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Abstra
t

This paper presents the appli
ation of a stabilized mixed pressure/velo
ity �nite element formulation

to the solution of vis
oplasti
 non Newtonian �ows. Both Bingham and Hers
hel-Bulkley models are


onsidered.

The detail of the dis
retization pro
edure is presented and the Orthogonal Subgrid S
ale (OSS)

stabilization te
hnique is introdu
ed to allow for the use of equal order interpolations in a 
onsistent way.

The matrix form of the problem is given.

A series of examples is presented to assess the a

ura
y of the method by 
omparison with the results

obtained by other authors. The extrusion of a Bingham �uid and the movement of a moving and rotating


ylinder are analysed in detail. The evolution of the streamlines, the yielded and unyielded regions, the

drag and lift for
es are presented.

These ben
hmark examples show the 
apa
ity of the mixed OSS formulation to reprodu
e the be-

haviour of a Bingham and Hers
hel-Bulkley �ows with the required a

ura
y.

Keywords: Bingham �ows, Hers
hel-Bulkley �ows, Vis
oplasti
 �uids, Variational multis
ale stabiliza-

tion, Orthogonal Subs
ale Stabilization, moving 
ylinder, extrusion.

1 Introdu
tion

The aim of this paper is to present a 
ontinuum formulation and its 
orrespondent dis
rete version for

Bingham and Hers
hel-Bulkley 
on�ned �ows, using mixed velo
ity/pressure linear �nite elements.

Bingham and Hers
hel-Bulkley are vis
oplasti
 non-Newtonian �uids 
hara
terized by the presen
e of a

threshold stress, the yield stress. When the yield stress is ex
eeded the �uid �ows; 
ontrariwise, if this limit

is not a
hieved, the �uid a
ts as a rigid material [37℄.

Bingham plasti
s are very 
ommon in industry. They 
an model the behaviour of a large number of

materials, su
h as paints, and many produ
ts in food industry (ket
hup, mayonnaise, et
). Eugene C.

Bingham 
on
eived this rheologi
al law while studying the behaviour of paints at the beginning of XX


entury [10℄. The Hers
hel-Bulkley model is a generalization of the Bingham one, and it is less known. It

des
ribes the behaviour of pastes, gels, or drilling �uids. It 
an be also used for simulating debris �ow ([58℄,

[75℄). Both models have a strong dis
ontinuity in their rehologi
al behaviour due to the existen
e of the yield
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stress, di�
ult to treat numeri
ally. Di�erent regularized formulations have been proposed to over
ome this

issue, Ber
ovier and Engelman [7℄, Tanner and Milthorpe [83℄, and Beris [8℄, among others. Tanner and

Milthorpe were the �rst to propose a double vis
osity model, while Beris used a Von Mises yield 
riterion in

the unyielded zone and an ideal Bingham model in the yielded region. In 1987, Papanastasiou [67℄ proposed

a regularization valid both for the unyielded and the yielded regions. Re
ently, Souza Mendes and Dutra

(SMD) [40℄ presented a modi�
ation to the model by Papanastasou.

The movement of isothermal �ows is governed by 
onservation of linear momentum and mass, represented

by the Navier Stokes equations. In the 
ase of non Newtonian �uids, the 
onstitutive law has a variable

vis
osity whose behaviour is given by the rheologi
al models.

Traditionally vis
oplasti
 �ows are 
al
ulated using �nite elements ([1℄, [64℄, [67℄, [87℄) but an attempt to

use �nite volumes were proposed by Bharti et al [9℄, and Tanner and Milthorpe [83℄ used boundary elements.

In this work a mixed velo
ity/pressure �nite element formulation for simpli
ial elements is developed.

This means that both velo
ity and pressure are interpolated pie
ewise linearly within the �nite element

mesh. This is a frequent 
hoi
e in �uid dynami
s be
ause of their simpli
ity. On the one hand, this kind

of linear elements, 
alled P1/P1, present a sour
e of instability due to the 
ombination of the interpolation

spa
es of pressure and velo
ity [31℄. The Ladyzenskaja-Babu�ska-Brezzi 
ondition is not satis�ed in su
h

in
ompressible problem and spurious os
illations of the pressure 
an 
ompromise the solution [14℄. On the

other hand, the 
onve
tive term presents another sour
e of instability for 
onve
tion-dominated problems.

The use of a proper stabilization te
hnique is therefore needed to ensure stability and 
onvergen
e of the

solution.

Nowadays the most e�e
tive stabilization te
hniques are based on the 
on
ept of sub-s
ales. These

were �rst introdu
ed by Hughes [46℄, who proposed an Algebrai
 Sub-Grid S
ale (ASGS) te
hnique for the

stabilization of a s
alar di�usion-rea
tion equation. Codina generalized the approa
h for multidimensional

systems [32℄. The idea is to split the unknown in a part that 
an be solved by the �nite element approximation

plus an unresolvable s
ale (i.e. the sub-s
ale) that 
an not be 
aptured by the �nite element dis
retization.

The sub-s
ale is approximated in a 
onsistent residual fashion so that its variational stabilizing e�e
t is


aptured. More re
ently, Codina proposed to use a spa
e orthogonal to the �nite element spa
e for the

subs
ale, introdu
ing the Orthogonal Subgrid S
ale (OSS) stabilization te
hnique ([33℄, [34℄). The main

advantage of OSS is that it guarantees minimal numeri
al dissipation on the dis
rete solution, be
ause it

adds nothing to those 
omponents of the residual already belonging to the FE subspa
e. This maximizes

a

ura
y for a given mesh, an issue always important and no less in non linear problems.

OSS has been su

essfully applied to the Stokes problem, to the 
onve
tion-di�usion-rea
tion equations

and to the Navier-Stokes equations. Nowadays it is used in a wide range of di�erent problems in �uid

dynami
s ([32℄, [33℄, [36℄, [50℄, [51℄, [52℄, [70℄, [77℄) and solid me
hani
s ([18℄, [19℄, [20℄, [21℄, [22℄, [23℄, [29℄,

[30℄). Castillo and Codina presented a three �elds formulation for vis
o-elasti
 [17℄, power law and Carreau-

Yasuda [16℄ �uids 
omparing ASGS and OSS. In the present work the OSS stabilization te
hnique is applied

to the Navier-Stokes equations to model Bingham and Hershel-Bulkley �ows.

The stru
ture of the paper is as follow. First, both the Bingham and the Hers
hel-Bulkley models are

presented. An overview of the regularizations proposed in the literature is given. The Navier Stokes equations

for a non Newtonian �uid are presented in their strong form. The 
orresponding dis
rete model is presented

and the stabilization using Orthogonal Subgrid S
ales (OSS) is explained in detail. The matrix form of the

problem is given. Se
ondly, the Bingham model is applied to two well known problems: an extrusion pro
ess

and a 
ylinder moving in a Bingham �uid 
on�ned between two parallel planes. Then, a 
ylinder moving

in an Hers
hel-Bulkley �uid is modeled in two di�erent s
enarios: a 
ylinder moving with 
onstant velo
ity

and a 
ylinder moving and rotating around its axis. In all the 
ases the solution is 
ompared with available

results from other authors. Finally, some 
on
lusions on the performan
e of the proposed formulation are

given.
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2 Vis
oplasti
 �uids

For an in
ompressible �uid, the stress tensor σ is split as

σ = −pI+ τ (1)

where p is the pressure, whi
h mutiplied by the identity matrix (I) represents the volumetri
 part of the

stress tensor, and τ is the deviatori
 part of the same. In a �uid, this latter is related to the rate of strain

tensor ε through the vis
osity µ
τ = 2µ ε(u) = 2µ∇su (2)

where u is the velo
ity and ∇su = 1/2
(

∇u+∇uT
)

is the symmetri
 part of the velo
ity gradient. Note

that for in
ompressible materials, ∇ · u = 0, and the rate of strain tensor, ε, is deviatori
. The kinemati


vis
osity µ is 
onstant for Newtonian �uids (µ = µ0, being µ0 the Newtonian vis
osity), but it varies in

fun
tion of the velo
ity for non-Newtonian �uids (µ = µ(ε(u))). In this 
ase, vis
osity 
annot be 
onsidered

as a property of the material, as it is dependent on the deformation pro
ess. The di�erent de�nitions of

µ(ε(u)) de�ne the di�erent families of non-Newtonian �uids ([11℄, [27℄).

