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This paper deals with the question of strain localization associated with materials which exhibit softening
due to tensile straining. A standard local isotropic Rankine damage model with strain-softening is used as
exemplary constitutive model. Both the irreducible and mixed forms of the problem are examined and
stability and solvability conditions are discussed. Lack of uniqueness and convergence difficulties related to
the strong material nonlinearities involved are also treated. From this analysis, the issue of local
discretization error in the pre-localization regime is deemed as the main difficulty to be overcome in the
discrete problem. Focus is placed on low order finite elements with continuous strain and displacement
fields (triangular P1P1 and quadrilateral Q1Q1), although the presented approach is very general. Numerical
examples show that the resulting procedure is remarkably robust: it does not require the use of auxiliary
tracking techniques and the results obtained do not suffer from spurious mesh-bias dependence.
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1. Introduction

Strain localization occurs in softening materials subjected to
monotonic straining. This phenomenon leads to the formation of
localization bands inside the solid because, once the peak stress is
reached within a band, and under further straining, strains concen-
trate inside the band while the material outside the band unloads
elastically. Upon continuing straining, the localization progresses, the
width of the localization band diminishes and, unless there is a
physical limitation, it tends to zero. The particular components of the
strain tensor that localize during this process depend on the specific
constitutive behavior of the material. In Rankine-type materials, only
normal elongations localize, eventually forming tensile cracks; in the
so-called J2 materials, shear (or slip) strains concentrate, leading to
slip surfaces (or lines).

It is generally accepted that the amount of energy released during
the formation of a unit area of discontinuity surface is a material
property, called the fracture energy (Mode I and Mode II fracture
energies in Fracture Mechanics terminology). Dimensional analysis
shows that if the elastic energy stored in the solid volume is released
through the area of the fracture surface, the failure process leads to
what is known as structural size effect [1]. Experimental evidence
shows that, for a given structural geometry, ductile behavior is
observed in the small scale limit, when the energy dissipated by
inelastic behavior in the formation of the failure mechanism is much
larger than the total stored elastic energy; contrariwise, brittle
behavior occurs in the very large scale limit, when the ratio between
the dissipated inelastic and available elastic energies is close to one.
The small scale limit is suitable for small laboratory specimens, and
the large scale limit is appropriate for structures of very large
dimensions or even for scales larger than man-made structures. Thus,
it is of practical interest to develop analytical and numerical tools
suitable to bridge the gap between perfectly ductile and perfectly
brittle behavior. This is called quasi-brittle failure [2].

Quasi-brittle failure has been the object of intensive interest in
computational solid mechanics during the last four decades. Even if
the main motivation for this interest is the wide range of engineering
applications connected to this field, academic concern has been
sharpened by the unexpected numerical difficulties encountered. The
fact is that most attempts to model strain localization in softening
materials with standard, irreducible, local approaches fail and that the
solutions obtained suffer frommesh-bias dependence in such a strong
manner that it cannot be ignored. Consequently, many different,
alternative, strategies have been devised to model strain localization
and quasi-brittle fracture and the references in the bibliography are
uncountable. In the last 25 years, micropolar ( [3,4]), gradient-
enhanced ([5–9]) and non-local, ([5,10–14], among others) models
have been proposed with the common basic idea of modifying the
original continuous problem to introduce an internal length that acts
as a localization limiter. On a different line, viscous-regularized, strain-
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rate dependent models (see [5,13,15]) also attempt to solve the
numerical difficulties by modifying the original continuous problem.
Common to all these approaches there is the understanding that the
underlying standard boundary value problem associated with quasi-
brittle failure is not well posed and it must be reformulated. However,
this standpoint ignores the well-known fact that “well-aligned” finite
element meshes produce good results when using the standard
(irreducible and local) approach. This evidence strongly suggests that
the “flaw” that produces spurious mesh-bias dependence of the
discrete problem is in the spatial discretization procedure.

In previous works, the authors have applied stabilized mixed
displacement–pressure methods ([16–21] and [1]) to the solution of J2
elasto-plastic and damage problems with simplicial elements. This
formulation leads to a discrete problem which is fully stable, even for
problems involving localization of shear strains and the formation of
slip lines. The results obtained, both in terms of collapse mechanism
and global load-deflection response, are practically mesh independent.
In this paper, we make use of the stabilized mixed strain–displacement
method presented in Part I [22] to extend these results to problems
involving strain localization in Rankine-type materials and the
formation of tensile cracks.

The outline of the paper is as follows. In the next section we briefly
describe an isotropic Rankine damage model that is used throughout
the paper as exemplary softening constitutive model to induce strain
localization. Later, the problem of strain localization is discussed both
in the irreducible and stabilized mixed forms, with emphasis on the
obstacles posed by the nonlinear nature of the question. The
difficulties on the nonlinear problem are illustrated in relation to a
simple 1D problem. Next, the question of local discretization error in
the pre- and post-peak regimes is analyzed for 2D problems; the role
that the proposed mixed formulation plays in solving this error is
described. Finally, two benchmark numerical examples involving
finite elements meshes of linear triangles and bilinear quadrilaterals
are discussed to assess the generality and robustness of the proposed
formulation.

2. Isotropic Rankine damage model

The constitutive equation for the scalar isotropic damage model
used in this work is:

σ = C : ε = 1− dð ÞCo : ε ð1Þ

where the stresses σ can be computed in terms of the total strain
tensor ε, the linear elastic constitutive tensor Co, and the damage
index d. Note that, being Co positive definite, C is also positive definite
for db1.

