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Abstrat

This paper presents the appliation of a stabilized mixed pressure/veloity �nite element formulation

to the solution of visoplasti non Newtonian �ows. Both Bingham and Hershel-Bulkley models are

onsidered.

The detail of the disretization proedure is presented and the Orthogonal Subgrid Sale (OSS)

stabilization tehnique is introdued to allow for the use of equal order interpolations in a onsistent way.

The matrix form of the problem is given.

A series of examples is presented to assess the auray of the method by omparison with the results

obtained by other authors. The extrusion of a Bingham �uid and the movement of a moving and rotating

ylinder are analysed in detail. The evolution of the streamlines, the yielded and unyielded regions, the

drag and lift fores are presented.

These benhmark examples show the apaity of the mixed OSS formulation to reprodue the be-

haviour of a Bingham and Hershel-Bulkley �ows with the required auray.

Keywords: Bingham �ows, Hershel-Bulkley �ows, Visoplasti �uids, Variational multisale stabiliza-

tion, Orthogonal Subsale Stabilization, moving ylinder, extrusion.

1 Introdution

The aim of this paper is to present a ontinuum formulation and its orrespondent disrete version for

Bingham and Hershel-Bulkley on�ned �ows, using mixed veloity/pressure linear �nite elements.

Bingham and Hershel-Bulkley are visoplasti non-Newtonian �uids haraterized by the presene of a

threshold stress, the yield stress. When the yield stress is exeeded the �uid �ows; ontrariwise, if this limit

is not ahieved, the �uid ats as a rigid material [37℄.

Bingham plastis are very ommon in industry. They an model the behaviour of a large number of

materials, suh as paints, and many produts in food industry (kethup, mayonnaise, et). Eugene C.

Bingham oneived this rheologial law while studying the behaviour of paints at the beginning of XX

entury [10℄. The Hershel-Bulkley model is a generalization of the Bingham one, and it is less known. It

desribes the behaviour of pastes, gels, or drilling �uids. It an be also used for simulating debris �ow ([58℄,

[75℄). Both models have a strong disontinuity in their rehologial behaviour due to the existene of the yield
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stress, di�ult to treat numerially. Di�erent regularized formulations have been proposed to overome this

issue, Berovier and Engelman [7℄, Tanner and Milthorpe [83℄, and Beris [8℄, among others. Tanner and

Milthorpe were the �rst to propose a double visosity model, while Beris used a Von Mises yield riterion in

the unyielded zone and an ideal Bingham model in the yielded region. In 1987, Papanastasiou [67℄ proposed

a regularization valid both for the unyielded and the yielded regions. Reently, Souza Mendes and Dutra

(SMD) [40℄ presented a modi�ation to the model by Papanastasou.

The movement of isothermal �ows is governed by onservation of linear momentum and mass, represented

by the Navier Stokes equations. In the ase of non Newtonian �uids, the onstitutive law has a variable

visosity whose behaviour is given by the rheologial models.

Traditionally visoplasti �ows are alulated using �nite elements ([1℄, [64℄, [67℄, [87℄) but an attempt to

use �nite volumes were proposed by Bharti et al [9℄, and Tanner and Milthorpe [83℄ used boundary elements.

In this work a mixed veloity/pressure �nite element formulation for simpliial elements is developed.

This means that both veloity and pressure are interpolated pieewise linearly within the �nite element

mesh. This is a frequent hoie in �uid dynamis beause of their simpliity. On the one hand, this kind

of linear elements, alled P1/P1, present a soure of instability due to the ombination of the interpolation

spaes of pressure and veloity [31℄. The Ladyzenskaja-Babu�ska-Brezzi ondition is not satis�ed in suh

inompressible problem and spurious osillations of the pressure an ompromise the solution [14℄. On the

other hand, the onvetive term presents another soure of instability for onvetion-dominated problems.

The use of a proper stabilization tehnique is therefore needed to ensure stability and onvergene of the

solution.

Nowadays the most e�etive stabilization tehniques are based on the onept of sub-sales. These

were �rst introdued by Hughes [46℄, who proposed an Algebrai Sub-Grid Sale (ASGS) tehnique for the

stabilization of a salar di�usion-reation equation. Codina generalized the approah for multidimensional

systems [32℄. The idea is to split the unknown in a part that an be solved by the �nite element approximation

plus an unresolvable sale (i.e. the sub-sale) that an not be aptured by the �nite element disretization.

The sub-sale is approximated in a onsistent residual fashion so that its variational stabilizing e�et is

aptured. More reently, Codina proposed to use a spae orthogonal to the �nite element spae for the

subsale, introduing the Orthogonal Subgrid Sale (OSS) stabilization tehnique ([33℄, [34℄). The main

advantage of OSS is that it guarantees minimal numerial dissipation on the disrete solution, beause it

adds nothing to those omponents of the residual already belonging to the FE subspae. This maximizes

auray for a given mesh, an issue always important and no less in non linear problems.

OSS has been suessfully applied to the Stokes problem, to the onvetion-di�usion-reation equations

and to the Navier-Stokes equations. Nowadays it is used in a wide range of di�erent problems in �uid

dynamis ([32℄, [33℄, [36℄, [50℄, [51℄, [52℄, [70℄, [77℄) and solid mehanis ([18℄, [19℄, [20℄, [21℄, [22℄, [23℄, [29℄,

[30℄). Castillo and Codina presented a three �elds formulation for viso-elasti [17℄, power law and Carreau-

Yasuda [16℄ �uids omparing ASGS and OSS. In the present work the OSS stabilization tehnique is applied

to the Navier-Stokes equations to model Bingham and Hershel-Bulkley �ows.

The struture of the paper is as follow. First, both the Bingham and the Hershel-Bulkley models are

presented. An overview of the regularizations proposed in the literature is given. The Navier Stokes equations

for a non Newtonian �uid are presented in their strong form. The orresponding disrete model is presented

and the stabilization using Orthogonal Subgrid Sales (OSS) is explained in detail. The matrix form of the

problem is given. Seondly, the Bingham model is applied to two well known problems: an extrusion proess

and a ylinder moving in a Bingham �uid on�ned between two parallel planes. Then, a ylinder moving

in an Hershel-Bulkley �uid is modeled in two di�erent senarios: a ylinder moving with onstant veloity

and a ylinder moving and rotating around its axis. In all the ases the solution is ompared with available

results from other authors. Finally, some onlusions on the performane of the proposed formulation are

given.
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2 Visoplasti �uids

For an inompressible �uid, the stress tensor σ is split as

σ = −pI+ τ (1)

where p is the pressure, whih mutiplied by the identity matrix (I) represents the volumetri part of the

stress tensor, and τ is the deviatori part of the same. In a �uid, this latter is related to the rate of strain

tensor ε through the visosity µ
τ = 2µ ε(u) = 2µ∇su (2)

where u is the veloity and ∇su = 1/2
(

∇u+∇uT
)

is the symmetri part of the veloity gradient. Note

that for inompressible materials, ∇ · u = 0, and the rate of strain tensor, ε, is deviatori. The kinemati

visosity µ is onstant for Newtonian �uids (µ = µ0, being µ0 the Newtonian visosity), but it varies in

funtion of the veloity for non-Newtonian �uids (µ = µ(ε(u))). In this ase, visosity annot be onsidered

as a property of the material, as it is dependent on the deformation proess. The di�erent de�nitions of

µ(ε(u)) de�ne the di�erent families of non-Newtonian �uids ([11℄, [27℄).

