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Abstract

We present a new overlapping Dirichlet/Robin Domain Decomposition method. The method uses Dirichlet
and Robin transmission conditions on the interfaces of an overlapping partitioning of the computational domain.
We derive interface equations to study the convergence of the method and show its properties through four
numerical examples. The mathematical framework is general and can be applied to derive overlapping versions
of all the classical nonoverlapping methods.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we present a domain decomposition (DD) method to solve scalar advection–di+usion–
reaction (ADR) equations which falls into the category of iteration-by-subdomain DD methods.

Domain decomposition methods are usually divided into two families, namely overlapping and
nonoverlapping methods. The former ones are based on the Schwarz method, >rst studied by Schwarz
in 1869 and more recently returned to focus in [15]. At the di+erential level, this domain decompo-
sition method uses alternatively the solution on one subdomain to update the Dirichlet data of the
other. Although the Schwarz method presents a severe drawback, i.e., the dependence of the rate of
convergence upon the overlapping length, as noted in [16]

[: : :] the Schwarz algorithm [: : :] presents some properties (like “robustness”, or indi+erence to
the type of equations considered...) which do not seem to be enjoyed by other methods.
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Contrary to the Schwarz method, nonoverlapping DD methods use necessarily two di+erent trans-
mission conditions on the interface, in such a way that both the continuity of the unknown and its
>rst derivatives are achieved on the interface (for ADR equations). The transmission conditions can
correspond to the essential and natural boundary conditions of the weak form of the problem; how-
ever, this is not a requirement. Four types of couplings are possible. The Dirichlet/Neumann method
was introduced in [4] and presented in the >nite element context in [19] and extensively reviewed
in [26]. Alonso et al. [2] developed a coercive Dirichlet/Robin method, called �-D/R, which uses the
Robin transmission condition given by the natural condition of the weak formulation plus a constant
to increase the coercivity of the associated preconditioner. The Robin/Robin method was >rst intro-
duced in [17] for the Poisson equation as a generalization of the Schwarz method to nonoverlapping
subdomains. This method was reinterpreted within an augmented Lagrangian framework in [12].
The freedom in choosing the coeJcients of the Robin condition, when one does not exactly use
the natural boundary condition of the weak form, has led to many formulations: see for example
[23,18,24,2] for the coercive �-Robin/Robin method. The Robin/Neumann coupling is also a possible
choice (see, e.g., [26]). Note that the case of the Neumann/Neumann method [5] is di+erent as it
introduces an additional system for each subdomain at the di+erential level. However, it leads at the
algebraic level to a preconditioned Richardson method, like the other methods introduced previously
(see, e.g., [27,3,1]).

Some of these mixed methods present limitations, related to the fact that the boundary conditions
must be imposed in accordance to the direction of the Kow when advection is dominant. This
requirement is at its turn closely related to the well-posedness of the local variational problems. This
was the argument for developing the so-called adaptive methods. Adaptive domain decomposition
methods take into account the direction of the Kow on the interface. The adaptive Dirichlet/Neumann
method imposes a Dirichlet transmission condition at inKows and Neumann transmission condition
at outKows, the inKow on one side of the interface being the outKow on the other. See for example
[6,7,11,30]. In [10], an iteration-by-subdomain DD method is devised to solve an advection–reaction
transport equation, where only Dirichlet data are prescribed on the inKow parts of the interface.

In the literature, all the mixed DD methods mentioned previously have been mainly studied in
the context of disjoint partitioning. However, there exists no particular reason for restricting their
application only to nonoverlapping subdomains. See for example [21,22,28]. This paper gives a
possible line of study for the generalization of the mixed method to overlapping subdomains. We
expect that the overlapping mixed DD methods will enjoy some properties of their disjoint brothers
as well as some properties of the classical Schwarz method, as for example the dependence on the
overlapping length.

Our motivation to study these types of methods has been to maintain the implementation advan-
tages of the Schwarz method when used together with a numerical approximation of the problem.
The possibility to have some overlapping simpli>es enormously the discretization of the subdomains.
However, very often this overlapping needs to be very small in practice, and thus the convergence
rate of the Schwarz method becomes very small. Contrary to the Schwarz method, the limit case of
zero overlapping will be possible using the formulation proposed herein. We have chosen to study an
overlapping Dirichlet/Robin method, using the coercive bilinear form presented in [2] in the context
of the �-D/R and �-R/R methods. This simpli>es the analysis of the DD method as no assumption
has to be made on the direction of the Kow and its amplitude on the interfaces of the overlapping
subdomains.
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Fig. 1. Chimera method.

We would like to stress that our approach is not to view domain decomposition as a preconditioner
for solving the linear systems of equations arising after the space discretization of the di+erential
equations. In our case, the domain is decomposed at the continuous level. We are not concerned
with the scaling properties with respect to the number of subdomains of the iteration-by-subdomain
strategy we propose. For our purposes, it is enough to analyze two subdomains, in the same spirit
as [19,2,3,10]. More precisely, our >nal goal is to devise a Chimera-type strategy, and this paper
must be understood as a theoretical basis for such a formulation. We recall brieKy the Chimera
method, of which we give an example in Fig. 1. Firstly, independent meshes are generated for
the background mesh and the mesh around the cylinder. Secondly, the mesh around the cylin-
der is placed on the background mesh. Then, according to some criteria (order of interpolation,
geometrical overlap prescribed, etc.), we can impose in a simple way a Dirichlet condition on
some nodes of the background located inside the cylinder subdomain (this task is called hole cut-
ting, as some elements do not participate any longer to the solution process). Doing so, we form
an apparent interface on the background subdomain to set up an iteration-by-subdomain method.
Note that a natural condition of Neumann or Robin type is in general not possible as the appar-
ent interface is irregular. Finally, by imposing a Dirichlet, Neumann or Robin condition on the
outer boundary of the cylinder subdomain we can de>ne completely an iteration-by-subdomain
method to couple both subdomains. The Chimera method was >rst thought as a tool to simplify
the meshing of complicated geometry. It is also a powerful tool to treat subdomains in relative
motion.

The paper is organized as follows. In the following section, we introduce the continuous problem
and derive the corresponding variational formulation. Then we present the new domain decomposi-
tion method. For simplicity, we shall restrict ourselves to a two-domain variational formulation of the
problem, originating from a geometrical decomposition of the original domain of study; we follow
the strategy presented in [20] for the classical Dirichlet/Neumann method and extensively studied
in [26]. We show how the formulation can be reformulated into an overlapping domain decompo-
sition method based on a Dirichlet/Robin coupling and how this formulation can be simply derived
from the continuous problem. We then present the corresponding interface equations in terms of
Steklov–PoincarLe operators and show the convergence of the relaxed algorithm. Finally, we present
four numerical examples and compare the results of this new domain decomposition method to the
classical Dirichlet/Robin and Schwarz methods.
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2. Problem statement

Let us consider the advection–di+usion–reaction problem of >nding u such that

Lu := −�Nu+∇ · (au) + �u= f in �;

u= 0 on 9�;
(1)

where � is a d-dimensional domain (d=1; 2; 3) with boundary 9�, � is the di+usion constant of the
medium, f is the force term, a is the advection >eld (not necessarily solenoidal) and � is a source
(reaction) term.

We denote by (·; ·) the inner product in L2(�), and by V := H 1
0 (�) the space where u will be

sought. Likewise, we use the notation

〈·; ·〉! := 〈·; ·〉H−1=2(!)×H 1=2
00 (!) for ! d−1-dimensional;

〈·; ·〉! := 〈·; ·〉(H 1(!))′×H 1(!) for ! d-dimensional

for the duality pairings to be used. We endow H 1(�) with the usual scalar product (w; v)1;� =
(w; v) + (∇w;∇v) and the associated norm ‖ · ‖1;�.

Let us consider our di+erential problem (1). We restrict ourselves to solutions in V . To guarantee
existence, we take f∈ (H 1(�))′ and a; �;∇ · a∈L∞(�). By noting that∫

�
va · ∇u d� =−

∫
�
ua · ∇v d� −

∫
�
uv∇ · a d� ∀u; v∈V;

we transform the convective term into a skew symmetric operator, and we can enunciate our problem
as follows: >nd u∈V such that

a(u; v) = 〈f; v〉� ∀v∈V; (2)

where the bilinear form is

a(w; v) := �(∇w;∇v) + 1
2(a · ∇w; v)− 1

2 (w; a · ∇v) + (�0w; v)

with

�0 = � + 1
2 ∇ · a:

By applying Lax–Milgram lemma, it can be easily shown that if �0¿ 0 almost everywhere, Problem
(2) has a unique solution.

