and element geometry
are expressed in terms of natural coordinates; but everything else: displacements, strains, stresses, energy, load distribu-
tions, etc., is kept Cartesian. Researchers in the 1980s timidly stepped further. For example, Pian–Sumihara’s ‘‘natural
hybrid’’ formulation uses natural stresses but leaves constitutive equations Cartesian.

At which point does one draw the line? For the total stiffness, one-shot formulation there is no clear answer. It is rolling
the dice. A developer tries something, builds an element, implements it and does a posteriori checks. If the element violates
invariance, go natural further. If it violates the patch test, turn back to Cartesian earlier. And so on. With luck a working
element may emerge, but there is no assurance that it is not a clone of something previously published.

To summarize, lack of understanding about kinematic divide-and-conquer has hurt the progress of natural methods. By
itself the tool is not at fault. It has to be used on the right context and limited to where it works best.

These comments have to be tempered in situations where a kinematic decomposition is not obvious. The classical exam-
ple is that of doubly curved shell elements, in which the separation of constant states of strains and curvatures remains a
matter of debate, as also is the precise meaning of shell patch tests. For simpler scenarios, however, the decomposition
procedure is clearly defined.

Can the natural approach be extended to nonlinear problems? That question was posed by a reviewer familiar with
Argyris’ struggles in extending his ‘‘Urelements’’ [5] into the large strain range. As expected no difficulties arise if defor-
mations stay small. Small-strain elements, whether developed by templates or not, can be smoothly fitted into a corota-
tional approach to take care of large rotations. This was first done by Nygård [46] for Free Formulation shell elements.
Introduction of small-strain material nonlinearities is also straightforward. Collectively these scenarios cover many prac-
tical applications.

To the writer’s knowledge, however, nobody has tried to generalize the motion decomposition of Fig. 7 to derive finite-
strain elements. It can be done in principle in the form of multiplicative splits facilitated by the polar decomposition the-
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orem. For example, a finite rigid-body motion followed by uniform stretching and finalized with deviatoric deformations.
But serious obstacles appear on the path: formidable mathematics required to derive natural relations, and the loss of
safety blankets such as the patch test and energy orthogonality. Whether the natural approach can contribute to finite ele-
ment technology for this class of problems is an open question.
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Appendix A. Quadrilateral properties

A.1. Geometry

The geometry of a flat, straight-sided quadrilateral is defined by the four corner coordinates {xi, yi}, i = 1, 2, 3, 4, see
Fig. 16(a). We shall employ the abbreviations xij = xi � xj and yij = yi � yj for node coordinate differences.

The coordinates of the corner average are x0 ¼ 1
4
ðx1 þ x2 þ x3 þ x4Þ and y0 ¼ 1

4
ðy1 þ y2 þ y3 þ y4Þ. These define the posi-

tion of the quadrilateral center 0. Side midpoints are identified by labels 5, 6, 7 and 8, assigned as shown in Fig. 16(b). The
signed quadrilateral area is denoted by A ¼

R
Xe dX. This is identified below with the coefficient A0 (which comes from the

Jacobian determinant expression) for notational convenience.
The well-known natural coordinates are n and g, which range from �1 to +1. These are pictured in Fig. 16(a). The quad-

rilateral geometry is defined isoparametrically:

xðn; gÞ ¼
X4

i¼1

xiN iðn; gÞ; yðn; gÞ ¼
X4

i¼1

yiN iðn; gÞ; ð55Þ

in which Ni ¼ 1
4
ð1
 nÞð1
 gÞ are the bilinear shape functions.

Three invariants with dimension of area that often appear in subsequent formulas are

A0 ¼ A ¼ 1

2
ðx31y42 � x42y31Þ; A1 ¼

1

2
ðx34y12 � x12y34Þ; A2 ¼

1

2
ðx23y14 � x14y23Þ. ð56Þ

Denote by Aijk the signed area of the triangle spanned by the 3 corners {i, j, k}. These are linked to the Ai as follows:

A123 ¼
1

2
ðA0 þ A1 � A2Þ ¼

1

2
ðx21y32 � x32y21Þ ¼

1

2
ðx13y21 � x21y13Þ;

A234 ¼
1

2
ðA0 þ A1 þ A2Þ ¼

1

2
ðx32y43 � x43y32Þ ¼

1

2
ðx24y32 � x32y24Þ;

A341 ¼
1

2
ðA0 � A1 þ A2Þ ¼

1

2
ðx43y14 � x14y43Þ ¼

1

2
ðx31y43 � x43y31Þ;

A412 ¼
1

2
ðA0 � A1 � A2Þ ¼

1

2
ðx14y21 � x21y14Þ ¼

1

2
ðx42y14 � x14y42Þ;

A0 ¼ A ¼ A123 þ A341 ¼ A234 þ A412;

A1 ¼ A234 � A341 ¼ A123 � A412;

A2 ¼ A341 � A412 ¼ A234 � A123.