In the present work, visoplasti �uids are onsidered. These are haraterized by the existene of a

threshold stress, the yield stress, whih must be exeeded for the �uid to deform. For lower values of stress

the visoplasti �uids are ompletely rigid or an show some sort of elastiity. One the yield stress is reahed

and exeeded, visoplasti �uids may exhibit a Newtonian-like behavior with onstant visosity (Bingham

plastis �uids) or with rate dependent visosity (Hershel-Bulkley �uids among others).

Let us introdue, for later use, the equivalent strain rate γ̇ and the equivalent deviatori stress τ in terms

of the seond invariants of the rate of strain tensor (ε) and of the deviatori part of the stress tensor (τ ),

respetively:

γ̇ = (2ε : ε)
1

2 τ =

(

1

2
τ : τ

)
1

2

(3)

2.1 Bingham Fluid

In 1919 Eugene C. Bingham, studying the behaviousr of paints, disovered that their deformation was almost

absent till reahing a threshold yield stress. After exeeding this stress limit the paints followed a Newtonian

behavior. Sine a wide range of materials have been identi�ed to have a yield threshold [67℄, this model was

studied by many authors [65℄, [71℄, [74℄. Bird [12℄ was the �rst to give a list of several Bingham plastis,

most of these present in the food or hemial industries (e.g., slurries, pastes, nails, or food substanes like

margarine, kethup, mayonnaise and others).

In the Bingham model the rate of strain is given by

γ̇ =
1

µ0

(τ − τy) if τ ≥ τy (4a)

γ̇ = 0 if τ < τy (4b)

where µ0 is the plasti visosity. Considering that τ = µ(γ̇) γ̇, Eq. (4a) an also be written as

µ(γ̇) = µ0 +
τy
γ̇

if τ ≥ τy (5)

Therefore, the deviatori stress tensor for a Bingham plasti is de�ned as

τ =

(

µ0 +
τy
γ̇

)

ε(u) if τ ≥ τy (6a)

γ̇ = 0 if τ < τy (6b)
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When the rate of deformation tends to zero this ideal rheologial model presents a singularity and the

visosity tends to in�nity (µ → ∞ as γ̇ → 0). This aspet is a serious inonvenient when treating the

model numerially ([11℄, [67℄, [68℄). For this reason, many authors have proposed regularized versions of the

Binghammodel, suh as the double visosity Tanner andMilthrope model [83℄, the widely used Papanastasiou

regularized model [67℄, or the Souza Mendes and Dutra (SMD) model [40℄. Tanner and Milthrope substitute

the rigid behaviour of the �uid with a linear dependeny of the deviatori stress by the rate of strain,

introduing a �titious visosity when the deviatori stress is lower than a ritial strain rate. Papanastasiou

introdues an exponential regularization of the visosity

µ (γ̇) = µ0 +
τy
γ̇

(

1− e−mγ̇
)

(7)

where m is a regularization parameter, so that µ = µ0 + τy m as γ̇ → 0.
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(b) Hershel-Bulkley model

Figure 1: Bingham and Hershel-Bulkley models (red line) ompared with the regularized model (blak lines)

for di�erent values of m

Figure 1(a) shows the omparison between the Bingham model of Eq. (6) and the regularized one of Eq.

(7). The main advantage of this approah is that the Bingham model an be de�ned with one equation only

with full regularity. This is the regularization used in this work. The SMD an be seen as a generalization

of the previous model: the exponential regularization is applied to both the terms of Eq. (5) and the

regularization parameter m is substituted with a rheologial parameter.

2.2 Hershel-Bulkley Fluid

The Hershel-Bulkley model [43℄ ombines the existene of a yield stress with a power law model for the

visosity

µ(γ̇) = kγ̇n−1 +
τy
γ̇

if τ ≥ τy (8a)

γ̇ = 0 if τ < τy (8b)

where k is the onsisteny parameter and n is the �ow index. Also in this ase the yield stress needs to be

overome for the material to �ow. When the yield stress is exeeded, the material �ows with a non linear

relation between stress and rate of strain as in a pseudoplasti �uid, if n > 1, or a dilatant one, if n < 1. If
n = 1 the Bingham model is reovered, and the onsisteny index is equal to the plasti visosity (k = µ0).

If the yield stress is zero (τy = 0 ) the Ostwald-de Waele power law �uid is reovered.
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The deviatori stress tensor is therefore

τ = 2

(

kγ̇n−1 +
τy
γ̇

)

ε(u) if τ ≥ τy (9a)

γ̇ = 0 if τ < τy (9b)

The Hershel-Bulkley model also presents the singularity due to the perfetly rigid behaviour below the

yield stress. The regularizations proposed to overome the problem are similar to those introdued in Setion

2.1. Tanner and Milthorpe proposed a double visosity model in funtion of a ritial strain rate to desribe

the elasti behavior for low strain rates [83℄. Papanastasiou [67℄ introdued a regularization of the visosity

µ (γ̇) = k γ̇n−1 +
τy
γ̇

(

1− e−mγ̇
)

(10)

When the rate of strain tends to zero (γ̇ → 0) the visosity depends on the �ow parameter n: if n > 1, the
limγ̇→0 µ(γ̇) = mτy and, if n = 1, the limγ̇→0 µ(γ̇) = µ + mτy; but if n < 1, the limγ̇→0 µ(γ̇) = ∞. This

means that for pseudoplasti �uids the visosity is unbounded and a trunation proedure is needed.

Figure 1(b) shows the omparison between the Hershel-Bulkley model of Eq. 9 and the regularized one

of Eq. 10.

The regularization proposed by Souza-Mendez-Dutra solves this drawbak applying the regularization to

all the terms of the visosity so that limγ̇→0 µ(γ̇) = mτy for any value of n [40℄.

The regularization proposed by Papanastasiou is the one used in the urrent work.

3 Governing equations

The problem of inompressible isothermal �uid is de�ned by the Navier-Stokes governing equation.

ρ (∂tu+ u · ∇u)−∇ · σ = f in Ω, t ∈ [0, T ] (11a)

∇ · u = 0 in Ω, t ∈ [0, T ] (11b)

where Ω ⊂ R
d
(d is the spae dimension) is the domain in a time interval [0, T ], ρ is the density of the �uid,

and f are the volumetri fores.