3. Overlapping Dirichlet/Robin method

3.1. Domain partitioning and de�nitions

We perform a geometrical decomposition of the original domain � into three disjoint and con-
nected subdomains �3, �4 and �5 such that

� = int(�3 ∪ �4 ∪ �5):
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Fig. 2. Examples of decomposition of a domain � into two overlapping subdomains �1 and �2.

From this partition, we de>ne �1 and �2, as two overlapping subdomains:

�1 := int(�3 ∪ �4); �2 := int(�5 ∪ �4):

Finally, we de>ne �a as the part of 9�2 lying in �1, and �b as the part of 9�1 lying in �2, formally
given by

�a := 9�2 ∩ �1; �b := 9�1 ∩ �2:

The geometrical nomenclature is shown in Fig. 2. �b and �a are the interfaces of the domain
decomposition method we now present. �4 is the overlap zone. In the following, index i or j refer
to a subdomain or an interface.

To state the variational formulation of the two-domain problem, we introduce the following de>-
nitions:

(w; v)�i :=
∫
�i

wv d�;

ai(w; v) := �(∇w;∇v)�i +
1
2(a · ∇w; v)�i − 1

2 (w; a · ∇v)�i + (�0w; v)�i ;

Vi := {v∈H 1(�i) | v|9�∩9�i
= 0};

V 0
i := H 1

0 (�i);

(3)

where i can be any of the >ve subdomains introduced previously, i.e., i = 1; 2; 3; 4 or 5.
Let �0; i be the trace operators

�0; i :Vi → H 1=2(9�i); i = 1; 2; 3; 4; 5;

which are linear and continuous, like the trace operators Ta and Tb de>ned by

Ta :V → H 1=2
00 (�a); Tav= v|�a

;

Tb :V → H 1=2
00 (�b); Tbv= v|�b

:

We explicitly de>ne the trace spaces on �a and �b as �a := {�a ∈H 1=2
00 (�a)} and �b := {�b ∈

H 1=2
00 (�b)}, respectively.
We also need to introduce some basic properties of the space we are working with; as many

constants are going to be introduced, we adopt a general nomenclature. We enunciate three inequal-
ities (PoincarLe–Friedrichs, trace inequalities and an a priori estimate) that characterize the functions
belonging to our working spaces, i.e., H 1(�) and H 1

0 (�). The domains of study are the original
domain � and its >ve partitions �i, with i = 1; 2; 3; 4; 5. The PoincarLe–Friedrichs inequality reads

‖v‖20;�i
6C�i‖∇v‖20;�i

∀v∈H 1
0 (�i); (4)
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where C�i is a positive constant depending on the size of the domain �i. The space of applica-
tion H 1

0 (�i) can be actually extended to any subspace of H 1(�i) for which the trace is speci>ed
somewhere on 9�i.

The trace inequality is a direct consequence of the trace theorem; it states that there exists a
positive constant C∗

i such that

‖v|9�i
‖1=2;9�i 6C∗

i ‖v‖1;�i ∀v∈H 1(�i): (5)

Finally, the following a priori estimate for the solution v of homogeneous elliptic problems with
Dirichlet data holds (see, e.g., [9,25]):

‖v‖1;�i 6Ci‖v|9�i
‖1=2;9�i ∀v∈H 1(�i): (6)

This establishes the continuous dependence of the solution on the boundary data and closes the list
of properties we need.

3.2. Variational formulation

We propose to solve the following problem: >nd u1 ∈V1 and u2 ∈V2 such that

a1(u1; v1) = 〈f; v1〉�1 ∀v1 ∈V 0
1 ;

u1 = u2 on �b;

a2(u2; v2) = 〈f; v2〉�2 ∀v2 ∈V 0
2 ;

a3(u1; E3�a) + a2(u2; E2�a) = 〈f; E3�a〉�3 + 〈f; E2�a〉�2 ∀�a ∈�a;

(7)

where Ei denotes any possible extension operator from �a to H 1(�i), that is to say,

Ei :�a → H 1(�i); TaEi�a = �a ∀�a ∈�a:

Eqs. (7)1 and (7)3 are the equations for the unknown in subdomains �1 and �2 respectively. Eq.
(7)2 is the condition that ensures continuity of the primary variable across �b, and levels the solution
in both subdomains. Finally, Eq. (7)4 is the equation for the primary variable on the interface �a.

Theorem 1. Problems (7) and (2) are equivalent.

Proof. We >rst show that the solution is the same in both subdomains inside the overlap zone
�4, i.e., that the two transmission conditions on the interfaces are suJcient to uniquely de>ne the
solution. For any v4 ∈V 0

4 , construct

v1 =

{
0 in �3;

v4 in �4

and v2 =

{
v4 in �4;

0 in �5:

Clearly, v1 ∈V 0
1 and v2 ∈V 0

2 and therefore subtracting (7)1 and (7)3, we obtain

a4(u1 − u2; v4) = 0 ∀v4 ∈V 0
4

together with the condition u1 − u2 = 0 on �b, derived from (7)2. Now, we need to derive a
boundary condition on �a in order to close the problem for the unknown u1 − u2. For any �a ∈�a
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de>ne

v1 =

{
E3�a in �3;

E4�a in �4:

Since v1 ∈V 0
1 , Eqs. (7)1 and (7)4 give

a2(u2; E2�a)− a4(u1; E4�a) = 〈f; E2�a〉�2 − 〈f; E4�a〉�4 ∀�a ∈�a: (8)

Now we de>ne for all �a ∈�a

v′2 =

{
E4�a in �4;

0 in �5:

Eq. (8) can be rewritten as

a2(u2; E2�a − v′2) + a2(u2; v′2)− a4(u1; E4�a)

=〈f; E2� − v′2〉�2 + 〈f; v′2〉�2 − 〈f; E4�a〉�4 ∀�a ∈�a: (9)

According to the de>nition of v′2, (E2�a − v′2)∈V 0
2 and consequently, applying (7)3, we obtain

a2(u2; E2�a − v′2) = 〈f; E2� − v′2〉�2 :

Eq. (9) gives therefore

a4(u1 − u2; E4�a) = 0 ∀�a ∈�a:

As a result, the complete system of equations for w = u1 − u2 is

a4(w; v4) = 0 ∀v4 ∈V 0
4 ;

w = 0 on �b;

a4(w; E4�a) = 0 ∀�a ∈�a:

From the Lax–Milgram lemma, this problem has a unique solution w = 0; this implies that u1 = u2
in �4.
We now show that the solution of the original problem is also solution of the domain decompo-

sition problem. Let u be solution of Eq. (2), and de>ne ui = u|�i
for i = 1; 2. Clearly, ui ∈Vi and

therefore Eqs. (7)1, (7)2 and (7)3 are trivially satis>ed. Now for all �a ∈�a de>ne � as

�=

{
E3�a in �3;

E2�a in �2:

We have that �∈V , which implies that

a(u; �) = 〈f; �〉�;
and substituting the de>nition of � we recover Eq. (7)4.
We now prove the reciprocal. Let

u=

{
u1|�3

in �3;

u2 in �2:
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We have shown that u1 = u2 in �4 and in particular that u1 = u2 on �a. This implies that u∈V and,
as a result, we have

a(u; v) = a3(u1; v) + a2(u2; v) ∀v∈V: (10)

For each v∈V , set �a = Tav∈�a. Let us de>ne

�3 = v|�3
− E3�a and �2 = v|�2

− E2�a;

and rewrite Eq. (10) as

a(u; v) = a3(u1; �3) + a3(u1; E3�a) + a2(u2; �2) + a2(u2; E2�a): (11)

By de>nition, �3 ∈V 0
3 . Let us now de>ne �1 as

�1 =

{
�3 in �3;

0 in �4:

�1 ∈V 0
1 and therefore (7)1 implies that

a3(u1; �3) = 〈f; �3〉�3 :

Similarly, knowing also that �2 ∈V 0
2 , we can show that

a2(u2; �2) = 〈f; �2〉�2 ;

and from the latter two equations, Eq. (11) becomes

a(u; v) = 〈f; �3〉�3 + a3(u1; E3�a) + 〈f; �2〉�2 + a2(u2; E2�a) ∀�a ∈�a:

From Eq. (7)4, the last equation reads

a(u; v) = 〈f; �3〉�3 + 〈f; E3�a〉�3 + 〈f; �2〉�2 + 〈f; E2�a〉�2 ∀�a ∈�a;

which gives from the de>nitions of �3 and �2 yields,

a(u; v) = 〈f; v|�3
〉�3 + 〈f; v|�2

〉�2 ;

= 〈f; v〉 ∀v∈V;

and hence the theorem follows.