In the present work, vis
oplasti
 �uids are 
onsidered. These are 
hara
terized by the existen
e of a

threshold stress, the yield stress, whi
h must be ex
eeded for the �uid to deform. For lower values of stress

the vis
oplasti
 �uids are 
ompletely rigid or 
an show some sort of elasti
ity. On
e the yield stress is rea
hed

and ex
eeded, vis
oplasti
 �uids may exhibit a Newtonian-like behavior with 
onstant vis
osity (Bingham

plasti
s �uids) or with rate dependent vis
osity (Hers
hel-Bulkley �uids among others).

Let us introdu
e, for later use, the equivalent strain rate γ̇ and the equivalent deviatori
 stress τ in terms

of the se
ond invariants of the rate of strain tensor (ε) and of the deviatori
 part of the stress tensor (τ ),

respe
tively:

γ̇ = (2ε : ε)
1

2 τ =

(

1

2
τ : τ

)
1

2

(3)

2.1 Bingham Fluid

In 1919 Eugene C. Bingham, studying the behaviousr of paints, dis
overed that their deformation was almost

absent till rea
hing a threshold yield stress. After ex
eeding this stress limit the paints followed a Newtonian

behavior. Sin
e a wide range of materials have been identi�ed to have a yield threshold [67℄, this model was

studied by many authors [65℄, [71℄, [74℄. Bird [12℄ was the �rst to give a list of several Bingham plasti
s,

most of these present in the food or 
hemi
al industries (e.g., slurries, pastes, nails, or food substan
es like

margarine, ket
hup, mayonnaise and others).

In the Bingham model the rate of strain is given by

γ̇ =
1

µ0

(τ − τy) if τ ≥ τy (4a)

γ̇ = 0 if τ < τy (4b)

where µ0 is the plasti
 vis
osity. Considering that τ = µ(γ̇) γ̇, Eq. (4a) 
an also be written as

µ(γ̇) = µ0 +
τy
γ̇

if τ ≥ τy (5)

Therefore, the deviatori
 stress tensor for a Bingham plasti
 is de�ned as

τ =

(

µ0 +
τy
γ̇

)

ε(u) if τ ≥ τy (6a)

γ̇ = 0 if τ < τy (6b)
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When the rate of deformation tends to zero this ideal rheologi
al model presents a singularity and the

vis
osity tends to in�nity (µ → ∞ as γ̇ → 0). This aspe
t is a serious in
onvenient when treating the

model numeri
ally ([11℄, [67℄, [68℄). For this reason, many authors have proposed regularized versions of the

Binghammodel, su
h as the double vis
osity Tanner andMilthrope model [83℄, the widely used Papanastasiou

regularized model [67℄, or the Souza Mendes and Dutra (SMD) model [40℄. Tanner and Milthrope substitute

the rigid behaviour of the �uid with a linear dependen
y of the deviatori
 stress by the rate of strain,

introdu
ing a �
titious vis
osity when the deviatori
 stress is lower than a 
riti
al strain rate. Papanastasiou

introdu
es an exponential regularization of the vis
osity

µ (γ̇) = µ0 +
τy
γ̇

(

1− e−mγ̇
)

(7)

where m is a regularization parameter, so that µ = µ0 + τy m as γ̇ → 0.
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(a) Bingham model
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(b) Hers
hel-Bulkley model

Figure 1: Bingham and Hers
hel-Bulkley models (red line) 
ompared with the regularized model (bla
k lines)

for di�erent values of m

Figure 1(a) shows the 
omparison between the Bingham model of Eq. (6) and the regularized one of Eq.

(7). The main advantage of this approa
h is that the Bingham model 
an be de�ned with one equation only

with full regularity. This is the regularization used in this work. The SMD 
an be seen as a generalization

of the previous model: the exponential regularization is applied to both the terms of Eq. (5) and the

regularization parameter m is substituted with a rheologi
al parameter.

2.2 Hers
hel-Bulkley Fluid

The Hers
hel-Bulkley model [43℄ 
ombines the existen
e of a yield stress with a power law model for the

vis
osity

µ(γ̇) = kγ̇n−1 +
τy
γ̇

if τ ≥ τy (8a)

γ̇ = 0 if τ < τy (8b)

where k is the 
onsisten
y parameter and n is the �ow index. Also in this 
ase the yield stress needs to be

over
ome for the material to �ow. When the yield stress is ex
eeded, the material �ows with a non linear

relation between stress and rate of strain as in a pseudoplasti
 �uid, if n > 1, or a dilatant one, if n < 1. If
n = 1 the Bingham model is re
overed, and the 
onsisten
y index is equal to the plasti
 vis
osity (k = µ0).

If the yield stress is zero (τy = 0 ) the Ostwald-de Waele power law �uid is re
overed.
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The deviatori
 stress tensor is therefore

τ = 2

(

kγ̇n−1 +
τy
γ̇

)

ε(u) if τ ≥ τy (9a)

γ̇ = 0 if τ < τy (9b)

The Hers
hel-Bulkley model also presents the singularity due to the perfe
tly rigid behaviour below the

yield stress. The regularizations proposed to over
ome the problem are similar to those introdu
ed in Se
tion

2.1. Tanner and Milthorpe proposed a double vis
osity model in fun
tion of a 
riti
al strain rate to des
ribe

the elasti
 behavior for low strain rates [83℄. Papanastasiou [67℄ introdu
ed a regularization of the vis
osity

µ (γ̇) = k γ̇n−1 +
τy
γ̇

(

1− e−mγ̇
)

(10)

When the rate of strain tends to zero (γ̇ → 0) the vis
osity depends on the �ow parameter n: if n > 1, the
limγ̇→0 µ(γ̇) = mτy and, if n = 1, the limγ̇→0 µ(γ̇) = µ + mτy; but if n < 1, the limγ̇→0 µ(γ̇) = ∞. This

means that for pseudoplasti
 �uids the vis
osity is unbounded and a trun
ation pro
edure is needed.

Figure 1(b) shows the 
omparison between the Hers
hel-Bulkley model of Eq. 9 and the regularized one

of Eq. 10.

The regularization proposed by Souza-Mendez-Dutra solves this drawba
k applying the regularization to

all the terms of the vis
osity so that limγ̇→0 µ(γ̇) = mτy for any value of n [40℄.

The regularization proposed by Papanastasiou is the one used in the 
urrent work.

3 Governing equations

The problem of in
ompressible isothermal �uid is de�ned by the Navier-Stokes governing equation.

ρ (∂tu+ u · ∇u)−∇ · σ = f in Ω, t ∈ [0, T ] (11a)

∇ · u = 0 in Ω, t ∈ [0, T ] (11b)

where Ω ⊂ R
d
(d is the spa
e dimension) is the domain in a time interval [0, T ], ρ is the density of the �uid,

and f are the volumetri
 for
es.

