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Abstract—DevOps and Continuous Delivery (CD) are becom-
ing the de-facto standard ways for software deployment in the
cloud and in service-based computing. Deployment pipelines
are a core artefact in modern DevOps and CD practices. So
far the design of deployment pipelines is largely discussed
informally, usually with a specific application focus and using
a specific combination of tools. While most such informal
discussions include detailed descriptions of the architectures
in which the deployment pipeline operates, such as target
environments or tool integration architectures, those aspects
are usually not even informally modelled. For these reasons
sources describing DevOps and CD practices are often incon-
sistent or incomplete, and a generic, complete, tool-agnostic,
and application-independent treatment of deployment pipeline
design and architecture is missing today. These issues impede
building generic tools that work across different technologies
and applications, and they also hinder the tool-agnostic and
application-independent abstraction in the understanding of
pipelines models by human designers. To alleviate this problem,
we have performed a qualitative, in-depth study of 25 deploy-
ment practice descriptions by practitioners containing informal
deployment pipeline models. From our study we derived a
precisely specified model of deployment pipeline architectures.
We can show that the formal model substantially increases the
precision of the modelling compared to the informally modelled
pipelines in the original sources.

I. INTRODUCTION

A core trend in today’s cloud- and service-based comput-
ing is that the frequency of change required in those systems
steadily increases, and continuous releases are becoming the
expected norm rather than the exception. One main trend in
this direction is the DevOps movement [1], [2] which aims
to tear down the barriers between software development,
deployment, and operations, and thus allowing software
changes to be delivered to the customers more quickly. One
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core aspect of DevOps that specifically targets decreasing
release cycle times is Continuous Delivery (CD) [3]. CD
is primarily about automating the deployment and release
engineering process but also has a strong focus on a variety
of development, deployment, and quality assurance prac-
tices [4], [5]. DevOps and CD are becoming the de-facto
standard ways for software deployment for cloud (micro-
)services.

Deployment pipelines [3] are the centrepiece of most of
today’s DevOps and CD practices. So far the design of
deployment pipelines is largely discussed informally, books
[3], [4], practitioner blogs [6], [7], or in the documenta-
tions or developer guidelines of tools or cloud-based and
(micro-)service-based applications. Whereas it might seem
at the first glance that an informal model of a deployment
pipeline (often modelled in a style similar to a UML
activity diagram) gives a good overview of all deployment
structures, experience in the field and a detailed study of the
informal descriptions of such models as used by practitioners
immediately reveals that almost all realistic deployment
pipelines require complex architectures of various tools and
components, including deployment target environments, tool
integration architectures, and the environments in which
the tools run (see e.g. [8], [3]). The complexity of this
overall architecture is usually not covered in the informal
models, nor are all aspects of the deployment pipeline itself.
Consequently, the informal models and texts produced by
practitioners for describing DevOps and CD practices are
often inconsistent or incomplete. In addition, a generic, com-
plete, tool-agnostic, and application-independent treatment
of deployment pipeline design and architecture is missing
today.

For getting a rough overview of a single deployment
pipeline using a particular combination of tools for a par-
ticular application, this is usually not a problem. However,
there are many scenarios where this level of understanding
is not enough. Firstly, as most deployment pipelines operate
on a complex combination of various independent tools and
environments, this impedes building generic tools operating



on the whole pipeline, such as architecture consistency
checkers or static analysis tools. Common abstractions, and
consequently interfaces, are missing, meaning that such
tools would need to be specially tailored for each and
every combination of tooling, environments, and application
domains. Secondly, the missing common abstractions also
hinder understanding by human designers beyond a single
set of technologies, environments, and applications. This
is problematic for designing agreed-upon abstractions in
the community across different tools, environments, and
application foci. More specifically, some software design-
ers face the need to understand practices across different
projects; consider for instance an architect of a microservice-
based software ecosystem [9] facing the need to understand
and constrain possibly hundreds of different deployment
pipelines and architectures.

To alleviate these problems, we have performed a qualita-
tive, in-depth study of 25 deployment practice descriptions
by practitioners containing informal deployment pipeline
models. We have based our study on the model-based
qualitative research method described in [10], which uses
such documented practitioner sources as rather unbiased
knowledge sources and systematically codes them through
established coding and constant comparison methods [11],
combined with precise software modelling, in order to
develop a rigorously specified software model of established
practices and their links. This paper aims to study the
following resulting research questions:

• RQ1 What are recurring established practices for de-
signing deployment pipeline structures, how are they
linked, and how can structures and links be precisely
modelled?

• RQ2 What are the environments relevant in deployment
pipelines, how are they linked between themselves and
with the pipelines, and how can the environments and
links be precisely modelled?

• RQ3 What are the architectural elements relevant for
building a deployment pipeline infrastructure (such as
deployment tools, build scripts, or Continuous Integra-
tion servers), how are they linked between themselves
and with the pipelines, and how can the architecture
elements and links be precisely modelled?

