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Abstract

This work is devoted to the description of an algorithm for au-

tomatic quadrilateral mesh generation. The technique is based on

a recursive decomposition of the domain into quadrilateral elements.

This automatically generates meshes composed entirely by quadrilat-

erals over complex geometries (there is not need for a previous step

where triangles are generated). A background mesh with the desired

element sizes allows to obtain the preferred sizes anywhere in the do-

main. The �nal mesh can be viewed as the optimal one given the ob-

jective function de�ned. The recursive algorithm induces an eÆcient

data structure which optimizes the computer cost. Several examples

are presented to show the eÆciency of this algorithm.
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1 Introduction

In the past decades, computational methods aiming an accurate approxima-

tion to the solution of partial di�erential equations have received considerable

attention. In particular, the �nite element method has steadily increased its

range of applicability and its computational eÆciency. However, it is ham-

pered by the need to generate a discretization adapted to a general geometry

and to the desired distribution of element sizes. In fact, the preparation of

accurate data is usually, in real applications, the largest portion of the overall

cost of the analysis. Consequently, a large number of automatic mesh gen-

eration techniques have been devised to overcome these problems. Most of

these e�orts, and also most of the important achievements, concern unstruc-

tured triangular mesh generators,1{4 while the inherent diÆculties associated

to unstructured quadrilateral mesh generators have precluded, until very re-

cently, general eÆcient methodologies.5{12 Nevertheless, the use of mixed

formulations in incompressible uid and solid mechanics where quadrilateral

elements are preferred by several authors, have increased the general interest

in unstructured quadrilateral discretizations.

EÆcient automated meshing techniques are expected to have certain fea-

tures in order to insure its applicability in a wide scope of cases, which

can range from regular domains with uniform element sizes to non singly

connected domains with large boundary curvatures and nonuniform element

sizes. Haber et al.13 present an excellent discussion of such features: precise

modelling of the boundaries, good correlation between the interior mesh and

the information prescribed at the boundary, minimal input e�ort, broad range

of applicability, general topology, automatic topology generation, and favor-

able element shapes. Some of these features can be easily implemented; for

instance, B�ezier or B-splines interpolation curves allow a precise modelling

of the boundaries. Others, such as minimal input e�ort and broad range of

applicability are much more diÆcult to obtain. Therefore, all the developed

techniques for mesh generation should include most of the previous features

and this is the goal of the proposed algorithm.

However, from a practical point of view, the basic task of a mesher is

to generate the nodal coordinates and the element connectivity. Ho-Le14

classi�es the mesh generation techniques according to the sequence used by

the algorithm: topology �rst and then nodal coordinates, nodal coordinates

previous to the element connectivity or both at the same time.

The unstructured quadrilateral mesh generator presented here is one of
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the latter. It is based in the original algorithm proposed by Sluiter and

Hansen5 and further developed by Talbert and Parkinson.7 It automatically

generates meshes composed by quadrilaterals over complex geometries. The

algorithm proposed here di�ers from7 in several crucial points. Now the user-

de�ned element size can be speci�ed anywhere in the domain. This point is

crucial in adaptive techniques based on error estimation,15,16 where the mesh

size distribution is decided by the estimated error everywhere in the domain.

Moreover, the technique proposed here is organized, for computational eÆ-

ciently, in three phases. The �rst one determination of the best splitting line

is based in an improved optimality function. The second one node placement

is the one associated with the desired element size. The �nal step, which is

usual in mesh generators, is charged of mesh quality enhancement.

Previous to the domain discretization, the boundary nodes are de�ned

using any interpolation technique. Then, the mesh generation process starts:

the initial domain is partitioned by a splitting line that connects two bound-

ary nodes. The splitting line is chosen minimizing an objective function.

Second, the nodes are positioned along the splitting line with the desired

spacing. Two new subdomains are now considered and the splitting process

is repeated recursively up to the desired element size. Finally, a continuous

rezoning method is developed to obtain a non distorted mesh.

The outline of the remainder of the paper is as follows. In Section 2 a

brief classi�cation of the mesh generation algorithms is presented. Then,

basic concepts on background meshes and boundary processing information

are reviewed. In Section 3 the two basic phases of the new mesh generator

algorithm are developed: determination of the best splitting line and node

placement. In Section 4 the mesh quality enhancement procedures are pre-

sented. Section 5 is devoted to the analysis of the computational cost of the

developed algorithm. Finally, in Section 6, we present and discuss several

examples.

2 Basic considerations/input data

2.1 Classi�cation of mesh generation methods

Several authors14,17 have presented classi�cations of mesh generation meth-

ods. Apart from the manual or semi-automatic generation techniques which

are left for simple cases or academic studies, three main categories are de-
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vised. First, the methods based on adaptation of mesh templates are

de�ned. The simplest of such techniques is the Grid-Based Approach

which consists on superposition of a grid template over the domain, the cells

that fall outside the domain are discarded and those which intersect the

contour of the object are readapted to �t into the domain of analysis.2,18

This induces a regular discretization in the interior of the domain but an

extremely poor one along the boundaries, and it is not always possible to

keep the o�set elements as quadrilaterals.2 Instead of a regular template a

grid based on a quadtree construction (in 2D and octree in 3D) can be used,

it is the Quadtree-Octree Method.17 These meshes which are usually

of good quality far away from the boundaries are generally very poor in their

vicinity.