Remark 2. The variational formulation given by Eqs. (7)1–4 provides a general setting for an over-
lapping domain decomposition method. On the one hand, we have a Dirichlet condition on �b; on
the other hand, the transmission condition (7)4 on �a depends on the bilinear chosen to represent the
original di+erential operator in the weak formulation. For the particular case of the ADR problem,
this condition can be written in the more familiar form presented next.

3.3. Alternative formulation

We develop an alternative formulation for the domain decomposition method given by Eqs. (7)1–4.
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Lemma 3. The solution of the domain decomposition problem satis�es

�
9u1
9n2

− 1
2
(a · n2)u1 = �

9u2
9n2

− 1
2
(a · n2)u2 on �a;

where 9(·)=9n2 = n2 · ∇(·), n2 being the exterior normal to �2 on �a.

Proof. According to Green’s formula, for all �a ∈�a we have

a3(u1; E3�a) =−
〈
�
9u1
9n2

− 1
2
(a · n2)u1; �a

〉
�a

+ 〈Lu1; E3�a〉�3 ; (12)

a2(u2; E2�a) =
〈
�
9u2
9n2

− 1
2
(a · n2)u2; �a

〉
�a

+ 〈Lu2; E2�a〉�2 : (13)

In addition, from Eqs. (7)1 and (7)3, we have that

Lu1 = f in �1 and Lu2 = f in �2;

in the sense of distributions. As a result, Eqs. (12) and (13) become

a3(u1; E3�a) =−
〈
�
9u1
9n2

− 1
2
(a · n2)u1; �a

〉
�a

+ 〈f; E3�a〉�3 ;

a2(u2; E2�a) =
〈
�
9u2
9n2

− 1
2
(a · n2)u2; �a

〉
�a

+ 〈f; E2�a〉�2 :

(14)

Adding up these two equations, and substituting the result into Eq. (7)4, we >nd〈
−�
9u1
9n2

+
1
2
(a · n2)u1 + �

9u2
9n2

− 1
2
(a · n2)u2; �a

〉
�a

= 0 ∀�a ∈�a;

and thus the lemma holds.

Theorem 4. System of Eqs. (7)1–4 can be reformulated as follows: �nd u1 ∈V1 and u2 ∈V2 such
that

a1(u1; v1) = 〈f; v1〉�1 ∀v1 ∈V 0
1 ;

u1 = u2 on �b;

a2(u2; v′2) = 〈f; v′2〉�2 +
〈
�
9u1
9n2

− 1
2
(a · n2)u1; v′2

〉
�a

∀v′2 ∈V2:

(15)

Proof. We >rst substitute Eq. (14) into Eq. (7)4, and add the result to Eq. (7)3:

a2(u2; v2 + E2�a) =
〈
�
9u1
9n2

− 1
2
(a · n2)u1; �a

〉
�a

+ 〈f; v2 + E2�a〉�2 ∀v2 ∈V 0
2 ; �a ∈�a:

Let us de>ne v′2 = v2 + E2�a. Clearly, v′2 ∈V2 and �a = Tav′2; consequently, the last equation is
equivalent to

a2(u2; v′2) =
〈
�
9u1
9n2

− 1
2
(a · n2)u1; v′2

〉
�a

+ 〈f; v′2〉�2 ∀v′2 ∈V2:
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The proof is completed by substituting Eqs. (7)3 and (7)4 of the system of equations (7)1–4 by the
latter equation.

The interpretation of the domain decomposition method now appears clearly. A Dirichlet problem
is solved in �1 using as Dirichlet data on the interface �b the solution in �2, whereas a mixed
Dirichlet/Robin problem is solved in �2 using as Robin data on �a the solution in �1. This formu-
lation justi>es the name overlapping Dirichlet/Robin method to designate this domain decomposition
method.

Remark 5. The system of equations (15)1–3 could have been derived directly from the following
DD problem applied at the di+erential level:

Lu1 = f in �1;

u1 = 0 on 9�1 ∩ 9�;
u1 = u2 on �b;

Lu2 = f in �2;

u2 = 0 on 9�2 ∩ 9�;

�
9u2
9n2

− 1
2
(a · n2)u2 = �

9u1
9n2

− 1
2
(a · n2)u1 on �a:

(16)

The interface conditions on �a and �b are usually referred to as matching conditions or transmission
conditions. The >rst one is of Dirichlet type while the second one is of Robin type. At the variational
level, we have just shown they correspond to essential and natural boundary conditions.

3.4. Interface equations

A convenient way to study DD methods is to derive equations for the interface unknown(s). To
do so, the problem is >rst rewritten into two purely Dirichlet problems for which the Dirichlet data
are the unknowns on the interfaces. For the sake of clarity, the derivation of the interface equations
is carried out at the di+erential level, starting from Eqs. (16)1–6. The problems to consider are:

Lw1 = f in �1; Lw2 = f in �2;

w1 = 0 on 9�1 ∩ 9�; w2 = 0 on 9�2 ∩ 9�;
w1 = �b on �b; w2 = �a on �a:

(17)

Now let us decompose w1 and w2 into L-homogeneous and Dirichlet-homogeneous parts,

w1 = u01 + u∗1 ; w2 = u02 + u∗2 ;

where the L-homogeneous parts u01 and u02 are the solutions of the following systems:

Lu01 = 0 in �1; Lu02 = 0 in �2;

u01 = 0 on 9�1 ∩ 9�; u02 = 0 on 9�2 ∩ 9�;
u01 = �b on �b; u02 = �a on �a

(18)
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and the Dirichlet-homogeneous parts u∗1 and u∗2 are the solutions of the following systems:

Lu∗i = f in �i;

u∗i = 0 on 9�i

(19)

for i = 1; 2. We refer to u01 as the L-homogeneous extension of �b into �1, and we denote it by
L1�b. Similarly, we call u02 the L-homogeneous extension of �a into �2, and we denote it by L2�a.
In the case when L = −�, L is called the harmonic extension and is usually denoted by H . The
Dirichlet-homogeneous parts u∗1 and u∗2 are rewritten as G1f and G2f, respectively.

Comparing systems (17) with system (16), we have that wi = ui for i = 1; 2 if and only if the
following two conditions are satis>ed:

�
9w2

9n2
− 1

2
(a · n2)w2 = �

9w1

9n2
− 1

2
(a · n2)w1 on �a;

w1 = w2 on �b: (20)

Using the previous de>nitions, conditions (20) can be rewritten as

�
9L2�a
9n2

− 1
2
(a · n2)L2�a

=�
9L1�b
9n2

− 1
2
(a · n2)L1�b + �

9G1f
9n2

− 1
2
(a · n2)G1f − �

9G2f
9n2

+
1
2
(a · n2)G2f on �a;

�b = TbL2�a + TbG2f on �b:

Let us clean up this system by introducing some de>nitions. In the >rst equation, we recognize the
Steklov–PoincarLe operator S2 associated to subdomain �2, and de>ned as

S2 :�a → H−1=2(�a);

S2�a := �
9L2�a
9n2

− 1
2
(a · n2)L2�a (evaluated on �a):

Note that L2�a = �a on �a. We de>ne S̃b, a Steklov–PoincarLe-like operator acting on �b, as

S̃b :�b → H−1=2(�a);

S̃b�b := −�
9L1�b
9n2

+
1
2
(a · n2)L1�b (evaluated on �a):

We also de>ne T̃ b, the trace on �b of the L-extension of �a into �2:

T̃ b :�a → �b;

T̃ b�a := TbL2�a:

Finally,  and  ′ are de>ned as follows:

 = �
9G1f
9n2

− 1
2
(a · n2)G1f − �

9G2f
9n2

+
1
2
(a · n2)G2f;

 ′ = TbG2f;
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where we have  ∈H−1=2(�a) and  ′ ∈�b. Owing to the previous de>nitions, the system of two
equations for the interface unknowns reads

S2�a =−S̃b�b +  in H−1=2(�a);

�b = T̃ b�a +  ′ in �b: (21)

Let us introduce now the operator

S̃1 :�a → H−1=2(�a);

S̃1�a := S̃bT̃ b�a

and de>ne S as

S = S̃1 + S2:

After substituting �b given by Eq. (21)2 into Eq. (21)1, we >nally obtain the following system of
equations for the interface unknowns:

S�a =  − S̃b ′ in H−1=2(�a);

�b = T̃ b�a +  ′ in �b: (22)

Once �a and �b are obtained, we can solve the two Dirichlet problems (18) to obtain the L-
homogeneous parts u01 and u02. The Dirichlet-homogeneous parts u∗1 and u∗2 are obtained by solv-
ing Eqs. (19) for i=1; 2. Hence, the solutions u1 and u2 are calculated by adding up their respective
L and Dirichlet-homogeneous contributions. Eq. (22)1 should formally be understood in a weak
sense, i.e.,

〈(S2 + S̃1)�a; �a〉�a = 〈 − S̃b ′; �a〉�a ∀�a ∈�a: (23)

Lemma 6. The variational counterpart of the Steklov–Poincar>e operators are

〈S̃1�a; �a〉�a = a3(L1T̃ b�a; E3�a); (24)

〈S2�a; �a〉�a = a2(L2�a; E2�a) ∀�a ∈�a (25)

for any extension operators E2 and E3.