This paper makes three major contributions: Our result is a
precisely specified model of deployment pipeline structures,
along with models of the associated deployment environ-
ments and infrastructure architecture. In each of the parts
of the model we also precisely define the links between
the model elements, as well as consistent links between
the different views. For each of the 25 informal pipeline
models studied, we contribute a precisely modelled instance
of our model. Finally, in a preliminary evaluation, we can
show that the formal models increase the precision of the
modelling compared to the informally modelled pipelines

in the original sources by a total average improvement of
134.72%.

The remainder of this paper is organized as follows: In
Section II we compare to the related work. Section III
explains the research method we have applied in our study.
Then Section IV contributes a precise specification of the CD
pipeline model created in this study. Next, we briefly explain
in Section V the tools we used for generating our models
and show one model instance as an illustrative example
of the generated output of our tool. Section VI contains a
preliminary evaluation of our work, Section VII discusses
threats to validity of our study, and finally in Section VIII
we conclude this study. In addition, an Appendix contains
the modelled pipelines derived from the sources examined.

II. RELATED WORK

As pointed out above, informal descriptions of deploy-
ment pipelines and associated architectures dominate the
literature today (cf. [8], [3], [6], [7]). These informal models,
although commonly used to describe deployment pipelines,
usually fail to fully cover either the complexity of these
designs and architectures or all aspects of the deployment
pipeline itself. As a result, the informal descriptions of
DevOps and CD practices produced by practitioners are
often inconsistent or incomplete. While many scientific
works use and improve deployment pipelines (cf. [12],
[13], [14], [15]), and first studies on deployment practices
in organizations have emerged [16], [17], [18], a generic,
but precise and consistent, tool-agnostic and application-
independent treatment of deployment architectures is still
missing.

Our study aims to improve this situation and provide
the first systematic and precise specification approach for
DevOps architectures, laying the foundations for automated
quality control of the design of deployment pipelines and
the associated environments and architectures. This would
enable checking, for example, whether a pipeline design
performs too few or too manual quality controls, is missing
important steps (like forgetting to model a commit trigger)
or links to the environment (like a cloud test environment
that is launched but not torn down) or is performing time-
consuming or resource-intensive steps too early (e.g. running
manual exploratory tests at the same time or even before
automatic acceptance tests). So far, such design issues have
been identified in the literature as red flags [3], [4], but
their automatic detection is not possible as it requires precise
models of all elements of the deployment pipeline and its
associated environments and architectures; it is the goal of
this study to establish such a precise modelling foundation.

In addition, many sources point for substantial alteration
of the architecture of the target systems for supporting rapid
releases [14], [17], [18]. For instance, different ways to
decompose a system into microservices are discussed as
options to improve the releasability of architectures [14],



[12], [19]. While the microservice decomposition itself is
studied in the scientific literature extensively (see e.g. [12],
[20], [21]), the associated deployment pipelines and architec-
tures have not yet been studied in a systematic way. Another
example is the move from a consistent data exchange model
to eventual consistency models to improve releasability [22],
[12], [23]. Again, the existing studies focus on consis-
tency in microservice data exchange, not e.g. on how the
deployment pipeline or environment architectures need to
change to cope with eventual consistency. Our study aims
to provide the ground work needed to perform such studies,
by enabling formal reasoning, validation, and verification
through a precise and consistent modelling foundation for
the CD parts. Again, a precise modelling foundation is a
prerequisite, e.g. to produce static analysis tools that can
check whether the necessary release infrastructure for a
microservice decomposition or eventual consistency is in
place.

III. RESEARCH METHOD

This paper aims to systematically study the established
practices in the field of designing or architecting deployment
pipelines. We follow the model-based qualitative research
method described in [10]. It is based on the established
Grounded Theory (GT) [11] qualitative research method, in
combination with methods for studying established practices
like pattern mining (see e.g. [24]) and their combination
with GT [25]. The method uses descriptions of established
practices from the authors’ own experiences as a starting
point to search for a limited number of well-fitting, tech-
nically detailed sources from the so-called grey literature
(i.e., practitioner reports, system documentations, practi-
tioner blogs, etc.). These sources are then used as unbiased
descriptions of established practices in the further analysis
(in contrast to sources like interviews as used in classic
GT). In contrast to pattern mining methods, the method does
not aim to find all the forces, consequences, and detailed
solution guidelines of the observed practices, but rather
focuses on their identification and on their detailed relations
in terms of formal modelling. Like GT, the method studies
each knowledge source in depth. It also follows a similar
coding process, as well as a constant comparison procedure
to derive a model. In contrast to classical GT, the research
begins with an initial research question, as in Charmaz’s
constructivist GT [26]. Whereas GT typically uses textual
analysis, the method uses textual codes only initially and
then transfers them into formal software models (hence it is
model-based).