The non-Newtonian stress tensor σ is de�ned aording to Eqs. (1) and (2) and, therefore, ∇ · σ =
−∇p+∇ · τ . If the regularized Bingham or Harshel-Bulkley model are used then

τ = 2µ(γ̇)ε(u) (12)

with µ(γ̇) de�ned by Eq. (7) or Eq. (10), respetively. The problem is fully de�ned with the boundary

onditions:

u(x, t) = u(x, t) on ∂ΩD, t ∈ [0, T ], (13a)

n · σ(x, t) = t(x, t) on ∂ΩN , t ∈ [0, T ], (13b)

where ∂ΩD and ∂ΩN are the Dirihlet and the Neumann boundaries, respetively (∂ΩD ∩ ∂ΩN = ∅, ∂ΩD ∪
∂ΩN = ∂Ω ).

Steady-state �ows are modelled by dropping the time derivative term in Eq. (11a). Likewise, the

onvetive term an be negleted for low Reynolds numbers, as it is usually the ase for visoplasti �uids.
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4 Disrete model

The governing equations (Eqs. (11)) are solved using mixed stabilised linear/linear �nite elements for the

spatial disretization.

The weak form of the problem is obtained using a Galerkin tehnique and the non linear terms of the

momentum equation (i.e. the onvetive and visous terms of Eq. (11a)) are linearized using a seant Piard

method. The veloity u needs to belong to the veloity spae V ∈ [H1(Ω)]d of vetor funtions whose

omponents and their �rst derivatives are square-integrable and the pressure p belongs to the pressure spae
Q ∈ L2 of square-integrable funtions.

Let Vh ⊂ V be a �nite element spae to approximate V , and Qh ⊂ Q a �nite element approximation to

Q. Let Ω ⊂ R
d
be the domain in a time interval [0, T ], and Ωe

the elemental domain suh that

⋃

Ωe = Ω,
with e = 1, 2, ..., nel where nel is the number of elements.

Therefore, the standard Galerkin disrete problem is �nding uh ∈ Vh and ph ∈ Qh suh that

∫

Ω

[ρ∂tuh · vh + ρ (uh · ∇uh) · vh + 2µ(γ̇)∇suh : ∇svh − ph∇ · vh − fh · vh] dΩ = 0 ∀vh ∈ Vh (14a)

∫

Ω

[qh∇ · uh] dΩ = 0 ∀qh ∈ Qh (14b)

wh and qh are the veloity and the pressure weight funtions belonging to veloity and pressure spaes,

respetively, and some of the terms have been integrated by parts.

4.1 Stabilized model

In this work, low-order simpliial elements are used with the same linear interpolation for the veloity

and pressure �elds. This implies that the Ladyzenskaja-Babu�ska-Brezzi ondition, also alled the inf-sup

ondition, is not respeted and a stabilization tehnique is needed to overome the instability of the pressure

that may ompromise the solution.

The stabilization employed is based on the subgrid sale approah proposed by Hughes ([15℄, [45℄, [47℄).

This proposes to split the veloity �eld (u) into a part that an be represented by the �nite element mesh

(uh) and another part that aounts for the unresolvable sale (u), that is, for the variation of the veloity

that annot be aptured by the �nite element mesh. This orresponds to a splitting of the spae V into the

spae of the �nite elements (Vh) and the subgrid spae (V), so that V = Vh ⊕ V .
The sub-sale u is approximated from the residual of the momentum equation and it is evaluated inside

eah element, assuming the sub-sale to vanish on the boundary of eah element. Di�erent approximations

of the sub-sale u de�ne di�erent stabilization tehniques.

In the present work, the Orthogonal Sub-grid Sale stabilization tehnique is used. This method was

proposed by Codina ([33℄, [34℄, [35℄) as a modi�ation of the Algebrai Sub-Grid Sale (ASGS). In ASGS the

sub-sale is taken proportional to the residual (Rh = −ρ (uh · ∇uh)+∇·σh+fh) of the momentum equation,

so that u = −τ1 Rh, where τ1 is a stabilization parameter. An appliation of ASGS to non Newtonian �uid

models an be found in [51℄ and [78℄. Contrariwise, in the OSS the sub-sale is taken proportional to the

orthogonal projetion of the residual onto the �nite element spae

u = −τ1 P
⊥

h (Rh) = −τ1 (Rh − Ph (Rh)) (15)

where Ph(•) is the projetion on the �nite element spae and P⊥

h (•) = I(•) − Ph(•) is the orthogonal

projetion.

Residual based stabilization tehniques suh as ASGS and OSS do not introdue any onsisteny error,

as the exat solution annuls the added terms, so that the stabilized model onverges to the solution of the

problem in ontinuum format. Also, if designed properly, the onvergene rate is not altered; that is, the

subsale terms must be appropriately dependent on the mesh size.

6



Construting the subsale in the subspae orthogonal to the �nite element subspae has several advantages

over the many other possibilities. The main one is that it guarantees minimal numerial dissipation on the

disrete solution, beause it adds nothing to those omponents of the residual already belonging to the FE

subspae. This maximizes auray for a given mesh, an issue always important and no less in non linear

problems.

Additionally, in transient problems, the term orresponding to the time derivative belongs to the �nite

element spae, and therefore, its orthogonal projetion is null. This means that the mass matrix remains

unaltered by the stabilization method, maintaining its struture and symmetry.

Moreover, if the residual an be split in two or more terms, e.g. if the stress tensor is split into its

volumetri and deviatori parts or if the residual inludes a onvetive term, then the "ross produts" in

the stabilization terms an be negleted. This has three advantages: i) it redues the omputational stenil,

(ii) more seletive norms an be de�ned for stability ontrol and (iii) it has proved important in problems

involving singular or quasi-singular points both in linear and non-linear problems.

The part of the residual to be orthogonally projeted an be appropriately seleted. For instane, in

inompressible problems, only the gradient of the pressure needs to be added to ensure ontrol of the

pressure, with minimal numerial dissipation. These variants of the OSS, that an be onsidered to belong

to the family of term-by-term stabilization methods, introdue onsisteny errors, but they are of optimal

order and the �nal onvergene rate of the sheme is not altered.

The disretized linearized problem, stabilized with OSS is, �nd un+1

h and pn+1

h suh that

∫

Ω

[ ρ

δt

(

un+1

h − un
h

)

· vh + ρ
(

un+1

h · ∇un+1, i
h

)

· vh

+2µ(γ̇)n+1, i∇sun+1

h : ∇svh − pn+1

h ∇ · vh − fn+1

h · vh

]

dΩ

+
∑

e

∫

Ωe

τ1ρ
(

un+1

h · ∇vh

)

·
[

ρun+1

h · ∇un+1

h +∇pn+1

h −fn+1

h − ρv∗

h · yn+1

h

]

dΩ = 0 ∀vh ∈ Vh

(16a)

∫

Ω

[

qh∇ · un+1

h

]

dΩ +
∑

e

∫

Ωe

τ1∇qh ·
[(

ρun+1

h · ∇un+1

h +∇pn+1

h − fn+1

h

)

−ρv∗

h · yn+1

h

]

dΩ = 0 ∀qh ∈ Qh

(16b)

where yh is the nodal projetion de�ned as

yh
n+1 = Ph

(

un+1

h · ∇un+1

h +
1

ρ

(

∇pn+1

h − fn+1

h

)

)

(17)

In ompat notation, the projetion of Eq. (17) is the solution of

(

yh
n+1,v∗

h

)

=

(

un+1

h · ∇un+1

h +
1

ρ

(

∇pn+1

h − fn+1

h

)

,v∗

h

)

(18)

for all v∗

h ∈ V∗

h, being V∗

h equal to Vh extended with the vetors of ontinuous funtions assoiated to the

boundary nodes.

