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Abstract

This paper presents the application of a stabilized mixed pressure/velocity finite element formulation
to the solution of viscoplastic non Newtonian flows. Both Bingham and Herschel-Bulkley models are
considered.

The detail of the discretization procedure is presented and the Orthogonal Subgrid Scale (OSS)
stabilization technique is introduced to allow for the use of equal order interpolations in a consistent way.
The matrix form of the problem is given.

A series of examples is presented to assess the accuracy of the method by comparison with the results
obtained by other authors. The extrusion of a Bingham fluid and the movement of a moving and rotating
cylinder are analysed in detail. The evolution of the streamlines, the yielded and unyielded regions, the
drag and lift forces are presented.

These benchmark examples show the capacity of the mixed OSS formulation to reproduce the be-
haviour of a Bingham and Herschel-Bulkley flows with the required accuracy.

Keywords: Bingham flows, Herschel-Bulkley flows, Viscoplastic fluids, Variational multiscale stabiliza-
tion, Orthogonal Subscale Stabilization, moving cylinder, extrusion.

1 Introduction

The aim of this paper is to present a continuum formulation and its correspondent discrete version for
Bingham and Herschel-Bulkley confined flows, using mixed velocity/pressure linear finite elements.

Bingham and Herschel-Bulkley are viscoplastic non-Newtonian fluids characterized by the presence of a
threshold stress, the yield stress. When the yield stress is exceeded the fluid flows; contrariwise, if this limit
is not achieved, the fluid acts as a rigid material [37].

Bingham plastics are very common in industry. They can model the behaviour of a large number of
materials, such as paints, and many products in food industry (ketchup, mayonnaise, etc). Eugene C.
Bingham conceived this rheological law while studying the behaviour of paints at the beginning of XX
century [10]. The Herschel-Bulkley model is a generalization of the Bingham one, and it is less known. It
describes the behaviour of pastes, gels, or drilling fluids. It can be also used for simulating debris flow ([58],
[75]). Both models have a strong discontinuity in their rehological behaviour due to the existence of the yield



stress, difficult to treat numerically. Different regularized formulations have been proposed to overcome this
issue, Bercovier and Engelman [7], Tanner and Milthorpe [83], and Beris [8], among others. Tanner and
Milthorpe were the first to propose a double viscosity model, while Beris used a Von Mises yield criterion in
the unyielded zone and an ideal Bingham model in the yielded region. In 1987, Papanastasiou [67] proposed
a regularization valid both for the unyielded and the yielded regions. Recently, Souza Mendes and Dutra
(SMD) [40] presented a modification to the model by Papanastasou.

The movement of isothermal flows is governed by conservation of linear momentum and mass, represented
by the Navier Stokes equations. In the case of non Newtonian fluids, the constitutive law has a variable
viscosity whose behaviour is given by the rheological models.

Traditionally viscoplastic flows are calculated using finite elements ([1], [64], [67], [87]) but an attempt to
use finite volumes were proposed by Bharti et al [9], and Tanner and Milthorpe [83] used boundary elements.

In this work a mixed velocity/pressure finite element formulation for simplicial elements is developed.
This means that both velocity and pressure are interpolated piecewise linearly within the finite element
mesh. This is a frequent choice in fluid dynamics because of their simplicity. On the one hand, this kind
of linear elements, called P1/P1, present a source of instability due to the combination of the interpolation
spaces of pressure and velocity [31]. The Ladyzenskaja-Babuska-Brezzi condition is not satisfied in such
incompressible problem and spurious oscillations of the pressure can compromise the solution [14]. On the
other hand, the convective term presents another source of instability for convection-dominated problems.
The use of a proper stabilization technique is therefore needed to ensure stability and convergence of the
solution.

Nowadays the most effective stabilization techniques are based on the concept of sub-scales. These
were first introduced by Hughes [46], who proposed an Algebraic Sub-Grid Scale (ASGS) technique for the
stabilization of a scalar diffusion-reaction equation. Codina generalized the approach for multidimensional
systems [32]. The idea is to split the unknown in a part that can be solved by the finite element approximation
plus an unresolvable scale (i.e. the sub-scale) that can not be captured by the finite element discretization.
The sub-scale is approximated in a consistent residual fashion so that its variational stabilizing effect is
captured. More recently, Codina proposed to use a space orthogonal to the finite element space for the
subscale, introducing the Orthogonal Subgrid Scale (OSS) stabilization technique ([33], [34]). The main
advantage of OSS is that it guarantees minimal numerical dissipation on the discrete solution, because it
adds nothing to those components of the residual already belonging to the FE subspace. This maximizes
accuracy for a given mesh, an issue always important and no less in non linear problems.

OSS has been successfully applied to the Stokes problem, to the convection-diffusion-reaction equations
and to the Navier-Stokes equations. Nowadays it is used in a wide range of different problems in fluid
dynamics ([32], [33], [36], [50], [51], [52], [70], [77]) and solid mechanics ([18], [19], [20], [21], [22], [23], [29],
[30]). Castillo and Codina presented a three fields formulation for visco-elastic [17], power law and Carreau-
Yasuda [16] fluids comparing ASGS and OSS. In the present work the OSS stabilization technique is applied
to the Navier-Stokes equations to model Bingham and Hershel-Bulkley flows.

The structure of the paper is as follow. First, both the Bingham and the Herschel-Bulkley models are
presented. An overview of the regularizations proposed in the literature is given. The Navier Stokes equations
for a non Newtonian fluid are presented in their strong form. The corresponding discrete model is presented
and the stabilization using Orthogonal Subgrid Scales (OSS) is explained in detail. The matrix form of the
problem is given. Secondly, the Bingham model is applied to two well known problems: an extrusion process
and a cylinder moving in a Bingham fluid confined between two parallel planes. Then, a cylinder moving
in an Herschel-Bulkley fluid is modeled in two different scenarios: a cylinder moving with constant velocity
and a cylinder moving and rotating around its axis. In all the cases the solution is compared with available
results from other authors. Finally, some conclusions on the performance of the proposed formulation are
given.