The knowledge-mining procedure is applied in many
iterations. That is, we searched for one or a few new
knowledge sources, applied open and axial coding [11] to
identify candidate categories, and continuously compared the
new codes with the model designed so far. We improved
this model incrementally. A crucial question in qualitative

methods is when to stop this process. Theoretical satura-
tion [11] has attained widespread acceptance in qualitative
research. In our study, we decided to stop our analysis when
7 additional knowledge sources did not add anything new
to our understanding of the research topic. While this is a
rather conservative operationalisation of theoretical satura-
tion (i.e., most qualitative research saturates with a much
lower number of knowledge sources that add nothing new),
our study converged already after 10 knowledge sources in
the sense that no substantial new formal model elements
were created. Minor changes to the model were introduced
until we reached 18 knowledge sources. The knowledge
sources included in the study are summarized in Table I).
Our search for knowledge sources was based on our own
experience, e.g., DevOps tools and environments we have
access to, worked with, or studied before. We also used
major search engines (e.g., Google, Bing) and topic portals
(e.g., InfoQ) to find more sources.

We deliberately included descriptions that ranged from
the very simple (e.g. BROIND), with a few stages and
no tooling, to the more complex, with over 10 stages and
detailed tooling (cf. Table III). Pipelines with different levels
of automation (manual to fully automatic) and generality
(generic to application-specific) were examined. Generally
the sources either focused on describing generic CD pipeline
practices, or more on the specific tooling required, often
to the point of being a step-by-step user guides for using
particular CD pipeline solutions. Table III summarizes the
sizes of the source model in different element categories.

IV. CD PIPELINE MODEL

Our studies have led to a model DOM for CD pipelines
which formally is a tuple (CP, CN, dtypeCP , typeCP ,

CPT, stypeCPT , dtypeCN , typeCN , CNT, stypeCNT , DN,

NH, typeNH , NHT, DR, typeDR, DRT, DE, EE, dtypeEE ,

typeEE , EET, stypeEET , AN, AE, CON, IN, FIN, FON,

JON, DEN, MEN, ACT, AEA, SSA, PE, PN, dtypePN ,

typePN , PNT, stypePNT , PAE, typePAE , PAET, PSS,

typePSS , PSST, PDN, typePDN , PDNT ). All the tuple el-
ements are defined in the subsections below. We first discuss
two prerequisites for modelling deployment pipelines: com-
ponents of the deployment infrastructure and deployment
environments. Then we discuss specifying the structure of
the deployment pipeline.

We have made the code for the meta-model, our models
of the individual pipelines, vector-based visualizations, and
documentation on the interpretation and modelling of the
original sources available in an online repository1 for the
purpose of verification and reproducibility. An example can
be found in Section V. In addition, for ease of reference,
visualizations of the pipeline models we derived after ex-
amining the sources listed in Table I are reproduced in the

1https://swa.univie.ac.at/cd-pipeline-models/cd-pipeline-models.zip

https://swa.univie.ac.at/cd-pipeline-models/cd-pipeline-models.zip


Table I
KNOWLEDGE SOURCES INCLUDED IN THE STUDY

Name Description Reference

ADOBE User guide for the Adobe Cloud Manager’s CI/CD framework https://bit.ly/2T16cfA, https://bit.ly/2ThrepA

AWSGO Description of how to perform CI and CD for applications written in Go on AWS https://bit.ly/2T16e7c

AZURE Quickstart user guide for Azure DevOps pipelines https://bit.ly/2To9zJI, https://bit.ly/2Tn02lZ

BITBAR Basics of Mobile Continuous Integration workflow https://bit.ly/2EAquUd

BROIND High-level pipeline recommended as a starting point for moving to DevOps https://bit.ly/2RtZqcH

CCAUT Description of fully automated pipeline variant using ThoughWorks cruise control tool https://bit.ly/2t20JWd

CCMAN Descr. of semi-automated pipeline variant with some manual approvals using ThoughWorks cruise control tool https://bit.ly/2t20JWd

FACEB Description of the continuous deployment pipeline practices used by Facebook in 2013 [8]

GOOGLE Tutorial for creating a CD pipeline on the Google Cloud platform https://bit.ly/2UbYLyy

HEROKU User guide on setting up a Heroku CI pipeline https://bit.ly/2SvJRBM, https://bit.ly/2Suv2PF

HFCOMP Description of a variant of the generic pipeline suggested in [3] with a separate pipeline per component of the
application and in addition one for the whole application

[3], page 366 ff.

HFGEN Description of the generic pipeline suggested in [3] [3], page 111 ff.

IBM User guide on working with an IBM Cloud Continuous Delivery pipelines https://bit.ly/2DLhGL1

IOT Description of a DevOps workflow for Internet of Things applications https://bit.ly/2TluHA8

JENKINS A typical deployment pipeline realized in the Jenkins tool https://bit.ly/2VhtGd4

MOZILLA Overview of Continuous Integration practices at Mozilla https://bit.ly/2IFI79q

NETFLIX Description of the continuous deployment pipeline practices used by Netflix in 2016 https://bit.ly/2tX3D1S

OPSHIFT Description of foundational concepts related to building a CI/CD pipeline in OpenShift https://bit.ly/2TmngvR

OPSHJEN User guide on using CI/CD on OpenShift Container Platform with Jenkins https://bit.ly/2IDTBdC

OVHAUT Description of automated deployment practices used by the company OVH https://bit.ly/2QF51wY