The stabilization parameter τ1 in Eqs. (16a) and (16b) is de�ned so to obtain a stable numerial sheme

and an optimal veloity of onvergene. Consequently, τ1 is alulated for eah element as [34℄

τ1 =

[

c1
µ

h2
e

+ c2
ρ|ue|

he

]−1

(19)

where h is the harateristi length of the e-th element and |ue| is the norm of veloity in the element. c1
and c2 are two oe�ients that in the present work are hosen as c1 = 4 and c2 = 2 [34℄.
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5 Matrix form

The solution system (16) is rewritten in matrix form as

M
1

δt
Un+1 +K(Un+1)Un+1 +GPn+1 + Su(τ1;U

n+1)Un+1 − Sy(τ1;U
n+1)Yn+1 = Fn+1

(20a)

DUn+1 + Sp(τ1)P
n+1 − Sz(U

n+1)Yn+1 = 0 (20b)

C(Un+1)Un+1 +GπP
n+1 = 0 (20)

where U and P are the vetors of nodal veloities and pressures, respetively, Y is the vetor of nodal

projetions and F is the vetor of nodal fores.

Finally, the matrix operators of Eqs. (20) are de�ned as

Mab
ij =

(

Na, ρN b
)

δij (21a)

K
(

Un+1
)ab

ij
=

(

Na, ρun+1

h · ∇N b
)

δij +
(

∇Na, 2µ∇sN b
)

δij (21b)

Gab
i =

(

Na, ∂iN
b
)

(21)

Fa
i = (Na, fi) (21d)

Dab
j =

(

Na, ∂jN
b
)

(21e)

C
(

Un+1
)ab

ij
=

(

Na,un+1

h · ∇N b
)

δij (21f)

Gπ
ab
i =

(

Na, ∂iN
b/ρ

)

(21g)

The stabilization operators of Eqs. (20) are

Su

(

τ1,U
n+1

)ab

ij
=

(

τ1u
n+1

h · ∇Na, ρun+1

h · ∇N b
)

δij (22a)

Sy

(

τ1u
n+1

h

)ab

ij
=

(

τ1u
n+1

h · ∇Na, ρN b
)

δij (22b)

Sp (τ1)
ab

=
(

τ1u
n+1

h · ∇Na,∇N b
)

(22)

Sz (τ1)
ab
j =

(

τ1∂jN
a, ρN b,

)

(22d)

6 Numerial results: Bingham Fluids

6.1 Extrusion

6.1.1 Desription of the problem

, The �rst example is the extrusion proess of a Bingham �uid. Extrusion is widely used in several industrial

proesses suh as metal forming, manufaturing, food prodution, et. Real appliations are usually in three

dimensions; nevertheless, a plane strain 2D analysis provides very useful information on the evolution of the

plasti region and gives an estimation of the fores required in the proess.

The slip-lines theory was �rst introdued by Prandtl at the beginning of the XX entury [72℄. This

methodology was originally used in plane strain problems to estimate the stress �eld and the related veloity

8



�eld in perfet plasti materials with the Von Mises (or Tresa) yield riterion. The approah was generalized

by Mandel [56℄, who introdued other yield riteria and analyzed the plane stress ase [55℄.

The slip lines are tangent to the diretion of the maximum tangential stress and are the trajetories of the

maximum shear stress. In plain strain, the plasti �ow oinides with the maximum shear stress diretion.

Therefore, rigid-plasti material "slips" in the diretion of the maximum shear stress lines.

In 1948, Hill [44℄ used the slip line theory to analytially solve the problem of diret fritionless extrusion

in a die with a 50% redution of its setion. In 1961, Alexander [3℄ demonstrated that if the redution of

the die setion is of 2/3, there exists a part of the yielded region (the area ABDC in Figure 2) in whih the

average pressure oinides with the extrusion pressure p

p =
4

3

(

1 +
π

2

)

τy (23)

where τy is the yield stress.

b

a

d
c
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Figure 2: Extrusion of a Bingham �uid. Slip lines aording to Alexander [3℄

P
e
x
t(

t)

E

P

L1 L2

2
H

H

SLIP B.C.

SLIP B.C.

S
L
IP

 B
.C

.

Pext = 0Pa

C D

F

B

A x

y

Figure 3: Extrusion of a Bingham �uid. Geometry and boundary onditions

The extrusion proess an be numerially simulated using either a Lagrangian plasti �ow or an elasto-

plasti solid. In the �rst ase, the elasti deformation is negleted and the material follows the Von Mises

yield riterion and an assoiated �ow rule. Zienkiewiz [87℄ and Oñate [66℄ applied this approah to analyze

the plain stress problem without hardening using a Lagrangian mesh moving with the material. In the

seond ase, the elasti strains are onsidered, whih ompliates the problem introduing both geometrial

and material non linearities. In 1984, Lee [53℄ published one of the �rst examples of an extrusion problem

using a large deformation elasto-plasti approah. He used an updated Lagrangian tehnique and the Von

Mises yield riterion with hardening.

A widely used alternative is to use an Eulerian visoplasti �ow and a Von Mises yield riterion ([39℄,

[42℄, [49℄, [68℄). In this ase, the material follows a rigid-plasti law with a very low plasti visosity (almost

9



Figure 4: Extrusion of a Bingham �uid. Mesh used in the alulation: 2821 nodes and 5340 linear triangular
elements

perfet plastiity). One the yield stress is reahed, a high loalization of the strain rate ours. This an be

identi�ed with the slip lines of Prandtl theory. This is the formulation used in this work with the objetive

of identifying the yielded and unyielded regions, the evolution of the stream lines and of the slip lines. The

alulated pressure on the ram is ompared with the analytial solution given by Eq. (23).

6.1.2 Model and results

The geometry and boundary onditions used are presented in Figure 3. A redution of 2/3 is onsidered. A
slip ondition is imposed on the wall boundaries CDEF and C'D'E'F'. An inreasing normal stress is imposed

on CC'. This represents the ram pressure that inreases linearly with time from p = 0 Pa at the initial time

(t = 0 s) to p = 5000 Pa at t = 1 s. The vertial omponent of veloity is set to zero on CC'. The pressure

is set to zero in point B, and the horizontal veloity is left free in point E.

A 2D plane strain simulation is arried on. Exploiting the symmetry of the problem, only half of the

domain is disretized using 2821 nodes 5340 and linear/linear (P1/P1) triangular elements (see Figure 4).

The material parameters are summarized in Table 1 where the regularization oe�ient employed for the

Bingham model is also given.