2 Viscoplastic fluids
For an incompressible fluid, the stress tensor o is split as
o=—-pl+T (1)

where p is the pressure, which mutiplied by the identity matrix (I) represents the volumetric part of the
stress tensor, and 7 is the deviatoric part of the same. In a fluid, this latter is related to the rate of strain
tensor € through the viscosity u

T=2pue(u)=2uVu (2)

where u is the velocity and V*u = 1/2 (Vu + VuT) is the symmetric part of the velocity gradient. Note
that for incompressible materials, V - u = 0, and the rate of strain tensor, €, is deviatoric. The kinematic
viscosity u is constant for Newtonian fluids (u = po, being po the Newtonian viscosity), but it varies in
function of the velocity for non-Newtonian fluids (u = p(e(u))). In this case, viscosity cannot be considered
as a property of the material, as it is dependent on the deformation process. The different definitions of
p(e(u)) define the different families of non-Newtonian fluids ([11], [27]).

In the present work, viscoplastic fluids are considered. These are characterized by the existence of a
threshold stress, the yield stress, which must be exceeded for the fluid to deform. For lower values of stress
the viscoplastic fluids are completely rigid or can show some sort of elasticity. Once the yield stress is reached
and exceeded, viscoplastic fluids may exhibit a Newtonian-like behavior with constant viscosity (Bingham
plastics fluids) or with rate dependent viscosity (Herschel-Bulkley fluids among others).

Let us introduce, for later use, the equivalent strain rate v and the equivalent deviatoric stress T in terms
of the second invariants of the rate of strain tensor (¢) and of the deviatoric part of the stress tensor (7),

respectively:
T= (%T : T) i (3)
2.1 Bingham Fluid

In 1919 Eugene C. Bingham, studying the behaviousr of paints, discovered that their deformation was almost
absent till reaching a threshold yield stress. After exceeding this stress limit the paints followed a Newtonian
behavior. Since a wide range of materials have been identified to have a yield threshold [67], this model was
studied by many authors [65], [71], [74]. Bird [12] was the first to give a list of several Bingham plastics,
most of these present in the food or chemical industries (e.g., slurries, pastes, nails, or food substances like
margarine, ketchup, mayonnaise and others).
In the Bingham model the rate of strain is given by
. 1 .
F=—(1—1y) itr>m, (4a)
Ho
4=0 itr<m, (4b)

Nl=

4= (2¢:¢€)

where po is the plastic viscosity. Considering that 7 = u(%) ¥, Eq. (4a) can also be written as
. Ty .
() = po + 7‘7’ if 7>, (5)
Therefore, the deviatoric stress tensor for a Bingham plastic is defined as

= (uo n %) e(u) if 7> 7, (6a)

4=0 if r <7y (6b)



When the rate of deformation tends to zero this ideal rheological model presents a singularity and the
viscosity tends to infinity (4 — oo as ¥ — 0). This aspect is a serious inconvenient when treating the
model numerically ([11], [67], [68]). For this reason, many authors have proposed regularized versions of the
Bingham model, such as the double viscosity Tanner and Milthrope model [83], the widely used Papanastasiou
regularized model [67], or the Souza Mendes and Dutra (SMD) model [40]. Tanner and Milthrope substitute
the rigid behaviour of the fluid with a linear dependency of the deviatoric stress by the rate of strain,
introducing a fictitious viscosity when the deviatoric stress is lower than a critical strain rate. Papanastasiou
introduces an exponential regularization of the viscosity

pi) = po+ 2 (1= e™) (7)

where m is a regularization parameter, so that @ = ug + 7, m as v — 0.
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Figure 1: Bingham and Herschel-Bulkley models (red line) compared with the regularized model (black lines)
for different values of m

Figure 1(a) shows the comparison between the Bingham model of Eq. (6) and the regularized one of Eq.
(7). The main advantage of this approach is that the Bingham model can be defined with one equation only
with full regularity. This is the regularization used in this work. The SMD can be seen as a generalization
of the previous model: the exponential regularization is applied to both the terms of Eq. (5) and the
regularization parameter m is substituted with a rheological parameter.

2.2 Herschel-Bulkley Fluid

The Herschel-Bulkley model [43] combines the existence of a yield stress with a power law model for the
viscosity

n(d) = k" 4 % it > 7, (8a)

=0 iftr<m, (8b)

where k is the consistency parameter and n is the flow index. Also in this case the yield stress needs to be
overcome for the material to flow. When the yield stress is exceeded, the material flows with a non linear
relation between stress and rate of strain as in a pseudoplastic fluid, if n > 1, or a dilatant one, if n < 1. If
n =1 the Bingham model is recovered, and the consistency index is equal to the plastic viscosity (k = o).
If the yield stress is zero (1, = 0 ) the Ostwald-de Waele power law fluid is recovered.



The deviatoric stress tensor is therefore

=2 (m"—l + T#) e(u) ifr>r7, (9a)
gl

=0 ifr<my, (9b)

The Herschel-Bulkley model also presents the singularity due to the perfectly rigid behaviour below the
yield stress. The regularizations proposed to overcome the problem are similar to those introduced in Section
2.1. Tanner and Milthorpe proposed a double viscosity model in function of a critical strain rate to describe
the elastic behavior for low strain rates [83]. Papanastasiou [67] introduced a regularization of the viscosity

) =k (™) (10)

When the rate of strain tends to zero (¥ — 0) the viscosity depends on the flow parameter n: if n > 1, the
limy o u(¥) = m7y and, if n = 1, the limy_,o u(¥) = p + m7y; but if n < 1, the limsy_,o p(§) = oo. This
means that for pseudoplastic fluids the viscosity is unbounded and a truncation procedure is needed.

Figure 1(b) shows the comparison between the Herschel-Bulkley model of Eq. 9 and the regularized one
of Eq. 10.

The regularization proposed by Souza-Mendez-Dutra solves this drawback applying the regularization to
all the terms of the viscosity so that limsy_, pu(¥) = mr, for any value of n [40].

The regularization proposed by Papanastasiou is the one used in the current work.

3 Governing equations

The problem of incompressible isothermal fluid is defined by the Navier-Stokes governing equation.

p(Ou+u-Vu)—V.o=1 inQ, te[0,T] (11a)
V-u=0 inQ, te[0,7T] (11b)

where Q C R? (d is the space dimension) is the domain in a time interval [0, T, p is the density of the fluid,
and f are the volumetric forces.