The non-Newtonian stress tensor σ is de�ned a

ording to Eqs. (1) and (2) and, therefore, ∇ · σ =
−∇p+∇ · τ . If the regularized Bingham or Harshel-Bulkley model are used then

τ = 2µ(γ̇)ε(u) (12)

with µ(γ̇) de�ned by Eq. (7) or Eq. (10), respe
tively. The problem is fully de�ned with the boundary


onditions:

u(x, t) = u(x, t) on ∂ΩD, t ∈ [0, T ], (13a)

n · σ(x, t) = t(x, t) on ∂ΩN , t ∈ [0, T ], (13b)

where ∂ΩD and ∂ΩN are the Diri
hlet and the Neumann boundaries, respe
tively (∂ΩD ∩ ∂ΩN = ∅, ∂ΩD ∪
∂ΩN = ∂Ω ).

Steady-state �ows are modelled by dropping the time derivative term in Eq. (11a). Likewise, the


onve
tive term 
an be negle
ted for low Reynolds numbers, as it is usually the 
ase for vis
oplasti
 �uids.
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4 Dis
rete model

The governing equations (Eqs. (11)) are solved using mixed stabilised linear/linear �nite elements for the

spatial dis
retization.

The weak form of the problem is obtained using a Galerkin te
hnique and the non linear terms of the

momentum equation (i.e. the 
onve
tive and vis
ous terms of Eq. (11a)) are linearized using a se
ant Pi
ard

method. The velo
ity u needs to belong to the velo
ity spa
e V ∈ [H1(Ω)]d of ve
tor fun
tions whose


omponents and their �rst derivatives are square-integrable and the pressure p belongs to the pressure spa
e
Q ∈ L2 of square-integrable fun
tions.

Let Vh ⊂ V be a �nite element spa
e to approximate V , and Qh ⊂ Q a �nite element approximation to

Q. Let Ω ⊂ R
d
be the domain in a time interval [0, T ], and Ωe

the elemental domain su
h that

⋃

Ωe = Ω,
with e = 1, 2, ..., nel where nel is the number of elements.

Therefore, the standard Galerkin dis
rete problem is �nding uh ∈ Vh and ph ∈ Qh su
h that

∫

Ω

[ρ∂tuh · vh + ρ (uh · ∇uh) · vh + 2µ(γ̇)∇suh : ∇svh − ph∇ · vh − fh · vh] dΩ = 0 ∀vh ∈ Vh (14a)

∫

Ω

[qh∇ · uh] dΩ = 0 ∀qh ∈ Qh (14b)

wh and qh are the velo
ity and the pressure weight fun
tions belonging to velo
ity and pressure spa
es,

respe
tively, and some of the terms have been integrated by parts.

4.1 Stabilized model

In this work, low-order simpli
ial elements are used with the same linear interpolation for the velo
ity

and pressure �elds. This implies that the Ladyzenskaja-Babu�ska-Brezzi 
ondition, also 
alled the inf-sup


ondition, is not respe
ted and a stabilization te
hnique is needed to over
ome the instability of the pressure

that may 
ompromise the solution.

The stabilization employed is based on the subgrid s
ale approa
h proposed by Hughes ([15℄, [45℄, [47℄).

This proposes to split the velo
ity �eld (u) into a part that 
an be represented by the �nite element mesh

(uh) and another part that a

ounts for the unresolvable s
ale (u), that is, for the variation of the velo
ity

that 
annot be 
aptured by the �nite element mesh. This 
orresponds to a splitting of the spa
e V into the

spa
e of the �nite elements (Vh) and the subgrid spa
e (V), so that V = Vh ⊕ V .
The sub-s
ale u is approximated from the residual of the momentum equation and it is evaluated inside

ea
h element, assuming the sub-s
ale to vanish on the boundary of ea
h element. Di�erent approximations

of the sub-s
ale u de�ne di�erent stabilization te
hniques.

In the present work, the Orthogonal Sub-grid S
ale stabilization te
hnique is used. This method was

proposed by Codina ([33℄, [34℄, [35℄) as a modi�
ation of the Algebrai
 Sub-Grid S
ale (ASGS). In ASGS the

sub-s
ale is taken proportional to the residual (Rh = −ρ (uh · ∇uh)+∇·σh+fh) of the momentum equation,

so that u = −τ1 Rh, where τ1 is a stabilization parameter. An appli
ation of ASGS to non Newtonian �uid

models 
an be found in [51℄ and [78℄. Contrariwise, in the OSS the sub-s
ale is taken proportional to the

orthogonal proje
tion of the residual onto the �nite element spa
e

u = −τ1 P
⊥

h (Rh) = −τ1 (Rh − Ph (Rh)) (15)

where Ph(•) is the proje
tion on the �nite element spa
e and P⊥

h (•) = I(•) − Ph(•) is the orthogonal

proje
tion.

Residual based stabilization te
hniques su
h as ASGS and OSS do not introdu
e any 
onsisten
y error,

as the exa
t solution annuls the added terms, so that the stabilized model 
onverges to the solution of the

problem in 
ontinuum format. Also, if designed properly, the 
onvergen
e rate is not altered; that is, the

subs
ale terms must be appropriately dependent on the mesh size.
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Constru
ting the subs
ale in the subspa
e orthogonal to the �nite element subspa
e has several advantages

over the many other possibilities. The main one is that it guarantees minimal numeri
al dissipation on the

dis
rete solution, be
ause it adds nothing to those 
omponents of the residual already belonging to the FE

subspa
e. This maximizes a

ura
y for a given mesh, an issue always important and no less in non linear

problems.

Additionally, in transient problems, the term 
orresponding to the time derivative belongs to the �nite

element spa
e, and therefore, its orthogonal proje
tion is null. This means that the mass matrix remains

unaltered by the stabilization method, maintaining its stru
ture and symmetry.

Moreover, if the residual 
an be split in two or more terms, e.g. if the stress tensor is split into its

volumetri
 and deviatori
 parts or if the residual in
ludes a 
onve
tive term, then the "
ross produ
ts" in

the stabilization terms 
an be negle
ted. This has three advantages: i) it redu
es the 
omputational sten
il,

(ii) more sele
tive norms 
an be de�ned for stability 
ontrol and (iii) it has proved important in problems

involving singular or quasi-singular points both in linear and non-linear problems.

The part of the residual to be orthogonally proje
ted 
an be appropriately sele
ted. For instan
e, in

in
ompressible problems, only the gradient of the pressure needs to be added to ensure 
ontrol of the

pressure, with minimal numeri
al dissipation. These variants of the OSS, that 
an be 
onsidered to belong

to the family of term-by-term stabilization methods, introdu
e 
onsisten
y errors, but they are of optimal

order and the �nal 
onvergen
e rate of the s
heme is not altered.

The dis
retized linearized problem, stabilized with OSS is, �nd un+1

h and pn+1

h su
h that

∫

Ω

[ ρ

δt

(

un+1

h − un
h

)

· vh + ρ
(

un+1

h · ∇un+1, i
h

)

· vh

+2µ(γ̇)n+1, i∇sun+1

h : ∇svh − pn+1

h ∇ · vh − fn+1

h · vh

]

dΩ

+
∑

e

∫

Ωe

τ1ρ
(

un+1

h · ∇vh

)

·
[

ρun+1

h · ∇un+1

h +∇pn+1

h −fn+1

h − ρv∗

h · yn+1

h

]

dΩ = 0 ∀vh ∈ Vh

(16a)

∫

Ω

[

qh∇ · un+1

h

]

dΩ +
∑

e

∫

Ωe

τ1∇qh ·
[(

ρun+1

h · ∇un+1

h +∇pn+1

h − fn+1

h

)

−ρv∗

h · yn+1

h

]

dΩ = 0 ∀qh ∈ Qh

(16b)

where yh is the nodal proje
tion de�ned as

yh
n+1 = Ph

(

un+1

h · ∇un+1

h +
1

ρ

(

∇pn+1

h − fn+1

h

)

)

(17)

In 
ompa
t notation, the proje
tion of Eq. (17) is the solution of

(

yh
n+1,v∗

h

)

=

(

un+1

h · ∇un+1

h +
1

ρ

(

∇pn+1

h − fn+1

h

)

,v∗

h

)

(18)

for all v∗

h ∈ V∗

h, being V∗

h equal to Vh extended with the ve
tors of 
ontinuous fun
tions asso
iated to the

boundary nodes.