The formulation of the damage model is completed with the
definition of the evolution of the damage index in terms of the
evolution of the total strains, or the effective stresses σ

_
, defined as

σ
_
=Co:ε.
To model tensile damage, the equivalent effective stress, τ, is

defined as:

τ = 〈Pσ1〉 ð2Þ

where σ
_
1 is the largest principal effective stress and 〈⋅〉 are the

Macaulay brackets (〈x〉=x, if x≥0, 〈x〉=0, if xb0).
The Rankine-type damage criterion, Φ, is then introduced as:

Φ τ; rð Þ = τ−r≤ 0 ð3Þ

where r is an internal stress-like variable that is interpreted as the
current damage threshold, in the sense that its value controls the size
of the damage surface. The initial value of the damage threshold is
ro=σo, where σo is the initial uniaxial damage stress.
The (monotonic) expansion of the damage bounding surface for
loading, unloading and reloading conditions is controlled by the
Kuhn–Tucker relations and the damage consistency condition, which
are

ṙ≥ 0 Φ τ; rð Þ≤ 0 ṙΦ τ; rð Þ = 0 ð4aÞ

ifΦ τ; rð Þ = 0 then ṙ Φ̇ τ; rð Þ = 0 ð4bÞ

leading, in view of Eq. (3), to the loading condition

ṙ = τ̇ ð5Þ

This leads to the explicit definition of the current values of the
internal variable r in the form

r = max ro;max τð Þf g ð6Þ

The damage index is explicitly defined in terms of the corres-
ponding current value of the damage threshold, d=d(r), so that d

.
=

d′ṙ≥0 and 0≤db1. In this work, we will use the following exponen-
tial function:

d rð Þ = 1− ro
r
exp −2HS

r−ro
ro

� �� �
ro ≤ r ð7Þ

where HS≥0 is the softening parameter.
The mechanical free energy is defined in the form:

W = 1−dð ÞWe εð Þ = 1−dð Þ 1
2
ε : Co : ε

� �
≥ 0 ð8Þ

Thus, the rate of mechanical dissipation can be expressed as

Ḋ = Weḋ≥ 0: ð9Þ

In finite element implementations, in order to relate the specific
dissipated energy D, defined per unit volume, to the mode I fracture
energy of the material Gf, defined per unit area of damaged material,
the element characteristic length lch ([23,24]) is introduced, so that

Dlch = Gf : ð10Þ

For the damage model with exponential softening it can be proved
that the specific dissipated energy is

D = 1 +
1
HS

� �
σ2
o

2E
ð11Þ

and, therefore, using Eqs. (11) and (12)

HS =
lch

P
lS−lch

≥ 0 ð12Þ

where thematerial length is
P
lS = 1=

P
HS, with

P
H=σo

2/(2EGf) depending
only on the material properties. Note that this regularization procedure
makes the softening modulus HS, which defines the discrete local
softening response, dependent on the elemental length lch.

For linear elements and in the irreducible formulation, the discrete
localization band is only one element across, and the characteristic
length is taken as the representative size of the element, lch=he. Note
that the irreducible formulation corresponds to (see Part I [22]) τε=1.
For the non stabilized mixed problem (τε=0), strain continuity
implies a discrete localization bandwidth of lch=2he. In this work, we
will assume lch=(1−τε)2he+τεhe for the stabilized mixed formula-
tion, including the previous two limit cases. The size of the element
will be computed as he

2=2Ae for triangular elements and he
2=Ae for

quadrilateral elements.
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3. The problem of strain localization

In this section some relevant properties and difficulties associated
to the strain localization problem are revised. To this end, we will
consider first the irreducible formulation of the problem and later the
stabilized mixed form of the same.

3.1. Irreducible form

3.1.1. Numerical stability and solvability
Let us consider first the strong and weak forms of the mechanical

problem in the classical, irreducible, form.
The strong form of the problem can be stated as: find the dis-

placement field u, for given prescribed body forces f, such that:

∇ ⋅ σ + f = 0 in Ω ð13Þ

where Ω is the open and bounded domain of Rndim occupied by the
solid in a space of ndim dimensions. Eq. (13) is subjected to appropriate
Dirichlet and Neumann boundary conditions. Without loss of
generality, we will assume these in the form of prescribed displace-
ments u=0 on ∂Ωu, and prescribed tractions t- on ∂Ωt, respectively.

Following the standard procedure, the corresponding continuous
weak problem is

∇s
v;σ

� 	
= v; fð Þ + v;

P
tð Þ∂Ωt

∀v ð14Þ

where v∈V are the variations of the displacement field u, V is a
subspace ofH1 (Ω), that is, the space of functions square integrable inΩ
with square integrable derivatives and vanishing on ∂Ωu; (⋅,⋅) denotes
the inner product in L2 (Ω). Likewise, (v, t-)∂Ωt

denotes the integral of v
and t- over ∂Ωt.

This problem is rewritten in terms of the symmetric gradient of the
displacements as

∇s
v;C : ∇s

u
� 	

= v; fð Þ + v;
P
tð Þ∂Ωt

∀v ð15Þ

By definition, Eq. (15) is elliptic if the secant tensor C is positive
definite. For a scalar isotropic damage constitutive model, ellipticity is
guaranteed for db1.

A standard stability estimate for the linear version of problem (13)
is obtained by multiplying the first term of the left hand side by u and
integrating by parts over the domain Ω, to yield

∇s
u;Co : ∇

s
u

� 	
= jjujj2E ð16Þ

where ||⋅||E2 is the energy norm (equal to the elastic free energy). For
strictly positive Co, the governing equation is numerically stable. Recall
that a problem is stable when the solution can be shown to be
bounded in terms of the data, applied forces and boundary conditions
in this case.