OVHMAN Description of the largely manual pipeline used by OVH before moving to more automated deployment practices https://bit.ly/2QF51wY

REND Description of a deployment pipeline with detailed environment annotations by M. Rendell https://bit.ly/2MG3dCX

SKYBASE Description of automated deployment practices related to the SkyBase DevOps platform https://bit.ly/2sZw2B3

SPINKR A typical deployment pipeline realized in the Spinnaker tool using Jenkins as a CI tool https://bit.ly/2Wz7MDl

STELLI Description of deployment pipelines in AWS by the company Stelligent https://bit.ly/2UpcCRQ

Appendix of this paper.
Each aspect of our model is discussed in two parts: First

we discuss generic modelling notions that should suffice for
modelling the elements of a CD model instance and their re-
lations. Second, based on the recurring CD-specific elements
found in our study, we specify CD-specific set members
and rules (all summarized in Table II). For instance, we first
define the generic notion of a pipeline node and then specify
all the possible pipeline node types and their type hierarchy
relations that we have observed in our study in Table II. We
expect that the generic aspects will likely remain stable in
the future, whereas the elements in Table II might require
changes or extensions. Please note that we consider this
list of elements in Table II complete with regard to the
sources we have studied, but these sets and rules are not
considered fixed in any sense. That is, they can be extended
or redefined when using or applying our model (e.g., for
modelling CD/DevOps aspects we have not yet covered in
our study, or for future technologies).

A. Modelling the Deployment Infrastructure Architecture

An important result of our study was that the focus of
informal descriptions of deployment pipelines is only in
exceptional cases solely on the structure of the pipeline.
Instead, almost always the components which represent the
infrastructure of the deployment pipeline, such as continuous

integration (CI) tools or deployment pipeline orchestration
components, and their interconnections are described as
well. To formally capture this, we first model component
nodes and their connectors: CP is a finite set of component
nodes. CN ⊆ CP ×CP is a finite set of connector edges.

CD infrastructure components are typically categorized
along their main function, which can be modelled using
types in type hierarchies. For example, deployment pipeline
orchestration and package tools are important recurring
types of such components, and package tool is a subtype
of development tool. In our model, component types are
defined as follows: CPT is a finite set of component types.
stypeCPT : CPT → P(CPT ) is a function called compo-
nent type hierarchy. stypeCPT (cpt) (with cpt ∈ CPT ) is
the set of direct supertypes of cpt; cpt is called the subtype
of those supertypes. The transitive closure stype∗CPT =⋃∞

i=0 stype
i
CPT defines the inheritance in the hierarchy such

that stype∗CPT (cpt) (with cpt ∈ CPT ) contains the direct
and indirect supertypes of cpt. The inheritance hierarchy is
cycle free, i.e., ∀cpt ∈ CPT : stype∗CPT (cpt) ∩ {cpt} = ∅.
dtypeCP : CP → P(CPT ) is a function that maps each
component node cp ∈ CPT to its set of direct component
types. typeCP : CP → P(CPT ) is a function that maps
each component node cp ∈ CPT to its set of direct and
transitive types, i.e., ∀cp ∈ CP, dt ∈ dtypeCP (cp) :

https://bit.ly/2T16cfA
https://bit.ly/2ThrepA
https://bit.ly/2T16e7c
https://bit.ly/2To9zJI
https://bit.ly/2Tn02lZ
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https://bit.ly/2SvJRBM
https://bit.ly/2Suv2PF
https://bit.ly/2DLhGL1
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https://bit.ly/2IFI79q
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https://bit.ly/2Wz7MDl
https://bit.ly/2UpcCRQ


typeCP (cp) ⊇ {dt} ∪ stype∗CPT (dt).
CD infrastructure connectors have types and a type hier-

archy, too; e.g., components can launch another component
or read an artefact from another component, and here launch
and read are connector types. In our model, CNT is a finite
set of connector types. It has a type hierarchy definition
exactly identical to the one of CPT (see specification
above) with analogous function definitions for stypeCNT ,
dtypeCN , and typeCN (omitted here for brevity).

In our study we found a number of recurring types of com-
ponents and connectors used in infrastructure architectures
of deployment pipelines. All component and connector types
that were included in our study according to our inclusion
criteria, as well as their relations in two type hierarchies, are
formally defined in the first four rows of Table II.

B. Modelling Deployment Environments

A second prerequisite for precisely specifying a deploy-
ment pipeline, which is used in almost all our sources of
informal deployment pipeline descriptions, is the notion of
deployment environments. They are used in two ways in
CD models: First, they are used to model the deployment
environments to which the deployment pipeline deploys,
such as a test environment in a virtual private cloud or a
production environment in a public cloud. Second, they are
used to describe the environments in which the deployment
infrastructure (see previous section) itself is deployed. For
instance, sometimes the deployment pipeline orchestrator
or a continuous integration tool run in the same cloud
environment the system is deployed to, or a local or server
environment are distinguished from a cloud environment if
both are used in a pipeline.