Second, the generalized mappings methods are based, for general

objects, in a previous subdivision of the general domain into simpler re-

gions; then, adequate mappings are used to discretise each subdomain. The

Transport-Mapping Methods discussed in detail in Haber et al.,13 are

probably the most popular techniques of this category. In this case, the gen-

eral object is �rst subdivided in simpler domains with usually three or four

sides and then the mappings referred to prede�ned templates. One of the �rst

of such techniques was itself based on the �nite element interpolation func-

tions, the isoparametric mapping method .19 Then trans�nite mappings or

discrete trans�nite mappings where developed13,20 to generalize the interpo-

lations, to better describe the boundaries (curves and surfaces are described

exactly), and to prescribe speci�c constraint curves where the mesh lines

must pass. Although, these later developments allow for subdomains having

more than four sides and even with non simply-connected regions, the ini-

tial partition of the original object reduces the advantages of these methods.

This drawback is also present in the Conformal Mapping Methods21

which could be viewed as a generalization of the original transport-mapping

methods. In fact, they can deal with simply-connected regions with more

than four sides. However, they su�er from the fact that element shape and

mesh density are diÆcult to control.

Other generalized mapping methods are the Partial Differential

Equations Methods.22{24 Due to their importance and extended use,

they usually are in a category by themselves. However, they also rely on a

mapping, although in this case the mapping is not de�ned explicitly but it is

computed by solving a predetermined system of partial di�erential equations.

The Laplacian mesh generation is probably the better known technique in
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this case. In fact, these techniques are widely used in �nite di�erences be-

cause they induce structured meshes. However, one of the main advantages

of �nite elements is the possibility of employing unstructured meshes.

Finally, the geometric decomposition methods have become the most

representative and used. Delaunay Triangulations,4,25{28 among others,

are, due to their mathematical basis, robust and eÆcient in two and three-

dimensional simplex generation. However, they cannot be generalized for

quadrilaterals or hexahedral elements. Moreover, stretching of elements is

non trivial. This is not the case of Advancing Front Methods.3,9,10,29{31

These methods are among the most widely used. Finally, methods based on

Recursive Decomposition of the domain have been used for triangular

elements11 and quadrilaterals.7

The technique developed here is based on the later family of methods.

2.2 Background mesh

The user-de�ned element size can be speci�ed either (i) at the boundary,7

the node spacing and therefore the element size inside the domain are deter-

mined by the boundary values through interpolation, or (ii) at the nodes of a

background mesh,3,10 the element size is determined anywhere in the domain

through linear interpolation inside the corresponding triangle. Other possi-

bilities do exist, see for instance.31 While the former is much more eÆcient

from a computational point of view (extensive search algorithm are avoided),

the latter allows an accurate distribution of the desired mesh size. As usual,

the requirements for the background mesh are very relaxed. It must cover

completely the domain to be discretized but must not describe the geometry

accurately. The quadrilateral mesh generator proposed here can work with

either approach to prescribe the user-de�ned element size.

2.3 Boundary processing/information

In order to minimize the input e�ort, the boundary of the domain is de�ned

by some base points which de�ne any user preferred interpolation technique.

Usually, B�ezier or B-splines are employed. Once the parametrization of the

contour is de�ned, the nodes along the boundary are generated according to

the prescribed element density. Note that the total number of nodes must be

even to ensure that a quadrilateral tessellation is possible (this requirement

also applies to any subdomain boundary that will be generated during the
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splitting process). Multiconnected domains are easily transformed in singly

connected ones by making the necessary cuts. These cuts, or return segments,

consist of two superposed contour segments along which the generated nodes

coincide. When the meshing process is completed, these return segments are

erased and the twin nodes which might have appeared are disregarded. This

procedure is standard, see for instance.10

3 The quadrilateral mesh generator

3.1 Determination of the best splitting line

As previously mentioned, the mesh generator is based on a recursive de-

composition of the domain, until only quadrilaterals are left. After the ini-

tial boundary is processed, it is transformed into a simple closed polygonal

line. The possible splitting lines must have their endpoints over two non-

consecutive nodes of this polygon. Once the optimal line has been chosen,

its corresponding new nodes are generated (in the node placement phase);

this leads to two new singly closed polygonal lines, where the recursivity of

the algorithm is exploited.

The splitting line cannot be arbitrary, moreover, the optimal one should

be chosen. In order to �nd the best splitting line an objective function (cost

function) is de�ned. In fact, the search for the optimal line is a discrete min-

imization problem with constrains because all the lines are not acceptable.

The total number of possible lines between two non-consecutive vertexes

of an n-vertex polygon is (n2 � 3n� 2)=2, not all these lines are acceptable.

First, lines joining two aligned vertexes along one contour segment must be

disregarded. Second, lines that may, entirely or in part, run outside the

boundary in non-convex domains must also be eliminated, see Figure 1. In7

an algorithm for node visibility is proposed, but others are also possible.

The de�nition of objective function is a basic point to ensure proper re-

sults. It is evaluated a large number of times. Thus, the objective function

must be simple to evaluate and include the necessary criteria for mesh opti-

mality. It is de�ned as a linear combination of �ve indicators that quantify

geometrical criteria, namely

Objective Function = c1�+ c2� + c3"+ c4`+ c5� (1)

where ci, i = 1 : : : 5, are used as weighting values. Equation (1) is evaluated

for each acceptable splitting line. The best one, which will decompose the
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Figure 1: Line r is not acceptable because it runs outside the domain, line s

is acceptable.

domain into two polygons, is the one that minimizes (1). The geometrical

criteria are presented next.