For a scalar isotropic damage constitutive model, the stability
estimate reads

∇s
u; ð1−dÞCo : ∇

s
u

� 	
≥ c jjujj2E ð17Þ

for a positive constant c, and numerical stability is guaranteed for db1.
Upon continuing straining, the damage index approaches 1 and the
secant moduli may eventually vanish. However, inequality (17) still
holds if the secant moduli vanish completely only in a subdomain
S⊂Ω of zero measure. Note that the energy norm is defined in terms
of total displacements, not their increments, and therefore, the use of
the secant constitutive tensor is required.
The discrete version of the weak problem (15) is

∇s
vh;C : ∇s

uh

� 	
= vh; fð Þ + vh;

P
tð Þ∂Ωt

∀vh ð18Þ

where vh ∈ Vh are the variations of the displacement field uh, Vh is a
finite dimensional subspace of V. The corresponding algebraic system
of equations can be written as

K Uð ÞU = F ð19Þ

where the secant stiffnessmatrixK=K(U) is defined from the bilinear
form in Eq. (18).

In linear problems, numerical stability guarantees uniqueness of
the solution. Moreover, for the irreducible formulation, the standard
Galerkin discretization method provides a discrete problem which
benefits from the elliptic nature of the continuous problem. This
means that it is clear from Eq. (18) that K is positive definite if the
constitutive matrix C is also positive definite. As a consequence, the
system of Eq. (19) is solvable and its solution U is unique. This would
be the situation when solving the damage mechanical problem for a
given (frozen) distribution of damage, with db1.

However, the strain localization damage problem is nonlinear
because of the dependence of C (or d) on the displacements u, and
uniqueness of the solution cannot be proved as in the linear case.
Despite that, some properties of the linear case are inherited by
suitably defined linearized problems.

In practice, non linearity is dealt with assuming that the acting
body forces and boundary tractions, f and t-, are applied incrementally,
being dependent on (pseudo)time or other loading parameters. Then,
the problem is solved step-by-step in time (or load), and iterating
within each step until equilibrium (Eq. (18)) is satisfied. For example,
using Picard's method, a typical iteration (i) of such a (time) step for
the corresponding problem would be

∇svh;C u i−1ð Þ
h


 �
: ∇su ið Þ

h


 �
= vh; fð Þ + vh;

P
tð Þ∂Ωt

∀vh ð20Þ

This is a linearized equation for uh
(i) and, therefore, if db1,

numerical stability guarantees that its solution uh
(i) is unique. Similar

conclusions could be drawn for other linearization strategies, such as a
consistently derived Newton–Raphson scheme.

The corresponding linear algebraic system of equations would be

K U
i−1ð Þ
 �

U
ið Þ = F ð21Þ

For db1, the system of Eq. (21) is solvable and its solution U(i) can
be obtained. Therefore, onceU(0) and the iterative procedure (Picard's
method in this case) are specified, and if convergence is achieved, a
solution U is obtained. Nonetheless, different iterative procedures or
different initial estimates may yield different solutions. This is
discussed next.

3.1.2. Nonlinearity, convergence and uniqueness
Let us now consider in some detail the implications of the strain

localization problem being materially nonlinear, because of the
dependence of the constitutive tensor C (for instance, in the case of
the isotropic damage model, through the dependence of the damage
index d) on the (gradients of the) displacements u.

The first implication is that uniqueness of solution is lost. For
nonlinear problems, uniqueness of solution is an exceptional case;
there are usually numerous solutions to the problem and they are
usually path dependent, given that most material nonlinearities are
non-reversible. Therefore, the previous arguments only prove that for
a given (time) step, a given initial estimate and a given convergent
iterative procedure, a certain solution is obtained.
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This introduces a second implication: a convergent iterative pro-
cedure is required. In the previous discussion Picard's method was
used because of its formal simplicity, but, in practice, other nonlinear
algorithms are used. Considering the very popular Newton–Rahshon's
method, or any of its modifications, the concept of consistent tangent
stiffness matrix comes into play. Computing the tangent stiffness
matrix involves the evaluation of the tangent constitutive tensor. But
many nonlinear material processes are sudden and irreversible (like
the onset and subsequent evolution of damage or plastic strains) and
the corresponding constitutive models are written in terms of
inequalities (such as the inelastic criteria and Kuhn–Tucker relations
used in damage and plasticity models, see Eqs. (3) and (4a)) rather
than equalities. This makes it necessary to distinguish between
“loading” and “unloading” and this makes the mathematical concept
of “tangent” not uniquely defined in most cases, even though
strategies to overcome this problem have been proposed in specific
situations ([25,26]). The same occurs when bounding surfaces present
corners or apices. Also, the local material instability associated to
strain softening makes tangent constitutive tensors non positive,
introducing additional computational difficulties. All this amounts to
the regrettable fact that achieving satisfactorily converged results in
strongly material nonlinear problems is very difficult. If the
intermediate solutions are not truly converged, the progressive
drift-off error may lead to an unrealistic equilibrium path.