ð57Þ
ξ

η

ξ=−1

η=−1

η=1

ξ=1

1(x  ,y )1 1 2(x  ,y )2 2

3(x  ,y ) 3 3

4(x  ,y )44

(a)

ux1 ux2

ux3

ux4

uy1

uy2

uy3

uy4

(c)

P(x,y)
ux

uy

1
25

6

7
8 3

4

(b)

0

Fig. 16. Quadrilateral geometric and kinematic properties: (a) natural coordinates; (b) midpoint and center point numbering, (c) Cartesian displacements
of a generic point P and node displacements.
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In the following subsection it will be seen that the Jacobian determinant can be expressed as J = (A0 + A1n + A1g)/4. Its
value at corner 1 is (A0 � A1 � A2)/4 = A412/2. Similarly at corners 2, 3 and 4 the values of J are A123/2, A234/2 and A341/2,
respectively. The following identities are easily verified algebraically:

x14 x42 x34 0

x13 x32 0 x34

x12 0 x32 x24

0 x12 x31 x14

2
66664

3
77775

A234

A341

A412

A123

2
66664

3
77775 ¼

0

0

0

0

2
66664

3
77775;

y14 y42 y34 0

y13 y32 0 y34

y12 0 y32 y24

0 y12 y31 y14

2
66664

3
77775

A234

A341

A412

A123

2
66664

3
77775 ¼

0

0

0

0

2
66664

3
77775;

1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

2
64

3
75
�A234

A341

�A412

A123

2
66664

3
77775 ¼

0

0

0

0

2
66664

3
77775;

x12 þ x34 x13 þ x24 x12 þ x43

y12 þ y34 y13 þ y24 y12 þ y43

x14 þ x32 x14 þ x23 x13 þ x42

y14 þ y32 y14 þ y23 y13 þ y42

2
66664

3
77775

A0

A1

A2

2
64

3
75 ¼

0

0

0

0

2
66664

3
77775.

ð58Þ

�x14 x21

�y14 y21

x32 x21

y32 y21

x32 �x43

y32 �y43

�x14 �x43

�y14 �y43

2
666666666666664

3
777777777777775

A1

A2

" #
¼ 2

A412x12j34

A412y12j34

A123x12j34

A123y12j34

A234x12j34

A234y12j34

A341x12j34

A341y12j34

2
6666666666666664

3
7777777777777775

;

x21 �x24 0

y21 �y24 0

x21 x31 0

y21 y31 0

�x43 �x42 0

�y43 �y42 0

�x43 x13 0

�y43 y13 0

�x14 0 x24

�y14 0 y24

x32 0 �x31

y32 0 �y31

x32 0 x42

y32 0 y42

�x14 0 �x13

�y14 0 �y13

2
6666666666666666666666666666666666664

3
7777777777777777777777777777777777775

A0

A1

A2

2
64

3
75 ¼ 2

A412x21j34

A412y21j34

A123x21j34

A123y21j34

A234x21j34

A234y21j34

A341x21j34

A341y21j34

A412x32j41

A412y32j41

A123x32j41

A123y32j41

A234x32j41

A234y32j41

A341x32j41

A341y32j41

2
66666666666666666666666666666666666664

3
77777777777777777777777777777777777775

. ð59Þ

In (59), x12j34 = (x12 + x34)/2, y12j34 = (y12 + y34)/2, x21j34 = (x21 + x34)/2, y21j34 = (y21 + y34)/2, x32j41 = (x32 + x41)/2 and
y32j41 = (y32 + y41)/2. Four of these can be interpreted as {x, y} components of the quadrilateral median segments 6–8 and
7–5: x21j34 = x68, y21j34 = y68, x32j41 = x75 and y32j41 = y75.