Figure 2: Angles formed by a candidate splitting line.

1. Splitting angles. This criterion favors splitting lines that coincide with

bisecting lines. Each candidate splitting line between nodes Pi and Pj forms

four angles, as it is shown in Figure 2. The basic goal is to choose a splitting

line as close to the bisecting line as possible and to penalize splitting lines

bisecting contours with angles less than �=2. To this end, the splitting angle

criterion is de�ned as
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� =

8>>><
>>>:

1 if (�1 + �2 < �=2) and (�3 + �4 < �=2)

�(�1; �2) if (�=2 � �1 + �2 � 2�=3) or

(�=2 � �3 + �4 � 2�=3)

 (�1 + �2; �3 + �4) if (�1 + �2 > 2�=3) and (�2 > 2�=3)

(2)

where �1, �2, �3 and �4 are the angles between the splitting line and the

subdomain boundary, see Figure 2,  (�1 + �2; �3 + �4) is a function that

tends to select splitting lines close to the bisecting line:

 (�1 + �2; �3 + �4) =
j�1 � �2j+ j�3 � �4j

(�1 + �2) + (�3 + �4)
(3)

and �(�1; �2) is a function that allows a smooth transition between the ex-

treme values. It is de�ned as

�(�1; �2) = (1� �1�2) + �1�2 (�1 + �2; �3 + �4) (4)

where

�1 =

(
(�1+�2)�2�=3

�=6
if �=2 � �1 + �2 � 2�=3

1 otherwise

and

�2 =

(
(�3+�4)�2�=3

�=6
if �=2 � �3 + �4 � 2�=3

1 otherwise

It should be noted that 0 � � � 1. Moreover, for rectangular subdomains

with a prescribed constant element size, � will be zero when both bisecting

lines coincide with the splitting line.

2. Structuring index. This criterion try to construct structured meshes

if possible. The algorithm considers every created subdomain independently

from its neighbors. Nevertheless, the goal of the algorithm is to obtain el-

ements with a distortion that is as small as possible. Therefore, it seems

reasonable to have a measure of the desirable number of elements to which

every node belongs. This is called local structuring. This may be evaluated

by assigning a score that measures the structure at each endpoint of the

candidate splitting line. Then, the estimator of the local structuring for a

splitting line between points Pi and Pj is found by averaging the scores at

each endpoint, leading to

� =
�i + �j

200
(5)
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For inner nodes in a quadrilateral mesh, it seems reasonable that the optimal

number of common elements should be four. Then, the mesh will be as

structured as possible and the four formed angles will tend to �=2. When

this number is four at one node i the mesh is called locally structured at

node i. Table 1 shows the assigned scores for inner nodes. Note that for

locally structured nodes a minimum score is assigned.

The score assigned to a node i on the boundary depends on the angle

�i de�ned by the adjacent segments xi�1xi and xixi+1, where xi�1, xi, xi+1

are the coordinates of nodes i � 1, i and i + 1 respectively. Two cases are

considered: (i) initial boundary and (ii) subdomain boundary. As shown

in Table 1, the main idea is to penalize a splitting line departing from (or

reaching) a node on the subdomain boundary with �i � 2�=3. It should be

noted that slightly bigger penalization is assigned to nodes on the original

boundary that meet this criterion, see Table 1. This is because mesh quality

enhancement techniques will not be able to improve either their position nor

their connectivity.

INNER NODES

Common Elements �i

3 5.6

4 4.0

5 36.0

6 60.0

Any Other 80.0

NODES ON INITIAL BOUNDARY

�i �i

0 � �i < 2�=3 100.0

2�=3 � �i � 2� 0.0

NODES ON SUBDOMAIN BOUNDARY

�i �i

0 � �i < 2�=3 80.0

2�=3 � �i � 2� 0.0

Table 1: Local structuring index values.
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3. Node placement error. This criterion allows to choose the best splitting

line in limit cases. On every splitting line, new nodes are generated according

to an interpolation between its end nodes or values de�ned on a background

mesh. However, it is not always possible to �nd an integer number of new

nodes which �ts the prescribed density, and the actual chosen position will

introduce an error that should be quanti�ed. To this end, we �rst compute

the \theoretical" number of element sides to be generated along the splitting

line, n�e. Then, we approximate it by an positive integer number (at least one

element per splitting line), n. This integer number must also meet the parity

requirement in order to generate two subdomains with an even number of

element sides. Then, the node placement parameter is de�ned as

" = jn
�

e � nj; (6)

where 0 � " � 1. Note that for practical purposes this di�erence is only sig-

ni�cant when splitting lines partitioned in few element sides are considered.

Therefore, parameter (6) is only taken into account when subdomains de-

�ned by six nodes, i.e. small subdomains, are treated and, is not considered

for a general subdomain (its weight is set to zero in this case).

4. Splitting line length. A splitting line must join two points which are

as close as possible. The reason is that information on mesh density may sit

on its endpoints. A line which is too long may have some of its intermediate

points near a zone with a very di�erent assigned density, leading to a great

inconsistency of the results. This is the case shown in Figure 3. A non-

dimensional estimation ` of the splitting line length between two nodes Pi and

Pj can be obtained by dividing its natural length by the domain characteristic

length de�ned as, see Figure 4,

lchar =
q
(xmax � xmin)2 + (ymax � ymin)2: (7)

Hence

` =
lij

lchar
: (8)

and, as usual, 0 � ` � 1.