The main deployment environment elements of our model
are the deployment nodes: DN is a finite set of deployment
nodes. These can be connected with each other, such as
a production and a test environment running on a cloud
environment: DNR ⊆ DN × DN is a finite set of de-
ployment node relations. Different types of relations might
exist such as part-of, connects-to, or runs-on: DNRT is a
finite set of deployment node relation types. typeDNR :
DNR→ DNRT is a function that maps each deployment
node relation dnr ∈ DNRT to its type.

Components of the deployment infrastructure have rela-
tions to these deployment nodes: DR ⊆ CP×DN is a finite
set of deployment relations. Different types of deployments
exist such as deployed-on, uses, or launches: DRT is a finite
set of deployment relation types. typeDR : DR → DRT
is a function that maps each deployment relation dr ∈ DRT
to its type.

There are specific kinds of deployment nodes: DE ⊆ DN
is a finite set of devices. EE ⊆ DN is a finite set of execu-
tion environments. EE is used to model the environments
a system can be deployed to, which is modelled in a type
hierarchy: EET is a finite set of execution environment

types. It has a type hierarchy definition exactly identical to
the one defined for CPT (see specification above in Section
IV-A) with analogous function definitions for stypeEET ,
dtypeEE , and typeEE (omitted here for brevity).

Again, we have specified those CD-specific set members
and type hierarchy rules that we have observed in our study
as well. Rows 5–8 of Table II contain formal definitions
for the environment types, their type hierarchy, and their
relations that we have observed in the informal deployment
pipeline descriptions analysed in this study.

C. Modelling Deployment Pipeline Structures

Deployment pipelines are often modelled as behaviour
models resembling UML activities. As a basis for mod-
elling pipeline specifics we thus have chosen abstractions
resembling the basic elements of activities – but excluded
all abstractions of activities in UML that we have not
empirically observed in our study – to keep our model much
simpler than UML activities: AN is a finite set of activity
nodes. AE ⊆ AN × AN is a finite set of activity edges.
CON ⊆ AN is a finite set of control nodes. IN ⊆ CON
is a finite set of initial nodes. FIN ⊆ CON is a finite set
of final nodes. FON ⊆ CON is a finite set of fork nodes.
JON ⊆ CON is a finite set of join nodes. DEN ⊆ CON
is a finite set of decision nodes. MEN ⊆ CON is a finite
set of merge nodes. ACT ⊆ AN is a finite set of actions.
AEA ⊆ ACT is a finite set of accept event actions. ATA
⊆ AEA is a finite set of accept time event actions. SSA
⊆ ACT is a finite set of send signal actions.

All special kinds of nodes in a deployment pipeline are
subsets of some of those activity nodes. In addition they are
subsets of PE which is a finite set of pipeline elements.
For PE we define a number of functions used to specify
important properties of pipeline elements. aut : PE →
{True, False} is a function that determines whether a
pipeline element is automatically processed in the pipeline or
requires manual work. The following functions are used to
specify important links to infrastructure components and
environments (as defined in the previous sections): run :
PE → CP is a function that determines the component this
pipeline element runs in. inv : PE → {(l1, l2, ..., ln) : l1 ∈
CP, l2 ∈ CP, ..., ln ∈ CP} is a function that determines
the components this pipeline element can invoke. inp :
PE → {(l1, l2, ..., ln) : l1 ∈ CP, l2 ∈ CP, ..., ln ∈ CP}
is a function that determines the components providing
inputs to a pipeline element (like an artefact passed to a
pipeline element). out : PE → {(l1, l2, ..., ln) : l1 ∈
CP, l2 ∈ CP, ..., ln ∈ CP} is a function that determines
the components providing outputs of a pipeline element (like
an artefact produced by a pipeline element) env : PE →
{(l1, l2, ..., ln) : l1 ∈ DN, l2 ∈ DN, ..., ln ∈ DN} is a
function that determines the deployment nodes used by a
pipeline element.



Table II
CD-SPECIFIC SET MEMBERS AND RULES FOR APPLICATION OF THE CD PIPELINE MODEL

Name Definition

Component Types CPT ⊇ {Version Control Repository, Deployment Pipeline Control UI, Artifact Repository, Deployment Tool, Deployment Pipeline Orchestration,
Machine Images Builder, Deployment Target, Collaborative Review Tool, API, Cloud API, Administration Tool, Review Tool, Build Tool, Code Analysis
Tool, Test Tool, Package Tool, Continuous Integration Tool, Database, Binary Repository, App Store, Container Manager}

Component Type Hier-
archy

∀(c, SCS) ∈ {(Binary Repository, {Artifact Repository}), (App Store, {Binary Repository})}: stypeCPT (c) = SCS

Connector Types CNT ⊇ {checks in, checks out, reads artifacts, writes artifacts, deploys artifacts, reads images, writes images, deploys images, uses, extends,
launches, API call}

Connector Type Hier-
archy

∀(c, SCS) ∈ {(reads images, {reads artifacts}), (writes images, {writes artifacts}), (deploys images, {deploys artifacts})}: stypeCNT (c) =
SCS