Proof. The lemma follows from the de>nitions of S̃1 and S2 and Green’s formula.

We can also show that the two right hand-side terms of Eq. (22)1 satisfy

〈 ; �a〉�a = 〈f; E2�a〉�2 − a2(G2f; E2�a) + 〈f; E3�a〉�3 − a3(G1f; E3�a);

〈S̃b ′; �a〉�a = a3(L1TbG2f; E3�a) ∀�a ∈�a

for any extension operators E2 and E3. This completes the de>nition of the variational form of Eq.
(22)1, i.e.,

a2(L2�a; E2�a) + a3(L1T̃b�a; E3�a)

=〈f; E2�a〉�2−a2(G2f; E2�a)+〈f; E3�a〉�3− a3(G1f; E3�a)−a3(L1TbG2f; E3�a) ∀�a ∈�a:
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Remark 7. Eq. (23) can be also obtained by formulating problems (17) in a variational form.

Let us go back to system (22). We >rst state some useful properties of operators S2 and S̃1.

Lemma 8. S2 is both continuous and coercive and S̃1 is continuous and nonnegative.

Proof. We have shown that Eqs. (25) and (24) hold for any extension operators E2 and E1.
This leaves us the choice to >nd appropriate expressions for S2 and S̃1 to facilitate their analysis.
A straightforward choice consists of taking E2 =L2, and E1 =L1T̃ b. Thus, we have

〈S2�a; �a〉�a = a2(L2�a;L2�a);

〈S̃1�a; �a〉�a = a3(L1T̃ b�a;L1T̃ b�a) ∀�a ∈�a:

We >rst show that S2 is both continuous and coercive. Using the de>nition of a2 given by Eq. (3)
and applying the Cauchy–Schwartz inequality, we obtain

〈S2!a; �a〉�a 6 "�2‖L2!a‖1;�2‖L2�a‖1;�2 ∀!a; �a ∈�a; (26)

where "�2 = �+ ‖a‖∞;�2 + ‖�0‖∞;�2 . According to the a priori estimate given by Eq. (6), we have
that ‖L2�a‖1;�2 6C2‖�a‖1=2; (�a) for �a ∈�a, and therefore Eq. (26) gives

〈S2!a; �a〉�a 6MS2‖!a‖1=2;�a‖�a‖1=2;�a ∀!a; �a ∈�a; (27)

which states that S2 is continuous, with MS2 = "�2C
2
2 the continuity constant. We now show the co-

ercivity of S2. Owing to the skew-symmetry of the convective term of a2, for any �a ∈�a we have

〈S2�a; �a〉�a

=a2(L2�a;L2�a) = � ‖∇L2�a‖20;2 +
∫
�2

�0(L2�a)2 d�

¿ �‖∇L2�a‖20;�2
(�0¿ 0 almost everywhere): (28)

From the trace inequality (see Eq. (5)), we know that there exists a constant C∗
2 ¿ 0 such that

‖L2�a|9�2
‖1=2;9�2 6C∗

2 ‖L2�a‖1;�2 ∀�a ∈�a;

Using the PoincarLe–Friedrichs inequality (4), Eq. (28) yields

〈S2�a; �a〉¿NS2‖�a‖21=2;�a
∀�a ∈�a; (29)

where NS2 := �=(C2
�2

+ 1)(C∗
2 )

2 is the coercivity constant.
Let us >nally prove the continuity and nonnegativeness of S̃1. Applying the Cauchy–Schwarz

inequality to Eq. (24), we obtain

〈S̃1!a; �a〉�a 6 "�3‖L1TbL2!a‖1;�3‖L1TbL2�a‖1;�3

6 "�3‖L1TbL2!a‖1;�1‖L1TbL2�a‖1;�1 (�3 ⊂ �1)

for any !a; �a ∈�a and where "�3 = � + ‖a‖∞;�3 + ‖�0‖∞;�3 . From the a priori estimate given by
Eq. (6), we have that

〈S̃1!a; �a〉�a

6 "�3C
2
1‖TbL2!a‖1=2;9�1‖TbL2�a‖1=2;9�1
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="�3C
2
1‖TbL2!a‖1=2;�b‖TbL2�a‖1=2;�b

="�3C
2
1‖�0;5L2!a‖1=2;9�5‖�0;5L2�a‖1=2;9�5

6 "�3C
2
1C

∗2
5 ‖L2!a‖1;�5‖L2�a‖1;�5 (trace inequality (5))

6 "�3C
2
1C

∗2
5 ‖L2!a‖1;�2‖L2�a‖1;�2 (�5 ⊂ �2)

6 "�3C
2
1C

∗2
5 C2

2‖!a‖1=2;9�2‖�a‖1=2;9�2 (a priori estimate (6))

=MS̃1‖!a‖1=2;�a‖�a‖1=2;�a ; (30)

which proves the continuity of S̃1. Finally, owing to the skew-symmetry of a1, for any �a ∈�a we
have

〈S̃1�a; �a〉�a = a1(L1T̃ b�a;L1T̃ b�a)

= � ‖∇L1T̃ b�a‖20;2 +
∫
�3

�0(L1T̃ b�a)2 d�

¿ 0 (�0¿ 0 almost everywhere);

and the lemma holds.

The following result is a direct consequence of the previous properties:

Theorem 9. System (22) has a unique solution {�a; �b}.

Proof. We >rst prove that S is invertible, showing that it is both continuous and coercive. We have

〈S!a; �a〉�a = 〈S̃1!a; �a〉�a + 〈S2!a; �a〉�a ∀!a; �a ∈�a:

Therefore, the continuity of S follows from that of S2 and S̃1, i.e.,

〈S!a; �a〉6MS‖!a‖1=2;�a‖�a‖1=2;�a ∀!a; �a ∈�a

with continuity constant MS given by MS=MS̃1+MS2 , where MS̃1 and MS2 are the continuity constants
of S̃1 and S2 introduced in Eqs. (30) and (27), respectively.
We now show the coercivity of S without trying to obtain sharp estimates. We have already

shown the coercivity of S2 and the nonnegativeness of S̃1. Therefore,

〈S�a; �a〉�a

=〈S2�a; �a〉�a + 〈S̃1�a; �a〉�a

¿ 〈S2�a; �a〉�a ¿NS‖�a‖21=2;�a
∀�a ∈�a;

where NS =NS2 . Thus, S is a continuous and coercive operator. According to Lax–Milgram Lemma,
it is invertible and therefore Eq. (22)1 has a unique solution �a. The existence and uniqueness of �b
follows from that of �a, by applying Eq. (22)2. Remember that we have

�b = T̃ bL2�a +  ′:
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L2�a is the unique solution of problem (18)2. Since the trace operator Tb is well de>ned, from
H 1(�2) onto �b, we have that �b exists and is unique. Inverting S in Eq. (22)1, we >nd that

�a = S−1( − S̃b ′) in �a;

�b = T̃ bS−1( − S̃b ′) +  ′ in �b;

are the solutions of our interface problem.