The stabilization parameter τ1 in Eqs. (16a) and (16b) is de�ned so to obtain a stable numeri
al s
heme

and an optimal velo
ity of 
onvergen
e. Consequently, τ1 is 
al
ulated for ea
h element as [34℄

τ1 =

[

c1
µ

h2
e

+ c2
ρ|ue|

he

]−1

(19)

where h is the 
hara
teristi
 length of the e-th element and |ue| is the norm of velo
ity in the element. c1
and c2 are two 
oe�
ients that in the present work are 
hosen as c1 = 4 and c2 = 2 [34℄.
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5 Matrix form

The solution system (16) is rewritten in matrix form as

M
1

δt
Un+1 +K(Un+1)Un+1 +GPn+1 + Su(τ1;U

n+1)Un+1 − Sy(τ1;U
n+1)Yn+1 = Fn+1

(20a)

DUn+1 + Sp(τ1)P
n+1 − Sz(U

n+1)Yn+1 = 0 (20b)

C(Un+1)Un+1 +GπP
n+1 = 0 (20
)

where U and P are the ve
tors of nodal velo
ities and pressures, respe
tively, Y is the ve
tor of nodal

proje
tions and F is the ve
tor of nodal for
es.

Finally, the matrix operators of Eqs. (20) are de�ned as

Mab
ij =

(

Na, ρN b
)

δij (21a)

K
(

Un+1
)ab

ij
=

(

Na, ρun+1

h · ∇N b
)

δij +
(

∇Na, 2µ∇sN b
)

δij (21b)

Gab
i =

(

Na, ∂iN
b
)

(21
)

Fa
i = (Na, fi) (21d)

Dab
j =

(

Na, ∂jN
b
)

(21e)

C
(

Un+1
)ab

ij
=

(

Na,un+1

h · ∇N b
)

δij (21f)

Gπ
ab
i =

(

Na, ∂iN
b/ρ

)

(21g)

The stabilization operators of Eqs. (20) are

Su

(

τ1,U
n+1

)ab

ij
=

(

τ1u
n+1

h · ∇Na, ρun+1

h · ∇N b
)

δij (22a)

Sy

(

τ1u
n+1

h

)ab

ij
=

(

τ1u
n+1

h · ∇Na, ρN b
)

δij (22b)

Sp (τ1)
ab

=
(

τ1u
n+1

h · ∇Na,∇N b
)

(22
)

Sz (τ1)
ab
j =

(

τ1∂jN
a, ρN b,

)

(22d)

6 Numeri
al results: Bingham Fluids

6.1 Extrusion

6.1.1 Des
ription of the problem

, The �rst example is the extrusion pro
ess of a Bingham �uid. Extrusion is widely used in several industrial

pro
esses su
h as metal forming, manufa
turing, food produ
tion, et
. Real appli
ations are usually in three

dimensions; nevertheless, a plane strain 2D analysis provides very useful information on the evolution of the

plasti
 region and gives an estimation of the for
es required in the pro
ess.

The slip-lines theory was �rst introdu
ed by Prandtl at the beginning of the XX 
entury [72℄. This

methodology was originally used in plane strain problems to estimate the stress �eld and the related velo
ity

8



�eld in perfe
t plasti
 materials with the Von Mises (or Tres
a) yield 
riterion. The approa
h was generalized

by Mandel [56℄, who introdu
ed other yield 
riteria and analyzed the plane stress 
ase [55℄.

The slip lines are tangent to the dire
tion of the maximum tangential stress and are the traje
tories of the

maximum shear stress. In plain strain, the plasti
 �ow 
oin
ides with the maximum shear stress dire
tion.

Therefore, rigid-plasti
 material "slips" in the dire
tion of the maximum shear stress lines.

In 1948, Hill [44℄ used the slip line theory to analyti
ally solve the problem of dire
t fri
tionless extrusion

in a die with a 50% redu
tion of its se
tion. In 1961, Alexander [3℄ demonstrated that if the redu
tion of

the die se
tion is of 2/3, there exists a part of the yielded region (the area ABDC in Figure 2) in whi
h the

average pressure 
oin
ides with the extrusion pressure p

p =
4

3

(

1 +
π

2

)

τy (23)

where τy is the yield stress.

b

a

d
c

c'

b'

a'

d'

EXTRUDED

MATERIAL

DIE

RAM

Figure 2: Extrusion of a Bingham �uid. Slip lines a

ording to Alexander [3℄
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L
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Figure 3: Extrusion of a Bingham �uid. Geometry and boundary 
onditions

The extrusion pro
ess 
an be numeri
ally simulated using either a Lagrangian plasti
 �ow or an elasto-

plasti
 solid. In the �rst 
ase, the elasti
 deformation is negle
ted and the material follows the Von Mises

yield 
riterion and an asso
iated �ow rule. Zienkiewi
z [87℄ and Oñate [66℄ applied this approa
h to analyze

the plain stress problem without hardening using a Lagrangian mesh moving with the material. In the

se
ond 
ase, the elasti
 strains are 
onsidered, whi
h 
ompli
ates the problem introdu
ing both geometri
al

and material non linearities. In 1984, Lee [53℄ published one of the �rst examples of an extrusion problem

using a large deformation elasto-plasti
 approa
h. He used an updated Lagrangian te
hnique and the Von

Mises yield 
riterion with hardening.

A widely used alternative is to use an Eulerian vis
oplasti
 �ow and a Von Mises yield 
riterion ([39℄,

[42℄, [49℄, [68℄). In this 
ase, the material follows a rigid-plasti
 law with a very low plasti
 vis
osity (almost
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Figure 4: Extrusion of a Bingham �uid. Mesh used in the 
al
ulation: 2821 nodes and 5340 linear triangular
elements

perfe
t plasti
ity). On
e the yield stress is rea
hed, a high lo
alization of the strain rate o

urs. This 
an be

identi�ed with the slip lines of Prandtl theory. This is the formulation used in this work with the obje
tive

of identifying the yielded and unyielded regions, the evolution of the stream lines and of the slip lines. The


al
ulated pressure on the ram is 
ompared with the analyti
al solution given by Eq. (23).

6.1.2 Model and results

The geometry and boundary 
onditions used are presented in Figure 3. A redu
tion of 2/3 is 
onsidered. A
slip 
ondition is imposed on the wall boundaries CDEF and C'D'E'F'. An in
reasing normal stress is imposed

on CC'. This represents the ram pressure that in
reases linearly with time from p = 0 Pa at the initial time

(t = 0 s) to p = 5000 Pa at t = 1 s. The verti
al 
omponent of velo
ity is set to zero on CC'. The pressure

is set to zero in point B, and the horizontal velo
ity is left free in point E.

A 2D plane strain simulation is 
arried on. Exploiting the symmetry of the problem, only half of the

domain is dis
retized using 2821 nodes 5340 and linear/linear (P1/P1) triangular elements (see Figure 4).

The material parameters are summarized in Table 1 where the regularization 
oe�
ient employed for the

Bingham model is also given.