A.2. Metric relations

The metric transformations between Cartesian and natural coordinates are

dx

dy

� �
¼

ox=on ox=og

oy=on oy=og

� �
dn

dg

� �
¼ JT dn

dg

� �
;

dn

dg

� �
¼

on=ox on=oy

og=ox og=oy

� �
dx

dy

� �
¼ J�T dx

dy

� �
. ð60Þ

Here J denotes the Jacobian matrix of {x, y} with respect to {n, g}:

J ¼ oðx; yÞ
oðn; gÞ ¼

ox=on oy=on

ox=og oy=og

� �
¼

J 11 J 12

J 21 J 22

� �
. ð61Þ

This definition of J is that used by most authors; nevertheless some take J as the transpose of the above. Replacing the
shape functions yields

4J 11 ¼ 4ox=on ¼ x21 þ x34 þ ðx12 þ x34Þg; 4J 12 ¼ 4oy=on ¼ y21 þ y34 þ ðy12 þ y34Þg;
4J 21 ¼ 4ox=og ¼ x32 þ x41 þ ðx12 þ x34Þn; 4J 22 ¼ 4oy=og ¼ y32 þ y41 þ ðy12 þ y34Þn.

ð62Þ
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The Jacobian determinant can be expressed in invariant form as

J ¼ detðJÞ ¼ J 11J 22 � J 12J 21 ¼
1

4
ðA0 þ A1nþ A2gÞ with A0 ¼ A;

A1 ¼
1

2
ðx34y12 � x12y34Þ ¼ A234 � A341; A2 ¼

1

2
ðx23y14 � x14y23Þ ¼ A341 � A412.

ð63Þ

If A1 = A2 = 0 the element is said to have constant metric because if so J = A0/4 does not depend on {n, g}. The quadri-
lateral then reduces to a rectangle or parallelogram.

Let {xC, yC}, {nC, gC}, {xD, yD} and {nD, gD} denote the Cartesian and natural coordinates of the quadrilateral areal
centroid C and the intersection of the diagonals D. It can be verified that

xC � x0 ¼
A1ðx31 þ x24Þ þ A2ðx31 � x24Þ

12A0

; yC � y0 ¼
A1ðy31 þ y24Þ þ A2ðy31 � y24Þ

12A0

;

xD � x0 ¼ �3ðxC � x0Þ; yD � y0 ¼ �3ðyC � y0Þ; nC ¼
2A0A1

BC1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12A2

0A2
1 þ B2

C1

q � A1

3A0

;

gC ¼
2A0A2

BC2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12A2

0A2
2 þ B2

C2

q � A2

3A0

; nD ¼
�2A0A1

A2
0 þ A2

1 � A2
2 þ

ffiffiffiffiffiffi
BD
p ; gD ¼

�2A0A2

A2
0 � A2

1 þ A2
2 þ

ffiffiffiffiffiffi
BD
p . ð64Þ

in which BC1 ¼ 3A2
0 � A2

1 þ A2
2;BC2 ¼ 3A2

0 þ A2
1 � A2

2 and BD ¼ ðA2
0 � A2

1 � A2
2Þ

2 � 4A2
1A2

2. The approximations given for the
natural centroid coordinates become exact if A1 = 0 or A2 = 0. For a rectangular or parallelogram geometry
A1 = A2 = 0, and nC = gC = nD = gD = 0. This is the origin of the {n, g} system, which lies at the intersection of the
two quadrilateral medians. For any other geometry C and D do not lie at the intersection of the medians.

The following ratios appear in the formulation of the higher-order-mode pass filter matrix introduced in Section 3.8:

H 1 ¼ ðA0 þ A1 þ A2Þ=ð2A0Þ ¼ A234=A0; H 2 ¼ ð�A0 þ A1 � A2Þ=ð2A0Þ ¼ �A341=A0;

H 3 ¼ ðA0 � A1 � A2Þ=ð2A0Þ ¼ A412=A0; H 4 ¼ ð�A0 � A1 þ A2Þ=ð2A0Þ ¼ �A123=A0.
ð65Þ

The following metric coefficients are ubiquitous:

J 2
1 ¼ ðox=onÞ2 þ ðoy=onÞ2 ¼ J 2

11 þ J 2
12 ¼

1

4
L2

68 þ
1

8
ðL2

43 � L2
21Þgþ

1

8
ðL2

21 þ L2
43 � 2L2

68Þg2;

J 2
2 ¼ ðox=ogÞ2 þ ðoy=ogÞ2 ¼ J 2

21 þ J 2
22 ¼

1

4
L2

75 þ
1

8
ðL2

32 � L2
14Þnþ

1

8
ðL2

14 þ L2
32 � 2L2

75Þn
2.