The third implication is the possible loss of global structural
stability. To consider this, let us rewrite the constitutive tensor as

C = Co + Cm ð22Þ

where Co is the linear elastic constitutive tensor, which is positive def-
inite, and Cm=Cm(ε) is thematerial nonlinear constitutive tensor. For
the isotropic damage model used as exemplary case, Cm=−d(ε)Co.
Note that this tensor is negative definite. Using this split, Eq. (21) can
be written as

Ko + Km U
i−1ð Þ
 �h i

U
ið Þ = F ð23Þ

where Ko is the linear elastic stiffness matrix and Km is the material
nonlinear stiffness matrix. This format can be compared with the well
known expression obtained for (elastic) geometrically nonlinear me-
chanical problems, which reads

Ko + Ku U
i−1ð Þ
 �

+ Kg U
i−1ð Þ
 �h i

U
ið Þ = F ð24Þ

where Ko is the linear elastic stiffness matrix, Ku is the nonlinear
stiffness due to the consideration of finite displacements and Kg is the
geometric nonlinear stiffness matrix. The comparison shows that the
effect of increasing the values of the damage indices in the system
(23), and the loss of local material instability implied in softening
situations, is very similar to that of increasing the compressive
(negative) stresses in the system (24): reducing the overall positivity
(stability) of the system.

Applying standard linear stability techniques to the global equilibrium
Eq. (23), with F=λF

_
and KT(U(i−1)) being the tangent stiffness matrix,

results in the possibility of having critical (limit, bifurcation or turning)
points in the equilibrium path if the equation

KT U
i−1ð Þ
 �

Φ = 0 ð25Þ

has non-trivial solutions. This implies that, depending on the sign of
|KT|, global structural equilibrium at a point along the equilibrium
path can be either strongly stable (|KT|N0), neutrally stable (|KT|=0)
or unstable (|KT|b0). If |KT|=0 and λ

.
=0, the critical point is a limit

point; if |KT|=0 and ΦTF
_
=0, the critical point is a bifurcation point.
Other interesting points that may occur along the nonlinear
equilibrium path are the turning points, where |KT|=∞.

These situations occur regularly in problems involving strain
localization, where loss of (local) material stability often leads to loss
of (global) structural stability. Limit points are associated with peak
loads and unstable branches are associated with post-peak states.
Turning points may occur in situations where the ductility of the
structure, that is, the relation between the energy necessary to develop
the collapsemechanismand the stored elastic energy, is very small. This
is why continuation methods such as displacement control or the arc-
length, originally developed for geometrically nonlinear problems, are
also very much used to solve potentially global unstable problems
caused by strong material nonlinearities. Unfortunately, these methods
are of little help in the case of bifurcation points, and this remains one of
themain difficulties associated with strain localization problems, in the
need of procedures for selecting the “appropriate” propagation track for
the localization band.

A final implication regarding nonlinearity, lack of uniqueness and
loss of global structural stability is the fact that the discrete system is
only an approximation of the continuous one. In mathematical terms,
the solution spaces for both problems are different. In more intuitive
terms, the discrete systemmay be viewed as an “imperfect” version of
the continuous one. This means that the solutions of both systems
may differ significantly. In the best case, only some of the continuous
solutions may be reflected on the discrete system (in a more or less
approximate way) and some others will be lost in the discretization
process (like bifurcation points are eliminated by imperfections). In
the worst case, lack of numerical stability may cause that discrete
solutions be spurious and unrelated to the continuous case. This last
worst case is precisely what happens when a FE solution showsmesh-
bias strain localization patterns.

3.2. Stabilized mixed form

3.2.1. Numerical stability and solvability
Let us now consider the continuous mixed (ε/u) formulation of the

problem. As stated in Part I of this work, in this case the associated
weak form of the problem can be stated as:

− γ;C : εð Þ + γ;C : ∇s
u

� 	
= 0 ∀γ ð26aÞ

∇s
v;C : ε

� 	
+ v; fð Þ = 0 ∀v ð26bÞ

where v ∈ V and γ ∈ G are the variations of the displacements and
strain fields, respectively. Let us assume, as before, that C is positive
definite.

For this problem, numerical stability cannot be based only on
ellipticity. However, for the linear problem stability and, therefore,
existence and uniqueness of a solution u ∈ V, ε ∈ G can be proved if
the spaces V and G satisfy a certain inf-sup condition.

The same arguments are valid for the discrete mixed (εh/uh)
formulation of the problem if the Galerkin formulation is used:
satisfaction of the inf-sup condition by the solution spaces Vh and Gh is
necessary and sufficient to guarantee numerical stability and
uniqueness of the solution. As satisfaction of the inf-sup condition is
very stringent, an alternative consists of modifying the standard
discrete form by adding the appropriate stabilization terms. This is the
procedure followed in Part I of the paper. Once this is done, numerical
stability can be assured and, therefore, for a linear problem, a solution
uh ∈ Vh, εh ∈ Gh exists and it is unique. This numerical stability issue is
unrelated to material or structural instabilities that may arise in non-
linear problems.



Fig. 2. Stretching of a 1D bar. Response of the (A) perfect and (B) imperfect systems.

Fig. 1. Stretching of a 1D bar. Continuous and discrete models.
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The corresponding stabilized algebraic system of equations can be
written as (see Part I)

−Mτ Gτ

G
T
τ Kτ

" #
E

U

" #
=

0

F

" #
ð27Þ

or, formally rewritten as

Kτ + G
T
τM

−1
τ Gτ

h i
U = F ð28aÞ

E = M
−1
τ Gτ

h i
U ð28bÞ

where the global matrices Mτ, Gτ and Kτ come from the standard
assembly procedure of the elemental contributions.

It follows from the stability analysis in Part I of this work that, if the
constitutivematrix C is positive, the system of Eq. (27) is solvable and its
solution E/U is unique. This would be the situation when solving the
damagemechanical problem for a given (frozen)distribution of damage,
with db1.

Note that the irreducible form of the problem is easily proved to be
numerically stable because of ellipticity of the corresponding bilinear
form, while stability has to be enforced for themixed form. In fact, this
enforcement consists of adding a subscale which is constructed using
the irreducible solution.