Material properties

Plasti visosity µ0 10−6
Pa · s

Density ρ 100 kg/m

3

Yield stress τy 1000 Pa

Regularization

Regularization oe�ient m 1000 s

Table 1: Extrusion in a Bingham �uid. Material parameters and regularization oe�ient

The example is solved as a series of steady-state problems with inreasing ram pressure. Two senarios

have been taken into aount: with and without the onvetive term in the momentum equation. Figure 5

shows the veloity evolution on point P while the pressure on the ram is inreased, in omparison with the

analytial solution (ontinuous line). At t = 0.69 s the �ow is fully developed and the yielded regions are

ompletely de�ned. The numerial pressure for yielding is Pnum = 3400 Pa, while the analytial solution is

Pan = 3428 Pa aording to Eq. (23).
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If the onvetion term is inluded in the momentum equation (blak dotted line in Figure 5), it is neessary

to inrease the external pressure in order to overome the inertial e�ets one the yield stress is ahieved.

This does not happen when the onvetive term is negleted (red dotted line in Figures 5). In this ase,

one the slip lines have developed, very large veloities are ahieved with a very small inrement of external

pressure.

Figure 5: Extrusion of a Bingham �uid. Pressure-veloity urve in point P (see Figure 4). Comparison

between the analytial solution and the numerial results

Figure 6 presents the stream lines evolution during the extrusion proess. An abrupt hange in the

smoothness of the streamlines is observed when the slip lines appear (Figure 6() and 6(d)). Figure 6 also

shows the yielded (dark) and un-yielded (fair) regions above and below the ritial strain rate (γ̇crit = 0.01688
s

−1
, orrespondent to τ = τy).
The evolution of the veloity �eld is presented in Figure 7. It an be observed that while at t = 0.6 s

almost all the domain is solid and just a very small region has reahed the yield threshold, at t = 0.678 s

the extrusion mehanism and the slip lines are fully developed. This lines oinide with the slip lines of the

lassial plasti theory [55℄.
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(a) t = 0.6 s (b) t = 0.677 s

() t = 0.678 s (d) t = 0.68 s

Figure 6: Extrusion in a Bingham �uid. Evolution of the stream lines and of the yielded region (dark) for

τy = 1000 Pa and γ̇crit = 0.01688 s−1
at t = 0.6, 0.677, 0.678 and 0.68 s

(a) t = 0.6 s (b) t = 0.6 s

() t = 0.6 s (d) t = 0.6 s

Figure 7: Extrusion in a Bingham �uid. Evolution of the veloity �eld for τy = 1000 Pa and γ̇crit = 0.01688
s

−1
at t = 0.6, 0.677, 0.678 and 0.68 s
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6.2 Flow around a ylinder between two parallel planes

6.2.1 Desription of the problem

The �ow around a ylinder in a on�ned Bingham �uid is studied in this seond example. The �ow around

an obstale was initially studied onsidering a spherial objet. This lassial problem in omputational �uid

dynamis has several pratial appliations in di�erent engineering �elds: from segregation in food industry,

to transport of mud in geotehnial engineering or aerosols in environmental engineering, et. The geneeral

problem is the suspension of large partiles in a �uid with a yield threshold. The falling or settlement of the

partiles an only our if the gravity fore exeeds the yield limit ([24℄, [73℄, [81℄).

The visoplasti �ow around an obstale has been widely studied both numerially and experimentally

([24℄, [26℄, [41℄, [85℄). For the spei� ase of Bingham plastis, many authors have proposed di�erent

solutions for the �ow around a sphere subjeted to gravity fore between two parallel planes or in an in�nite

domain ([13℄, [54℄, [60℄, [88℄). Moreover, Roquet and Sarmito [76℄ studied the e�et of an additional pressure

gradient and Slijep�evi¢ and Peri¢ [80℄ studied the movement of a sphere inside a ylinder.

Nowadays, there exists abundant literature on a sphere falling either in a pseudoplasti, visoplasti or

visoelasti �uid for low Reynolds numbers [25℄. Contrariwise, not many authors have treated the movement

of a ylinder in a non-Newtonian �uid.

The aim of this example is to de�ne the yielded zones and the hydrodynami drag fore in terms of the

geometrial on�guration of the parallel planes and the ylinder.

6.2.2 Adimensional fores

In this and the following examples a series of adimensional quantities will be used to present the results.

These quantities are de�ned here.

Being x the diretion of the �ow and y its orthogonal diretion in the plane (see Figure 8(a)), the drag

fore (FD) and lift fore (FL) ating on the ylinder an be alulated as

FD = lR

∫ 2π

0

tx dθ = 4lR

∫ π/2

0

[σxx cosθ + σxy sinθ] dθ (24)

and

FL = lR

∫ 2π

0

ty dθ = 4lR

∫ π/2

0

[σxy cosθ + σyy sinθ] dθ (25)

where R = 1 m is the radius and l = 1 m is the height of the ylinder. The tration vetor tT = (tx, ty) is
de�ned by the stress omponents in the xy plane (i.e., σxx, σyy , σxy) and of angle θ between the normal to

the ylinder and the x axis as tx = σxxcosθ + σxysinθ and ty = σxycosθ + σyysinθ.
The adimensional drag and lift oe�ients in the spei� ase of a Bingham �uid are

F ∗

D =
FD

µV l
; F ∗

L =
FL

µV l
(26)

An information on the relevane of the yield stress in the resistane that the �ow provides to the movement

of the ylinder is given by the drag oe�ient F
′

D. This is by de�nition the ratio between the drag fore and

the yield stress

F
′

D =
FD

τy
(27)

Finally, the last adimensional quantity used in the paper is the adimensional yield stress τ∗y assoiated

to the drag fore

τ∗y =
2τyπR

2

FD
. (28)
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6.2.3 Model and results

The ylinder with radius R = 1 m is loated between two in�nite parallel planes. The distane between the

planes is 2H and the enter of the ylinder is at distane H from both of them. The system of referene

is attahed to the enter of the ylinder and it is onsidered �xed (Figure 8(a)). The planes are moving

with veloity V as well as the lateral sides of the omputational domain, loated su�iently far from the

ylinder. No slip is assumes on the surfae of the ylinder and inertial e�ets are ignored (Re ≈ 0). The

�ow has double symmetry, with respet both to the vertial and to the horizontal axes. For this reason, just

a quarter of the domain is analyzed (see Figure 8(b)) ([8℄, [69℄).

Figure 8(b) shows a shemati desription of the boundary onditions used. A no slip ondition is applied

on line AB, orthogonal veloity and tangential stresses are zero on lines BC and AD. The veloity is �xed

on ED and on the upper wall where the vertial omponent uy = 0 and the horizontal one ux = V = 1
m/s. Pressure is set to zero on C to determine univoally the pressure �eld. The length of the domain (L in

Figure 8(b)) is su�iently large to ensure that the �ow is ompletely developed.

L L

H

H
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A D
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V
V

O
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F
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x

y

(a) Complete domain

L
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A D

EC

R

V
O

x

x y

y

x

y

(b) Redued domain used in the analysis

Figure 8: Cylinder in a Bingham �uid. Geometry and boundary onditions

The properties of the material are summarized in Table 2. The Bingham number (Bn) in Table 2 is an

adimensional quantity representing the ratio between the yield and the visous stresses and it is alulated

as Bn = τy(2R)/µ0V where τy is the yield stress, H is the radius of the die, µ0 is the plasti visosity and

V is the veloity of the �uid. A range of yield stresses (and, therefore, of Bingham numbers) is taken into

aount.