The non-Newtonian stress tensor o is defined according to Egs. (1) and (2) and, therefore, V- o =
—Vp+ V. 7. If the regularized Bingham or Harshel-Bulkley model are used then

T = 24(¥)e(u) (12)
with u(%) defined by Eq. (7) or Eq. (10), respectively. The problem is fully defined with the boundary
conditions:

u(x,t) = u(x,t) on d0Np, tel0,T], (13a)

n-o(x,t) =t(x,t) on A0y, te0,T], (13b)

where 0Qp and 9y are the Dirichlet and the Neumann boundaries, respectively (90Qp NoQy = 0, 0Qp U
00N =00 ).

Steady-state flows are modelled by dropping the time derivative term in Eq. (1l1a). Likewise, the
convective term can be neglected for low Reynolds numbers, as it is usually the case for viscoplastic fluids.



4 Discrete model

The governing equations (Eqgs. (11)) are solved using mixed stabilised linear/linear finite elements for the
spatial discretization.

The weak form of the problem is obtained using a Galerkin technique and the non linear terms of the
momentum equation (i.e. the convective and viscous terms of Eq. (11a)) are linearized using a secant Picard
method. The velocity u needs to belong to the velocity space V € [H'(Q)]¢ of vector functions whose
components and their first derivatives are square-integrable and the pressure p belongs to the pressure space
Q € Ly of square-integrable functions.

Let V;, C V be a finite element space to approximate V, and Qp C Q a finite element approximation to
Q. Let Q C R? be the domain in a time interval [0, 7], and Q¢ the elemental domain such that |JQ¢ = €,
with e = 1,2, ..., n¢; where ng; is the number of elements.

Therefore, the standard Galerkin discrete problem is finding u;, € V}, and p;, € Qp, such that

/ [poruy, - v, + p(ap - Vug) - vy + 2u(Y)Viuy, : Vv, —pp Vv, — £, - v ]dQY =0 Vv, €V, (14a)
Q

/ [th . uh] dQ2=0 Vg, € Oy (14b)
Q

wp, and g are the velocity and the pressure weight functions belonging to velocity and pressure spaces,
respectively, and some of the terms have been integrated by parts.

4.1 Stabilized model

In this work, low-order simplicial elements are used with the same linear interpolation for the velocity
and pressure fields. This implies that the Ladyzenskaja-Babugka-Brezzi condition, also called the inf-sup
condition, is not respected and a stabilization technique is needed to overcome the instability of the pressure
that may compromise the solution.

The stabilization employed is based on the subgrid scale approach proposed by Hughes ([15], [45], [47]).
This proposes to split the velocity field (u) into a part that can be represented by the finite element mesh
(up) and another part that accounts for the unresolvable scale (@), that is, for the variation of the velocity
that cannot be captured by the finite element mesh. This corresponds to a splitting of the space V into the
space of the finite elements (V},) and the subgrid space (V), so that V =V}, @ V.

The sub-scale T is approximated from the residual of the momentum equation and it is evaluated inside
each element, assuming the sub-scale to vanish on the boundary of each element. Different approximations
of the sub-scale 1 define different stabilization techniques.

In the present work, the Orthogonal Sub-grid Scale stabilization technique is used. This method was
proposed by Codina ([33], [34], [35]) as a modification of the Algebraic Sub-Grid Scale (ASGS). In ASGS the
sub-scale is taken proportional to the residual (R, = —p (uy, - Vuy)+ V-0, +1£),) of the momentum equation,
so that @ = —7m Ry, where 71 is a stabilization parameter. An application of ASGS to non Newtonian fluid
models can be found in [51] and [78]. Contrariwise, in the OSS the sub-scale is taken proportional to the
orthogonal projection of the residual onto the finite element space

u=-—-7 P;f' (Rh) = -7 (Rh — P, (Rh)) (15)

where P, (e) is the projection on the finite element space and Pj-(e) = I(e) — Py () is the orthogonal
projection.

Residual based stabilization techniques such as ASGS and OSS do not introduce any consistency error,
as the exact solution annuls the added terms, so that the stabilized model converges to the solution of the
problem in continuum format. Also, if designed properly, the convergence rate is not altered; that is, the
subscale terms must be appropriately dependent on the mesh size.



Constructing the subscale in the subspace orthogonal to the finite element subspace has several advantages
over the many other possibilities. The main one is that it guarantees minimal numerical dissipation on the
discrete solution, because it adds nothing to those components of the residual already belonging to the FE
subspace. This maximizes accuracy for a given mesh, an issue always important and no less in non linear
problems.

Additionally, in transient problems, the term corresponding to the time derivative belongs to the finite
element space, and therefore, its orthogonal projection is null. This means that the mass matrix remains
unaltered by the stabilization method, maintaining its structure and symmetry.

Moreover, if the residual can be split in two or more terms, e.g. if the stress tensor is split into its
volumetric and deviatoric parts or if the residual includes a convective term, then the "cross products" in
the stabilization terms can be neglected. This has three advantages: i) it reduces the computational stencil,
(ii) more selective norms can be defined for stability control and (iii) it has proved important in problems
involving singular or quasi-singular points both in linear and non-linear problems.

The part of the residual to be orthogonally projected can be appropriately selected. For instance, in
incompressible problems, only the gradient of the pressure needs to be added to ensure control of the
pressure, with minimal numerical dissipation. These variants of the OSS, that can be considered to belong
to the family of term-by-term stabilization methods, introduce consistency errors, but they are of optimal
order and the final convergence rate of the scheme is not altered.

The discretized linearized problem, stabilized with OSS is, find u"+1 and pZ‘H such that

/ |:6f; (uz-i-l _uz) v + p( n+1 vun-l-l z) Vi
+2u(4)" IV Vi — IV v, — 1 v, ] dO

+ Z/ Tlp -Vvh) [puZ‘Irl VuZ+1 + VpZH —f;:“ —pvy yZ“] dY=0 Vv, eV

(16a)

/Q [th . uZ‘H Q) + Z/ 1V - puZ'Irl Vu"+1 + Vp"+1 f,’:“) —pvy - y’}:ﬂ] dQY=0 Vg, € Qp

(16b)
where yp, is the nodal projection defined as
yhn+1 _ Ph ( n+1 vun+1 (vanrl f£+1)> (17)
In compact notation, the projection of Eq. (17) is the solution of
i) = (gt L () ) (18)

for all vj € V;}, being V; equal to V}, extended with the vectors of continuous functions associated to the
boundary nodes.

