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Abstract

In this work, our focus is to assess the effect of the Reynolds number on the performance of six
different RANS turbulence models in the simulation of viscous flows. To this end, we have selected
the experiments performed in a wind tunnel at Virginia Tech that measured boundary-layers in
favorable and adverse pressure gradients. A rectangular wing with a NACA 0012 section placed in
the middle of the wind tunnel at angles of attack ranging between -10 and 12 degrees is used to
induce the pressure gradient.

The two-dimensional computational domain proposed for the comparison with the experimental
data is used to simulate the flows at Reynolds numbers of Re = 2 × 106 (model scale, applicable
to the wind tunnel tests) and Re = 109 (representative for full scale conditions) with the wing
at angles of attack of -10, 0 and 12 degrees. Calculations are performed with a RANS solver
using five eddy-viscosity models and a Reynolds-stress model. Differences between the solutions
obtained with the six turbulence models are quantified for several quantities of interest including
force coefficients, shear-stress and pressure coefficients, mean velocities, turbulence kinetic energy
and Reynolds stresses using point-wise and global Validation metrics.

For the present test cases, discrepancies between solutions of the six selected turbulence models
at model scale Reynolds number are significantly larger than those observed at full scale Reynolds
number. Therefore, modeling error assessments (validation) performed at model scale Reynolds
number cannot be extrapolated to full scale.

Keywords: RANS Turbulence models; Reynolds number effects; CFD

1. INTRODUCTION

Currently, there is an ongoing international collaboration through the North Atlantic Treaty Or-
ganization (NATO) Science & Technology Organization (STO) Applied Vehicle Technology (AVT)
349 Research Task Group (RTG) on Non-Equilibrium Turbulent Boundary Layers in High Reynolds
Number Flow at Incompressible Conditions. Several two-dimensional and three-dimensional test
cases have been selected including smooth and rough walls. One of these test cases is taken from
the experimental measurements of boundary-layers under non-equilibrium pressure gradients that
have been performed at Virginia Tech, Fritsch et al. [2020]. The pressure gradient imposed to the
boundary-layers is induced by a rectangular wing with a NACA 0012 section placed in the middle
of a wind tunnel at angles of attack ranging between -10 and 12 degrees.

A comparison of simulations performed by several flow solvers based on the Reynolds-averaged
Navier-Stokes (RANS) equations using different turbulence models with the experimental data

1



L. Eça, M. Kerkvliet and S.L. Toxopeus

has been reported by Fritsch et al. [2022]. The study presented by Fritsch et al. [2022] assumed
a two-dimensional geometry and the proposed computational domain included a tilted top wall
to take into account the displacement thickness of the side walls boundary-layers. The Reynolds
number based on the velocity of the incoming flow V∞, airfoil chord c and fluid kinematic viscosity
ν is Re = 2 × 106, which for most naval applications corresponds to model scale. Although these
validation exercises provide useful information about the modeling accuracy of RANS and the
available turbulence models, it is not guaranteed that full scale flows will exhibit the same trends.
Therefore, the goal of the present study is to assess the performance of RANS at full scale Reynolds
numbers, which for ship flows is typically of the order of Re = 109.

In the absence of experimental data at full scale Reynolds number, a first quantitative assessment
of the influence of the turbulence model on the accuracy of viscous flow simulations can be performed
using point-wise V&V20 [2009] and global V&V20.1 [2023] Validation metrics. Using one of the
turbulence models solution as the reference (“experimental data”), it is possible to quantity the
discrepancies between the solutions obtained with different turbulence models. Therefore, it is
possible to compare the influence of the turbulence model on the results of the RANS simulations
at model and full scale Reynolds numbers.

To this end, we have selected the experiments reported by Fritsch et al. [2020] at angles of
attack of -10, 0 and 12 degrees and the two-dimensional domain proposed by Fritsch et al. [2022]
to calculate the flows at Reynolds numbers of Re = 2 × 106 and Re = 109. Simulations are
performed with a RANS solver using six turbulence models including five eddy-viscosity models
and a Reynolds-stress model.

Quantities of interest include flow quantities from the boundary-layer on the wind tunnel wall
and from the airfoil surface. For the wall boundary-layer, we have selected pressure and skin friction
coefficients distributions, boundary-layer integral parameters and mean velocity, turbulence kinetic
energy and Reynolds shear-stress profiles. Friction and pressure force coefficients and pressure
and skin friction distributions are analyzed for the airfoil. Integral quantities are easily addressed
with the point-wise metric of V&V20 [2009], whereas the global metric of V&V20.1 [2023] is more
appropriate for distributions and profiles.