5. Symmetry. When the domain presents clear symmetries, the �nal mesh

should maintain these symmetries. Unfortunately, unstructured mesh gener-

ators do not usually create symmetric grids. An estimation of the symmetry

is used in the developed algorithm. It uses the di�erence between the areas of
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Figure 3: Inuence of the splitting line length in the results. In the case at

right, the center of the domain will not be meshed with the proper density.

Figure 4: De�nition of the characteristic length of a given domain.

the subdomains de�ned by every splitting line. Obviously, this is a very sim-

ple measure of the domain symmetry and it has no e�ect in non-symmetrical

domains. However, it has proved to be really useful for a simple cases or sym-

metrical domains (especially those with parallel sides). The non-dimensional

estimator that has been used is

� =
ja2 � a1j

a2 + a1
; (9)

where a1 and a2 are the respective areas closed by each subdomain de�ned

by the candidate splitting line. In fact, parameter (9) measures the areas in

both sides of a splitting line. However, a line which divides the domain in two

parts with both areas as similar as possible, seems to be the best option, even

in non-symmetrical domains. Note that some ags can be added in order to

check that to domains with the same area are symmetrical. However, in

order to increase the computational eÆciency of the algorithm they are not

added.
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Based on numerical experiments over a wide range of problems, the best

set of weighting values are:

c1 = 0:52; c2 = 0:17; c3 = 0:00; c4 = 0:17; c5 = 0:14

Note that the cost function de�nition (1) is a generalization the one devel-

oped by Talbert and Parkinson,.7 However in (1) two new criteria are added

(structuring index and symmetry criteria) and the remaining criteria have a

di�erent de�nition (splitting angle, node placement error and splitting line

length). For instance, in the new splitting angle criterion, the splitting line

tend toward the bisecting line instead to the normal line. An absolute error

instead a relative error is used to measure the node placement. Moreover, in

each subdomain a characteristic length, instead the maximum length, is used

to normalize (7) in the present algorithm to speed up the meshing process.

Finally, it must be remarked that the weighting coeÆcient are normalized.

3.2 Six nodes closure

The recursive splitting algorithm previously introduced �nishes when a do-

main containing only four nodes (an element) is found. However, a six-node

subdomain appears in a variety of �nal con�gurations during the partition

process. The manner in which these domains are transformed into quadrilat-

erals is important for the �nal mesh quality. Although Talber and Parkinson7

have used a template based method to split up the six-nodes subdomains, in

the present algorithm the same objective function, see equation (1), has been

used. Nevertheless, two modi�cations are introduced. First, the splitting an-

gle criterion has been modi�ed in order to enforce �=2 angles. Obviously, in

most cases this will not be possible at all. The measure of the deviation of

the actual angle from �=2 can be computed as

� =

4X
k=1

����j�kj � �

2

����
2�

: (10)

Second, two loops, with di�erent weighting values in the cost function are

used to transform these hexagons into quadrilateral elements. In general, the

size of this subdomains is small. Therefore, neither the splitting line length

nor the symmetry criterion are very relevant. The weighting values for each

loop are:
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First loop c1 = 0:56; c2 = 0:33; c3 = 0:11; c4 = 0:00; c5 = 0:00

Second loop c1 = 0:60; c2 = 0:25; c3 = 0:15; c4 = 0:00; c5 = 0:00

These values have been deduced empirically in order to obtain high quality

meshes.

3.3 Node placement

The developed node placement algorithm is based on a �xed reference system

over which the nodes are previously generated following an arbitrary distribu-

tion (for instance, equidistributed nodes). Then, through a transformation,

nodes are relocated along the splitting line according to the prescribed ele-

ment sizes.

Let � 2 [�0; �n ] be a �xed reference and let �i with i = 0; : : : n; be the

n+ 1 points distributed along the segment [�0; �n ]. The goal of the present

algorithm is to compute the new position of the points xi = x(�i) i = 0; : : : n

along the segment [ x0; xn ], where x0 � x(�0) and xn � x(�n), in such a way

that the new coordinates x have a di�erent distribution, see Figure 5.a.

(a) (b)

Figure 5: Relocation of �i points along the splitting line. (a) General case

(b) De�nition of the function �(x) as two constants.

The nodal position, x(�), is de�ned implicitly as

Z x(�)

x0

�(�) d�Z xn

x0

�(�) d�
=

�� �0

�n � �0
; (11)
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where �(x) is a function de�ned over [ x0; xn ]. Note that if �(x) = K, being

K an arbitrary constant, then

x(�)� x0

xn � x0
=

�� �0

�n � �0
=) x(�) =

xn � x0

�n � �0
(�� �0) + x0:

and nodes will be relocated proportionally to the �xed reference distribution.

On the other hand, if �(x) is de�ned as

�(x) =

(
K1 if �0 � � � �b

K2 if �b < � � �n

beingK1 > K2, see �gure 5.b, then the distance between nodes in the interval

[x0; xb] will be smaller than the distance between nodes in the interval [xb; xn].