4. Iterative scheme

4.1. Relaxed sequential algorithm

In this section, we derive an iterative procedure to solve the domain decomposition problem (7).
The sequential version of the iterative overlapping D/R algorithm is de>ned as follows. Given an
initial guess u02 on �b, for each k¿ 0, >nd uk+1

1 ∈V1 and uk+1
2 ∈V2 such that

a1(uk+1
1 ; v1) = 〈f; v1〉�1 ∀v1 ∈V 0

1 ;

uk+1
1 = uk2 on �b;

a2(uk+1
2 ; v2) = 〈f; v2〉�2 ∀v2 ∈V 0

2 ;

a2(uk+1
2 ; E2�a) =−a3(uk+1

1 ; E3�a) + 〈f; E3�a〉�3 + 〈f; E2�a〉�2 ∀�a ∈�a;

(31)

for any extension operators E3 and E2. If this algorithm converges, the solutions on both subdomains
satisfy Eqs. (7)1–4. The corresponding algorithm for the di+erential problem given by Eqs. (16)1–6
is straightforward and reads: given an initial guess u02 on �b, for each k¿ 0, >nd uk+1

1 and uk+1
2

such that

Luk+1
1 = f in �1;

uk+1
1 = 0 on 9�1 \ �b;

uk+1
1 = uk2 on �b;

Luk+1
2 = f in �2;

uk+1
2 = 0 on 9�2 \ �a;

�
9uk+1

2

9n2
− 1

2
(a · n2)uk+1

2 = �
9uk+1

1

9n2
− 1

2
(a · n2)uk+1

1 on �a:

(32)

If this algorithm converges, the solutions on both subdomains satisfy Eqs. (16)1–6. For the sake of
clarity, we have omitted the relaxation of the transmission conditions; for example, the Dirichlet
condition (32)2 could be replaced by

uk+1
1 = 'uk2 + (1− ')uk1;

where '¿ 0 is the relaxation parameter.
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Fig. 3. Relaxed sequential algorithms. (Left) D'=R method. (Right) D=R' method.

We now investigate the interface iterates produced by this relaxed iterative procedure. The set of
equations for the wi’s is the following:

Lwk+1
1 = f in �1; Lwk+1

2 = f in �2;

wk+1
1 = 0 on 9�1 ∩ 9�; wk+1

2 = 0 on 9�2 ∩ 9�;
wk+1
1 = �kb on �b; wk+1

2 = �k+1
a on �a:

The choice of taking as Dirichlet conditions �b at iteration k for wk+1
1 , and �a at iteration k + 1 for

wk+1
2 is arbitrary. According to this choice, we can set

wk+1
1 =L1�kb + G1f; wk+1

2 =L2�k+1
a + G2f:

We have that wk
i = uki for i = 1; 2 if and only if the wk

i ’s satisfy the transmission conditions (32)3
and (32)6. By noting that the Dirichlet-homogeneous solutions G1f and G2f do not change along
the iterative process, the Dirichlet-relaxed iterative scheme, denoted D'=R, is given for any k¿ 0
by

S2�k+1
a =−S̃b�kb +  ;

�k+1
b = '(T̃ b�k+1

a +  ′) + (1− ')�kb:
(33)

The Robin transmission condition can be also relaxed by replacing Eq. (32)6 by

�
9uk+1

2

9n2
− 1

2
(a · n2)uk+1

2 = '
[
�
9uk+1

1

9n2
− 1

2
(a · n2)uk+1

1

]
+ (1− ')

[
�
9uk2
9n2

− 1
2
(a · n2)uk2

]
:

In terms of the interface unknowns, the Robin-relaxed iterative scheme, denoted D=R', produces the
following iterates for any k¿ 0:

S2�k+1
a = '(−S̃b�kb +  ) + (1− ')S2�ka;

�k+1
b = T̃ b�k+1

a +  ′:
(34)

The dependence of �k+1
a and �k+1

b on the values at previous iterations, given two initial values �0a
and �0b, is sketched in Fig. 3; note that the value of �0a is only needed when using the D=R' method.
The continuity and coercivity of S2 has been proven in last section. According to Lax–Milgram

Lemma, S2 is invertible. We can therefore reformulate the system for the interface unknowns (21)
as follows:

Qa�a =  a;

Qb�b =  b;
(35)
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where we have de>ned Qa, Qb,  a and  b by

Qa = Ia + S−1
2 S̃bT̃ b = Ia + S−1

2 S̃1;

Qb = Ib + T̃ bS−1
2 S̃b;

 a = S−1
2  − S−1

2 S̃b ′;

 b = T̃ bS−1
2  +  ′

and where Ia is the identity on �a and Ib is the identity on �b. By solving the Dirichlet- and
Robin-relaxed systems for �k+1

a and �k+1
b , we can show that both schemes lead to the same following

iterates for any k¿ 1:

�k+1
a = '( a − Qa�ka) + �ka;

�k+1
b = '( b − Qb�kb) + �kb:

(36)

We recognize here two stationary Richardson procedures for solving Eqs. (35)1 and (35)2. The
Richardson procedure for solving �a is similar to that produced by the classical Dirichlet/Neumann
method; in fact, we obtain the following equivalent iterate:

�k+1
a = 'S−1

2 [( − S̃b ′)− S�ka] + �ka;

which is a preconditioned Richardson method for solving Eq. (22)1, using S2 as preconditioner
for S.

Remark 10. As pointed out above, the Richardson procedures (36) are valid only for k¿ 1. The
D'=R and D=R' methods are therefore not completely equivalent, as the >rst iterative values �1a and
�1b may di+er, even if �0a and �0b are chosen to be equal. Therefore, even though they have the same
behavior (given by Eq. (36)) they may yield di+erent values of the iterates �ka; �kb, k = 1; 2; 3; : : : :

4.2. Convergence

This section studies the convergence of the D'=R and D=R' iterative schemes given by Eqs.
(32)1–6 at the di+erential level, or (31)1–4 at the variational level. Rather than directly studying the
whole system of equations for u1 and u2, we base our analysis on the equivalent interface equations
systems, i.e., Eqs. (33)1−2 for the D'=R method and Eqs. (34)1–2 for the D=R' method. The result
we can prove is

Theorem 11. Assume that � is large enough so that

"∗ := 2NS2 − 2‖a‖∞;�aC
2
2

MS̃1 +MS2

NS2
¿ 0; (37)

where the constants NS2 , MS̃1 and MS2 have been introduced in Eqs. (29), (30) and (27), respectively.
Then, there exists 'max such that for any given �0a ∈�a and �0b ∈�b and for all '∈ (0; 'max), the
sequences {�ka} and {�kb} given by (36) converge in �a and �b, respectively. The upper bound of
the relaxation parameter 'max can be estimated by

'max =
"∗N 2

S2

MS2(MS̃1 +MS2)2
: (38)
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More precisely, convergence is linear, the convergence factor being K' ¡ 1 de�ned in the proof
below.

Proof. The proof is split into two steps. We >rst show the Richardson procedure for the sequence
{�ka} given by Eq. (36)1 converges. The proof is based on the abstract Theorem 3.1 of [2], or
Theorem 4.2.2 of [26]. Secondly, we show that if the sequence {�ka} converges, then {�kb} does as
well.

Let us start with the >rst step and de>ne Ra the Richardson iteration operator as

Ra :�a → H−1=2(�a);

Ra�a := (Ia − 'Qa)�a = (Ia − 'S−1
2 S)�a:

If we de>ne eka = �ka − �a as the error with respect to �a at iteration k, �a being solution of problem
(35)1, the error equation reads

ek+1
a = Raeka:

The Richardson procedure (36)1 is therefore convergent if the operator Ra is a contraction with
respect to some norm. Let us introduce the following application:

(·; ·)S2 :�a × �a → R;

(!a; �a)S2 :=
1
2(〈S2!a; �a〉�a + 〈S2�a; !a〉�a):

It is easy to check that this application is a scalar product, and that it induces the following S2-norm:

‖�a‖S2 := 〈S2�a; �a〉1=2�a
;

which, owing to both the coercivity and continuity of S2, is equivalent to the natural norm on �a,
i.e.,

N 1=2
S2 ‖�a‖1=2;�a 6 ‖�a‖S2 6M 1=2

S2 ‖�a‖1=2;�a ∀�a ∈�a: (39)

By de>nition we have

‖Ra�a‖2S2 = ‖�a‖2S2 + ' 2〈S�a; S−1
2 S�a〉�a − '(〈S2�a; S−1

2 S�a〉�a + 〈S�a; �a〉�a): (40)

Using the same strategy as in [26], it can be checked that

〈S2�a; S−1
2 S�a〉�a + 〈S�a; �a〉�a ¿ "∗‖�a‖21=2;�a

∀�a ∈�a

with "∗ de>ned in Eq. (37). Since the norm of S−1
2 is 1=NS2 , and owing to the continuity of S2 and

S̃1 and to the assumption of the theorem, Eq. (40) yields

‖Ra�a‖2S2 6K'‖�a‖2S2
with K' given by

K' = 1 + ' 2 (MS2 +MS̃1)
2

N 2
S2

− '
"∗

MS2
:
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The Richardson procedure is a contraction in the S2-norm if K' ¡ 1, i.e., if 0¡'¡'max, with 'max
given by Eq. (38).