The remainder of this paper is organized in the following way: Section 2 presents the mathemat-
ical model; the flow solver is briefly presented in Section 3 and the Validation metrics are described
in Section 4; Section 5 presents the test cases including the computational domain, boundary con-
ditions, grid sets and numerical details; the results are presented and discussed in Section 6 and
the main conclusions of this work are summarized in Section 7.

2. MATHEMATICAL MODEL

The Reynolds-averaged mass conservation and momentum balance equations for a statistically
steady flow of a Newtonian incompressible fluid (constant density, ρ) can be written in a (xi ≡
x, y, z) Cartesian coordinate system as

∂Vi
∂xi

= 0,

∂ (ViVj)
∂xj

= −1
ρ
∂P
∂xi

+ 1
ρ
∂τT
∂xj

,

τT
ρ = ν

(
∂Vi
∂xj

+
∂Vj
∂xi

)
− vivj .

(1)

Vi and P are the mean values of the Cartesian velocity components and mean relative pressure,
respectively. τT is the total stress tensor and vi are the fluctuating part (turbulence) of the Cartesian
velocity components and the over-bar designates time-averaging. The Reynolds stress tensor −ρvivj
requires a turbulence model to close the problem.

2.1 Turbulence models

In this work we have selected six turbulence models including five based on the so-called Boussi-
nesq approximation that determines the Reynolds stress tensor as a function of the mean strain
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rate and the eddy-viscosity νt

− vivj = νt

(
∂Vi
∂xj

+
∂Vj
∂xi

)
− 2

3
δijk , (2)

where k is the turbulence kinetic energy and δij is the Kronecker symbol. The contribution of k
to the normal stresses is absorbed in the mean pressure gradient term. The sixth model calculates
directly the components of the Reynolds stress tensor.

The five eddy-viscosity models selected for this study are: the one-equation Spalart and Allmaras
[1992] model (SPAL); two versions of the two-equation, Shear-Stress Transport k−ω model proposed
by Menter [1994] (SST94) and Menter et al. [2003] (SST03); the two-equation Turbulent Non-
Turbulent k−ω model presented by Kok [2000] (TNT) and the two-equation k−

√
kL described

in Menter et al. [2006] (KSKL). All these turbulence models include a transport equation for the
turbulence kinetic energy k with the exception of the SPAL model that solves a transport equation
for an undamped eddy-viscosity. For the SPAL model, k is determined from

k =
νtS√
cµ

, (3)

where S is the magnitude of the mean-strain rate and cµ = 0.09.
The SSG/LRR−ω Reynolds-Stress model (RSM) proposed in Eisfeld et al. [2016] solves seven

transport equations to determine six components of the Reynolds stress tensor (the tensor is sym-
metric) and ω. Therefore, this model does not rely on the eddy-viscosity to determine the Reynolds
stresses. Nonetheless, the model still requires the calculation of the eddy-viscosity to solve the ω
transport equation. The turbulence kinetic energy is obtained from its definition:

k =
1

2

(
v2
x + v2

y + v2
z

)
. (4)

3. FLOW SOLVER

All simulations were performed with ReFRESCO that is a flow solver based on a finite volume
discretization of the continuity and momentum equations written in strong conservation form. The
solver uses a fully-collocated arrangement and a face-based approach that enables the use of cells
with an arbitrary number of faces. Picard linearization is applied to the convective terms of the
transport equations and mass conservation is ensured using a SIMPLE-like algorithm, described for
example by Klaij and Vuik [2013], and a pressure-weighted interpolation technique to avoid spurious
oscillations as proposed in Miller and Schmidt [1988]. Thorough code verification is performed for
all releases of ReFRESCO, as illustrated in Eça et al. [2016].

In the present study, a segregated approach was adopted for all simulations, which means that
momentum, pressure correction (mass conservation) and turbulence equations are solved sequen-
tially for each non-linear iteration.

Second-order schemes are applied to all terms of the transport equations with the exception of
the convective terms of the turbulence models transport equations that are approximated by first-
order upwind. Effect of this choice has been investigated in Eça et al. [2022] for the SPAL and SST03
turbulence models: similar numerical uncertainties were obtained for most quantities of interest
using first or second-order upwind in the convective terms of the SPAL and SST03 turbulence
models. In the attached boundary-layers addressed in this study, the increase of robustness of the
flow solver justifies the use of first-order upwind in the turbulence quantities transport equations.