Therefore, high values of K tend to reduce the distance between nodes along

the splitting line. In fact, �(x) can be understood as the inverse of the

prescribed element side size, h(x):

�(x) =
1

h(x)
: (12)

Thus, the theoretical number of element sides along a splitting line is

n
�

e =

Z xn

x0

�(�) d� =

Z xn

x0

1

h(�)
d�: (13)

Finally, the position of node xk = x(�k) can be computed from equations

(11) and (12) as Z xk

x0

d�

h(�)
=

k

n

Z xn

x0

d�

h(�)
:

Therefore, the new position of any node can be computed recurrently as

Z xk+1

xk

d�

h(�)
=
k + 1

n

Z xn

x0

d�

h(�)
�

k

n

Z xn

x0

d�

h(�)
=
n
�

e

n
; (14)

where n is the real number of element sides to be generated along the splitting

line. Notice that n is not arbitrary. First, it must be an integer number.

Second, it must verify the parity condition introduced in section 2. In the

appendix, equation (14) is developed and an explicit and analytic expression

to recurrently compute the node position is obtained for two dimensional

problems.
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Figure 6 shows the splitting line election and the node placement phases.

The domain was proposed by9 and it consists of two squares centered at

the same point, with sides in a ratio of 0.4 and rotated 90Æ. Since it is a

multiconnected domain a return segment is used in order to joint the outer

and the inner boundary. In the �rst column, the mesh generation process is

presented when the element size distribution is prescribed at the vertexes of

the two rotated squares. Figure 6.a shows the initial boundaries with nodes

generated on them. Figures 6.b and 6.c show two intermediate states in the

splitting process. Figure 6.d shows the generated grid composed by quadri-

lateral elements. As it can be seen, very distorted elements appear. This

problem will be overcome during the mesh quality enhancement phase. Note

that a symmetric mesh is obtained over a symmetric domain with symmetric

element size distribution. In the second column, the same process is detailed

when the background mesh is used. Note that a non symmetric mesh is

obtained in this case due to the presence of a return segment.

4 Mesh quality enhancement

4.1 Introduction

The recursive splitting algorithm described in the previous section may gen-

erate elements that are very distorted. Therefore, mesh quality enhancement

procedure have to be developed in order to improve the overall mesh quality.

As it is usual in quadrilateral mesh generation algorithms,7{10,12 two types of

procedures are considered. The �rst one, often called make-up techniques,

is focused in the improvement of the mesh topology. The second one, called

mesh smoothing, improve the shape of the elements by modifying the position

of the inner nodes once the topology is �xed.

4.2 Make-up techniques

After the split process is completed, some topological properties are im-

proved. Since one of the goals of the present discretization algorithm is to

generate meshes as structured as possible, it seems reasonable to favorize

four elements per interior node, (NE= 4, being NE the number of elements

per node). However, for unstructured meshes some nodes with NE bigger or

smaller than four will appear. Nevertheless, it is better to enforce NE close
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(d)

(c)

(b)

(a)

(h)

(g)

(f)

(e)

Figure 6: Several steps in the mesh generation process for the two rotated

squares problem.
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to four. Note that this condition also precludes very distorted elements. In

fact, the number of elements that meet one node has already been taken

into account in the selection of the best splitting line (structuring index cri-

terion). Therefore, only two techniques of those developed in others mesh

generators have been introduced in our algorithm: node elimination and ele-

ment elimination (see9,10,12 for details). It should be noted that any make-up

techniques is used if a node on the boundary is concerned.

4.3 Smoothing algorithm

Since make-up techniques only modify the mesh topology, after they are ap-

plied very distorted elements still appear. Then, it is necessary to apply

a smoothing technique to improve the mesh quality. The most commonly

used technique is the so-called Laplacian method,32 which computes the new

nodal position solving the Laplace equation. This technique has an impor-

tant drawback because it is possible that, in non-convex domains, nodes run

outside of it. Techniques to preclude such a pitfall either increase the com-

putational cost enormously or introduce new terms in the formulation that

are particular for each geometry. Giuliani33 developed a new rezoning algo-

rithm based on geometrical criteria. This method modi�es the position of

every node in order to minimize a geometric-oriented average distortion of

elements meeting on it. These modi�cations are done with an explicit itera-

tive procedure. In this case, nodes cannot depart from the domain because

this is an unstable position in terms of distortion and squeeze.

Figure 7: Representation of the set of triangles (shadowed) around node Pi.

h{adaptive techniques15,16 �rst compute a solution on a given coarse
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mesh. Then, a new element size distribution is computed from a local mea-

sure of the estimated error. Therefore, it is crucial in these processes that

the mesh generator preserves the prescribed element size. In this sense, it

is essential that the smoothing algorithm also maintains the size. Giuliani

method gives proven results in a smooth element size distributions for both

2D and 3D problems. However, it yields unsatisfactory meshes when sharp

changes of density appear. This is due to the fact that zones with high den-

sity tend to loose it after several remeshing iterations at advanced stages of

the analysis.

The cause of this problem may be found at its basic rezoning principle,

see33 for details. For each node Pi in a quadrilateral grid, a local measure of

the mesh distortion is de�ned in terms of a set of triangles. These triangles

are obtained by joining all nodes connected to node Pi via the element sides,

see Figure 7. The new position of Pi is found by minimizing the sum of their

distortions. This is iteratively repeated for all the nodes in a Gauss-Seidel

like procedure, until convergence is achieved. In the original method, the

distortion of the triangles is de�ned in order to obtain triangles of similar

sizes. Thus, the �nal mesh will show smooth variations of the element size,

and zones where high element density is prescribed will tend to loose it.

In order to overcome this problem a modi�cation of the distortion of the

triangles is introduced, see34 for details. It tends to preserve the original size

of the triangles, and therefore, the �nal mesh will maintain the prescribed

element size. Examples presented in34 prove that this modi�cation produces

a robust algorithm that generates well shaped elements of the prescribed size.