Deployment Relation
Types

DRT ⊇ {deployed on, uses, launches, provides deployment artifacts}

Deployment Node Re-
lation Types

DNRT ⊇ {part of, runs on, connects to}

Execution
Environment Types

EET ⊇ {Cloud, Public Cloud, Private Cloud, Virtual Private Cloud, Server, Virtual Machine, Container, Cluster, Test Environment, On-Premises,
Datacenter, Production Environment}

Execution
Environment
Hierarchy

∀(c, SCS) ∈ {(Public Cloud, {Cloud}), (Private Cloud, {Cloud}), (Virtual Private Cloud, {Cloud})}: stypeEET (c) = SCS

Pipeline Node Types PNT ⊇ {Deployment to Production, Partial Rollout, Canary Release Deployment, Blue/Green Deployment, Dark Launch Deployment, A/B Test
Deployment, Deployment Notification, Build, Package, Publish Package, Code Analysis, Code Review, Code Internal Use and Review, Code Peer
Review, System Tests, Formal Code Review, Machine Image Build, Container Image Build, Generate Documentation, Tests, Unit Tests, Regression Tests,
Integration Tests, Quality Assurance Tests, System Acceptance Tests, User Acceptance Tests, Production Validation Tests, Automated User Interface
Tests, Performance Tests, Security Tests, Operations Tests, Smoke Test, Infrastructure Smoke Test, Infrastructure Test, Exploratory Test, Resilience
Test, Create Environment, Teardown Environment, Configure Environment, Create Test Environment, Teardown Test Environment, Configure Test
Environment, Deployment, Deployment to Test Environment}

Pipeline Node Hierar-
chy

∀(c, SCS) ∈ {(Deployment to Production, {Deployment}), (Partial Rollout, {Deployment}), (Canary Release Deployment, {Partial Rollout}),
(Blue/Green Deployment, {Partial Rollout}), (Dark Launch Deployment, {Partial Rollout}), (A/B Test Deployment, {Deployment}), (Code Internal
Use and Review, {Code Review}), (Code Peer Review, {Code Review}), (System Tests, {Tests}), (Formal Code Review, {Code Review}), (Unit
Tests, {Tests}), (Regression Tests, {Tests}), (Integration Tests, {Tests}), (Quality Assurance Tests, {Tests}), (System Acceptance Tests, {Tests}), (User
Acceptance Tests, {Tests}), (Production Validation Tests, {Tests}), (Automated User Interface Tests, {Tests}), (Performance Tests, {Tests}), (Security
Tests, {Tests}), (Operations Tests, {Tests}), (Smoke Test, {Tests}), (Infrastructure Smoke Test, {Tests}), (Infrastructure Test, {Tests}), (Exploratory
Test, {Tests}), (Resilience Test, {Tests}), (Create Test Environment, {Create Environment}), (Teardown Test Environment, {Teardown Environment}),
(Configure Test Environment, {Configure Environment}), (Deployment to Test Environment, {Deployment})}: stypePNT (c) = SCS

Accept Event Action
Types

PAET ⊇ {Accept Event Action, Poll for Event, Triggered by Commit Event, Triggered by Manual Start, Triggered by External Event}

Accept Event Action
Hierarchy

∀(c, SCS) ∈ {(Poll for Event, {Accept Event Action}), (Triggered by Commit Event, {Accept Event Action}), (Triggered by Manual Start, {Accept
Event Action}), (Triggered by External Event, {Accept Event Action})}: stypePAET (c) = SCS

Send Signal Action
Types

PSST ⊇ {Send Signal Action, Scheduled Event, Scheduled Commit Event, Trigger Event, Commit Event}

Send Signal Action Hi-
erarchy

∀(c, SCS) ∈ {(Scheduled Event, {Send Signal Action}), (Scheduled Commit Event, {Commit Event}), (Trigger Event, {Send Signal Action}),
(Commit Event, {Send Signal Action})}: stypePSST (c) = SCS

Decision Node Types PDNT ⊇ {Pipeline Decision Node, Approval Gate}

Decision Node Hierar-
chy

∀(c, SCS) ∈ {(Approval Gate, {Pipeline Decision Node})}: stypePDNT (c) = SCS

The core element in a typical deployment pipeline are
pipeline nodes, modelled as elements of PN (with PN ⊆
PE, PN ⊆ AN ) which is a finite set of pipeline nodes.
PNT is a finite set of pipeline node types. Exemplary
CD-specific PN members are pipeline nodes for building,
packaging, unit testing, and so on. PNT has a type hierar-
chy definition exactly identical to the one defined for CPT
(see specification above in Section IV-A) with analogous
function definitions for stypePNT , dtypePN , and typePN

(omitted here for brevity).

Mainly for triggering the pipeline, we further define
special accept event actions: PAE (with PAE ⊆ PE,
PAE ⊆ AEA) is a finite set of pipeline accept event ac-
tions. PAET is a finite set of pipeline accept event action
types; it is used to model for instance a trigger by a commit

event vs. a manual trigger. typePAE : PAE → PAET
is a function that maps each pipeline accept event action
pae ∈ PAET to its type.