The stabilization parameter 71 in Eqgs. (16a) and (16b) is defined so to obtain a stable numerical scheme
and an optimal velocity of convergence. Consequently, 71 is calculated for each element as [34]

f plu’|
T = |: hz +CQ he :| (19)

where h is the characteristic length of the e-th element and |u®| is the norm of velocity in the element. ¢;
and ¢y are two coefficients that in the present work are chosen as ¢; =4 and ¢ = 2 [34].



5 Matrix form

The solution system (16) is rewritten in matrix form as

1
MEUR+1 4 K(Un-i-l)Un-i-l 4 GPn+1 4 Su(Tl;Un+1)Un+l _ S (7_ Un-i-l)Yn-i-l Fn+1 (203)
DU +S,(n)P" ™! — S, (U Y" ! =0 (20b)
cuthurt! + G, P" =0 (20c)

where U and P are the vectors of nodal velocities and pressures, respectively, Y is the vector of nodal
projections and F is the vector of nodal forces.
Finally, the matrix operators of Eqgs. (20) are defined as

M = (N, pN®) 6 (21a)
(U"“) = (N* pup™ - VN®) 6;; + (VN®,2uV*N?) 6 (21b)
Gy = (N“ 9 N®) (21c)
= (N ) (21d)
D% = (N*,9;N") (21e)
C (U"+1) = (N, ut! - VN?) 4, (21f)
G{" = (N, 9:;N"/p) (21g)

The stabilization operators of Eqs. (20) are
Su (r1, U = (rut - VN, puit! - VN) 6y (22a)
Sy (nu’,;“)ij = (riup ™t VN, pN®) 65 (22b)
Sp (1)™ = (rup ! - VN, VN?) (22¢)
S, (1)} = (nd; N, pN",) (22d)

6 Numerical results: Bingham Fluids

6.1 Extrusion
6.1.1 Description of the problem

, The first example is the extrusion process of a Bingham fluid. Extrusion is widely used in several industrial
processes such as metal forming, manufacturing, food production, etc. Real applications are usually in three
dimensions; nevertheless, a plane strain 2D analysis provides very useful information on the evolution of the
plastic region and gives an estimation of the forces required in the process.

The slip-lines theory was first introduced by Prandtl at the beginning of the XX century [72]. This
methodology was originally used in plane strain problems to estimate the stress field and the related velocity



field in perfect plastic materials with the Von Mises (or Tresca) yield criterion. The approach was generalized
by Mandel [56], who introduced other yield criteria and analyzed the plane stress case [55].

The slip lines are tangent to the direction of the maximum tangential stress and are the trajectories of the
maximum shear stress. In plain strain, the plastic flow coincides with the maximum shear stress direction.
Therefore, rigid-plastic material "slips" in the direction of the maximum shear stress lines.

In 1948, Hill [44] used the slip line theory to analytically solve the problem of direct frictionless extrusion
in a die with a 50% reduction of its section. In 1961, Alexander |3| demonstrated that if the reduction of
the die section is of 2/3, there exists a part of the yielded region (the area ABDC in Figure 2) in which the
average pressure coincides with the extrusion pressure p

4 T
p=§(1+§) 7, (23)
where 7, is the yield stress.
d
c
b
a 1 1
RAM ' EXTRUDED :\
—> i T MATERIAL T )"‘
™ ! DIE
b
Cl
dl

Figure 2: Extrusion of a Bingham fluid. Slip lines according to Alexander [3]
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Figure 3: Extrusion of a Bingham fluid. Geometry and boundary conditions

The extrusion process can be numerically simulated using either a Lagrangian plastic flow or an elasto-
plastic solid. In the first case, the elastic deformation is neglected and the material follows the Von Mises
yield criterion and an associated flow rule. Zienkiewicz [87] and Onate [66] applied this approach to analyze
the plain stress problem without hardening using a Lagrangian mesh moving with the material. In the
second case, the elastic strains are considered, which complicates the problem introducing both geometrical
and material non linearities. In 1984, Lee [53] published one of the first examples of an extrusion problem
using a large deformation elasto-plastic approach. He used an updated Lagrangian technique and the Von
Mises yield criterion with hardening.

A widely used alternative is to use an Eulerian viscoplastic flow and a Von Mises yield criterion ([39],
[42], [49], [68]). In this case, the material follows a rigid-plastic law with a very low plastic viscosity (almost
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Figure 4: Extrusion of a Bingham fluid. Mesh used in the calculation: 2821 nodes and 5340 linear triangular
elements

perfect plasticity). Once the yield stress is reached, a high localization of the strain rate occurs. This can be
identified with the slip lines of Prandtl theory. This is the formulation used in this work with the objective
of identifying the yielded and unyielded regions, the evolution of the stream lines and of the slip lines. The
calculated pressure on the ram is compared with the analytical solution given by Eq. (23).

6.1.2 Model and results

The geometry and boundary conditions used are presented in Figure 3. A reduction of 2/3 is considered. A
slip condition is imposed on the wall boundaries CDEF and C’D’E’F’. An increasing normal stress is imposed
on CC’. This represents the ram pressure that increases linearly with time from p = 0 Pa at the initial time
(t =0s) to p=>5000 Pa at t =1 s. The vertical component of velocity is set to zero on CC’. The pressure
is set to zero in point B, and the horizontal velocity is left free in point E.

A 2D plane strain simulation is carried on. Exploiting the symmetry of the problem, only half of the
domain is discretized using 2821 nodes 5340 and linear/linear (P1/P1) triangular elements (see Figure 4).

The material parameters are summarized in Table 1 where the regularization coefficient employed for the
Bingham model is also given.

Material properties

Plastic viscosity 1o 107% Pa-s

Density p 100 kg/m?