Material properties

Plasti
 vis
osity µ0 10−6
Pa · s

Density ρ 100 kg/m

3

Yield stress τy 1000 Pa

Regularization

Regularization 
oe�
ient m 1000 s

Table 1: Extrusion in a Bingham �uid. Material parameters and regularization 
oe�
ient

The example is solved as a series of steady-state problems with in
reasing ram pressure. Two s
enarios

have been taken into a

ount: with and without the 
onve
tive term in the momentum equation. Figure 5

shows the velo
ity evolution on point P while the pressure on the ram is in
reased, in 
omparison with the

analyti
al solution (
ontinuous line). At t = 0.69 s the �ow is fully developed and the yielded regions are


ompletely de�ned. The numeri
al pressure for yielding is Pnum = 3400 Pa, while the analyti
al solution is

Pan = 3428 Pa a

ording to Eq. (23).

10



If the 
onve
tion term is in
luded in the momentum equation (bla
k dotted line in Figure 5), it is ne
essary

to in
rease the external pressure in order to over
ome the inertial e�e
ts on
e the yield stress is a
hieved.

This does not happen when the 
onve
tive term is negle
ted (red dotted line in Figures 5). In this 
ase,

on
e the slip lines have developed, very large velo
ities are a
hieved with a very small in
rement of external

pressure.

Figure 5: Extrusion of a Bingham �uid. Pressure-velo
ity 
urve in point P (see Figure 4). Comparison

between the analyti
al solution and the numeri
al results

Figure 6 presents the stream lines evolution during the extrusion pro
ess. An abrupt 
hange in the

smoothness of the streamlines is observed when the slip lines appear (Figure 6(
) and 6(d)). Figure 6 also

shows the yielded (dark) and un-yielded (fair) regions above and below the 
riti
al strain rate (γ̇crit = 0.01688
s

−1
, 
orrespondent to τ = τy).
The evolution of the velo
ity �eld is presented in Figure 7. It 
an be observed that while at t = 0.6 s

almost all the domain is solid and just a very small region has rea
hed the yield threshold, at t = 0.678 s

the extrusion me
hanism and the slip lines are fully developed. This lines 
oin
ide with the slip lines of the


lassi
al plasti
 theory [55℄.
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(a) t = 0.6 s (b) t = 0.677 s

(
) t = 0.678 s (d) t = 0.68 s

Figure 6: Extrusion in a Bingham �uid. Evolution of the stream lines and of the yielded region (dark) for

τy = 1000 Pa and γ̇crit = 0.01688 s−1
at t = 0.6, 0.677, 0.678 and 0.68 s

(a) t = 0.6 s (b) t = 0.6 s

(
) t = 0.6 s (d) t = 0.6 s

Figure 7: Extrusion in a Bingham �uid. Evolution of the velo
ity �eld for τy = 1000 Pa and γ̇crit = 0.01688
s

−1
at t = 0.6, 0.677, 0.678 and 0.68 s
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6.2 Flow around a 
ylinder between two parallel planes

6.2.1 Des
ription of the problem

The �ow around a 
ylinder in a 
on�ned Bingham �uid is studied in this se
ond example. The �ow around

an obsta
le was initially studied 
onsidering a spheri
al obje
t. This 
lassi
al problem in 
omputational �uid

dynami
s has several pra
ti
al appli
ations in di�erent engineering �elds: from segregation in food industry,

to transport of mud in geote
hni
al engineering or aerosols in environmental engineering, et
. The geneeral

problem is the suspension of large parti
les in a �uid with a yield threshold. The falling or settlement of the

parti
les 
an only o

ur if the gravity for
e ex
eeds the yield limit ([24℄, [73℄, [81℄).

The vis
oplasti
 �ow around an obsta
le has been widely studied both numeri
ally and experimentally

([24℄, [26℄, [41℄, [85℄). For the spe
i�
 
ase of Bingham plasti
s, many authors have proposed di�erent

solutions for the �ow around a sphere subje
ted to gravity for
e between two parallel planes or in an in�nite

domain ([13℄, [54℄, [60℄, [88℄). Moreover, Roquet and Sarmito [76℄ studied the e�e
t of an additional pressure

gradient and Slije
p�
evi¢ and Peri¢ [80℄ studied the movement of a sphere inside a 
ylinder.

Nowadays, there exists abundant literature on a sphere falling either in a pseudoplasti
, vis
oplasti
 or

vis
oelasti
 �uid for low Reynolds numbers [25℄. Contrariwise, not many authors have treated the movement

of a 
ylinder in a non-Newtonian �uid.

The aim of this example is to de�ne the yielded zones and the hydrodynami
 drag for
e in terms of the

geometri
al 
on�guration of the parallel planes and the 
ylinder.

6.2.2 Adimensional for
es

In this and the following examples a series of adimensional quantities will be used to present the results.

These quantities are de�ned here.

Being x the dire
tion of the �ow and y its orthogonal dire
tion in the plane (see Figure 8(a)), the drag

for
e (FD) and lift for
e (FL) a
ting on the 
ylinder 
an be 
al
ulated as

FD = lR

∫ 2π

0

tx dθ = 4lR

∫ π/2

0

[σxx cosθ + σxy sinθ] dθ (24)

and

FL = lR

∫ 2π

0

ty dθ = 4lR

∫ π/2

0

[σxy cosθ + σyy sinθ] dθ (25)

where R = 1 m is the radius and l = 1 m is the height of the 
ylinder. The tra
tion ve
tor tT = (tx, ty) is
de�ned by the stress 
omponents in the xy plane (i.e., σxx, σyy , σxy) and of angle θ between the normal to

the 
ylinder and the x axis as tx = σxxcosθ + σxysinθ and ty = σxycosθ + σyysinθ.
The adimensional drag and lift 
oe�
ients in the spe
i�
 
ase of a Bingham �uid are

F ∗

D =
FD

µV l
; F ∗

L =
FL

µV l
(26)

An information on the relevan
e of the yield stress in the resistan
e that the �ow provides to the movement

of the 
ylinder is given by the drag 
oe�
ient F
′

D. This is by de�nition the ratio between the drag for
e and

the yield stress

F
′

D =
FD

τy
(27)

Finally, the last adimensional quantity used in the paper is the adimensional yield stress τ∗y asso
iated

to the drag for
e

τ∗y =
2τyπR

2

FD
. (28)
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6.2.3 Model and results

The 
ylinder with radius R = 1 m is lo
ated between two in�nite parallel planes. The distan
e between the

planes is 2H and the 
enter of the 
ylinder is at distan
e H from both of them. The system of referen
e

is atta
hed to the 
enter of the 
ylinder and it is 
onsidered �xed (Figure 8(a)). The planes are moving

with velo
ity V as well as the lateral sides of the 
omputational domain, lo
ated su�
iently far from the


ylinder. No slip is assumes on the surfa
e of the 
ylinder and inertial e�e
ts are ignored (Re ≈ 0). The

�ow has double symmetry, with respe
t both to the verti
al and to the horizontal axes. For this reason, just

a quarter of the domain is analyzed (see Figure 8(b)) ([8℄, [69℄).

Figure 8(b) shows a s
hemati
 des
ription of the boundary 
onditions used. A no slip 
ondition is applied

on line AB, orthogonal velo
ity and tangential stresses are zero on lines BC and AD. The velo
ity is �xed

on ED and on the upper wall where the verti
al 
omponent uy = 0 and the horizontal one ux = V = 1
m/s. Pressure is set to zero on C to determine univo
ally the pressure �eld. The length of the domain (L in

Figure 8(b)) is su�
iently large to ensure that the �ow is 
ompletely developed.

L L

H

H

B

A D

EC

R

V
V

O

E'C'

D'

F

F'

x

y

(a) Complete domain

L

HB

A D

EC

R

V
O

x

x y

y

x

y

(b) Redu
ed domain used in the analysis

Figure 8: Cylinder in a Bingham �uid. Geometry and boundary 
onditions

The properties of the material are summarized in Table 2. The Bingham number (Bn) in Table 2 is an

adimensional quantity representing the ratio between the yield and the vis
ous stresses and it is 
al
ulated

as Bn = τy(2R)/µ0V where τy is the yield stress, H is the radius of the die, µ0 is the plasti
 vis
osity and

V is the velo
ity of the �uid. A range of yield stresses (and, therefore, of Bingham numbers) is taken into

a

ount.