To model commit events (which can also happen during a
pipeline run), we model a special send signal action: PSS
(with PSS ⊆ PE, PSS ⊆ SSA) is a finite set of pipeline
send signal actions. PSST is a finite set of pipeline send
signal action types. typePSS : PSS → PSST is a function
that maps each pipeline send signal action pss ∈ PSST to
its type.

Finally, for defining decision such as approval gates, we
model a special decision node: PDN (with PDN ⊆ PE,
PDN ⊆MEN ) is a finite set of pipeline decision nodes.
PDNT is a finite set of pipeline decision node types.
typePDN : PDN → PDNT is a function that maps each



pipeline decision node pdn ∈ PDNT to its type.
Those CD-specific set members and type hierarchy rules

that we have observed for pipeline elements in our study are
specified in rows 6-11 of Table II. They contain formal def-
initions for the environment types, their type hierarchy, and
their relations we have observed in the informal deployment
pipeline descriptions analysed in this study.

V. ILLUSTRATIVE EXAMPLE GENERATED FROM THE CD
MODELS

For modelling we used our existing tool CodeableMod-
els2, a Python implementation for precisely specifying meta-
models, models, and model instances in code with an
intuitive and lightweight interface. Based on CodeableMod-
els, we specified meta-models for components, activities,
deployments, microservice-specific extensions of those, and
CD-specific extensions of those, as outlined above. In ad-
dition, we realized automated constraint checkers and Plan-
tUML code generators to generate graphical visualizations
of all meta-models and models, including pipeline and
component architectures. In addition to the typical UML-
style diagrams such as activity, component, and deployment
diagrams, we can generate more detailed views rendered as
UML object diagrams. Whereas the former can be used to
get an overview, the later can be used to understand the
precise types of each node and all properties.

We show those more detailed views in an illustrative ex-
ample for the HFGEN pipeline in Figures 1 and 2. Internally
all nodes are represented as objects of a specific type, as
shown in this view. These can be rendered differently, e.g.,
as an Initial Node symbol as used in UML activities instead
of an InitialNode object, in order to make the models look
nicer, which is useful for tasks such as getting a quick
overview. The detailed views presented here are useful for
inspecting all details including types and properties of each
node, which is e.g. important to write formal constraints
based on our models that can be checked e.g. by a static
analysis tool. The deployment pipeline views of all sources
examined are included in the appendix at the end of this
paper.

VI. EVALUATION

In Table III we report in detail on the improvements
we achieved through the precise modelling. For that we
carefully counted the different categories of elements and
relationships we observed in the different sources and the
same in our models. Firstly, this gives an impression of the
size of the models and what is modelled in them. Secondly,
it shows how many elements are explicitly or implicitly
described by the original authors informally or in other
documents but are not included in their models. We also
measured the improvement in each category and for the total
number of model elements.

2https://github.com/uzdun/CodeableModels

Note that in three cases (AZURE, HEROKU and
MOZILLA), the knowledge source does not contain a model
of the pipeline; our models were interpreted from the text
descriptions of these sources. These cases have been ex-
cluded in the calculations of improvements (IMP, AVGIMP)
in Table III.

The table shows that overall for almost all pipelines we
observe minor to substantial improvements, with an average
total improvement of 134.72%. The models in the original
sources are most accurate for pipeline elements and their
relations, where we see only modest average improvements
of about 28.27% and 33.43%, respectively. In contrast,
component connectors, component – environment relations,
pipeline – component relations, and pipeline – deployment
node relations are rather weak in the source models and
we can see average improvements of about 60%–75%.
As even the modest improvements still indicate substantial
gaps in the models, our results clearly indicate that our
formal modelling approach can substantially improve the
precision of the models at the modest cost of learning
our rather intuitive (i.e., close to the model elements in
the original models) modelling approach (please note that
the mathematical notation used in this paper for precise
reporting is not needed to apply the approach, but can be
replaced by visual or textual modelling approaches).

VII. THREATS TO VALIDITY

To increase internal validity we decided to use practitioner
reports that were produced independent of our study. This
avoids any bias, e.g. compared to interviews in which the
practitioners would have known that their answers are used
in a study. However, this introduces a different internal valid-
ity threat: Some important information might be missing in
the reports, which would have been revealed in an interview.
We tried to mitigate this threat by looking at many more
sources than needed to reach theoretical saturation, as it is
unlikely that all different sources miss the same important
information.

The different members of the author team have cross-
checked all models independently to minimize researcher
bias. The threat to internal validity that the researcher
team is biased in some sense remains, however. The same
applies to our coding procedure and the formal modelling:
Other researchers might have coded or modelled differently,
leading to different models. As our goal was only to find
one model that is able to specify all observed phenomena,
and this was achieved, we consider this threat not to be a
major issue for our study.