Di�erent relations H : R and L : R have been onsidered to assess the e�et of the domain size on the

results. These are summarized in Table 3. In all the ases a more re�ned mesh is onsidered lose to the

ylinder (see Figure 9).

The results obtained in terms of yielded regions, drag fore and stream lines are oherent with those

obtained by [60℄. In Figure 10 the yielded and unyielded regions are shown for di�erent Bingham numbers

for two di�erent geometrial ratios H : R = 4 : 1 and H : R = 10 : 1. Figures 10(a) and 10(f) show the

streamlines in the Newtonian ase (i.e., Bn = 0). In the �rst ase, the larger relative dimension of the
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Material properties

Plasti visosity µ0 1 Pa· s

Yield stress τy 0, 0.05, 0.5, 5, 50, 500 Pa

Bingham number Bn 0, 0.1, 1, 10, 100, 1000

Regularization

Regularization oe�ient m 1000 s

Table 2: Cylinder in a Bingham �uid. Material parameters and regularization oe�ient

Mesh H : R L : R Nodes Elements

M1 2 : 1 12 : 1 783 1401

M2 4 : 1 24 : 1 3494 6623

M3 10 : 1 60 : 1 5371 10245

M4 50 : 1 250 : 1 13513 25473

Table 3: Cylinder in a Bingham �uid. Domains and meshes onsidered

(a) Mesh of the whole domain (b) Mesh around the ylinder

Figure 9: Cylinder moving in a Bingham �uid. Unstrutured mesh M3 with H : R = 10, L : R = 60
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(a) Bn = 0, H : R = 4 : 1

(b) Bn = 0.1, H : R = 4 : 1

() Bn = 1, H : R = 4 : 1

(d) Bn = 10, H : R = 4 : 1

(e) Bn = 100s, H : R = 4 : 1

(f) Bn = 0, H : R = 10 : 1

(g) Bn = 0.1, H : R = 10 : 1

(h) Bn = 1, H : R = 10 : 1

(i) Bn = 10, H : R = 10 : 1

(j) Bn = 100s, H : R = 10 : 1

Figure 10: Cylinder in a Bingham �uid. Stream lines and yielded (fair) and unyielded (dark) region for

di�erent Bingham numbers. On the left H : R = 4 : 1, on the right H : R = 10 : 1
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ylinder leads to a steeper gradient of veloity in the y diretion. For Bingham numbers Bn > 10, the drag
fore is independent from H : R. The yielded/unyielded regions, the reirulation and stagnation regions

appear similarly to what happens in the ase of a sphere. It is worth observing that as Bn inreases:

• The yielded region around the ylinder dereases

• The unyielded region surrounds the ylinder. This proess is more evident in the ase H : R = 10 : 1,
on�rming that the wall e�et in not negligible in the ase H : R = 4 : 1.

• The reirulation islands immersed in the yielded region appear and get loser to the ylinder in a

symmetri way. They �nally adhere to the ylinder for Bn = 100.

• The stagnation zone appears at the side of the ylinder.

• The stagnation zone get smaller than the reirulation one.

The dimension and shape of the polar aps appearing in the stagnation regions is similar to the results

presented in [8℄ and [86℄.

There is little information on the drag oe�ient of a ylinder moving in a visoplasti �uid. Roquet

and Saramito [76℄ and Mitsoulis [60℄ present some studies on this spei� problem. In Figure 11(a) the

adimensional drag oe�ient, Eq. (26), is plotted versus the Bingham number for the di�erent ases analized

and the results are ompared with those of Mitsoulis showing a good agreement. It is worth observing that,

as the Bingham number inreases, the adimensional drag oe�ient inreases and beomes independent from

the relation H : R (for H : R > 2). When Bn → 0, the adimensional drag reahes the value of the drag of

a Newtonian �uid and when Bn → ∞ it tends to F ∗

D = 1.14Bn. This limit was also identi�ed by Mitsoulis

and Huigol [63℄. The results obtained in this work are in the range of the limit values obtained by Adahi

and Yoshioka [2℄ with their max and min theorem.

(a) Drag oe�ient vs Bn (b) Drag oe�ient vs adimensional τ∗y

Figure 11: Cylinder in a Bingham �uid. Drag oe�ient. Comparison between the urrent work and other

numerial solutions

Figure 11(b) shows that for high values of the adimensional yield stress the drag inreases. The growth

is progressively more steep as it gets to the ritial limit of τ∗y = 0.128 (the red vertial line of Figure 11(b)).

At this value of the yield stress, the drag fore balanes with the buoyany fore.
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7 Numerial results: Hershel-Bulkley Fluids

7.1 Flow around a ylinder in an in�nite medium

7.1.1 Desription of the problem

The problem treated in this setion is similar to the one presented in Setion 6.2, but now the medium is

in�nite the �ow follows the Hershel-Bulkley model. This is a omplex and seldom studied phenomenon.

In the literature there exist some studies on a sphere moving in a tube �lled with a Hershel-Bulkley

�uid at Re ≈ 0 ([5℄, [6℄). Some experimental results were provided by Atapattu [4℄ and, more reently,

some experiments were performed on the �ow around several spheres at low Re (Re < 1) on�rming the

di�ulties on managing very low veloities ([57℄, [81℄). Some authors have studied the movement of ylinders

of di�erent sizes inside a tube [62℄ and the �ow around objets with di�erent shapes with Re in the range

[10−1 − 10−8] [48℄. Mitsoulis provided a review of the results obtained for di�erent problems on Bingham

and Hershel-Bulkley �ows [61℄ where the �ow around a sphere in a visoplasti medium is mentioned.

The �ow around a ylinder in a Hershel-Bulkley pseudoplasti �uid in an in�nite domain was studied

by De Besses [38℄. Tanner [82℄ presents numerial results for a ylinder moving in a pseudoplasti �uid

(governed by a power law, without yield threshold) in an in�nite domain. The problem in a on�ned domain

was studied by [59℄ and [79℄. Barthi et al. [9℄ inluded also dilatant �uids (0.6 < n < 2).
All the works mentioned are based on �nite elements, exept Bharti et al [9℄, where �nite volumes were

employed, and Tanner and Milthorpe [83℄, who used boundary elements. Sivakumar [79℄ ompared �nite

elements and �nite volumes results demonstrating the equivalene of both approahes.

The ase of non-inertial �ow of a Newtonian �uid around a ylinder in an in�nite domain has no analytial

solution; the reason being related to the shape of the streamlines far away from the ylinder, what is known

as the Stoke's paradox [84℄. The paradox does not present for pseudoplasti �uids (n ≤ 1) and it is still

unlear if it is present or not for dilatant �ows (n > 1).
In the ase of a �ow in a �nite domain the analytial solution does exist for all values of the �ow index

n ([28℄, [83℄).