Di�erent relations H : R and L : R have been 
onsidered to assess the e�e
t of the domain size on the

results. These are summarized in Table 3. In all the 
ases a more re�ned mesh is 
onsidered 
lose to the


ylinder (see Figure 9).

The results obtained in terms of yielded regions, drag for
e and stream lines are 
oherent with those

obtained by [60℄. In Figure 10 the yielded and unyielded regions are shown for di�erent Bingham numbers

for two di�erent geometri
al ratios H : R = 4 : 1 and H : R = 10 : 1. Figures 10(a) and 10(f) show the

streamlines in the Newtonian 
ase (i.e., Bn = 0). In the �rst 
ase, the larger relative dimension of the
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Material properties

Plasti
 vis
osity µ0 1 Pa· s

Yield stress τy 0, 0.05, 0.5, 5, 50, 500 Pa

Bingham number Bn 0, 0.1, 1, 10, 100, 1000

Regularization

Regularization 
oe�
ient m 1000 s

Table 2: Cylinder in a Bingham �uid. Material parameters and regularization 
oe�
ient

Mesh H : R L : R Nodes Elements

M1 2 : 1 12 : 1 783 1401

M2 4 : 1 24 : 1 3494 6623

M3 10 : 1 60 : 1 5371 10245

M4 50 : 1 250 : 1 13513 25473

Table 3: Cylinder in a Bingham �uid. Domains and meshes 
onsidered

(a) Mesh of the whole domain (b) Mesh around the 
ylinder

Figure 9: Cylinder moving in a Bingham �uid. Unstru
tured mesh M3 with H : R = 10, L : R = 60
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(a) Bn = 0, H : R = 4 : 1

(b) Bn = 0.1, H : R = 4 : 1

(
) Bn = 1, H : R = 4 : 1

(d) Bn = 10, H : R = 4 : 1

(e) Bn = 100s, H : R = 4 : 1

(f) Bn = 0, H : R = 10 : 1

(g) Bn = 0.1, H : R = 10 : 1

(h) Bn = 1, H : R = 10 : 1

(i) Bn = 10, H : R = 10 : 1

(j) Bn = 100s, H : R = 10 : 1

Figure 10: Cylinder in a Bingham �uid. Stream lines and yielded (fair) and unyielded (dark) region for

di�erent Bingham numbers. On the left H : R = 4 : 1, on the right H : R = 10 : 1
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ylinder leads to a steeper gradient of velo
ity in the y dire
tion. For Bingham numbers Bn > 10, the drag
for
e is independent from H : R. The yielded/unyielded regions, the re
ir
ulation and stagnation regions

appear similarly to what happens in the 
ase of a sphere. It is worth observing that as Bn in
reases:

• The yielded region around the 
ylinder de
reases

• The unyielded region surrounds the 
ylinder. This pro
ess is more evident in the 
ase H : R = 10 : 1,

on�rming that the wall e�e
t in not negligible in the 
ase H : R = 4 : 1.

• The re
ir
ulation islands immersed in the yielded region appear and get 
loser to the 
ylinder in a

symmetri
 way. They �nally adhere to the 
ylinder for Bn = 100.

• The stagnation zone appears at the side of the 
ylinder.

• The stagnation zone get smaller than the re
ir
ulation one.

The dimension and shape of the polar 
aps appearing in the stagnation regions is similar to the results

presented in [8℄ and [86℄.

There is little information on the drag 
oe�
ient of a 
ylinder moving in a vis
oplasti
 �uid. Roquet

and Saramito [76℄ and Mitsoulis [60℄ present some studies on this spe
i�
 problem. In Figure 11(a) the

adimensional drag 
oe�
ient, Eq. (26), is plotted versus the Bingham number for the di�erent 
ases analized

and the results are 
ompared with those of Mitsoulis showing a good agreement. It is worth observing that,

as the Bingham number in
reases, the adimensional drag 
oe�
ient in
reases and be
omes independent from

the relation H : R (for H : R > 2). When Bn → 0, the adimensional drag rea
hes the value of the drag of

a Newtonian �uid and when Bn → ∞ it tends to F ∗

D = 1.14Bn. This limit was also identi�ed by Mitsoulis

and Huigol [63℄. The results obtained in this work are in the range of the limit values obtained by Ada
hi

and Yoshioka [2℄ with their max and min theorem.

(a) Drag 
oe�
ient vs Bn (b) Drag 
oe�
ient vs adimensional τ∗y

Figure 11: Cylinder in a Bingham �uid. Drag 
oe�
ient. Comparison between the 
urrent work and other

numeri
al solutions

Figure 11(b) shows that for high values of the adimensional yield stress the drag in
reases. The growth

is progressively more steep as it gets to the 
riti
al limit of τ∗y = 0.128 (the red verti
al line of Figure 11(b)).

At this value of the yield stress, the drag for
e balan
es with the buoyan
y for
e.
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7 Numeri
al results: Hers
hel-Bulkley Fluids

7.1 Flow around a 
ylinder in an in�nite medium

7.1.1 Des
ription of the problem

The problem treated in this se
tion is similar to the one presented in Se
tion 6.2, but now the medium is

in�nite the �ow follows the Hers
hel-Bulkley model. This is a 
omplex and seldom studied phenomenon.

In the literature there exist some studies on a sphere moving in a tube �lled with a Hers
hel-Bulkley

�uid at Re ≈ 0 ([5℄, [6℄). Some experimental results were provided by Atapattu [4℄ and, more re
ently,

some experiments were performed on the �ow around several spheres at low Re (Re < 1) 
on�rming the

di�
ulties on managing very low velo
ities ([57℄, [81℄). Some authors have studied the movement of 
ylinders

of di�erent sizes inside a tube [62℄ and the �ow around obje
ts with di�erent shapes with Re in the range

[10−1 − 10−8] [48℄. Mitsoulis provided a review of the results obtained for di�erent problems on Bingham

and Hers
hel-Bulkley �ows [61℄ where the �ow around a sphere in a vis
oplasti
 medium is mentioned.

The �ow around a 
ylinder in a Hers
hel-Bulkley pseudoplasti
 �uid in an in�nite domain was studied

by De Besses [38℄. Tanner [82℄ presents numeri
al results for a 
ylinder moving in a pseudoplasti
 �uid

(governed by a power law, without yield threshold) in an in�nite domain. The problem in a 
on�ned domain

was studied by [59℄ and [79℄. Barthi et al. [9℄ in
luded also dilatant �uids (0.6 < n < 2).
All the works mentioned are based on �nite elements, ex
ept Bharti et al [9℄, where �nite volumes were

employed, and Tanner and Milthorpe [83℄, who used boundary elements. Sivakumar [79℄ 
ompared �nite

elements and �nite volumes results demonstrating the equivalen
e of both approa
hes.

The 
ase of non-inertial �ow of a Newtonian �uid around a 
ylinder in an in�nite domain has no analyti
al

solution; the reason being related to the shape of the streamlines far away from the 
ylinder, what is known

as the Stoke's paradox [84℄. The paradox does not present for pseudoplasti
 �uids (n ≤ 1) and it is still

un
lear if it is present or not for dilatant �ows (n > 1).
In the 
ase of a �ow in a �nite domain the analyti
al solution does exist for all values of the �ow index

n ([28℄, [83℄).

The obje
tive of the 
urrent work is to study the �ow around a 
ylinder in an in�nite Hers
hel-Bulkley �uid

domain. The determination of the drag for
e, the yielded and unyielded zones, as well as the re
ir
ulation

and stagnation zones is 
arried out for di�erent generalized Bingham numbers. The generalized Bingham

number for an Hers
hel-Bulkley �uid is de�ned as Bn∗ =
τy
k

(

H
V

)n
.