Figure 8.a shows the �nal mesh of the two rotated squares problem af-

ter the mesh quality enhancement phase has been applied, for the uniform

element size distribution case. Note that a symmetric mesh is obtained and

that the prescribed element size is preserved. Figure 8.b shows the �nal mesh

for a nonuniform element size distribution imposed with a background grid.

A smooth variation in the element size is obtained notwithstanding the re-

markable element size gradient. In both cases very few distorted elements

are generated.

5 Algorithm eÆciency

This section is devoted to the analysis of the computational cost of the de-

veloped meshing algorithm. In this analysis it is assumed that a uniform
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(a) (b)

Figure 8: Final mesh for the two rotated squares example: (a) without

background mesh (b) with background mesh.

nodal density is prescribed. However, numerical examples show that the

derived estimation of the computational cost can also be used with nonuni-

form meshes. The computational cost is de�ned as the number of objective

function evaluation, Eq. (1). It is important to note that the described al-

gorithm is naturally suited for a bin-tree structure of the element data. A

recursive binary structure may be constructed since every domain is split in

a \left" and \right" subdomains, see Figure 9. Hence, the total cost is the

number of evaluations of the objective function in every level of the bin-tree

representation. Note that for each level, the objective function has to be

evaluated in several subdomains in order to �nd the best splitting line for

every subdomain, see Figure 9.

To this end, we �rst compute the cost involved in obtaining the best split-

ting line for a subdomain with Ni nodes on its boundary. If it is assumed that

(1) the cost of each evaluation of the objective function is always constant,

and that (2) the cost of the visibility algorithm is at least equal to the cost of

the lines whose objective function is not evaluated. Therefore, the objective

function is evaluated

(Ni � 1) + (Ni � 2) + : : :+ 1 =
1

2
Ni(Ni � 1): (15)

times in each subdomain with Ni nodes on its boundary.

Second, we evaluate an upper bound of the number of nodes in each
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Figure 9: Bin-tree representation of the proposed algorithm.

subdomain of the ith partition. Given a certain level, i� 1, in the partition

process, letNi�1 be the number of nodes on its boundary. We assume that the

best splitting line generates two new subdomains with Ri Ni�1 and Li Ni�1

nodes each (0 < 
R
i < 1 and 0 < 

R
i < 1). Let N0 be the number of nodes

of the initial boundary and  = maxi=0;:::;i�1f
R
k ; 

L
k g. Then, the upper

bound of the number of nodes in each subdomain of the ith partition can be

approximated by

Ni = 
i
N0 (16)

Third, we evaluate the number of subdomains in a given ith partition. If

it is assumed that all branches in the bin-tree representation always reach

the same level (note that this is equivalent to assume that a uniform nodal

density is prescribed). Then, the total number of subdomains is 2i, see Figure

9.

Now, it is possible to compute the number of times the objective function

is evaluated for the ith partition (the cost in the ith partition). Moreover, it

can be written in terms of the number of nodes on the initial boundary

Ci =
1

2

i
N0

�

i
N0 � 1

�
2i �

1

2
N

2
0 k

i
;

where k = 22.

Since the total cost of the developed algorithm can be evaluated as the

sum of the cost of all partitions (levels in the bin-tree representation), the

number of partitions required to generate the whole mesh has to be deduced.

Starting from an initial boundary with N0 nodes, the domain is recursively

subdivided until quadrilateral elements are left. Let p be the number of
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partitions needed to obtain a quadrilateral element. Taking into account

equation (16), the number of partitions can be approximated by


p
N0 = 4; (17)

From (17) an estimate of the number of partitions can be deduced,

p = a ln(N0) + b (18)

where a and b are two constants independent of N0, a = �1= ln() and

b = ln(4). Note that p = O(ln(N0)).

Finally, the total cost of the developed algorithm can be evaluated as

TC =

pX
i=0

Ci =
1

2
N

2
0

�
1+k2+k3+: : :+kp

�
=

1

2
N

2
0

k
p+1

� 1

k � 1
� N

2
0 k

a ln(N0)+b+1
;

where the relationship (18) has been taken into account. Therefore,

TC = O

�
N

2
0 k

a ln(N0)+b+1
�
= O

�
N

2+a ln(k)
0

�
: (19)

In order to relate in a simple manner the computational cost with the gen-

erated mesh, comparison will be made with the total number of nodes of

the �nal mesh, NT . For simple domains, the �nal mesh has approximately

NT � N
2
0 nodes. This assumption is corroborated in the examples shown

below. Thus, the total computational cost is

TC = O

�
N

1+a

2
ln(k)

T

�
� O

�
N

�
T

�
(20)

Note that, for an initial square domain with a constant element size pre-

scribed distribution,  = 3=4 because the best splitting line is always the

shorter one. Therefore, k = 22 = 9=8, a = �1= ln() = �1= ln(3=4) and

� = 1:2.