4. VALIDATION METRICS

The Validation metric presented in V&V20 [2009] determines an interval that should contain
the modeling error of a point-wise quantity of interest obtained from the numerical solution of a
mathematical/computational model S(φ). The interval is centered at the difference between S(φ)
and the corresponding experimental data D(φ) (comparison error), and it has a width (validation
uncertainty) that depends on the experimental, numerical and input uncertainties.
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This metric can also be used to quantify differences between solutions determined with different
turbulence models. The solution obtained with one turbulence model is used as the “experimental
data”, i.e. as the reference Sref(φ), to determine

∆tm(φ) = S(φ)− Sref(φ) . (5)

The simulations are affected by numerical uncertainties and input parameters uncertainties. How-
ever, it is reasonable to assume that input uncertainties are equivalent for both simulations when
S(φ) and Sref(φ) are obtained with the same boundary conditions and fluid properties. Therefore,
the uncertainty in the determination of ∆tm(φ) depends only on the numerical uncertainties US(φ)
and USref

(φ) that can be combined to determine

U∆tm
(φ) =

√
(US(φ))

2
+ (USref

(φ))
2
. (6)

The interval that should contain the difference between the solutions of the two turbulence models,
δtm(φ) is defined by

∆tm(φ)− U∆tm
(φ) ≤ δtm(φ) ≤ ∆tm(φ) + U∆tm

(φ) . (7)

When there are many quantities of interest, as for example for the skin friction or pressure
distribution along a surface, the interpretation of the results obtained from equation (7) is not
easy. A simple way to quantify globally the discrepancies between the solutions of two turbulence
models is to calculate the multivariate metric presented in V&V20.1 [2023]:

∆2
mv = ∆tm

TVval
−1∆tm , (8)

where ∆tm is an array with the np evaluations (set-points) of the differences ∆tm(φ)i and Vval is the
co-variance matrix that is dependent only on the numerical uncertainties. Assuming that US(φ)i
and USref

(φ)i at the np set-points are independent, Vval is a diagonal matrix with each entry equal
to U∆tm

(φ)i. Furthermore, normalizing the results with the expected value of ∆2
ref = np V&V20.1

[2023] leads to

∆mv

∆ref
=

√√√√ 1

np

np∑
i=1

(∆tm(φ)i)
2

(U∆tm
(φ)i)

2 . (9)

If ∆mv/∆ref ≤ 1 the differences between the solutions obtained with the two turbulence models
are within the error bars generated by the numerical uncertainties and so it is not possible to take
quantitative conclusions, i.e. this means that the two solutions do not differ significantly if the
validation uncertainty is small.

5. TEST CASE

5.1 Computational domain and flow parameters

The Virginia Tech Stability Wind Tunnel (VTSWT) has a square cross section of (1.85×1.85m)
and a wing with a NACA 0012 section of 0.914m chord is installed horizontally at mid height in
the test section center and swept to various angles of attack between −10◦ and 12◦, as illustrated
in the left plot of Figure 1 taken from Fritsch et al. [2022]. In the experiments, the boundary-layer
of interest develops on the bottom wall and the pressure gradient imposed to the boundary-layer
is controlled by the angle of attack at which the wing is positioned.

The simulations performed in this study use a two-dimensional geometry, which does not in-
clude the displacement thickness effect of the lateral walls and so the two-dimensional geometry
illustrated in the right plot of Figure 1 exhibits a tilted top wall to mimic this effect. This leads
to a nearly-rectangular computational domain with a flat horizontal bottom wall and two vertical
lines perpendicular to the incoming flow as the inlet and outlet boundaries.

In this study, all the surfaces of the wind tunnel and wing are hydraulically smooth with
the exception of the trip wire that is used at the inlet of the tunnel, but not included in the
simulations. As discussed in Fritsch et al. [2022], the inlet boundary location was tuned to obtain a

4



L. Eça, M. Kerkvliet and S.L. Toxopeus

Figure 1: Illustration of the geometry tested in the Virginia Tech Stability Wind Tunnel (left plot) and of the
domain proposed for the two-dimensional simulations (right plot), from Fritsch et al. [2022].

good match between simulations and experiments at the most upstream location with experimental
data available, which is roughly two chord lengths upstream of the leading edge. The displacement
thickness δ∗ and the mean horizontal velocity component Vx profile were the variables selected
to compare experiments and numerical calculations. Note that these changes of computational
domain and boundary conditions are important for Validation exercises and may lead to significant
input uncertainties. However, for the present exercise of quantifying differences between solutions
obtained by different turbulence models, they are less important as long as they are kept fixed for
all simulations.