For the nonlinear problem, these stability and solvability proper-
ties reflect on the corresponding linearized iterations, as discussed for
the irreducible formulation. Therefore, once E(0)/U(0) and the iterative
procedure are specified, and if convergence is achieved, a solution E/U
is obtained. Nevertheless, different iterative procedures or different
initial estimates may yield different solutions.

3.2.2. Nonlinearity, convergence and uniqueness
The stabilized mixed form of the strain localization problem is

materially nonlinear, because of the dependence of the constitutive
tensor C (for instance, in the case of the isotropic damage model,
through the dependence of the damage index d) on the strains ε.

The implications of this nonlinearity are the same discussed for the
irreducible form, namely, lack of uniqueness, convergence difficulties,
loss of global structural stability and possible lack of correlation
between the behavior of the continuous and discrete systems.

4. Strain localization in 1D

In this section the implications that nonlinearity has on the
solution of the displacement discontinuity or strain localization
problem will be illustrated in a 1D example. Discretization error
poses no additional difficulties in this case and, therefore, discussion
may focus in the exact solutions of the corresponding continuous and
discrete problems. Lack of uniqueness and loss of global structural
stability are emphasized.

For the following discussion it is not necessary to make it explicit if
the material softening behavior is defined in terms of a stress vs
displacement jump or a stress vs strain law. The first would correspond
to a strong discontinuity approach and the second one to a weak
discontinuity or smeared approach. Even if both formulations present
several theoretical and technical differences, in 1D it is relatively easy to
switch from one to the other [27].

Consider the axial stretching of a bar of length L as the one shown
in Fig. 1. The test is conducted under displacement control, that is, an
increasing right-end displacement is imposed and the left-end
reaction force is evaluated. The cross section of the bar is A and the
material behavior is defined by the elastic modulus E, the tensile
strength σo and the tensile fracture energy Gf . Linear strain-softening
is assumed.
Let us first consider the behavior of a perfect continuous model of
the bar. Before reaching the peak load, point B in Fig. 2, the problem is
linear and the solution is unique. The slope of the elastic branch is
defined by the elastic modulus E and the peak load that the bar can
sustain is defined by the values of the cross section A and the tensile
strength σo. Point B is both a limit point and a bifurcation point. All the
sections along the bar reach the strain corresponding to the peak
stress at the same time, and after that each one may “break” and
undergo inelastic deformation or, alternatively, unload elastically.
Therefore, there are infinite post-peak solution branches, depending on
how many sections along the bar take the softening branch at the
same time. All these solutions satisfy exactly the equilibrium,
compatibility and constitutive equations at each point of the domain
and its boundary.

The solutions corresponding to 1, 2, 3 and 4 softening sections are
plotted in Fig. 2A. The energy dissipated in each solution is different
and directly proportional to the number of softening sections in each
solution, because the amount of energy necessary to completely
release the stress at each section is defined by the values of the cross
section A and the fracture energy Gf. The situation may be more
complex, because it is also possible to switch spontaneously from one
descending branch to another.

The test cannot be conducted under load-control because the post-
peak regime is unstable. This is clear in Fig. 2A for branches 2, 3 and 4,
with negative slopes. If the elastic energy corresponding to point B
is greater than the fracture energy necessary to break one section,
that is, if the length of the bar is greater than the material length (see
Eq. (12)), L N

P
lS = 2EGf = σ2

o

� 	
, then point B is also a turning point,

and the equilibrium path snaps back. Branch 1 in the figure illustrates
this situation, with positive descending slope. This situation cannot be



Table 1
Order of convergence of different terms in the irreducible and mixed stabilized formula-
tions when interpolations of degree k are used.

Term Irreducible Mixed

||∇s(u−uh)|| hk hk

||u−uh|| hk+1 with duality hk+1/2 without duality
hk+1 with duality

||σ−σh|| hk hk+1/2 without duality
(σh=C :∇suh) hk+1 with duality

||∇⋅(σ−σh)|| hk−1 hk

(σh=C :∇suh)
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reproduced under displacement control and it requires some form of
mixed control.

It is noteworthy that bars of different lengths perform differently,
showing degrees of brittleness which are proportional to their
physical dimensions. This phenomenon is known as structural size
effect, and its quantification is, in fact, one of the major practical
applications of softening constitutive models and strain localization.

The situation is simpler if we consider an imperfect continuousmodel
of the bar. This can be constructed by inserting a section of the barwith a
slightly smaller cross section or lower tensile strength or a slightly
higher elastic modulus. Now, there is only one exact solution to the
problem, as this particular section will be the first to meet the
inequalities defining inelastic behavior. Point B is now precisely defined
by the conditions at this section, and it may still be a limit point and a
turning point, but the possibility of bifurcations is eliminated by the
Fig. 3. Results for rectangular strip under tension (top: triangular mesh, bottom: quadrilate
form. (4) major principal strain — stab. mixed form.
structural imperfection. The situation is depicted in Fig. 2B.Note that the
other descending branches start at different points such as B′, B″ or B‴
that are close to point B, at distances that are proportional to the
magnitude of the imperfection. If the imperfection is “small”, an error in
the virtual test could inadvertently produce an inexact solution.