Yield stress Ty 1000 Pa
Regularization

Regularization coefficient m 1000 s

Table 1: Extrusion in a Bingham fluid. Material parameters and regularization coefficient

The example is solved as a series of steady-state problems with increasing ram pressure. Two scenarios
have been taken into account: with and without the convective term in the momentum equation. Figure 5
shows the velocity evolution on point P while the pressure on the ram is increased, in comparison with the
analytical solution (continuous line). At ¢ = 0.69 s the flow is fully developed and the yielded regions are
completely defined. The numerical pressure for yielding is Py, = 3400 Pa, while the analytical solution is
P, = 3428 Pa according to Eq. (23).
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If the convection term is included in the momentum equation (black dotted line in Figure 5), it is necessary
to increase the external pressure in order to overcome the inertial effects once the yield stress is achieved.
This does not happen when the convective term is neglected (red dotted line in Figures 5). In this case,

once the slip lines have developed, very large velocities are achieved with a very small increment of external
pressure.
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Figure 5: Extrusion of a Bingham fluid. Pressure-velocity curve in point P (see Figure 4). Comparison
between the analytical solution and the numerical results

Figure 6 presents the stream lines evolution during the extrusion process. An abrupt change in the
smoothness of the streamlines is observed when the slip lines appear (Figure 6(c) and 6(d)). Figure 6 also
shows the yielded (dark) and un-yielded (fair) regions above and below the critical strain rate (%¢q;+ = 0.01688
s~1, correspondent to T = 7).

The evolution of the velocity field is presented in Figure 7. It can be observed that while at ¢t = 0.6 s
almost all the domain is solid and just a very small region has reached the yield threshold, at ¢ = 0.678 s
the extrusion mechanism and the slip lines are fully developed. This lines coincide with the slip lines of the
classical plastic theory [55].
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(a) t=06s (b) t=0.677s

(c) t=0.678s (d) t=0.68s

Figure 6: Extrusion in a Bingham fluid. Evolution of the stream lines and of the yielded region (dark) for
7, = 1000 Pa and 4..;+ = 0.01688 s™! at ¢ = 0.6, 0.677, 0.678 and 0.68 s

(a) t=0.6s (b) t=0.6s

(c)t=0.6s (d) t=0.6s

Figure 7: Extrusion in a Bingham fluid. Evolution of the velocity field for 7, = 1000 Pa and “.,;+ = 0.01688
sl att=0.6,0.677, 0.678 and 0.68 s
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6.2 Flow around a cylinder between two parallel planes
6.2.1 Description of the problem

The flow around a cylinder in a confined Bingham fluid is studied in this second example. The flow around
an obstacle was initially studied considering a spherical object. This classical problem in computational fluid
dynamics has several practical applications in different engineering fields: from segregation in food industry,
to transport of mud in geotechnical engineering or aerosols in environmental engineering, etc. The geneeral
problem is the suspension of large particles in a fluid with a yield threshold. The falling or settlement of the
particles can only occur if the gravity force exceeds the yield limit ([24], [73], [81]).

The viscoplastic flow around an obstacle has been widely studied both numerically and experimentally
([24], [26], [41], [85]). For the specific case of Bingham plastics, many authors have proposed different
solutions for the flow around a sphere subjected to gravity force between two parallel planes or in an infinite
domain ([13], [54], [60], [88]). Moreover, Roquet and Sarmito [76] studied the effect of an additional pressure
gradient and Slijecpcevi¢ and Peri¢ [80] studied the movement of a sphere inside a cylinder.

Nowadays, there exists abundant literature on a sphere falling either in a pseudoplastic, viscoplastic or
viscoelastic fluid for low Reynolds numbers [25]. Contrariwise, not many authors have treated the movement
of a cylinder in a non-Newtonian fluid.

The aim of this example is to define the yielded zones and the hydrodynamic drag force in terms of the
geometrical configuration of the parallel planes and the cylinder.

6.2.2 Adimensional forces

In this and the following examples a series of adimensional quantities will be used to present the results.
These quantities are defined here.

Being x the direction of the flow and y its orthogonal direction in the plane (see Figure 8(a)), the drag
force (Fp) and lift force (F) acting on the cylinder can be calculated as

27 /2
Fp = ZR/ tydf = 4ZR/ [02a cOSO + 04y sinb] dO (24)
0 0

and

27 /2
Fp, = lR/ t,do = 4lR/ [02y cosO + 0y sinb] dO (25)
0 0

where R = 1 m is the radius and [ = 1 m is the height of the cylinder. The traction vector t* = (t,, t,) is
defined by the stress components in the xy plane (i.e., 044, 0yy, 02y) and of angle 6 between the normal to
the cylinder and the x axis as t, = 0,,c080 + 04ysind and t, = o,ycos0 + oy, sind.

The adimensional drag and lift coefficients in the specific case of a Bingham fluid are

*7FD ® FL

= — N F:— 2
D qu ) L uvq ( 6)

An information on the relevance of the yield stress in the resistance that the flow provides to the movement
of the cylinder is given by the drag coefficient F,. This is by definition the ratio between the drag force and

the yield stress
’ o FD

Fp (27)

Ty
Finally, the last adimensional quantity used in the paper is the adimensional yield stress 7, associated
to the drag force
. 27, mR?

;= (28)
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6.2.3 Model and results

The cylinder with radius R = 1 m is located between two infinite parallel planes. The distance between the
planes is 2H and the center of the cylinder is at distance H from both of them. The system of reference
is attached to the center of the cylinder and it is considered fixed (Figure 8(a)). The planes are moving
with velocity V as well as the lateral sides of the computational domain, located sufficiently far from the
cylinder. No slip is assumes on the surface of the cylinder and inertial effects are ignored (Re ~ 0). The
flow has double symmetry, with respect both to the vertical and to the horizontal axes. For this reason, just
a quarter of the domain is analyzed (see Figure 8(b)) ([8], [69]).

Figure 8(b) shows a schematic description of the boundary conditions used. A no slip condition is applied
on line AB, orthogonal velocity and tangential stresses are zero on lines BC and AD. The velocity is fixed
on ED and on the upper wall where the vertical component v, = 0 and the horizontal one u, =V =1
m/s. Pressure is set to zero on C to determine univocally the pressure field. The length of the domain (L in
Figure 8(b)) is sufficiently large to ensure that the flow is completely developed.

C

(a) Complete domain

UX=V, Uy=0

T
c
x
o
o<

ux=uy =0 A uy=0
L

(b) Reduced domain used in the analysis

Figure 8: Cylinder in a Bingham fluid. Geometry and boundary conditions

The properties of the material are summarized in Table 2. The Bingham number (Bn) in Table 2 is an
adimensional quantity representing the ratio between the yield and the viscous stresses and it is calculated
as Bn = 7,(2R)/uoV where 7, is the yield stress, H is the radius of the die, p is the plastic viscosity and
V is the velocity of the fluid. A range of yield stresses (and, therefore, of Bingham numbers) is taken into
account.