Let us now go on to the second step of the proof, i.e., the convergence of the sequence {�ka}
implies that of the sequence {�kb}. Although the Dirichlet and Robin-relaxed methods lead to the same
Richardson procedure for �b (Eq. (36)2) for k¿ 1, we have to treat their convergence separately.
We de>ne ekb = �kb − �b. Since the converged solution satis>es �b = T̃ b�a +  ′, Eq. (34)2 for the
Robin-relaxed scheme gives for any k¿ 1,

ekb = T̃ beka:

Therefore, we have

‖ekb‖1=2;�b

=‖TbL2eka‖1=2;�b

6C∗
2 ‖L2eka‖1;�2 (trace inequality (5))

6C∗
2C2‖eka‖1=2;�a (a priori estimate (6))

6
C∗
2C2

N 1=2
S2

‖eka‖S2 (norm equivalence (39))

6Kk
'
C∗
2C2

N 1=2
S2

‖e0a‖1=2;�a ;

which shows that the sequence {�kb} converges whenever K' ¡ 1.
Now we study the convergence of the Dirichlet-relaxed algorithm (for ' �= 1). From Eq. (33)2,

we have that, for any k¿ 1,

ekb = 'T̃ beka + (1− ')ek−1
b :

According to this equation, we can generate the following sequence:

ekb = ' T̃ beka + (1− ') ek−1
b ;

(1− ') ek−1
b = '(1− ') T̃ bek−1

a + (1− ')2 ek−2
b ;

(1− ')2 ek−2
b = '(1− ')2 T̃ bek−2

a + (1− ')3 ek−3
b ;

...
...

(1− ')k−2 e2b = '(1− ')k−2 T̃ be2a + (1− ')k−1 e1b;

(1− ')k−1 e1b = '(1− ')k−1 T̃ be1a + (1− ')k e0b:

Adding up all the terms, we >nd the following equality:

ekb = (1− ')ke0b + '(1− ')k
k∑

n=1

(1− ')−nT̃ beka;



262 G. Houzeaux, R. Codina / Journal of Computational and Applied Mathematics 158 (2003) 243–276

which gives

‖ekb‖1=2;�b 6 |1− '|k‖e0b‖1=2;�b + '|1− '|k
k∑

n=1

|1− '|−n‖TbL2ena‖1=2;�b

6 |1− '|k ‖e0b‖1=2;�b +
'
K'

|1− '|k−1 C
∗
2C2

N 1=2
S2

‖e1a‖S2
k∑

n=1

(
K'

|1− '|
)n

:

The geometric progression is

k∑
n=1

(
K'

|1− '|
)n

=




1
2 k(k + 1) if K' = |1− '|;

K'

|1− '|k
|1− '|k − Kk

'

|1− '| − K'
otherwise;

and thus we >nd the following two expressions for the norm of the error:

‖ekb‖1=2;�b 6




|1− '|k
(
‖e0b‖1=2;�b +

1
2
k(k + 1)'

C∗
2C2

N 1=2
S2

‖e0a‖S2
)

if K' = |1− '|;

|1− '|k‖e0b‖1=2;�b + '
|1− '|k − Kk

'

|1− '| − K'

C∗
2C2

N 1=2
S2

‖e0a‖S2 otherwise:

Owing to these inequalities and since '¡ 2 (see Eqs. (37)–(38)), we conclude that if K' ¡ 1 the
sequence {�kb} converges.

Note that once �a=limk→∞ �ka and �b=limk→∞ �kb are found, the solutions in �1 and �2 are ob-
tained by solving the two Dirichlet problems given by Eqs. (17). As a consequence, the convergences
of sequences {�ka} and {�kb} imply the convergence of the whole algorithm.

Remark 12. This result carries over to the discrete variational problems provided the stability and
continuity properties of the continuous case are inherited. In particular, the rate of convergence will
be independent of the number of degrees of freedom.

5. Numerical examples

We present four numerical examples to test the overlapping D/R method in the di+usion as well
as in the advection dominated limits. We apply the DD method to the discrete problem, rather to the
continuous one considered up to now. However, the decomposition given by Eq. (7) and the results
we have proven related to it apply also to the discrete (>nite-dimensional) setting resulting from
a �nite element discretization, that is what we consider in what follows. In particular, in all the
cases we consider a >nite element partition of the computational domain made of piecewise bilinear
quadrilateral elements.
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Fig. 4. Computational domain and boundary conditions.

5.1. Skew advection

Through this example, which was used as a >rst test case of the classical �-D/R method in [2],
we want to compare the disjoint and overlapping versions of the D/R method for a skew advection
>eld. As an additional indication when using overlapping grids, we will systematically give the
results of the Schwarz method (D/D) for overlapping subdomains, and that of the adaptive D/N
method (A-D/N) for both disjoint and overlapping subdomains. The overlapping version of the
A-D/N method uses a Neumann interface at outKow and a Dirichlet interface at inKow, as in the
classical disjoint case. We propose to solve the equation

−�Nu+ a · ∇u= f in � = (0; 1)× (0; 1)

with a skew advection >eld a = [1; 1]t, and look for the exact solution u= u(x; y) = x + 5y, which
belongs to the >nite element space of work. According to this choice, we impose f = 6, and exact
Dirichlet conditions on the boundary; see Fig. 4.

We de>ne three di+erent meshes, with h=1=10, 1=20 and 1=40. In addition, we de>ne three di+erent
partitionings. The splitting of the two subdomains is always performed vertically and symmetrically
with respect to the line x=0:5. The >rst partition splits � into two disjoint subdomains, the second
into two overlapping subdomains with horizontal overlapping length 1= 0:2, and the third one with
1 = 0:4. As for the numerical strategy, we use the variational subgrid scale model (indispensable
for small �), as described in [8]. In order to introduce as few extrinsic errors to the DD methods
themselves as possible, all the matrices involved in the Schur complement system are inverted using
a direct solver. When considering disjoint subdomains, the convergence criterion is

100
‖uk+1

�a
− uk�a

‖2
‖uk�a

‖2
6 10−10;

while for overlapping subdomains it is given by

100
‖uk+1

�a
− uk�a

‖2 + ‖uk+1
�b

− uk�b
‖2

‖uk�a
‖2 + ‖uk�b

‖2
6 10−10;
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Table 1
Number of iterations (' = 0:5, 1= 0)

� \ h D/R A-D/N

1=10 1=20 1=40 1=10 1=20 1=40

101 2 2 2 8 8 8
100 5 4 2 15 15 15
10−1 7 6 5 31 31 31
10−2 8 8 7 39 39 39
10−3 8 8 8 40 40 40
10−4 9 8 8 41 41 41
10−5 9 8 8 41 41 41

Table 2
'opt and number of iterations (1= 0)

� D/R A-D/N

'opt No. 'opt No.

101 0.50 2 0.50 8
100 0.50 4 0.54 11
10−1 0.50 6 0.65 19
10−2 0.50 8 0.81 17
10−3 0.50 8 0.90 17
10−4 0.50 9 0.93 18
10−5 0.50 9 0.93 18

where uk�a
and uk�b

are the arrays of nodal unknowns corresponding to the nodes on the interfaces
�a and �b, respectively, computed at iteration k. Tables 1 and 2 present the already known results
of the disjoint D/R and adaptive D/N methods. The former con>rms the mesh independence of both
methods, while the latter gives the optimum relaxation parameter 'opt and the corresponding numbers
of iterations needed to achieve convergence. Possible values of ' have been limited to two decimal
places. As expected, we note that 'opt for the D/R method is always 0.5, while that of the A-D/N
method it is somewhere between 0.5 and 1, and depends on �.
Tables 3–6 present the same results for the overlapping methods. The tables show that the

overlapping D/R method behaves like the classical D/N method for � high, and like the D/D
method for � small. We observe that when ��1, the convergence of the D/R will improve with
decreasing h.