The Reynolds number Re based on the reference velocity V∞, airfoil chord c and kinematic
viscosity of the fluid ν of the experiments is

Re =
V∞c

ν
= 2× 106 .

Simulations are performed with V∞ = 1, c = 0.914 and ν tuned to obtain the desired Reynolds
number (ν = 0.914/Re), which means that x and y coordinates are made dimensionless with a
reference length of 1m. In the present study, we have also performed simulations for Re = 109,
which was simply achieved keeping the same reference length and velocity and reducing ν.

5.2 Boundary conditions

There are five locations that require the specification of boundary conditions: the airfoil surface,
the bottom boundary, the inlet boundary, the top boundary and the outlet boundary. In this study,
we have followed the computational domain and boundary conditions suggested by Fritsch et al.
[2022].

At the surface of the airfoil and at the bottom boundary the no-slip condition and the imper-
meability of the surface lead to exact boundary conditions for the mean velocity components. On
the other hand, the pressure derivative in the direction normal to the wall is assumed to be zero
∂p/∂n = ∇p · ~n = 0. The challenging part of the wall boundary conditions in a turbulent flow is
the determination of the shear-stress at the wall τw. In the present work, τw is determined directly
from its definition (no wall functions), which leads to

τw = µ
Vt2
yn2

, (10)

where Vt2 is the velocity component tangential to the wall at the near-wall cell centre and yn2 is
the distance to the wall of the near-wall cell centre.

All turbulence quantities are equal to zero (ν̃t = 0, k = 0,
√
kL = 0 and vivj = 0) at the airfoil

surface and bottom wall, but ω goes to infinity at these boundaries. In order to avoid the singular
behavior of ω at the wall, the near-wall analytic solution of the ω transport equation Wilcox [2006]
is used to specify ω at the near-wall cell centre.

At the inlet boundary, the velocity is set equal to undisturbed flow conditions, i.e. Vx = V∞
and Vy = 0 and the pressure is extrapolated from the interior assuming zero streamwise derivative.
Turbulence kinetic energy and normal Reynolds stresses are specified from a turbulence intensity
of 0.2% assuming isotropic turbulence. The values of ν̃t, ω,

√
kL are derived from k and an eddy-

viscosity that satisfies the empirical relation(νt
ν

)
inlet

= 10−8Re . (11)
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α = −10◦

x(m)

y
(m

)

4.112 4.1125 4.113 4.1135 4.114 4.1145 4.115 4.1155 4.116

1.0425

1.043

1.0435

1.044

1.0445

1.045

α = 0◦

x(m)
y

(m
)

4.123 4.1235 4.124 4.1245 4.125 4.1255

0.924

0.9245

0.925

0.9255

α = 12◦

x(m)

y
(m

)

4.108 4.1085 4.109 4.1095 4.11 4.1105

0.782

0.7825

0.783

0.7835

Figure 2: Illustration of the grids for the simulations of the geometry tested in the Virginia Tech Stability
Wind Tunnel.

This leads to νt = 0.02ν for Re = 2× 106 and to νt = 10ν for Re = 109 .
At the top boundary free slip conditions are applied which means that normal derivatives of all

dependent variables are set equal to zero and that the velocity component normal to the boundary
is set equal to zero. wall

At the outlet boundary, the pressure is imposed and zero streamwise derivatives are applied to
the remaining dependent variables.

5.3 Grid sets

Six sets of nine geometrically similar multi-block grids with the same topology were used in
this exercise, one for each angle of attack and each Reynolds number. The direct calculation of the
shear-stress at the wall from equation (10) requires different near-wall spacing for the two Reynolds
numbers tested.

The nine grids of each set are generated with one-dimensional (along each family of grid lines)
cubic interpolations performed in each of the blocks of a basis grid that was generated with the
algebraic, hyperbolic and elliptic grid generators described in Eça et al. [2002]. The grids include
a region of orthogonal Cartesian lines in the vicinity of the bottom wall and views of much coarser
grids than those used in this study are presented in Figure 2. The sets of grids for the two Reynolds
numbers differ only on the grid node distribution along the normal grid lines to the surfaces where
the no-slip condition is applied. The Vinokur [1983] stretching functions are used to tune the height
of the near-wall cells, which is presented in wall coordinates (y+

n2)max in Table 1. The values of
(y+
n2)max are from the SST03 simulations with the airfoil at angle of attack of 12◦. Similar values

are obtained for the other two angles of attack and for the remaining five turbulence models. In
the finest grids of the two sets, the number of cells in the linear sub-layer (y+ < 5) of the bottom
wall boundary-layer at x = 1.25 is 19 for Re = 2× 106 and 13 for Re = 109. At the same location,
there are 76 cells for Re = 2 × 106 and 46 cells for Re = 109 in the viscous sub-layer (y+ < 50).
The number of cells across the boundary-layer (total head below 0.99) is 228 for Re = 2× 106 and
210 for Re = 109.