A numerical experiment has been carried out in order to �nd the nu-

merical value of � in expression (20). The examples presented in Figures 6

and 8 as well as the four �rst examples presented in next section have been

meshed several times with di�erent element size distributions for each do-

main. In all cases, the minimum value of the total number of elements has

been 5000. Notice that these examples contains all the characteristics that a

general domain could show: simpleconnected and multiconnected domains,

constant and variable element size distributions, as well as the utilization of
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EXAMPLE NT vs N0 CPU vs N0 CPU vs NT

Only examples without background mesh 1.96 2.32 1.15

Only examples with background mesh 1.75 2.27 1.25

All examples 1.74 2.01 1.21

Table 2: Slopes of the linear regressions.

background meshes. For each case, the following linear regression have been

performed:

ln(NT ) = c1 ln(N0) + d1

ln(TC) = c2 ln(N0) + d2

ln(TC) = c3 ln(NT ) + d3;

where the total cost has been approximated by the cpu time spent to gener-

ate the whole mesh. Table (2) shows the obtained values for ci, i = 1; : : : ; 3.

These results corroborate the assumption that NT � N
2
0 . Moreover, when

all cases are considered, the general performance of the algorithm is in con-

cordance with expression (20) with � = 1:2.

6 Examples

In order to assess the quality of the mesh generation algorithm described

above, �ve numerical examples are presented. They illustrate the capabil-

ities of the new meshing algorithm in several environments: 1. constant

element size distribution prescribed on the boundary of the domain, 2. vari-

able element size distribution prescribed on the boundary of the domain,

3. element size distribution prescribed on a background mesh, 4. domain

surrounded by a ragged boundary and 5. application to adaptive techniques

based on error estimation.

In the �rst example, the water around a dock is discretizated. A constant

element size distribution is prescribed on its boundary. Figure 10.a shows

a intermediate state in the meshing process. The �nal mesh, composed by

8291 nodes and 7600 elements, is presented in Figure 10.b. It is important

to note that with a simple input (just the coordinates of the vertexes of the
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contour and the prescribed element size) a complex domain is discretizated

with a structured mesh without any previous partition of the domain.

The second example corresponds to an rail cross section. The element size

distribution is prescribed at its vertexes and a high element concentration

is de�ned in the load zone. Figure 11 shows the �nal mesh. It is composed

by 1541 nodes and 1413 elements. As it can be observed, a structured mesh

is generated where the geometry and prescribed values allow it. Also, a

symmetric mesh is generated in the base of the rail. Moreover, a smooth

transition is obtained between low and high density areas.

The third example is the discretization of a gear. In this case a back-

ground mesh is used to concentrate elements along one direction. The �nal

mesh and the background mesh are shown in Figures 12.a and 12.b respec-

tively. The �nal mesh is composed by 1654 nodes and 1568 elements. As

it can be seen, well shaped elements are generated in this case, even on the

curved part of the boundary. Furthermore, smooth size transition are also

obtained and spurious element concentration does not appear.

In the fourth example the developed algorithm is applied to the discretiza-

tion of a domain de�ned by a ragged boundary. In particular, a mesh for

inner part of the port of Barcelona (Spain) is generated. It is composed

of 29691 nodes and 28537 elements. Figure 13 shows the �nal mesh. The

boundary corresponding to the harbor mouth is de�ned by a circular arc on

the right hand side of the mesh. The breakwater corresponds to the bound-

ary on the top of the mesh, whereas quays on the dry land corresponds to

the left hand side and bottom boundaries.

Due to some boundary details (small docks, sharp corners), di�erent val-

ues of the element size are prescribed. For instance, small elements are used

near small docks whereas bigger elements are used near straight boundaries

or in the harbor mouth. Figure 14 shows the generated mesh around small

docks located between the dry land and the breakwater. As it can be seen,

well shaped elements are obtained and the �nal mesh tends towards a struc-

tured mesh when possible. A detail of the �nal mesh around two small docks

near the harbor mouth is presented in Figure 15. As it can be observed, a

smooth transition between high and low element density areas is obtained.

Moreover, well shaped elements are generated even in nonconvex corners.

The �fth example shows how the developed algorithm can be applied

to adaptive techniques. The error estimator developed in,35,36 is applied to

the adaptive computation of the compression of a plane strain rectangular

specimen with two imperfections (circular openings inside the material).37
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The mesh generator algorithm is included in the adaptive process as follows.

Given an initial quadrilateral mesh, the �nite element solution and error

estimation are computed on it. From this error estimation, a desired element

size is evaluated at the nodes. Then, the initial mesh is transformed in a

triangular mesh by connecting two opposed nodes of each element. Finally,

this new mesh together with the evaluated new element size are used as

background mesh to generate a new one. This process is repeated until

the prescribed accuracy is reached, see.37 Figure 16 shows a succession of

generated meshes. It is worth noting that, as the adaptive process evolves

the elements concentrates in two bands according to the error estimation.

Note that regular and well shaped elements are generated even in a small

region where a high gradient of the element size is prescribed.

7 Conclusions

In this paper a new automatic and eÆcient two-dimensional unstructured

quadrilateral element mesh generator is presented. The user interaction has

been reduced to the speci�cation of the boundary geometry and the desired

element size at some base point on the boundary or at the nodes of a back-

ground mesh. The technique is based on a recursive splitting of the domain

until only quadrilateral elements of the desired size are left. Moreover, the

algorithm is decomposed, for computational eÆciency, in three phases: (1 )

determination of the best splitting line (where new criteria have been devel-

oped in order to de�ne the objective function), (2 ) node placement (where a

new algorithm has been deduced), and (3 ) mesh quality enhancement (where

a modi�cation of the smoothing method developed by Giuliani has been pre-

sented). The �nal mesh can be interpreted as the mesh that optimizes the

given objective function. The recursive algorithm induces an eÆcient bin-tree

structure which has been used to prove that the cost of the new algorithm

is O(N1:2
T ). A wide range of numerical experiments have veri�ed this result.