We also note that for all the DD methods tested, the optimum ' is close to unity in the di+usion
dominated range, while it is exactly one in the advection-dominated range. This contrasts completely
with the disjoint counterparts of the DD methods.

Table 7 gives the number of iterations needed to achieve convergence for the di+erent methods,
as a function of the overlapping length, and for the second >nest mesh h = 1=20. We observe that
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Table 3
Number of iterations (' = 1:0, 1= 0:2)

� \ h D/R A-D/N D/D

1=10 1=20 1=40 1=10 1=20 1=40 1=10 1=20 1=40

101 23 23 23 23 23 23 21 21 21
100 23 23 23 19 19 19 21 21 21
10−1 10 11 11 7 8 8 10 11 11
10−2 10 6 3 7 4 3 10 6 3
10−3 12 7 5 7 5 4 11 7 5
10−4 12 7 5 7 5 4 12 7 5
10−5 12 7 5 7 5 4 12 7 5

Table 4
'opt and number of iterations (1= 0:2)

� D/R A-D/N D/D

'opt No. 'opt No. 'opt No.

101 0.87 14 0.87 14 1.14 16
100 0.87 14 0.90 13 1.14 15
10−1 0.98 9 1.00 8 1.02 9
10−2 1.00 6 1.00 4 1.00 6
10−3 1.00 7 1.00 5 1.00 7
10−4 1.00 7 1.00 5 1.00 7
10−5 1.00 7 1.00 5 1.00 7

Table 5
Number of iterations (' = 1:0, 1= 0:4)

� \ h D/R A-D/N D/D

1=10 1=20 1=40 1=10 1=20 1=40 1=10 1=20 1=40

101 12 12 12 12 12 12 11 11 11
100 12 12 12 11 11 11 11 11 11
10−1 6 6 6 5 5 5 6 6 6
10−2 6 4 2 5 3 2 6 4 2
10−3 7 4 2 5 4 3 7 4 3
10−4 7 4 3 5 4 3 7 4 3
10−5 7 4 3 5 4 3 7 4 3

for � = 101 and 100, the overlapping does not improve convergence. This is rather a coincidence
than a rule. For example, locating the interface at x = 0:75, the disjoint D/R method converges in
14 iterations at least in both cases!

Before closing the analysis of this example, let us examine how the error is reduced by the dis-
joint and overlapping D/R methods (1 = 0:2), for high advection (� = 10−4). We choose ' such
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Table 6
Number of iterations and 'opt (1= 0:4)

� D/R A-D/N D/D

'opt No. 'opt No. 'opt No.

101 0.96 10 0.96 10 1.03 9
100 0.97 10 0.97 9 1.01 10
10−1 1.00 6 1.00 5 1.00 6
10−2 1.00 4 1.00 3 1.00 4
10−3 1.00 4 1.00 4 1.00 4
10−4 1.00 4 1.00 4 1.00 4
10−5 1.00 4 1.00 4 1.00 4

Table 7
Number of iterations (' = 'opt)

� \ 1 D/R A-D/N D/D

0 0.2 0.4 0 0.2 0.4 0 0.2 0.4

101 2 14 10 8 14 10 — 16 10
100 4 14 10 11 13 9 — 15 10
10−1 6 9 6 19 8 5 — 9 6
10−2 8 6 4 17 4 3 — 6 4
10−3 8 7 4 17 5 4 — 7 4
10−4 8 7 4 18 5 4 — 7 4
10−5 8 7 4 18 5 4 — 7 4

that the rate of convergence of each method is more or less the same, to be able to compare the
error reduction using the same scale; this choice corresponds to '= 0:44 in the case of the disjoint
D/R method, and ' = 0:9 in the case of the overlapping D/R method. The initial solution is the
exact solution, on which we superimpose an error with respect to the analytical solution somewhere
on the interface. In the case of the disjoint D/R method, we introduce the error at point (0:5; 0:5),
while for the overlapping version, we introduce the error at point (0:4; 0:5). The magnitude of the
error in both cases is 0.5, using as normalization the maximum exact value over the domain, i.e.,
6. On the one hand, Fig. 5(top left) and (top right) show how the error is advected along the
streamlines of the Kow, at iterations 2 and 4, respectively. On the other hand, Fig. 5(bottom left)
and (bottom right) show how the error is mostly con>ned between the interfaces, located at x=0:4
and 0.6.

5.2. Normal and tangential advections

This example studies the solution of a thermal boundary layer, also presented in [2],

−�Nu+ a · ∇u= 0 in � = (0; 1)× (0; 0:5)
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Fig. 6. (Left) Computational domain and boundary conditions. (Right) Solution for � = 10−2.

with a horizontal advection >eld a = [2y; 0]t and the following boundary conditions:

u=




1 at x = 0; and y = 0:5;

2y at x = 1;

0 elsewhere:

The geometry as well as the boundary conditions are shown in Fig. 6(left).
This example is solved using the same numerical strategy as that of the previous example. The

mesh convergence shares sensibly the same characteristics as that of the >rst example, and so only
the results run with a mesh size of h= 1=20 are reported here. The solution obtained on this mesh
for �=10−2 is shown in Fig. 6(right). Two di+erent partitionings are performed. First, we consider
a symmetric vertical partitioning of the domain, i.e., the interface is placed normal to the advection
>eld. Tables 8 and 9 compare the optimum relaxation parameters and the associated number of
iterations of the disjoint and overlapping versions of the di+erent DD methods. As it was already
observed in the previous example, we note that the 'opt of the disjoint D/R method is 0.5, while
that of the overlapping D/R is 1. The results of the A-D/N method are more mitigated. On the one
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Table 8
Normal advection. 'opt and number of iterations
(1= 0)

� D/R A-D/N

'opt No. 'opt No.

101 0.50 5 0.50 7
100 0.50 6 0.51 9
10−1 0.50 9 0.61 15
10−2 0.50 10 0.74 21
10−3 0.50 7 0.92 12
10−4 0.50 4 0.99 8
10−5 0.50 3 1.00 6

Table 9
Normal advection. 'opt and number of iterations (1= 0:2)

� D/R A-D/N D/D

'opt No. 'opt No. 'opt No.

101 0.96 10 0.96 10 1.04 10
100 0.96 10 0.96 10 1.04 10
10−1 0.97 10 0.98 8 1.03 10
10−2 1.00 5 1.00 5 1.00 6
10−3 1.00 4 1.00 3 1.00 4
10−4 1.00 5 1.00 3 1.00 5
10−5 1.00 5 1.00 3 1.00 5

hand, the 'opt of the disjoint version tends to unity very slowly for decreasing �. On the other hand,
the 'opt of the overlapping version is, as in the case of the overlapping D/R, unity for �6 10−2.

We now partition � horizontally. In this case, the Neumann and Robin conditions coincide as
a ·n=0. Table 10 gives the results obtain for the classical D/N method. As in the case of the normal
advection, we observe that the optimum relaxation parameter of all methods tends to unity rapidly
whenever �6 10−2, while that of the disjoint D/N method remains around 0.5.

5.3. Curved advection

We increase a bit the diJculty. We consider a curved advection >eld and impose a discontinuity
in the Dirichlet condition. This example was proposed in [29] and consists in solving

−�Nu+ a · ∇u+ �u= 0 in � = (−1; 1)× (−1; 1);

where the advection >eld and the source term are given by

a = 1
2[(1− x2)(1 + y);−x(4− (1 + y)2)]t ;

� = 10−4
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Table 10
Tangential advection. 'opt and number of iterations

� D/N D/N D/N D/D D/D
1= 0 1= 0:1 1= 0:2 1= 0:1 1= 0:2

'opt No. 'opt No. 'opt No. 'opt No. 'opt No.