Table 1 also presents the total number of cells of each grid Ncells, the number of faces on the
bottom wall (Nf )bottom, the number of faces on the airfoil surface (Nf )airfoil and the grid refinement
ratio ri = hi/h1. In these geometrically similar grids, the grid refinement ratio can be calculated
from

ri = hi/h1 =

(
(N1)cells

(Ni)cells)

)1/2

=
(Nf1)bottom

(Nfi)bottom
=

(Nf1)airfoil

(Nfi)airfoil
. (12)
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Table 1: Number of cells Ncells, number of cell faces on the bottom wall (Nf )bottom, number of cell faces on the
airfoil surface (Nf )airfoil, grid refinement ratio ri and (y+

n2)max. (y+
n2)max obtained with the SST03 turbulence

model for the NACA 0012 airfoil at α = 12◦.

Re = 2× 106 (y+
n2)max

and Re = 109 Re = 2× 106 Re = 109

Grid Ncells (Nf )bottom (Nf )airfoil ri Bottom Airfoil Bottom Airfoil

1 839,680 1,152 1,024 1.00 0.17 0.09 0.19 0.08
2 554,320 936 832 1.23 0.20 0.11 0.23 0.10
3 396,880 792 704 1.45 0.23 0.13 0.27 0.12
4 265,880 648 576 1.78 0.27 0.16 0.32 0.14
5 209,920 576 512 2.00 0.30 0.18 0.36 0.16
6 138,580 468 416 2.46 0.36 0.23 0.44 0.20
7 99,220 352 352 2.91 0.41 0.28 0.51 0.24
8 66,470 288 288 3.56 0.49 0.35 0.62 0.30
9 52,480 256 256 4.00 0.54 0.40 0.69 0.34
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Figure 3: Convergence of the friction drag coefficient CF of the airfoil with grid refinement.

5.4 Simulations settings

Calculations were all performed in double-precision (14 digits) and iterative convergence criteria
requires a maximum value of the normalized residual of all transport equations below 10−9, which
guarantees that the numerical uncertainty is dominated by the contribution of the discretization
error. All the results presented below are from simulations that satisfied the present iterative
convergence criteria.

Numerical uncertainties are estimated with an updated version described in Eça et al. [2023]
of the procedure presented in Eça and Hoekstra [2014]. Power series expansions with estimated
or imposed order of grid convergence p are used to estimate the numerical error. In cases of
non-monotonic convergence, a power series expansion with first and second order terms is used
(designated by 2 terms). In the present study, all fits are based on the data of the five finest grids.
Nonetheless, results from the coarsest grids will also be presented to illustrate the grid convergence
properties obtained with the different turbulence models and Reynolds numbers.
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Figure 4: Point-wise Validation metric for the friction drag coefficient CF , pressure drag coefficient CP and
lift coefficient CL. Reference solution obtained with the SST03 turbulence model.
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Figure 5: Pressure coefficient Cp and skin friction Cf coefficients at the leading edge of the airfoil obtained in
the finest grids. Lower surface for α = −10◦ and α = 0◦ and upper surface for α = 12◦.

6. RESULTS

6.1 Airfoil

The friction CF and pressure CP drag coefficients and the lift CL coefficient are the integral
quantities of interest determined from the flow around the airfoil. The local quantities of interest
are the skin friction Cf and pressure Cp coefficients on the surface of the airfoil calculated at 78
locations on the airfoil surface by cubic interpolation.

Figure 3 presents the convergence of CF with grid refinement for the three angles of attack and
two Reynolds numbers. It is clear that the discrepancies between the solutions of the six turbulence
models are larger at Re = 2× 106 than at Re = 109. For the present level of grid refinement, there
are several cases that do not exhibit monotonic convergence. Nonetheless, estimated numerical
uncertainties are all below 1% and most of them below 0.5%.

The application of the point-wise V&V20 [2009] Validation metric to quantify the discrepancies
between CF , CP and CL obtained with the six turbulence models is illustrated in Figure 4. For the
present level of grid refinement, there is still a significant numerical uncertainty in the determination
of CP . Nevertheless, the discrepancies between CF , CP and CL obtained with different turbulence
models are smaller at Re = 109 than at Re = 2× 106 for all angles of attack with the exception of
CF for the RSM model. With the RSM model, the largest ∆tm(CF ) are observed for the highest
Reynolds number.