The objetive of the urrent work is to study the �ow around a ylinder in an in�nite Hershel-Bulkley �uid

domain. The determination of the drag fore, the yielded and unyielded zones, as well as the reirulation

and stagnation zones is arried out for di�erent generalized Bingham numbers. The generalized Bingham

number for an Hershel-Bulkley �uid is de�ned as Bn∗ =
τy
k

(

H
V

)n
.

Non inertial Re ≈ 0 is assumed in all the examples.

7.1.2 Adimensional fores

The adimensional drag and lift oe�ients in the spei� ase of a Hershel-Bulkley �uid are de�ned as

F ∗

D =

FD

Rl

k

(

V

R

)n =
FD

kR1−nV nl
; F ∗

L =

FL

Rl

k

(

V

R

)n =
FL

kR1−nV nl
(29)

where k is the onsisteny index of the �uid, V is the veloity of the ylinder and n is the �ow index of the

Hershel-Bulkley model.

7.1.3 Model and results

Figure 12 shows the geometry and boundary onditions used in the urrent example. The geometry is similar

to that onsidered in Setion 6.2, but in this ase the semi-width of the domain, L, is taken su�iently large

not to in�uene the results. The minimum L for this is smaller for Bingham than for Newtoninan �uids and

yet smaller for Hershel-Bulkley �uids.
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The system of referene is �xed to the ylinder; therefore veloity boundary onditions are imposed on

the external boundary of the domain (sides CE and ED in Figure 12). A no slip boundary ondition is

imposed on the surfae of the ylinder. The radius of the ylinder is R = 0.5 m and the veloity in the x
diretion is V = 1 m/s Due to the double symmetry of the problem, just a quarter of the domain is simulated

and symmetry onditions are imposed.

x

y

L = H

H = L

B
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x y
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Figure 12: Cylinder in an Hershel-Bulkley �uid. Geometry and boundary onditions

Table 4 summarized the material properties of the model and the oe�ients employed. Pseudoplasti

(n ≤ 1) and dilatant Hershel-Bulkley �uids are onsidered. The partiular ase of Bingham plastis (n = 1)
is also taken into aount. A regularization oe�ient m = 1000 s is used in all the simulations.

Material properties

y Yield stress τy 1, 10, 100 Pa

Generalized Bingham Number Bn∗ 1, 10, 100

Flow index n 0.25, 0.5, 0.75, 1, 2

Regularization

Regularization oe�ient m 1000 s

Table 4: Cylinder in an Hershel-Bulkley �uid. Material parameters and regularization oe�ient

It an be observed in Figure 14 that the adimensional drag oe�ient (F ∗

D) grows with the �ow index n,
independently from the geometrial ratio, for L : R ≥ 50 : 0.5. This means that it is su�ient to onsider

a domain with that minimum geometrial ratio to ensure insensitivity of the �ow from the arti�ial domain

boundaries. It is evident form the results that the drag oe�ient is linearly related to the �ow index n for

n ≥ 0.5.
The ase of a pseudoplasti Hershel-Bulkley �uid is studied �rst. Figures 15(a) and 15(b) present the

adimensional drag, F ∗

D, and the drag fore over the yield stress, F
′

D = FD/τy, respetively, versus the
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Mesh L : R Nodes Elements

M1 100 : 0.5 9367 18351

M2 500 : 0.5 9500 18601

M3 1000 : 0.5 9571 18729

Table 5: Cylinder in an Hershel-Bulkley �uid. Domains and meshes onsidered

Figure 13: Cylinder in an Hershel-Bulkley �uid. Unstrutured mesh

Figure 14: Cylinder in an Hershel-Bulkley �uid. Drag fore oe�ient in terms of the relation L : R
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generalized Bingham number (Bn∗ = 0.1, 1, 10, 100), for di�erent �ow indexes (n = 0.25, 0.5, 0.75, 1). The
drag oe�ient grows as Bn∗

inreases (Figure 15(a)) and the yield stress e�et is higher for higher values

of Bn∗
(Figure 15(b)).

(a) Drag fore vs Bn (b) Drag oe�ient related to the yield stress

Figure 15: Cylinder in an Hershel-Bulkley �uid. Drag fore and Drag oe�ient for di�erent �ow indexes n

The di�erenes in the yielded and unyielded regions for di�erent generalized Bingham numbers Bn∗
are

evident in Figure 16 where the yielded region is plotted in grey for a Bn∗ = 10 (Figure 16(a)) and for a

Bn∗ = 100 (Figure 16(b)). The inrement of the Bn∗
indues a shape and volumetri hange of the yielded

region whih redues signi�antly espeially in the diretion of the �ow.

The stagnation and reirulation regions in terms of Bn∗
and n are shown in Figure 17. The stagnation

regions are very sensitive to the Bn∗
while being almost insensitive to the value of the �ow index n. In the

stagnation region triangular shaped polar aps, similar to those obtained studying the falling of a sphere in

[8℄, an be observed.

The reirulation zone on the y axis inreases when Bn∗
or n inrease. The yielded thin layer between

these regions and the ylinder redues for higher values of Bn∗
, and inreases with n. The no slip ondition

on the ylinder does not allow this "boundary layer" to disappear even for very high values of Bn∗
. The

e�et of an alternative slip boundary ondition on the ylinder an be found in [38℄. While the reirulation

regions obtained math very well with those obtained by De Bresse in [38℄, the polar aps are signi�antly

smaller. This is the onsequene of the OSS stabilization tehnique used, that allows to solve with a high

level of detail these ritial parts of the domain.

The ase of a dilatant Hershel-Bulkley �uid is onsidered next. The �ow index is taken n = 2. The

magnitude of the veloity �eld is smaller in the dilatant ase than in the pseudoplasti one. As shown in

Figure 18, the yielded region has the shape of two irles interseted along the x axis and it redues when

Bn∗
inreases muh more faster than in the pseudoplasti ase.

The polar aps start to be visible for Bn∗ ≥ 1 while the reirulation regions are always present. These

are bigger and more separated from the ylinder than in the orresponding pseudoplasti ase (Figure 19).

The drag oe�ient in the dilatant ase follows a similar dependeny with Bn∗
and τy as in the pseudo-

plasti ase, but its absolute value is muh lower.
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(a) Bn∗ = 10 (b) Bn∗ = 100

Figure 16: Cylinder in an Hershel-Bulkley �uid. Yielded (grey) and unyielded (oloured) regions and �ow

streamlines. Reirulation zones on y axis and stagnation zones (with polar aps) on x axis

(a) Bn∗ = 100, n = 0.25 s

−1
(b) Bn∗ = 100, n = 0.50 s

−1
() Bn∗ = 100, n = 0.75 s

−1
(d) Bn∗ = 100, n = 1.00 s

−1

(e) Bn∗ = 10, n = 0.25 s

−1
(f) Bn∗ = 10, n = 0.50 s

−1
(g) Bn∗ = 10, n = 0.75 s

−1
(h) Bn∗ = 10, n = 1.00 s

−1

(i) Bn∗ = 1, n = 0.25 s

−1
(j) Bn∗ = 1, n = 0.50 s

−1
(k) Bn∗ = 1, n = 0.75 s

−1
(l) Bn∗ = 1, n = 1.00 s

−1

Figure 17: Cylinder in an Hershel-Bulkley �uid. Dependeny of the unyielded regions in terms of the

Bingham number and the �ow index
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(a) Bn
∗
= 10 (b) Bn

∗
= 100

Figure 18: Cylinder in a dilatant Hershel-Bulkley �uid (n = 2). Yielded (grey) and unyielded (oloured)

regions and �ow streamlines. Reirulation region on y axis and stagnation zone (with polar aps) on x axis

(a) Bn
∗
= 0.1 (b) Bn

∗
= 1 () Bn

∗
= 10 (d) Bn

∗
= 100

Figure 19: Cylinder in a dilatant Hershel-Bulkley �uid (n = 2). Growth of the unyielded regions in terms

of Bn∗
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The shape of the stagnation and the reirulation regions are in good aordane with those obtained in

[8℄ and [2℄ also, although in the latter the shape of the zones was more rounded.