Let us nowconsider the behavior of a perfect discretemodel of thebar,
constructed by assembly of a finite number of elements of different
lengths. For simplicity, let us assume that each element has only one
sampling point for the evaluation of the constitutive behavior and
constant mechanical properties. Apparently, this system behaves very
similarly to theperfect continuousmodel, apart fromthe fact thatnowthe
number of possible post-peak branches is finite. However, this is only
true if two premises are met: (A) in the pre-peak regime, the discrete
model must be able to represent exactly the stress field and (B) in the
post-peak regime, the discrete model must be able to represent exactly
the displacement (and/or strain) and stress fields. If any of these two
conditions are not met, the equilibrium curves P−δ of the continuous
and discrete models will be different and the difference may be
quantitative and qualitative. Meeting requirements (A) and (B) is not
difficult in the simple 1D test proposed, because (A) the stress field is
constant all over the domain at all times and (B) there aremanyways of
modelling a “breaking” section in 1D as exactly as desired.

An imperfect discrete model of the bar would also yield a unique
solution, but it would only coincide with the corresponding imperfect
continuous model if the stated premises are met. Additionally, a
perfect discrete system may behave as “imperfect” because of round-
off error. This has to be taken into account when working with
irreversible nonlinear models defined in terms of inequalities.
ral mesh). Contours of: (2) total displacement, (3) major principal strain — irreducible
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5. Strain localization in 2D

The previous section demonstrates that even an apparently simple
example of displacement discontinuity or strain localization in 1D
may exhibit a relatively complex behavior because of the type of
nonlinearity involved. The implications of nonlinearity match in the
continuous and discrete models only if the discrete model satisfies
two requirements. One is related to the accuracy of the stress field in
the discrete model in the pre-localization regime; the other is related
to the accuracy of the displacement, strain and the stress fields in the
discrete model in the post-localization regime.

Discrete models only yield exact solutions in very particular
situations, when the continuous solutions belong to the discrete spaces.
Apart from these cases, discrete solutions obtained in different meshes
approximate the continuous solution. This means that the discrete
solutions converge, in a properly defined sense (or norm), to the
continuous solution onmesh refinement. Table 1 summarizes the order
of convergence that can be expected from the irreducible and the
stabilizedmixed formulations for differentmagnitudes of interest in the
mechanical problem. This order of convergence depends on the degree
of the interpolation functions used in the discrete model. Results from
Table 1 imply that the mixed formulation achieves better accuracy on
the stresses (or strains) than the irreducible formulation. This may not
be considered a discriminating argument, as this improvement is
attained at the cost of using more degrees of freedom for the same
number of nodes in the FE mesh.
Fig. 4. Results for rectangular strip under tension with the mixed formulation (top: trian
stabilization, (3) major principal strain — no stabilization. (4) major principal strain — stra
But rate of convergence is not the main issue in the case of strain
localization problems. The real problem is lack of convergence. The
norms evaluated in Table 1 are global. Without additional regularity
conditions, local estimates of convergence are expected to be one
order smaller. This means that, using linear elements, convergence for
the stresses (or strains) cannot be guaranteed in the irreducible
formulation. Propitiously, the stabilized mixed formulation can
guarantee first order convergence. Using higher order elements in
problems involving strong gradients and/or discontinuities does not
improve the convergence estimates, since higher order derivatives
involved in these estimates are not bounded in such situations. In fact,
if the continuous solution is singular, not even the first order
derivatives are going to be point-wise bounded. Nevertheless,
convergence (without order) can be expected in the mixed formu-
lation in the energy norm defined for a region around the singularity.
This is not the case for the irreducible formulation.

Given the intrinsic local nature of the strain localization problem,
the discrete solution is largely affected by the local discretization error.
In 2D and, obviously, 3D situations local discretization error affects
both the pre and post strain localization regimes. This fact, inherent to
the discretization process, is probably the major specific challenge in
their solution, and it adds to the difficulties associated to the strongly
nonlinear nature of the problem. The usual result of these combined
difficulties is that, from all the possible localized solutions that the
nonlinear discrete model has, the one obtained is mesh-biased and,
therefore, apparently unrelated to the continuous case.
gular mesh, bottom: quadrilateral mesh). Contours of: (2) total displacement — no
in stabilization only.



Fig. 6. Separation mode in a band of equal size quadrilaterals: (A) Gaussian strains
(irreducible formulation), (B) nodal strains (mixed formulation).
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In the following, the local discretization error both in the pre and
post localization regimes is exemplified in 2D situations. The
irreducible and mixed formulations are compared to demonstrate
the relative benefits of the second approach.

5.1. Local discretization error in the pre-localization regime

Consider the axial stretching of a rectangular doubly notched
specimen as the one shown in Fig. 3. A uniform vertical displacement
is imposed at the top boundary while the bottom boundary remains
fixed. Actual details on the geometry and material properties are
given in Section 6, where the same specimen is used for the strain
localization analyses.

The solution of the associated continuous elastic problem depends
strongly on the actual detail geometry of the tip of the notches. The
strain and stress fields are regular if the tips are rounded, but they
become singular if the notches present sharp corners. In this case, the
corresponding discrete model will perform satisfactorily in terms of a
global error norm, butwill approximate very poorly the actual behavior
at the singular points (see, for instance, Example 5.3 in Part I [22]). In
fact, local error estimates will be unbounded. This may be of crucial
importance in a nonlinear analysis if the criteria for initiation of inelastic
behavior are established in termsof local values anddirections or strains
or stresses, as it is common in ContinuumMechanics.

Let us illustrate these considerations on the proposed 2D test. Four
FE discrete models of the problem are constructed using P1 triangles
(linear displacement), P1P1 triangles (linear displacement and strain),
Q1 quadrilaterals (bilinear displacement), Q1Q1 quadrilaterals (bilin-
ear displacement and strain), and the corresponding elastic analyses
are performed.