Non inertial Re ≈ 0 is assumed in all the examples.

7.1.2 Adimensional for
es

The adimensional drag and lift 
oe�
ients in the spe
i�
 
ase of a Hers
hel-Bulkley �uid are de�ned as

F ∗

D =

FD

Rl

k

(

V

R

)n =
FD

kR1−nV nl
; F ∗

L =

FL

Rl

k

(

V

R

)n =
FL

kR1−nV nl
(29)

where k is the 
onsisten
y index of the �uid, V is the velo
ity of the 
ylinder and n is the �ow index of the

Hers
hel-Bulkley model.

7.1.3 Model and results

Figure 12 shows the geometry and boundary 
onditions used in the 
urrent example. The geometry is similar

to that 
onsidered in Se
tion 6.2, but in this 
ase the semi-width of the domain, L, is taken su�
iently large

not to in�uen
e the results. The minimum L for this is smaller for Bingham than for Newtoninan �uids and

yet smaller for Hers
hel-Bulkley �uids.
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The system of referen
e is �xed to the 
ylinder; therefore velo
ity boundary 
onditions are imposed on

the external boundary of the domain (sides CE and ED in Figure 12). A no slip boundary 
ondition is

imposed on the surfa
e of the 
ylinder. The radius of the 
ylinder is R = 0.5 m and the velo
ity in the x
dire
tion is V = 1 m/s Due to the double symmetry of the problem, just a quarter of the domain is simulated

and symmetry 
onditions are imposed.

x

y

L = H

H = L

B

A D

EC

R

x y

V
O

y

x

Figure 12: Cylinder in an Hers
hel-Bulkley �uid. Geometry and boundary 
onditions

Table 4 summarized the material properties of the model and the 
oe�
ients employed. Pseudoplasti


(n ≤ 1) and dilatant Hers
hel-Bulkley �uids are 
onsidered. The parti
ular 
ase of Bingham plasti
s (n = 1)
is also taken into a

ount. A regularization 
oe�
ient m = 1000 s is used in all the simulations.

Material properties

y Yield stress τy 1, 10, 100 Pa

Generalized Bingham Number Bn∗ 1, 10, 100

Flow index n 0.25, 0.5, 0.75, 1, 2

Regularization

Regularization 
oe�
ient m 1000 s

Table 4: Cylinder in an Hers
hel-Bulkley �uid. Material parameters and regularization 
oe�
ient

It 
an be observed in Figure 14 that the adimensional drag 
oe�
ient (F ∗

D) grows with the �ow index n,
independently from the geometri
al ratio, for L : R ≥ 50 : 0.5. This means that it is su�
ient to 
onsider

a domain with that minimum geometri
al ratio to ensure insensitivity of the �ow from the arti�
ial domain

boundaries. It is evident form the results that the drag 
oe�
ient is linearly related to the �ow index n for

n ≥ 0.5.
The 
ase of a pseudoplasti
 Hers
hel-Bulkley �uid is studied �rst. Figures 15(a) and 15(b) present the

adimensional drag, F ∗

D, and the drag for
e over the yield stress, F
′

D = FD/τy, respe
tively, versus the
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Mesh L : R Nodes Elements

M1 100 : 0.5 9367 18351

M2 500 : 0.5 9500 18601

M3 1000 : 0.5 9571 18729

Table 5: Cylinder in an Hers
hel-Bulkley �uid. Domains and meshes 
onsidered

Figure 13: Cylinder in an Hers
hel-Bulkley �uid. Unstru
tured mesh

Figure 14: Cylinder in an Hers
hel-Bulkley �uid. Drag for
e 
oe�
ient in terms of the relation L : R
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generalized Bingham number (Bn∗ = 0.1, 1, 10, 100), for di�erent �ow indexes (n = 0.25, 0.5, 0.75, 1). The
drag 
oe�
ient grows as Bn∗

in
reases (Figure 15(a)) and the yield stress e�e
t is higher for higher values

of Bn∗
(Figure 15(b)).

(a) Drag for
e vs Bn (b) Drag 
oe�
ient related to the yield stress

Figure 15: Cylinder in an Hers
hel-Bulkley �uid. Drag for
e and Drag 
oe�
ient for di�erent �ow indexes n

The di�eren
es in the yielded and unyielded regions for di�erent generalized Bingham numbers Bn∗
are

evident in Figure 16 where the yielded region is plotted in grey for a Bn∗ = 10 (Figure 16(a)) and for a

Bn∗ = 100 (Figure 16(b)). The in
rement of the Bn∗
indu
es a shape and volumetri
 
hange of the yielded

region whi
h redu
es signi�
antly espe
ially in the dire
tion of the �ow.

The stagnation and re
ir
ulation regions in terms of Bn∗
and n are shown in Figure 17. The stagnation

regions are very sensitive to the Bn∗
while being almost insensitive to the value of the �ow index n. In the

stagnation region triangular shaped polar 
aps, similar to those obtained studying the falling of a sphere in

[8℄, 
an be observed.

The re
ir
ulation zone on the y axis in
reases when Bn∗
or n in
rease. The yielded thin layer between

these regions and the 
ylinder redu
es for higher values of Bn∗
, and in
reases with n. The no slip 
ondition

on the 
ylinder does not allow this "boundary layer" to disappear even for very high values of Bn∗
. The

e�e
t of an alternative slip boundary 
ondition on the 
ylinder 
an be found in [38℄. While the re
ir
ulation

regions obtained mat
h very well with those obtained by De Bresse in [38℄, the polar 
aps are signi�
antly

smaller. This is the 
onsequen
e of the OSS stabilization te
hnique used, that allows to solve with a high

level of detail these 
riti
al parts of the domain.

The 
ase of a dilatant Hers
hel-Bulkley �uid is 
onsidered next. The �ow index is taken n = 2. The

magnitude of the velo
ity �eld is smaller in the dilatant 
ase than in the pseudoplasti
 one. As shown in

Figure 18, the yielded region has the shape of two 
ir
les interse
ted along the x axis and it redu
es when

Bn∗
in
reases mu
h more faster than in the pseudoplasti
 
ase.

The polar 
aps start to be visible for Bn∗ ≥ 1 while the re
ir
ulation regions are always present. These

are bigger and more separated from the 
ylinder than in the 
orresponding pseudoplasti
 
ase (Figure 19).

The drag 
oe�
ient in the dilatant 
ase follows a similar dependen
y with Bn∗
and τy as in the pseudo-

plasti
 
ase, but its absolute value is mu
h lower.
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(a) Bn∗ = 10 (b) Bn∗ = 100

Figure 16: Cylinder in an Hers
hel-Bulkley �uid. Yielded (grey) and unyielded (
oloured) regions and �ow

streamlines. Re
ir
ulation zones on y axis and stagnation zones (with polar 
aps) on x axis

(a) Bn∗ = 100, n = 0.25 s

−1
(b) Bn∗ = 100, n = 0.50 s

−1
(
) Bn∗ = 100, n = 0.75 s

−1
(d) Bn∗ = 100, n = 1.00 s

−1

(e) Bn∗ = 10, n = 0.25 s

−1
(f) Bn∗ = 10, n = 0.50 s

−1
(g) Bn∗ = 10, n = 0.75 s

−1
(h) Bn∗ = 10, n = 1.00 s

−1

(i) Bn∗ = 1, n = 0.25 s

−1
(j) Bn∗ = 1, n = 0.50 s

−1
(k) Bn∗ = 1, n = 0.75 s

−1
(l) Bn∗ = 1, n = 1.00 s

−1

Figure 17: Cylinder in an Hers
hel-Bulkley �uid. Dependen
y of the unyielded regions in terms of the

Bingham number and the �ow index
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(a) Bn
∗
= 10 (b) Bn

∗
= 100

Figure 18: Cylinder in a dilatant Hers
hel-Bulkley �uid (n = 2). Yielded (grey) and unyielded (
oloured)

regions and �ow streamlines. Re
ir
ulation region on y axis and stagnation zone (with polar 
aps) on x axis

(a) Bn
∗
= 0.1 (b) Bn

∗
= 1 (
) Bn

∗
= 10 (d) Bn

∗
= 100

Figure 19: Cylinder in a dilatant Hers
hel-Bulkley �uid (n = 2). Growth of the unyielded regions in terms

of Bn∗
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The shape of the stagnation and the re
ir
ulation regions are in good a

ordan
e with those obtained in

[8℄ and [2℄ also, although in the latter the shape of the zones was more rounded.