Figure 5 presents the Cp and Cf distributions at the leading edge of the airfoil obtained in the
finest grids. Results are for the lower surface at α = −10◦ and α = 0◦ and for the upper surface
at α = 12◦. Even graphically, it is possible to identify the reduction of discrepancies between
turbulence models with the increase of the Reynolds number. As expected, the largest differences
are obtained for Cf at the transition from laminar to turbulent flow, which is only visible for
Re = 2× 106. A quantitative assessment of the differences between turbulence models is presented
in Figure 6 that presents ∆tm(Cp) and ∆tm(Cf ) at the 78 selected locations on the surface of the
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Figure 6: Point-wise Validation metric for the pressure coefficient Cp and skin friction Cf coefficient on the
airfoil. Coordinates x/c of the lower surface are negative. Reference solution obtained with the SST03 turbulence
model.
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Figure 7: Pressure coefficient Cp and skin friction Cf coefficients on the wind tunnel wall obtained in the finest
grids.

airfoil. Coordinates x/c of the lower surface are set negative for illustration purposes.
The main trends observed in the data plotted in Figure 6 are: the choice of turbulence model

affects more Cf than Cp (∆tm(Cf ) > ∆tm(Cp)), but for the eddy-viscosity models, the values of
∆tm(Cf ) are significantly smaller for the highest Reynolds number; the opposite trend observed for
the RSM model in CF is a consequence of the adverse pressure gradient boundary-layer; the largest
discrepancies are observed at the locations of transition from laminar to turbulent flow, which also
exhibit the largest numerical uncertainties.

6.2 Boundary-layer on the wind tunnel wall

The quantities of interest for the boundary-layer on the wind tunnel wall are: pressure coefficient
Cp, skin friction coefficient Cf , displacement thickness δ∗, momentum thickness θ, mean horizontal
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Figure 8: Point-wise Validation metric for the pressure coefficient Cp and skin friction Cf coefficient on the
wind tunnel wall. Reference solution obtained with the SST03 turbulence model.

velocity component Vx, turbulence kinetic energy k and Reynolds-stress vxvy (in the plots we will
omit the overbar). These quantities are calculated at 81 equally spaced locations between 0 ≤ x ≤ 8.

Cf and Cp are obtained by cubic interpolation. δ∗ and θ are determined with a second-order
trapezoidal rule of local Vx profiles obtained by cubic interpolation.

δ∗ =

∫ yext

0

(
1− Vx

Vxe

)
dy (13)

and

θ =

∫ yext

0

(
Vx
Vxe
−
(
Vx
Vxe

)2
)

dy . (14)

The external velocity Vxe required to determine δ∗ and θ at each value of x along the bottom wall
is obtained from Vx at the point with the largest total head (or stagnation pressure) yext.

Vx, k and vxvy are determined at 100 locations of the 81 cross-sections using cubic interpolation.
The selected locations are equidistant in log scale with the nearest location at y+

n2 = 2 and the top
location is at yext. These coordinates are determined for the finest grid of each Reynolds number
from the SST03 model results and kept fixed for the remaining grids and turbulence models of the
same Reynolds number.

Figure 7 compares the Cp and Cf distributions on the wind tunnel wall obtained in the finest
grids with the six turbulence models, three angles of attack and two Reynolds numbers. The
differences between the solutions seem to be smaller than those obtained on the airfoil surface and
only the KSKL and SPAL solutions at the lowest Reynolds number show graphical discrepancies.
These trends are confirmed in Figure 8 that presents ∆tm(Cp) and ∆tm(Cf ). Note that the vertical
scales are different than those used in Figure 6.

Figure 9 presents the evolution of δ∗ and θ of the boundary-layer on the wind tunnel wall
obtained in the finest grids. The solutions of the six turbulence models are very similar for the
three angles of attack and two Reynolds numbers. The values of ∆tm(δ∗) and ∆tm(θ) plotted in
Figure 10 are all within the numerical uncertainty confirming that differences in δ∗ and θ cannot
be quantified for the present level of grid refinement.
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Figure 9: Displacement thickness δ∗ and momentum thickness θ of the boundary-layer on the wind tunnel
wall obtained in the finest grids.
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Figure 10: Point-wise Validation metric for the displacement thickness δ∗ and momentum thickness θ of the
boundary-layer on the wind tunnel wall. Reference solution obtained with the SST03 turbulence model.