ð66Þ

Here L75 and L68 denote the median lengths; see number labels in Fig. 16(b). By convention we take J 1 ¼ þ
ffiffiffiffiffi
J 2

1

q
and

J 2 ¼ þ
ffiffiffiffiffi
J 2

2

q
. The following definitions simplify several subsequent formulas:

cos /1 ¼
J 11

J 1

; sin /1 ¼
J 12

J 1

; sin /2 ¼ �
J 21

J 2

; cos /2 ¼
J 22

J 2

;

J ¼ J 11J 22 � J 12J 21 ¼ J 1J 2ðcos /1 cos /2 þ sin /1 sin /2Þ ¼ J 1J 2 cosð/1 � /2Þ.

DJ ¼
1=J 1 0

0 1=J 2

� �
; DJJ ¼

1=J 2
1 0 0

0 1=J 2
2 0

0 0 1=ðJ 1J 2Þ

2
64

3
75;

�J ¼ DJ J ¼
J 11=J 1 J 12=J 1

J 21=J 2 J 22=J 2

� �
¼

cos /1 sin /1

� sin /2 cos /2

� �
; detð�JÞ ¼ cosð/1 � /2Þ ¼ J=ðJ 1J 2Þ.

ð67Þ

The physical significance of the angles /1 and /2 is illustrated in Fig. 5(a).

A.3. Geometric invariants

Quadratic combinations of A0, A1 and A2 may be express rationally in terms of the squared lengths of sides and diag-
onals. The following formulas were found by Mathematica:

4A2
0 ¼ L2

31L2
42 �

1

4
P 2; 16A2

1 ¼ 4L2
21L2

43 � ðL2
14 þ L2

32 � L2
31 � L2

42Þ
2
;

16A2
2 ¼ 4L2

14L2
32 � ðL2

21 þ L2
43 � L2

31 � L2
42Þ

2
; 16A0A1 ¼ ðL2

32 � L2
14ÞP þ L2

31Qþ L2
42R;

16A0A2 ¼ ðL2
21 � L2

43ÞP � L2
31Qþ L2

42R;

16A1A2 ¼ �ðð2L2
31Q� 2L2

42Rþ Pð�Qþ RÞÞð2L2
31Qþ 2L2

42Rþ PðQþ RÞÞÞ=ð16A2
0Þ;

ð68Þ
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in which

P ¼ L2
21 � L2

32 þ L2
43 � L2

14; Q ¼ L2
21 þ L2

32 � L2
43 � L2

14;

R ¼ �L2
21 þ L2

32 þ L2
43 � L2

14; S ¼ L2
21 þ L2

32 þ L2
43 þ L2

14;

L2
21 ¼

1

4
ðP þ Q� Rþ SÞ; L2

32 ¼
1

4
ð�P þ Qþ Rþ SÞ;

L2
43 ¼

1

4
ðP � Qþ Rþ SÞ; L2

14 ¼
1

4
ð�P � Q� Rþ SÞ.

ð69Þ

The first of (68) is Bratschneider’s 1842 formula, see http://mathworld.wolfram.com/Quadrilateral.com. It is not known if
the others are new. The geometry of an arbitrary quadrilateral is defined by five independent quantities. It is convenient to
pick invariants. For example, the four side lengths and one diagonal length could be selected, but this is not symmetric as
regards choice of diagonal. A more balanced choice consists of taking the three invariants A0, A1, A2 plus the semisum and
semidifference of the squared diagonal lengths: K1 ¼ 1

2
ðL2

31 þ L2
42Þ and K2 ¼ 1

2
ðL2

31 � L2
42Þ. We get

P ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L31L42 � 4A2

0

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1 � K2
2 � 4A2

0

q
;

Q ¼ ð2A1ðK1 � K2 � P Þ � 2A2ðK1 � K2 þ P Þ
A0

; R ¼ ð2A1ðK1 þ K2 � P Þ � 2A2ðK1 þ K2 þ P Þ
A0

;

S ¼ 2
4A2

0ðK1K2 � 4A1A2Þ þ ð2A2K2 þ 2A1K1 � 2A1PÞð2A1K2 þ 2A2K1 þ 2A2P Þ
4A2

0K2

;

ð70Þ

The squared median lengths can also be expressed in terms of invariants. The following relations were discovered by
Mathematica:

L2
57 ¼

1

4
ðL2

42 þ L2
31 � L2

21 þ L2
32 � L2

43 þ L2
14Þ ¼

1

2
ðK1 � P Þ;

L2
68 ¼

1

4
ðL2

42 þ L2
31 þ L2

21 � L2
32 þ L2

43 � L2
14Þ ¼

1

2
ðK1 þ P Þ.

ð71Þ

It follows that L2
68 þ L2

75 ¼ 1
2
ðL2

31 þ L2
42Þ, which is a well-known property.
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