Different relations H : R and L : R have been considered to assess the effect of the domain size on the
results. These are summarized in Table 3. In all the cases a more refined mesh is considered close to the
cylinder (see Figure 9).

The results obtained in terms of yielded regions, drag force and stream lines are coherent with those
obtained by [60]. In Figure 10 the yielded and unyielded regions are shown for different Bingham numbers
for two different geometrical ratios H : R =4 :1 and H : R = 10 : 1. Figures 10(a) and 10(f) show the
streamlines in the Newtonian case (i.e., Bn = 0). In the first case, the larger relative dimension of the
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Material properties

Plastic viscosity 140 1 Pa-s

Yield stress Ty 0, 0.05, 0.5, 5, 50, 500 Pa

Bingham number Bn 0, 0.1, 1, 10, 100, 1000
Regularization

Regularization coefficient m 1000 s

Table 2: Cylinder in a Bingham fluid. Material parameters and regularization coefficient

Mesh H:R L:R Nodes Elements

M1 2:1 12:1 783 1401
M2 4:1 24:1 3494 6623
M3 10:1 60:1 5371 10245
M4 50:1 250:1 13513 25473

Table 3: Cylinder in a Bingham fluid. Domains and meshes considered
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(a) Mesh of the whole domain (b) Mesh around the cylinder

Figure 9: Cylinder moving in a Bingham fluid. Unstructured mesh M3 with H : R=10, L : R = 60



(a) Bh=0,H: R=4:1 (f) Bh=0,H: R=10:1

(b) Bh=0.1,H: R=4:1 (g) Bn=01,H: R=10:1

(c) Bh=1,H: R=4:1 (h)y Bh=1,H: R=10:1

(d)y Bh=10,H: R=4:1 (i) Bh=10,H: R=10:1

(e) Bn=100s, H: R=4:1 (j) Bh=100s, H: R=10:1

Figure 10: Cylinder in a Bingham fluid. Stream lines and yielded (fair) and unyielded (dark) region for
different Bingham numbers. On the left H : R=4:1, on theright H: R=10:1
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cylinder leads to a steeper gradient of velocity in the y direction. For Bingham numbers Bn > 10, the drag
force is independent from H : R. The yielded/unyielded regions, the recirculation and stagnation regions
appear similarly to what happens in the case of a sphere. It is worth observing that as Bn increases:

e The yielded region around the cylinder decreases

e The unyielded region surrounds the cylinder. This process is more evident in the case H : R = 10: 1,
confirming that the wall effect in not negligible in the case H : R =4 : 1.

e The recirculation islands immersed in the yielded region appear and get closer to the cylinder in a
symmetric way. They finally adhere to the cylinder for Bn = 100.

e The stagnation zone appears at the side of the cylinder.
e The stagnation zone get smaller than the recirculation one.

The dimension and shape of the polar caps appearing in the stagnation regions is similar to the results
presented in [8] and [86].

There is little information on the drag coefficient of a cylinder moving in a viscoplastic fluid. Roquet
and Saramito [76] and Mitsoulis [60] present some studies on this specific problem. In Figure 11(a) the
adimensional drag coefficient, Eq. (26), is plotted versus the Bingham number for the different cases analized
and the results are compared with those of Mitsoulis showing a good agreement. It is worth observing that,
as the Bingham number increases, the adimensional drag coefficient increases and becomes independent from
the relation H : R (for H : R > 2). When Bn — 0, the adimensional drag reaches the value of the drag of
a Newtonian fluid and when Bn — oo it tends to F}, = 1.14Bn. This limit was also identified by Mitsoulis
and Huigol [63]. The results obtained in this work are in the range of the limit values obtained by Adachi
and Yoshioka [2] with their max and min theorem.
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(a) Drag coefficient vs Bn (b) Drag coefficient vs adimensional 7;

Figure 11: Cylinder in a Bingham fluid. Drag coefficient. Comparison between the current work and other
numerical solutions

Figure 11(b) shows that for high values of the adimensional yield stress the drag increases. The growth
is progressively more steep as it gets to the critical limit of 7;; = 0.128 (the red vertical line of Figure 11(b)).
At this value of the yield stress, the drag force balances with the buoyancy force.
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7 Numerical results: Herschel-Bulkley Fluids

7.1 Flow around a cylinder in an infinite medium
7.1.1 Description of the problem

The problem treated in this section is similar to the one presented in Section 6.2, but now the medium is
infinite the flow follows the Herschel-Bulkley model. This is a complex and seldom studied phenomenon.
In the literature there exist some studies on a sphere moving in a tube filled with a Herschel-Bulkley
fluid at Re ~ 0 ([5], [6]). Some experimental results were provided by Atapattu [4] and, more recently,
some experiments were performed on the flow around several spheres at low Re (Re < 1) confirming the
difficulties on managing very low velocities ([57], [81]). Some authors have studied the movement of cylinders
of different sizes inside a tube [62] and the flow around objects with different shapes with Re in the range
[10~1 — 107®] [48]. Mitsoulis provided a review of the results obtained for different problems on Bingham
and Herschel-Bulkley flows [61] where the flow around a sphere in a viscoplastic medium is mentioned.

The flow around a cylinder in a Herschel-Bulkley pseudoplastic fluid in an infinite domain was studied
by De Besses [38]. Tanner [82] presents numerical results for a cylinder moving in a pseudoplastic fluid
(governed by a power law, without yield threshold) in an infinite domain. The problem in a confined domain
was studied by [59] and [79]. Barthi et al. [9] included also dilatant fluids (0.6 < n < 2).

All the works mentioned are based on finite elements, except Bharti et al [9], where finite volumes were
employed, and Tanner and Milthorpe [83], who used boundary elements. Sivakumar [79] compared finite
elements and finite volumes results demonstrating the equivalence of both approaches.

The case of non-inertial flow of a Newtonian fluid around a cylinder in an infinite domain has no analytical
solution; the reason being related to the shape of the streamlines far away from the cylinder, what is known
as the Stoke’s paradox [84]. The paradox does not present for pseudoplastic fluids (n < 1) and it is still
unclear if it is present or not for dilatant flows (n > 1).

In the case of a flow in a finite domain the analytical solution does exist for all values of the flow index
n ([28], [83]).