Finally, several examples have been presented to show the new algorithm

capabilities.
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Appendix

Our goal here is, �rst generalize equation (14) for the two-dimensional prob-

lem, and second, develop an explicit and analytic expression to recurrently

compute the node position. To this end, consider a segment de�ned by the

end points [P0; Pn ] (a candidate to splitting line). Along [P0; Pn ] nodes Pk,

k = 1; 2; : : : ; n � 1 must be placed with the desired distance, i.e. the re-

quested element size. The distance between two consecutive nodes is given

by a background mesh of triangles. If two consecutive nodes Pk and Pk+1 lie

inside one triangle, the following equation is veri�ed

Z Pk+1

Pk

d�

h(�)
=
n
�

e

n
: (21)

where n�e is given by equation (13), namely

n
�

e =

Z Pn

P0

�(�) d� =

Z Pn

P0

1

h(�)
d�: (22)

Since [Pk; Pk+1] lies inside a triangle, the element size along this segment is

linear,3,7 that is,

�(�) =
1

h(�)
=

1

a� + b
; (23)

where a and b are two constants. These constants are computed from the

values of the element size ĥi and ĥj at the intersection of the line de�ned

by Pk and Pk+1 and the background triangle. Let's denote by P̂i and P̂j the

points where the line PkPk+1 intersects its corresponding triangle, and by �̂i
and �̂j the values of parameter � assigned to points P̂i and P̂j. Then,

a =
ĥj � ĥi

�̂j � �̂i

b = ĥi � �̂i

h ĥj � ĥi

�̂j � �̂i

i

Note that function h(�) is always positive because it is the element size.

Therefore, equation (23) can be used to compute the integral that appears

in the left hand side of expression (21). On an arbitrary element side de�ned
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by Pk and Pk+1 that lies on a segment limited by the end points P̂j and P̂j+1

the following equality applies

Z Pk+1

Pk

d�

h(�)
=

d(P̂j; P̂j+1)

ĥj+1 � ĥj

ln
�hk+1

hk

�
:

where d(�; �) denotes the distance between two points. Replacing the previous

result in equation (21)

hk+1 � hk = hk

(
exp

h n�e
n

ĥj+1 � ĥj

d(P̂j; P̂j+1)

i
� 1

)
: (24)

Finally, since a linear interpolation has been used between the prescribed

values at points P̂j and P̂j+1, we get

ĥj+1 � ĥj

d(P̂j; P̂j+1)
=

hk+1 � hk

d(Pk; Pk+1)
;

which can be replaced in equation (24)

d(Pk+1; Pk) =
d(P̂j; P̂j+1)

ĥj+1 � ĥj

hk

(
exp

h n�e
n

ĥj+1 � ĥj

d(P̂j; P̂j+1)

i
� 1

)
: (25)

Equation (25) is the keystone in the node placement algorithm. It allows

to compute the position of the nodes along the splitting line in a recurrent

manner when a background mesh is used. Note that, if not background mesh

is used, expression (25) is still valid. In this case, the prescribed values are

de�ned at the splitting line end points. Note that equation (25) has been

deduced assuming that nodes Pk and Pk+1 lie in the same triangle. If they

lie in di�erent triangles, segment [Pk; Pk+1] is partitioned in two parts, and

the same expression applies.

In equation (25), the theoretical number of elements sides to be generated

along the splitting line, n�e, must be evaluated. According to (23), between

two consecutive intersections of the splitting line with the background mesh,

P̂i and P̂j, the following equation is veri�ed

Z P̂j

P̂i

d�

h(�)
=

1

a
ln(a � + b)

�����
�̂j

�̂i

=
�̂j � �̂i

ĥj � ĥi

ln
� ĥj
ĥi

�
: (26)
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Using the previous equation, it is possible to �nd an analytic expression for

the theoretical number of elements sides to be generated along the segment

de�ned by the end points [P0; Pn ]:

n
�

e =

Z Pn

P0

d�

h(�)
=

Z P̂1

P0

d�

h(�)
+

m�1X
i=1

Z P̂i+1

P̂i

d�

h(�)
+

Z Pn

P̂m

d�

h(�)
(27)

=
d̂(P0; P1)

ĥ1 � h0

ln
� ĥ1
h0

�
+

m�1X
i=1

d(P̂i; P̂i+1)

ĥi+1 � ĥi

ln
� ĥi+1

ĥi

�
+
d(P̂m; Pn)

hn � ĥm

ln
� hn
ĥm

�

where P̂1; : : : P̂m denotes the intersection points between the splitting line

[P0; Pn ] and the background mesh.
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(a)

(b)

Figure 10: Discretization of a dock. (a) intermediate state in the meshing

process, (b) �nal mesh
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Figure 11: Discretization of a rail cross section.
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(a)

(b)

Figure 12: Discretization of a gear. (a) generated mesh (b) background

mesh

Figure 13: Discretization of the port of Barcelona.
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Figure 14: Detail of a part of the outer dock of the port of Barcelona.
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Figure 15: Detail of a part of the inner dock of the port of Barcelona.
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(a) (b) (c) (d)

Figure 16: Application of the mesh generation algorithm to adaptive com-

putations. (a) Initial mesh (462 elements), (b) Second mesh (856 elements),

(c) Third mesh (2235 elements), (d) Final mesh (3307 elements).
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