The mean horizontal velocity component Vx profiles obtained in the finest grids at x = 3.5 are
plotted in Figure 11 in wall coordinates. At this location, there is a favorable pressure gradient for
α = −10◦ and an adverse pressure gradient for α = 12◦. The data show the following trends: the
differences between the solutions of the six turbulence models are difficult to identify graphically;
nonetheless, the largest differences are obtained for the KSKL and SPAL model in the buffer-layer
and in the outer-layer of the boundary-layer; the log-law region is significantly larger at Re = 109

than at Re = 2× 106 for the three angles of attack.
In simulations performed without wall functions, the shear-stress at the wall (friction velocity)

is determined from its definition, equation (10). Therefore, it is possible to determine the Von
Kármán constant κ from a linear fit to the velocity profile in the log-law region.

Vx
uτ

=
1

κ
ln
(uτy
ν

)
+ C , (15)
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Figure 11: Mean horizontal velocity component Vx profiles obtained in the finest grids in wall coordinates at
x = 3.5 of the boundary-layer on the wind tunnel wall.
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Figure 12: Von Kármán constant κ obtained from linear fits to the log-law region of the mean horizontal
velocity component Vx profiles of the boundary-layer on the wind tunnel wall.

where uτ =
√
τw/ρ and C is a constant and so the slope of the fit determines κ.

The results obtained from the velocity profiles of the boundary-layers on the wind tunnel wall
are depicted in Figure 12. There is a significant effect of the Reynolds number on the value of
κ obtained from the six turbulence models. At Re = 2 × 106, the pressure gradient has a strong
influence on the value of κ for all turbulence models except the SPAL model that exhibits the values
closest to the expected value of 0.41. For the remaining five models the values of κ are below 0.41
for most of the locations and tend to decrease in adverse pressure gradient. On the other hand, κ
increases for favorable pressure gradient regions and for α = 12◦ the effect is visible also for the
SPAL model.

All the turbulence models show much less sensitivity to the pressure gradient at Re = 109.
Furthermore, the values of κ are all much closer to 0.41 than for the lowest Reynolds number.

Figure 13 presents the turbulence kinetic energy k profiles obtained in the finest grids at x = 3.5
in wall coordinates. There are graphical differences for the KSKL and SPAL solutions for both
Reynolds numbers. However, there is a significant influence of the Reynolds number on the k profile
shape in the log-law region. The expected plateau at k+ = 1/

√
cµ ≈ 3.3 is only obtained for the

highest Reynolds number. This result is confirmed by the value of (k+)max in the log-law region
(30 ≤ y+

n2 =≤ 110 for Re = 2 × 106 and 102 ≤ y+
n2 =≤ 104 for Re = 109) plotted in Figure 14.

Furthermore, for Re = 2 × 106 there is a strong influence of the favorable pressure gradient on
(k+)max that is not as pronounced at Re = 109.

Figure 15 presents the Reynolds-stress vxvy profiles obtained in the finest grids at x = 3.5 in
wall coordinates. The trends observed in the vxvy profiles are similar to those discussed above for k.
In this case, the expected value of the Reynolds-stress in the log-law region is (vxvy)+ ' 1. Figure
16 presents (vxvy)+

max for the same range of y+
n2 used to determine (k+)max. The results show again

a larger influence of the pressure gradient at Re = 2× 106 than at Re = 109. Furthermore, for the
highest Reynolds number all turbulence models lead to very similar values of (vxvy)+

max, which are
very close to 1.

6.3 Global assessment

The multivariate metric proposed in V&V20.1 [2023] was applied to all quantities of interest dis-
cussed above for the airfoil and boundary-layer of the wind tunnel wall, except the force coefficients
of the airfoil. As mentioned above, the reference results are taken from the solution obtained with
the SST03 turbulence model and ∆mv/∆ref quantifies the discrepancies to the other five turbulence
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Figure 13: Turbulence kinetic energy k profiles obtained in the finest grids in wall coordinates at x = 3.5 of
the boundary-layer on the wind tunnel wall.
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Figure 14: Maximum turbulence kinetic energy in the log-law region (30 ≤ y+
n2 =≤ 110 for Re = 2× 106 and

102 ≤ y+
n2 =≤ 104 for Re = 109) of the boundary-layer on the wind tunnel wall.

models taking into account the numerical uncertainties.
The values of ∆mv/∆ref are plotted in Figure 17 for the three angles of attack and two Reynolds

numbers tested. The data confirms that discrepancies between turbulence models are smaller at
Re = 109 than at Re = 2×106 with the exception of Cf for the airfoil surface with the RSM model,
which has been identified above. Nonetheless, there are some details that have to be interpreted
carefully. The largest values of ∆mv/∆ref are obtained for Cp on the wind tunnel wall, which seems
an unexpected result. However, numerical uncertainties for this flow quantity are the smallest of all
the selected quantities of interest and so ∆mv/∆ref is just indicating that the discrepancies between
turbulence models solutions are significantly larger than the numerical uncertainties. Furthermore,
the metric is indicating which are the turbulence models that show the largest discrepancies to the
reference solution for this quantity of interest.