The objective of the current work is to study the flow around a cylinder in an infinite Herschel-Bulkley fluid
domain. The determination of the drag force, the yielded and unyielded zones, as well as the recirculation
and stagnation zones is carried out for different generalized Bingham numbers. The generalized Bingham
number for an Herschel-Bulkley fluid is defined as Bn* = %y (%)n

Non inertial Re =~ 0 is assumed in all the examples.

7.1.2 Adimensional forces

The adimensional drag and lift coefficients in the specific case of a Herschel-Bulkley fluid are defined as

Fp L
. RI Fp . RI Fr
F pr— pr— N F p— p— 2
b ) V\"  kRI-nVn] ’ L ) V\"  kR-nVn] (29)
R R

where k is the consistency index of the fluid, V is the velocity of the cylinder and n is the flow index of the
Herschel-Bulkley model.

7.1.3 Model and results

Figure 12 shows the geometry and boundary conditions used in the current example. The geometry is similar
to that considered in Section 6.2, but in this case the semi-width of the domain, L, is taken sufficiently large
not to influence the results. The minimum L for this is smaller for Bingham than for Newtoninan fluids and
yet smaller for Herschel-Bulkley fluids.
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The system of reference is fixed to the cylinder; therefore velocity boundary conditions are imposed on
the external boundary of the domain (sides CE and ED in Figure 12). A no slip boundary condition is
imposed on the surface of the cylinder. The radius of the cylinder is R = 0.5 m and the velocity in the x
direction is V' = 1 m/s Due to the double symmetry of the problem, just a quarter of the domain is simulated
and symmetry conditions are imposed.

P=0
C# UX=V,Uy=O E
:/ ]

7

Figure 12: Cylinder in an Herschel-Bulkley fluid. Geometry and boundary conditions

Table 4 summarized the material properties of the model and the coefficients employed. Pseudoplastic
(n < 1) and dilatant Herschel-Bulkley fluids are considered. The particular case of Bingham plastics (n = 1)
is also taken into account. A regularization coefficient m = 1000 s is used in all the simulations.

Material properties

y Yield stress Ty 1, 10, 100 Pa

Generalized Bingham Number Bn* 1, 10, 100

Flow index n 0.25, 0.5, 0.75, 1, 2
Regularization

Regularization coefficient m 1000 s

Table 4: Cylinder in an Herschel-Bulkley fluid. Material parameters and regularization coefficient

It can be observed in Figure 14 that the adimensional drag coefficient (F})) grows with the flow index n,
independently from the geometrical ratio, for L : R > 50 : 0.5. This means that it is sufficient to consider
a domain with that minimum geometrical ratio to ensure insensitivity of the flow from the artificial domain
boundaries. It is evident form the results that the drag coefficient is linearly related to the flow index n for
n > 0.5.

The case of a pseudoplastic Herschel-Bulkley fluid is studied first. Figures 15(a) and 15(b) present the
adimensional drag, F7,, and the drag force over the yield stress, F,,:, = Fp/7y, respectively, versus the
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Mesh L:R Nodes Elements

M1 100:0.5 9367 18351
M2 500:0.5 9500 18601
M3 1000:0.5 9571 18729

Table 5: Cylinder in an Herschel-Bulkley fluid. Domains and meshes considered

Figure 13: Cylinder in an Herschel-Bulkley fluid. Unstructured mesh
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Figure 14: Cylinder in an Herschel-Bulkley fluid. Drag force coefficient in terms of the relation L : R

20



generalized Bingham number (Bn* = 0.1, 1, 10, 100), for different flow indexes (n = 0.25, 0.5, 0.75, 1). The
drag coefficient grows as Bn* increases (Figure 15(a)) and the yield stress effect is higher for higher values
of Bn* (Figure 15(b)).
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Figure 15: Cylinder in an Herschel-Bulkley fluid. Drag force and Drag coefficient for different flow indexes n

The differences in the yielded and unyielded regions for different generalized Bingham numbers Bn* are
evident in Figure 16 where the yielded region is plotted in grey for a Bn* = 10 (Figure 16(a)) and for a
Bn* =100 (Figure 16(b)). The increment of the Bn* induces a shape and volumetric change of the yielded
region which reduces significantly especially in the direction of the flow.

The stagnation and recirculation regions in terms of Bn* and n are shown in Figure 17. The stagnation
regions are very sensitive to the Bn* while being almost insensitive to the value of the flow index n. In the
stagnation region triangular shaped polar caps, similar to those obtained studying the falling of a sphere in
[8], can be observed.

The recirculation zone on the y axis increases when Bn* or n increase. The yielded thin layer between
these regions and the cylinder reduces for higher values of Bn*, and increases with n. The no slip condition
on the cylinder does not allow this "boundary layer" to disappear even for very high values of Bn*. The
effect of an alternative slip boundary condition on the cylinder can be found in [38]. While the recirculation
regions obtained match very well with those obtained by De Bresse in [38], the polar caps are significantly
smaller. This is the consequence of the OSS stabilization technique used, that allows to solve with a high
level of detail these critical parts of the domain.

The case of a dilatant Herschel-Bulkley fluid is considered next. The flow index is taken n = 2. The
magnitude of the velocity field is smaller in the dilatant case than in the pseudoplastic one. As shown in
Figure 18, the yielded region has the shape of two circles intersected along the x axis and it reduces when
Bn* increases much more faster than in the pseudoplastic case.

The polar caps start to be visible for Bn* > 1 while the recirculation regions are always present. These
are bigger and more separated from the cylinder than in the corresponding pseudoplastic case (Figure 19).