101 0.50 5 0.79 18 0.89 14 1.24 20 1.08 12
100 0.50 6 0.79 18 0.89 14 1.24 20 1.07 12
10−1 0.49 10 0.80 18 0.91 13 1.21 19 1.06 11
10−2 0.47 10 0.99 10 1.00 6 1.01 9 1.00 6
10−3 0.48 8 1.00 6 1.00 4 1.00 6 1.00 4
10−4 0.47 8 1.00 7 1.00 4 1.00 6 1.00 4
10−5 0.47 7 1.00 7 1.00 4 1.00 7 1.00 4

Fig. 7. (Left) Computational domain and boundary conditions. (Right) Solution for � = 10−2.

and the Dirichlet boundary conditions for u are

u=

{
1 at y =−1; 0¡x¡ 0:5;

0 elsewhere:

See Fig. 7(left) for a sketch of the problem. We present here the results obtained on three meshes
composed of constant element length h such that h = 1=10 for the coarse mesh, h = 1=20 for the
medium mesh and h = 1=40 for the >ne mesh. Fig. 7(right) shows the solution obtained on the
medium mesh for �= 10−2.
In this example, we want to compare the results of the overlapping and disjoint D/R method

without trying to adjust the relaxation parameter. For the disjoint versions, we take ' = 0:5 and
for the overlapping versions we take ' = 1:0. We consider symmetrical horizontal and vertical
partitionings, with an overlap of 1=0:4 for the overlapping partitions. As di+erent results have been
found (in the disjoint version) depending on where the Dirichlet and Robin interfaces are imposed,
the Dirichlet/Robin method is referred to as D/R method when the Dirichlet condition is imposed on
the top and left subdomain interfaces in the case of horizontal and vertical partitionings, respectively.
On the contrary, the Dirichlet/Robin method is referred to as R/D method.
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Table 11
Number of iterations. Coarse mesh: h= 1=10

� Disjoint Overlapping

D/R R/D D/R R/D

Horiz. Verti. Horiz. Verti. Horiz. Verti. Horiz. Verti.

101 6 7 6 7 23 23 23 23
100 10 10 10 10 23 22 23 23
10−1 16 18 16 18 13 15 12 15
10−2 23 16 17 16 8 6 8 6
10−3 40 16 21 16 9 9 9 9
10−4 46 18 22 17 9 10 9 10
10−5 47 18 22 18 9 10 9 10

Table 12
Number of iterations. Medium mesh: h= 1=20

� Disjoint Overlapping

D/R R/D D/R R/D

Horiz. Verti. Horiz. Verti. Horiz. Verti. Horiz. Verti.

101 6 7 6 7 24 23 24 23
100 10 10 10 10 23 23 23 23
10−1 17 18 17 18 11 14 12 14
10−2 15 17 14 17 5 5 5 5
10−3 23 16 17 16 6 5 6 5
10−4 26 16 18 16 6 7 6 7
10−5 27 17 18 17 6 7 6 7

Tables 11–13 give the numbers of iterations needed to achieve convergence for all the methods.
We notice that in the di+usion range, the disjoint versions converge better than the overlap versions.
The tendency is inverted as soon as the advection compensates and overcomes the di+usion, i.e.,
when �6 10−1. In addition, the overlapping version shows much less sensitivity to the positioning
of the interface when the mesh is coarse. In all cases, the number of iterations is bounded as the
di+usion decreases.

5.4. Rotating advection

We consider once more the exact linear solution u(x; y) = x + 5y of the >rst test case, but this
time using a rotating advection >eld centered at (0:6; 0:6) and given by

a = [− y + 0:6; x − 0:6]t ;
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Table 13
Number of iterations. Fine mesh: h= 1=40

� Disjoint Overlapping

D/R R/D D/R R/D

Horiz. Verti. Horiz. Verti. Horiz. Verti. Horiz. Verti.

101 6 7 7 7 24 23 24 23
100 10 10 10 10 23 23 23 23
10−1 17 19 17 19 11 14 12 14
10−2 16 18 12 18 4 6 4 6
10−3 16 16 14 16 4 3 4 3
10−4 18 16 15 16 4 5 4 5
10−5 18 17 15 17 4 5 4 5

Fig. 8. Computational domain and boundary conditions.

which leads us to choose the force term f= 5x− y (see geometry in Fig. 8). We have chosen this
case because of its complicated local behavior. Around the center of the rotating advection >eld,
di+usion dominates. In addition, the interfaces considered are both inKow and outKow. The results
presented here have been obtained on a 20 × 20 element mesh, and the interfaces are the same as
that of the >rst test case.

Table 14 shows the number of iterations needed to achieve convergence for the optimum relaxation
parameter.

In this example, we have observed notable di+erences in the results depending on which interfaces
the Robin and Dirichlet conditions are imposed; we denote them D/R when the left subdomain is
assigned a Dirichlet condition and R/D when it is assigned a Robin condition. We observe that
for the disjoint and overlapping versions with 1 = 0:2 the number of iterations blows up when �
decreases. However, the overlapping decreases this >gure by approximately one order of magnitude.
In addition, we have considered the case of 1=0:4. The compared results are shown in Fig. 9(left)
and (right). They con>rm the improvement in convergence when using overlapping.
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Table 14
'opt and number of iterations

� D/R 1= 0 R/D 1= 0 D/R 1= 0:2 R/D 1= 0:2

'opt No. 'opt No. 'opt No. 'opt No.

101 0.50 5 0.50 5 0.87 14 0.87 14
100 0.50 8 0.50 8 0.87 14 0.87 14
10−1 0.50 14 0.50 13 0.88 14 0.88 14
10−2 0.49 40 0.50 34 0.97 11 1.07 13
10−3 0.46 243 0.48 200 1.43 37 1.54 49
10−4 0.47 1864! 0.49 1493! 1.85 221 1.87 242
10−5 0.47 8460! 0.51 6257! 1.94 753 1.95 816
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As in the >rst test case, we now introduce a perturbation (an error peak) on the interfaces. The
diJculty of solving this case relies in the fact that, for small di+usion coeJcients, the error is
advected around and around, Kowing along the streamlines. If the error is introduced near the center
of the vortex, it can remain for a long time within the domain before being di+used and absorbed by
the boundary conditions. We consider here the case �=10−4. As an illustration, we have also solved
the unpreconditioned Richardson procedure for the interface unknowns, using disjoint subdomains.
The error magnitude is 0.5 (normalized by the maximum value, i.e., 6). Fig. 10 shows the error
obtained after 1000 and 4000 iterations, using '=0:50. After 1000 iterations, we still recognize the
error peak introduced at point (0:5; 0:5); we also note that the error has been totally advected around.
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Fig. 12. Error. Disjoint D/R.

After 4000 iterations, the error has been di+used inside and outside the advection circle. Let us now
go back to the analysis of the disjoint and overlapping (1 = 0:2) D/R methods. In the case of the
disjoint D/R method, we introduce the error at point (0:5; 0:5), while for the overlapping version, we
introduce the error at point (0:6; 0:5). Fig. 11 compares the convergence histories of both versions,
using '= 0:5 and 1.0, respectively. We observe that the convergence of the disjoint D/R method is
far from monotone.

Fig. 12 represents the error with respect to the exact solution and normalized by the maximum
exact solution at iterations 1, 6, 11, 16, 21, 26, 31 and 36. These iterations are labeled in Fig.
11. We notice that after few iterations the error of the disjoint D/R exhibits more or less the same
error pro>le as the unpreconditioned Richardson procedure, although the error is di+used much more
rapidly (in terms of iterations). However, after having decreased one order of magnitude, the error
bounces up, before decreasing once again, and so on, until convergence. This phenomenon can be
clearly identi>ed in the convergence history of the method. The error pro>les of the overlapping
versions at iterations 1, 6, 11, 16, 21, 26, 31 and 36 are shown in Fig. 13. They con>rm the
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improvements achieved by the overlapping method. We conclude that the overlapping can be useful
when a vortex passes near the interface.

6. Conclusions

In this paper we have presented an overlapping Dirichlet/Robin method to solve advection–di+usion
problems which intends to inherit the robustness properties of the classical Schwarz method, but
allowing the limit case of zero (or extremely small) overlapping.

From the analytical point of view, we have extended the analysis of the disjoint Dirichlet/Robin
method to the case of overlapping subdomains, showing that the problem is well de>ned (equivalent
to the original one) and proving convergence for the associated iteration-by-subdomain scheme. The
key ingredient is the introduction of Steklov–PoincarLe-like operators which map a trace space onto
the dual of another trace space.

From the numerical point of view and using the DD method in conjunction with a stabilized
>nite element method, we have observed that the overlapping version is certainly more robust than
the disjoint one, leading to smaller number of iterations to achieve convergence and damping out
errors faster. In the examples presented, no reaction term were present. However, we have observed
and shown for simple cases [13] that the presence of a reaction like term (coming from a time
integration scheme for example) improves considerably the convergence. In fact, the DD algorithm
developed along this work is presently used by the authors to solve the Navier-Stokes equations in
domains involving moving objects, and the algorithm has proved to be robust in laminar as well as
in turbulent simulations. These simulations use a Chimera method based on Dirichlet/Robin coupling
[14].
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