A similar effect of the numerical uncertainty is observed for the Vx, k and vxvy profiles. For most
turbulence models, the largest values of ∆mv/∆ref are obtained for Vx, which does not mean that the
discrepancies in the mean horizontal component are smaller than those obtained for the turbulence
quantities. Although it was not presented in the previous section, numerical uncertainties estimated
for k and vxvy are larger than those obtained for Vx.

7. CONCLUSIONS

This paper presents a quantitative assessment of the influence of the Reynolds number on the
difference between results of CFD simulations performed with RANS using six different turbu-
lence models: five eddy-viscosity models, Spalart & Allmaras one-equation model, SST 1994, SST
2003 and TNT k−ω two-equation models and k−

√
kL two-equation model, and the SSG-LRR−ω

Reynolds-stress model.
The test cases are boundary-layers under non-equilibrium pressure gradient that were measured

in the Virginia Tech wind tunnel at a Reynolds number of Re = 2× 106. The pressure gradient is
induced by a rectangular wing with a NACA 0012 section at angles of attack of −10◦, 0◦ and 12◦.

The simulations are performed for Re = 2× 106 and Re = 109 in a two-dimensional domain for
a Newtonian incompressible fluid. Shear-stress at the wall is determined directly from its definition
for both Reynolds numbers, i.e. simulations are performed without wall functions. Sets of nine
geometrically similar grids were used for all flow settings and turbulence models to enable the
estimation of numerical uncertainties.

The quantities of interest are: force coefficients, skin friction and pressure coefficient distribu-
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Figure 15: Reynolds-stress vxvy profiles obtained in the finest grids in wall coordinates at x = 3.5 of the
boundary-layer on the wind tunnel wall.
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Figure 16: Maximum Reynolds-stress in the log-law region (30 ≤ y+
n2 =≤ 110 for Re = 2 × 106 and 102 ≤

y+
n2 =≤ 104 for Re = 109) of the boundary-layer on the wind tunnel wall.

tions on the surface for the airfoil; skin friction and pressure coefficient distributions, displacement
and momentum thicknesses evolution and mean horizontal velocity, turbulence kinetic energy and
Reynolds-stresses profiles of the boundary-layer on the wind tunnel wall. For all these quantities,
Validation metrics are used to quantify the differences between the solutions obtained with the six
turbulence models. The SST 2003 results are used as the reference solution (“experimental data”)
to determine the comparison error of the other five models. Validation uncertainties are determined
from the numerical uncertainties.

The results obtained in this study show for almost all quantities of interest significantly larger
differences between the results of the six turbulence models at Re = 2 × 106 than at Re = 109.
The two exceptions are: the Cf distribution on the airfoil surface obtained with the SSG-LRR−ω
model that shows largest differences to the k−ω SST 2003 for the highest Reynolds number; the
displacement and momentum thicknesses of the wind tunnel boundary-layers that exhibit differ-
ences between the six turbulence models that are smaller than the numerical uncertainty for both
Reynolds numbers.

The analysis of the Vx, k and vxvy profiles showed a strong effect of the pressure gradient on
the log-law region for Re = 2 × 106 and five of the turbulence models tested. The Von Kármán
constant κ determined from the Vx profiles is not equal to 0.41 and its value changes with the
pressure gradient. For the Spalart & Allmaras model κ is close to 0.41 and the effect of the
pressure gradient is weakest and mainly observed for favorable pressure gradient. Similar trends
are observed for the k and vxvy profiles in the log-law region.

At Re = 109 all turbulence models lead to values of κ much closer to 0.41 and there is almost
no influence of the pressure gradient on the profiles of Vx, k and vxvy profiles in the log-law region.

The present exercise suggests that model error assessments (Validation) performed at model
scale cannot be extrapolated to full scale. Furthermore, the small discrepancies obtained between
the solutions of six turbulence models at full scale is encouraging. The ability to simulate full scale
conditions, for which there is almost no experimental data available, is one of the biggest assets of
CFD.
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Figure 17: Multivariate metric applied to the quantities of interest of the airfoil and boundary-layer on the
wind tunnel wall. Reference results are taken from the solution obtained with the SST03 turbulence model.
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