The drag coefficient in the dilatant case follows a similar dependency with Bn* and 7, as in the pseudo-
plastic case, but its absolute value is much lower.
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(b) Bn* =100

Figure 16: Cylinder in an Herschel-Bulkley fluid. Yielded (grey) and unyielded (coloured) regions and flow
streamlines. Recirculation zones on y axis and stagnation zones (with polar caps) on = axis
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(a) Bn# =100, n = 0.25 s~% (b) Bn* =100, n = 0.50 s~! (¢) Bn* =100, n = 0.75 s~% (d) Bn* = 100, n = 1.00 s~ *
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(e) Bnx=10,n=0.255"1 (f) Bnx =10,n=0.50s~! (g) Bnx=10,n=0.75s"1 (h) Bnx =10, n =1.00 s~!
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(i) Bnx =1,n=025s"1 (j) Bnx=1,n=050s"" (k) Bnx=1,n=0.75s"1 (1) Bnx=1,n=1.00s"1

Figure 17: Cylinder in an Herschel-Bulkley fluid. Dependency of the unyielded regions in terms of the
Bingham number and the flow index
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(b) Bn* =100

Figure 18: Cylinder in a dilatant Herschel-Bulkley fluid (n = 2). Yielded (grey) and unyielded (coloured)
regions and flow streamlines. Recirculation region on y axis and stagnation zone (with polar caps) on z axis

Figure 19: Cylinder in a dilatant Herschel-Bulkley fluid (n = 2). Growth of the unyielded regions in terms
of Bn*
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The shape of the stagnation and the recirculation regions are in good accordance with those obtained in
[8] and [2] also, although in the latter the shape of the zones was more rounded.

20
X E
10 \
—_—2
1 2
01 1 10 100 01 1 10 100
Bn* Bn*

(a) Drag coefficient (b) Drag coefficient related to the yield stress

Figure 20: Cylinder in a dilatant Herschel-Bulkley fluid n = 2. Drag coefficient versus the Bingham number
Bn* and the yield stress

7.2 Flow around a moving cylinder rotating around its axis
7.2.1 Description of the problem

The last example simulates a rotating cylinder moving between parallel planes in a Herschel-Bulkley fluid.
The principal objective is to study the yielded and unyielded region, to define the localization pattern of
the strain rate and to see the evolution of the stream lines at different velocities of rotation.

7.2.2 Model and results

The geometrical setting is similar to the one described in Section 6.2, but with the cylinder rotating around
its axis. The problem is therefore antisymmetric with respect to the vertical axis y (Figure 21). This implies
that only half of the domain needs to be simulated (the shaded area in Figure 21), provided suitable boundary
conditions are imposed on the plane of antisymmetry. The reference system is moving with the cylinder;
therefore, on the outer boundary of the domain u, =V =1 m/s is imposed in the z direction, while u, =0
m/s. A no slip boundary condition is imposed on the surface of the cylinder.

Table 6 summarizes the properties of the material and the regularization parameter used. The flow index
of the Harshel-Bulkley model is n = 0.25, which corresponds to a highly pseudoplastic fluid.

The aspect ratio of the computational domain is H : R =10: 1 and L : R = 30 : 1. The unstructured
mesh used in the example is shown in Figure 22(a); it is composed of 9425 nodes and 18345 linear triangular
elements. The average size of the elements on the surface of the cylinder (see Figure 22(b)) is of 0.01 m,
whereas on the vertical line (from B to C and from G to C’ in Figure 21) the element size varies from 0.01
m to 0.04 m.
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1 Pa- s"
100 Pa
0.25
1000 s

k
Ty

Material properties
Consistency index
Regularization
Regularization coeflicient m

Yield stress
Flow index

Table 6: Moving and rotating cylinder in an Herschel-Bulkley fluid. Material parameters and regularization
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Figure 21: Moving and rotating cylinder in an Herschel-Bulkley fluid. Geometry and boundary conditions

Figure 22: Moving and rotating cylinder in an Herschel-Bulkley fluid. Unstructured mesh used for the
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Four different velocities of rotation (Vgor) have been studied: 0, 0.5, 1.0 and 5 m/s. The symmetry with
respect to the x axis observed for Vror = 0 m/s (Figure 23(a)) is lost when the cylinder starts rotating.
Under these circumstances only symmetry with respect to the vertical axis y is maintained (Figures 23(b)-
23(d)). This is confirmed by the streamlines (Figures 24(a)-24(d)).

The increment of the velocity of rotation makes one of the slip lines progressively disappear while the
other moves closer to the cylinder. On one side of the cylinder the rotational velocity adds to the linear
velocity, while it is opposed on the opposite side. For high values of the rotational velocity (Figure 23(d))
the rate of strain localization concentrates around the cylinder.

The slip lines of Figure 23 correspond to the change of slope in the streamlines (Figure 24) that reduces
their relative distance.

Figures 24(a)-24(d) show the complex evolution of the yielded and unyielded regions as the velocity of
rotation increases. The recirculation zone increases arriving to define a semi circle for Veor =1 m/s and it
disappears for Vror = 5 m/s, leaving a thin layer of unyielded material close to the surface while the size
of the recirculation region under the cylinder increases. The growth of the stagnation region culminates for
Vror = 1 m/s and no polar caps are present for higher velocities.

(a) Vrot = 0.0 m/s (b) Veot =0.5 m/s (¢) Viot =1.0 m/s (d) Viot =5.0 m/s
Figure 23: Moving and rotating cylinder in an Herschel-Bulkley fluid. Localization of strain rate for different

rotational velocities

The drag decreases as the velocity of rotation increases. On the contrary, the lift coefficient, which is null
when the cylinder is not rotating, increases with the velocity of rotation. It is worth noting that the drag is
substantially higher than the lift in all the cases.

8 Conclusions

In the present work a mixed stabilized finite element formulation for Bingham and Herschel-Bulkley fluids
is presented. The implementation of an OSS stabilization technique allows to use equal order interpolation
of velocity and pressure (i.e., P1/P1 linear elements), avoiding both the pressure and velocity oscillations
and leading to a stable and accurate solution.

On the one hand, being OSS a residual based stabilization technique, no consistency error is introduced.
On the other hand, constructing the subscale in the subspace orthogonal to the finite element one leads to
a minimization of the numerical dissipation on the discrete solution.

The extrusion process of a Bingham fluid with the section reduced by 2/3 shows a correct definition of
the slip lines according to Pradtl’s theory. A cylinder moving between two parallel planes is the second
example studied. The comparison with the results obtained by other authors leads to the conclusion that
the presented technique reproduces correctly the yielded and unyielded regions, as well as calculates the
correct drag for different Bingham numbers and geometrical relations. Pseudoplastic and dilatant cases of
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Figure 24: Moving and rotating cylinder in an Herschel-Bulkley fluid. Streamlines and yielded and unielded
regions for different rotational velocities

Herschel-Bulkley are are also used to study a cylinder moving in an infinite domain and a cylinder moving
and rotating around its axis. Also in these cases, the polar caps and recirculation regions are correctly
reproduced.
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