(a) Drag oe�ient (b) Drag oe�ient related to the yield stress

Figure 20: Cylinder in a dilatant Hershel-Bulkley �uid n = 2. Drag oe�ient versus the Bingham number

Bn∗
and the yield stress

7.2 Flow around a moving ylinder rotating around its axis

7.2.1 Desription of the problem

The last example simulates a rotating ylinder moving between parallel planes in a Hershel-Bulkley �uid.

The prinipal objetive is to study the yielded and unyielded region, to de�ne the loalization pattern of

the strain rate and to see the evolution of the stream lines at di�erent veloities of rotation.

7.2.2 Model and results

The geometrial setting is similar to the one desribed in Setion 6.2, but with the ylinder rotating around

its axis. The problem is therefore antisymmetri with respet to the vertial axis y (Figure 21). This implies

that only half of the domain needs to be simulated (the shaded area in Figure 21), provided suitable boundary

onditions are imposed on the plane of antisymmetry. The referene system is moving with the ylinder;

therefore, on the outer boundary of the domain ux = V = 1 m/s is imposed in the x diretion, while uy = 0
m/s. A no slip boundary ondition is imposed on the surfae of the ylinder.

Table 6 summarizes the properties of the material and the regularization parameter used. The �ow index

of the Harshel-Bulkley model is n = 0.25, whih orresponds to a highly pseudoplasti �uid.

The aspet ratio of the omputational domain is H : R = 10 : 1 and L : R = 30 : 1. The unstrutured
mesh used in the example is shown in Figure 22(a); it is omposed of 9425 nodes and 18345 linear triangular
elements. The average size of the elements on the surfae of the ylinder (see Figure 22(b)) is of 0.01 m,

whereas on the vertial line (from B to C and from G to C' in Figure 21) the element size varies from 0.01
m to 0.04 m.
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Material properties

Consisteny index k 1 Pa· sn

Yield stress τy 100 Pa

Flow index n 0.25

Regularization

Regularization oe�ient m 1000 s

Table 6: Moving and rotating ylinder in an Hershel-Bulkley �uid. Material parameters and regularization

oe�ient

x

y

L L

H

H

B

A D

EC

R

P � �

V
V

O

E'C'

D'

F

F'

Figure 21: Moving and rotating ylinder in an Hershel-Bulkley �uid. Geometry and boundary onditions

(a) Mesh of the whole domain (b) Mesh around

the ylinder

Figure 22: Moving and rotating ylinder in an Hershel-Bulkley �uid. Unstrutured mesh used for the

alulation
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Four di�erent veloities of rotation (VROT ) have been studied: 0, 0.5, 1.0 and 5 m/s. The symmetry with

respet to the x axis observed for VROT = 0 m/s (Figure 23(a)) is lost when the ylinder starts rotating.

Under these irumstanes only symmetry with respet to the vertial axis y is maintained (Figures 23(b)-

23(d)). This is on�rmed by the streamlines (Figures 24(a)-24(d)).

The inrement of the veloity of rotation makes one of the slip lines progressively disappear while the

other moves loser to the ylinder. On one side of the ylinder the rotational veloity adds to the linear

veloity, while it is opposed on the opposite side. For high values of the rotational veloity (Figure 23(d))

the rate of strain loalization onentrates around the ylinder.

The slip lines of Figure 23 orrespond to the hange of slope in the streamlines (Figure 24) that redues

their relative distane.

Figures 24(a)-24(d) show the omplex evolution of the yielded and unyielded regions as the veloity of

rotation inreases. The reirulation zone inreases arriving to de�ne a semi irle for VROT = 1 m/s and it

disappears for VROT = 5 m/s, leaving a thin layer of unyielded material lose to the surfae while the size

of the reirulation region under the ylinder inreases. The growth of the stagnation region ulminates for

VROT = 1 m/s and no polar aps are present for higher veloities.

(a) Vrot = 0.0 m/s (b) Vrot = 0.5 m/s () Vrot = 1.0 m/s (d) Vrot = 5.0 m/s

Figure 23: Moving and rotating ylinder in an Hershel-Bulkley �uid. Loalization of strain rate for di�erent

rotational veloities

The drag dereases as the veloity of rotation inreases. On the ontrary, the lift oe�ient, whih is null

when the ylinder is not rotating, inreases with the veloity of rotation. It is worth noting that the drag is

substantially higher than the lift in all the ases.

8 Conlusions

In the present work a mixed stabilized �nite element formulation for Bingham and Hershel-Bulkley �uids

is presented. The implementation of an OSS stabilization tehnique allows to use equal order interpolation

of veloity and pressure (i.e., P1/P1 linear elements), avoiding both the pressure and veloity osillations

and leading to a stable and aurate solution.

On the one hand, being OSS a residual based stabilization tehnique, no onsisteny error is introdued.

On the other hand, onstruting the subsale in the subspae orthogonal to the �nite element one leads to

a minimization of the numerial dissipation on the disrete solution.

The extrusion proess of a Bingham �uid with the setion redued by 2/3 shows a orret de�nition of

the slip lines aording to Pradtl's theory. A ylinder moving between two parallel planes is the seond

example studied. The omparison with the results obtained by other authors leads to the onlusion that

the presented tehnique reprodues orretly the yielded and unyielded regions, as well as alulates the

orret drag for di�erent Bingham numbers and geometrial relations. Pseudoplasti and dilatant ases of
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(a) Vrot = 0.0 m/s (b) Vrot = 0.5 m/s

() Vrot = 1.0 m/s (d) Vrot = 5.0 m/s

Figure 24: Moving and rotating ylinder in an Hershel-Bulkley �uid. Streamlines and yielded and unielded

regions for di�erent rotational veloities

Hershel-Bulkley are are also used to study a ylinder moving in an in�nite domain and a ylinder moving

and rotating around its axis. Also in these ases, the polar aps and reirulation regions are orretly

reprodued.
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(a) Drag oe�ient

(b) Lift oe�ient

Figure 25: Moving and rotating ylinder in an Hershel-Bulkley �uid n = 0.25. Drag and lift for di�erent

rotational veloities
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