(a) Drag 
oe�
ient (b) Drag 
oe�
ient related to the yield stress

Figure 20: Cylinder in a dilatant Hers
hel-Bulkley �uid n = 2. Drag 
oe�
ient versus the Bingham number

Bn∗
and the yield stress

7.2 Flow around a moving 
ylinder rotating around its axis

7.2.1 Des
ription of the problem

The last example simulates a rotating 
ylinder moving between parallel planes in a Hers
hel-Bulkley �uid.

The prin
ipal obje
tive is to study the yielded and unyielded region, to de�ne the lo
alization pattern of

the strain rate and to see the evolution of the stream lines at di�erent velo
ities of rotation.

7.2.2 Model and results

The geometri
al setting is similar to the one des
ribed in Se
tion 6.2, but with the 
ylinder rotating around

its axis. The problem is therefore antisymmetri
 with respe
t to the verti
al axis y (Figure 21). This implies

that only half of the domain needs to be simulated (the shaded area in Figure 21), provided suitable boundary


onditions are imposed on the plane of antisymmetry. The referen
e system is moving with the 
ylinder;

therefore, on the outer boundary of the domain ux = V = 1 m/s is imposed in the x dire
tion, while uy = 0
m/s. A no slip boundary 
ondition is imposed on the surfa
e of the 
ylinder.

Table 6 summarizes the properties of the material and the regularization parameter used. The �ow index

of the Harshel-Bulkley model is n = 0.25, whi
h 
orresponds to a highly pseudoplasti
 �uid.

The aspe
t ratio of the 
omputational domain is H : R = 10 : 1 and L : R = 30 : 1. The unstru
tured
mesh used in the example is shown in Figure 22(a); it is 
omposed of 9425 nodes and 18345 linear triangular
elements. The average size of the elements on the surfa
e of the 
ylinder (see Figure 22(b)) is of 0.01 m,

whereas on the verti
al line (from B to C and from G to C' in Figure 21) the element size varies from 0.01
m to 0.04 m.
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Material properties

Consisten
y index k 1 Pa· sn

Yield stress τy 100 Pa

Flow index n 0.25

Regularization

Regularization 
oe�
ient m 1000 s

Table 6: Moving and rotating 
ylinder in an Hers
hel-Bulkley �uid. Material parameters and regularization


oe�
ient

x

y

L L

H

H

B

A D

EC

R

P � �

V
V

O

E'C'

D'

F

F'

Figure 21: Moving and rotating 
ylinder in an Hers
hel-Bulkley �uid. Geometry and boundary 
onditions

(a) Mesh of the whole domain (b) Mesh around

the 
ylinder

Figure 22: Moving and rotating 
ylinder in an Hers
hel-Bulkley �uid. Unstru
tured mesh used for the


al
ulation
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Four di�erent velo
ities of rotation (VROT ) have been studied: 0, 0.5, 1.0 and 5 m/s. The symmetry with

respe
t to the x axis observed for VROT = 0 m/s (Figure 23(a)) is lost when the 
ylinder starts rotating.

Under these 
ir
umstan
es only symmetry with respe
t to the verti
al axis y is maintained (Figures 23(b)-

23(d)). This is 
on�rmed by the streamlines (Figures 24(a)-24(d)).

The in
rement of the velo
ity of rotation makes one of the slip lines progressively disappear while the

other moves 
loser to the 
ylinder. On one side of the 
ylinder the rotational velo
ity adds to the linear

velo
ity, while it is opposed on the opposite side. For high values of the rotational velo
ity (Figure 23(d))

the rate of strain lo
alization 
on
entrates around the 
ylinder.

The slip lines of Figure 23 
orrespond to the 
hange of slope in the streamlines (Figure 24) that redu
es

their relative distan
e.

Figures 24(a)-24(d) show the 
omplex evolution of the yielded and unyielded regions as the velo
ity of

rotation in
reases. The re
ir
ulation zone in
reases arriving to de�ne a semi 
ir
le for VROT = 1 m/s and it

disappears for VROT = 5 m/s, leaving a thin layer of unyielded material 
lose to the surfa
e while the size

of the re
ir
ulation region under the 
ylinder in
reases. The growth of the stagnation region 
ulminates for

VROT = 1 m/s and no polar 
aps are present for higher velo
ities.

(a) Vrot = 0.0 m/s (b) Vrot = 0.5 m/s (
) Vrot = 1.0 m/s (d) Vrot = 5.0 m/s

Figure 23: Moving and rotating 
ylinder in an Hers
hel-Bulkley �uid. Lo
alization of strain rate for di�erent

rotational velo
ities

The drag de
reases as the velo
ity of rotation in
reases. On the 
ontrary, the lift 
oe�
ient, whi
h is null

when the 
ylinder is not rotating, in
reases with the velo
ity of rotation. It is worth noting that the drag is

substantially higher than the lift in all the 
ases.

8 Con
lusions

In the present work a mixed stabilized �nite element formulation for Bingham and Hers
hel-Bulkley �uids

is presented. The implementation of an OSS stabilization te
hnique allows to use equal order interpolation

of velo
ity and pressure (i.e., P1/P1 linear elements), avoiding both the pressure and velo
ity os
illations

and leading to a stable and a

urate solution.

On the one hand, being OSS a residual based stabilization te
hnique, no 
onsisten
y error is introdu
ed.

On the other hand, 
onstru
ting the subs
ale in the subspa
e orthogonal to the �nite element one leads to

a minimization of the numeri
al dissipation on the dis
rete solution.

The extrusion pro
ess of a Bingham �uid with the se
tion redu
ed by 2/3 shows a 
orre
t de�nition of

the slip lines a

ording to Pradtl's theory. A 
ylinder moving between two parallel planes is the se
ond

example studied. The 
omparison with the results obtained by other authors leads to the 
on
lusion that

the presented te
hnique reprodu
es 
orre
tly the yielded and unyielded regions, as well as 
al
ulates the


orre
t drag for di�erent Bingham numbers and geometri
al relations. Pseudoplasti
 and dilatant 
ases of
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(a) Vrot = 0.0 m/s (b) Vrot = 0.5 m/s

(
) Vrot = 1.0 m/s (d) Vrot = 5.0 m/s

Figure 24: Moving and rotating 
ylinder in an Hers
hel-Bulkley �uid. Streamlines and yielded and unielded

regions for di�erent rotational velo
ities

Hers
hel-Bulkley are are also used to study a 
ylinder moving in an in�nite domain and a 
ylinder moving

and rotating around its axis. Also in these 
ases, the polar 
aps and re
ir
ulation regions are 
orre
tly

reprodu
ed.
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(a) Drag 
oe�
ient

(b) Lift 
oe�
ient

Figure 25: Moving and rotating 
ylinder in an Hers
hel-Bulkley �uid n = 0.25. Drag and lift for di�erent

rotational velo
ities
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