The experience and search-based procedure for finding
knowledge sources may have introduced some kind of bias
as well. However, this threat is mitigated to a large extent by
the chosen research method, which requires just additional
sources corresponding to the inclusion and exclusion criteria,
not a specific distribution of sources. Note that our procedure

https://github.com/uzdun/CodeableModels


Figure 1. Detailed object view of the HFGEN deployment pipeline model generated from our CD models (manually broken in the middle to make it
small enough to fit onto the page in the paper)

«Version Control Repository»
Version Control Repository : Component

«Continuous Integration Tool»
CI Server : Component

«Artifact Repository»
Artifact Repository : Component

«Deployment Tool, Deployment Pipeline Orchestration»
Deployment Scripting or Tool : Component

«Artifact Repository»
Environment and App Config Repository

: Component

«Test Environment»
UAT Test Environment : Execution Environment

«Test Environment»
Capacity Test Environment

: Execution Environment

«Production Environment»
Production Environment
: Execution Environment
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: Execution Environment
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«launches, uses»

«reads artifacts»
binary / metadata artifacts

«reads artifacts»
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«uses» «launches, uses» «launches, uses» «launches, uses»

Figure 2. Detailed object view of the HFGEN infrastructure and environment model generated from our CD models

is in this regard rather similar to how interview partners are
typically found in qualitative research studies in software
engineering today. However, the threat remains that our
procedures introduced some kind of unconscious exclusion
of certain sources; we mitigated this by assembling an
author team with many years of experience in the field,
and performing very general and broad searches. Due to
the many included sources, it is likely our results can be
generalized to a larger population of similar pipeline models
and architectures. As most of the sources use tools and
environments well established in the field, it is probable
this covers a large fraction of the existing pipeline models
and architectures. However, the threat to external validity
remains that our results are only applicable to similar kinds
of pipeline models and architectures; generalization to novel
or unusual pipeline models and architectures might not be
possible without modification of our models.

VIII. CONCLUSIONS

We have performed a qualitative study in which we have
studied the design and architecture of deployment pipeline
from 25 unique and independent sources. Our study led
to a detailed model precisely describing the recurring de-
ployment pipeline structures and their links as an extension
of mainly activity model abstractions to answer RQ1. To
answer RQ2, we have extended mainly deployment model
abstractions to specify the environment in which deployment
pipelines run and to which they deploy. Finally, to model
the deployment pipeline infrastructures, we have extended
mainly component model abstractions, to answer RQ3. In

all three cases, we observed theoretical saturation relatively
earlier and could precisely model almost all main concepts
described in the original sources. This leads us conclude
that the found models are very likely adequate represen-
tations of the original sources and can express almost all
major concepts expressed therein. We have thoroughly cross-
checked all models independently by the different researches
in the author team to minimize researcher bias. In addition
to the DevOps models as our major contribution, another
contribution of our study is a set of 25 formal CD model
instances. These might be useful as a basis for further re-
search in the area. In this paper we have used formal models
and detailed object notations to present the details of our
approach; in practice the models should be rendered using
more appealing notations e.g. akin to UML component,
deployment, and activity diagrams, which is easily possible
as an extension of our model-driven tools. As future work
we plan to realize constraint checkers to implement static
analysis tools for deployment pipeline architectures. For
such tools, precise abstractions as provided in this paper
are a necessary prerequisite.
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APPENDIX
PIPELINE MODELS



A. Model for the Adobe Cloud Manager Pipeline (ADOBE)



B. Model for the AWS in Go Pipeline (AWSGO)



C. Model for the Azure DevOps Pipeline (AZURE)



D. Model for the Bitbar Mobile CI Pipeline (BITBAR)



E. Model for the R. Brown & R. Indugula Pipeline (BROIND)



F. Model for the Fully Automated Cruise Control Pipeline (CCAUT)



G. Model for the Manual-Gated Cruise Control Pipeline (CCMAN)



H. Model for the Facebook Pipeline (FACEBOOK)



I. Model for the Google Cloud CI Pipeline (GOOGLE)



J. Model for the Heroku CI Pipeline (HEROKU)



K. Model for the Component-Oriented J. Humble & D. Farley Pipeline (HFCOMP)



L. Model for the Generic J. Humble & D. Farley Pipeline (HFGEN)



M. Model for the IBM Cloud CD Pipeline (IBM)



N. Model for the DevOps for IoT Pipeline (IOT)



O. Model for the Jenkins-based CD Pipeline (JENKINS)



P. Model for the Mozilla CI Pipeline (MOZILLA)



Q. Model for the Netflix CD Pipeline (NETFLIX)



R. Model for the OpenShift CI/CD Pipeline (OPSHIFT)



S. Model for the OpenShift Container Platform with Jenkins Pipeline (OPSHJEN)



T. Model for the OVH Aut. Deployment Pipeline (OVHAUT)



U. Model for the OVH Manual Deployment Pipeline (OVHMAN)



V. Model for the M. Rendell CD Pipeline (REND)



W. Model for the SkyBase DevOps Platform Pipeline (SKYBASE)



X. Model for the Spinnaker with Jenkins CD Pipeline (SPINKR)



Y. Model for the Stelligent CD Pipelines in AWS (STELLI)
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