Fig. 3 shows results obtained with the four FE models. The second
column, Fig. 3 TRI.2 and QUAD.2, shows contours of the displacement
field obtainedwith the P1 andQ1 elements, respectively. Both are very
similar to the displacement solutions obtained with the corres-
ponding P1P1 and Q1Q1 elements (not shown). In the third column,
Fig. 3 TRI.3 and QUAD.3 show contours of the major principal strain
field obtained with the P1 and Q1 elements, respectively. Note that
they are inter-element discontinuous and that significant differences
can be appreciated between them in the areas close to the tip of the
notches. These are precisely the points where nonlinear behavior
leading to strain localization is bound to initiate. In the fourth column,
Fig. 3 TRI.2 and QUAD.2 show contours of the major principal strain
field obtained with the P1P1 and Q1Q1 elements, respectively. Note
that they are inter-element continuous and much smoother behavior
can be appreciated in the areas close to the tip of the notches. The
differences that can still be appreciated between them indicate that
Fig. 5. Separationmode in a band of equal size triangles: (A) Gaussian strains (irreducible
formulation), (B) nodal strains (mixed formulation).
the discretization error associated to this level of mesh refinement is
small but noticeable.

For the sake of completeness Fig. 4 shows plots that help to
understand the need for stabilizing the proposed mixed formulation. In
the second column, Fig. 4 TRI.2 and QUAD.2 show contours of the
displacement fields obtained with the P1P1 and Q1Q1 mixed elements,
respectively,without any stabilization. The fact that the inf-sup condition
is not satisfied effectively causes that the standard Galerkin procedure
Fig. 7. Triangular meshes A and B for the rectangular strip under tension: (1) undeformed
shape, (2) deformed shape — irreducible form, (3) deformed shape — stabilized mixed
form.

http://dx.doi.org/10.1016/j.cma.2010.04.006


Fig. 8. Vertical reaction versus vertical displacement in rectangular strip under tension
using triangular elements P1 and P1P1.
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be unstable and this instability shows as oscillations in the displace-
ment field. The third column, Fig. 4 TRI.3 and QUAD.3, shows the
corresponding contours of themajor principal strain field obtainedwith
the unstable P1P1 and Q1Q1 mixed elements, respectively. The results
are obviously oscillatory. The fourth column, Fig. 4 TRI.4 and QUAD.4,
Fig. 9. Results for rectangular strip under tension using the irreducible formulation and tr
(b) damage index (c) major principal strain. (d) Vectors of major principal strain.
shows contours of the major principal strain field obtained with the
P1P1 and Q1Q1 elements, respectively, stabilized only with the term
corresponding to the strain subscale. In this case the displacement
solution (not shown) is stable. Note that the strainfield is globally stable,
but oscillations can still be appreciated in the neighborhood of the
notches. When the terms corresponding to the displacement subscale
are added, the strain field is virtually free of oscillations, as shown in
Fig. 3 TRI.4 and QUAD.4.

The local discretization error in the elastic or pre-localization regime
observed in the presented example cannot be circumvented by
regularizing the geometry of the specimen so that singular points are
eliminated from the geometry. Even if the tips of the notches in the
specimen are rounded and the discrete elastic solution is reasonably
accurate, theproblemof a local discretizationerrorwill reappear as soon
as sudden, brittle and irreversible inelastic behavior occurs and strain
localization bands progress through the finite element mesh.

The degree of these difficulties is alleviated if regularization
techniques are used. Because the difficulties are due to the discretization
error, the regularization techniques must be associated to the discretiza-
tion procedure. A successful regularization technique should reduce the
numerical difficulties of the discrete problem without essentially changing
the nature of the solution and be convergent on mesh refinement. These
requirements rule out some techniques such as, for instance, viscous
material models or non-local formulations, because they change the
nature of the problemand are not related to the discretization procedure.
iangular meshes (top: mesh A, bottom: mesh B). Contours of: (a) total displacement,



2580 M. Cervera et al. / Computer Methods in Applied Mechanics and Engineering 199 (2010) 2571–2589
These strategies have to be understood as modifications of the original
constitutive law.

An additional remark to be made is that strain localization
processes can be very different with regard to the propagation
mechanisms involved, and this fact has its reflection on the associated
numerical difficulties. For instance, tensile cracks usually propagate
starting from points with strong tensile stress gradients; in any case,
the tip of a progressing crack is always a point of strong stress
gradients. So, tensile crack problems are particularly difficult from the
discretization error point of view. On the contrary, shear disconti-
nuities or slip lines usually form by progressive narrowing of shear
bands. Consequently, prediction of failure mechanisms associated to
slip lines is relatively less prone to suffer from local discretization
error.

In relation to this, let us remark on the use of auxiliary tracking
techniques in strain localization problems. In the last decade, these
procedures, originated in the context of FE applications of the Fracture
Mechanics Theory, have been introduced in Continuum Mechanics
based approaches to cracking and strain localization problems, even if
there is no variational justification for their use. Successful application
of the strong discontinuity approach (SDA) and of the X-FEM requires
their use to determine the direction of crack propagation ([28–32]).
Mosler and Meschke [30] have reported that, without tracking, the
SDA leads to the same spurious mesh bias dependence as the standard
weak discontinuity approach. Cervera and Chiumenti ([33,34]) have
reported in the reciprocal sense that if tracking is used, the weak
Fig. 10. Results for rectangular strip under tension using the mixed formulation and tria
(b) damage index (c) major principal strain. (d) Vectors of major principal strain.
discontinuity formulation produces results that do not suffer from
mesh bias dependence in an evident spurious way.

There are at least two reasons to explain why the use of auxiliary
tracking procedures is useful. On one hand, global tracking techniques
help to overcome the local discretization error, particularly if coarse
meshes are used. On the other hand, more fundamentally, the use of
seeding and tracking techniques, either local or global, is determinant in
eliminating undesired alternative solutions of the nonlinear discrete
problem. The tracking procedures not only “label” the elements along
the potential localization path; they also “cross out” the elements
outside that path, overriding the possibility of, supposedly spurious,
alternative solutions. In this sense, they are useful in selecting the
appropriate solution among the many possible ones. This only
demonstrates that the “right” solution is there to be tracked down.
Regretfully, and disregarding their heuristic introduction, crack tracking
techniques are simply not robust enough in cases like bending, where
the trajectories of tensile principal strains stop at the neutral axis; and
they are intrinsically unable to deal with branching situations which
may have physical meaning.

5.2. Local discretization error in the post-localization regime

The second reflection of the local discretization error in the
solution of displacement discontinuity and strain localization pro-
blems is the incapacity of standard finite elements to reproduce
separation modes adequately. It is clear that discrete solution spaces
ngular meshes (top: mesh A, bottom: mesh B). Contours of: (a) total displacement,



Fig. 11.QuadrilateralmeshesAandB for the rectangular stripunder tension: (1)undeformed
shape, (2) deformed shape— irreducible form, (3) deformed shape— stabilizedmixed form.
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built from continuous polynomials cannot represent displacement (or
strain) discontinuities inside the element. This is purely an approxim-
ability shortage of the discrete solution spaces used, and it is not
related to stability problems of the formulation.

These considerations concerning the very limited ability of standard
finite elements to reproduce separationmodes in general circumstances
are the reason behind the spurious shear locking exhibited by classical
smeared orthotropic cracking models [35], which led to their practical
neglection by the academic community in the late 1990s. They were
substituted by scalar damage and plasticity models which still suffered
from spurious shear straining, but largely avoided that this reflected on
the stress field.

Let us illustrate this with another 2D test, designed to evaluate the
ability of low order elements to represent a displacement disconti-
nuity and, therefore, a separation mode. The problem consists in
projecting a unit vertical displacement jump that occurs along a
horizontal line. The analytical solution consists in only vertical strains
and stresses.

Firstly, a FE discrete model of the problem is constructed using
3-node triangles with P1 lineal displacement interpolation in the
irreducible formulation and P1P1 linear strain/displacement interpo-
lation in the mixed formulation (see Fig. 5). The model represents a
zig-zag band of elements crossed by a horizontal displacement
discontinuity. The inclination of the sides of the band is ±30°.
Vertical displacements are set to 0 for the nodes at the bottom of the
band and to 1 at the top nodes, horizontal displacements are set to 0
for all nodes. Poisson's ratio is set to 0 for simplicity. Note that none of
the elements presents any side orthogonal to the imposed vertical
displacement field.

Fig. 5 shows the results obtained in the band in terms of dis-
placement contours and directions of the main tensile strains. Fig. 5A
shows the Gaussian principal tensile stresses obtained with the
standard irreducible displacement formulation. Note how the com-
puted strains, instead of being vertical, present a inclination that
exactly bisects the angle between the correct vertical solution and the
normal to the sides of the band (±15°). Fig. 5B shows the nodal
tensile strains obtained with the mixed strain/displacement formu-
lation proposed in Part I of this work. Here, the strain field is exactly as
expected at all nodes.

Secondly, a similar FE discretemodel of the problem is constructed
using 4-node quadrilaterals with Q1 linear displacement interpolation
in the irreducible formulation and Q1Q1 linear strain/displacement
interpolation in the mixed formulation (see Fig. 6). The geometry of
the band of elements and the imposition of the boundary conditions
are identical to the previous case. Fig. 5 shows corresponding results
obtained in the band in terms of contours of displacements and
directions of the main tensile strains. Observe the similarity of these
results with the ones obtained if the band is discretized using 3-node
triangles.

Even if the added strain continuity of the mixed formulation is
partially effective to alleviate the poor behavior exhibited by the low
order continuous elements, it is not specifically introduced tomake up
for these deficiencies. In the case shown, exact results are obtained
with the aid of the multiple symmetries of the test.

The effective way of correcting this approximability local discretiza-
tion error is to enrich the approximation spaceswith additional degrees
of freedom (dofs) that enhance the desired capacities for representing
embedded displacement and/or strain discontinuities. This has to be
made with caution because some of the possible strategies may cause
new numerical instabilities in the enriched discrete problem.

Recent FE technologies like the SDA ([27,30,36–43]) and the
X-FEM ([44–46]) tackle this problem directly. The first one enriches
the solution space by introducing discontinuous functions inside the
elements, while the second makes use of the partition-of-unity
property of the nodal shape functions. The advantage of the SDA is
that the additional dofs can be condensed at element level, at the cost
of not enforcing inter-element displacement continuity and having to
develop special procedures for each type of element. In the X-FEM
approach displacements are inter-element continuous and this
precludes the possibility of solving the additional dofs separately
from the original ones.

Even if these two approaches are very attractive from the
theoretical point of view, they are not free from practical incon-
veniences. In fact, both formulations are often applied in a regularized
manner ([47–51]). In these regularized versions, the discrete solution
considers embedded strain localization bands rather than actual
displacement discontinuities. The width of the regularized band is a
numerical parameter, chosen to be “small”. An obvious choice for this
width is the size of the element, which, on mesh refinement, can be
made as small as desired. Apparently, this takes us back to the original
concept of the smeared approaches and, in fact, it is exactly so in the
1D case, but this is not true in other contexts.

Combination of the stabilized mixed form presented in this work
with a suitable enrichment technique for the displacement and/or
strain fields is expected to bring a satisfactory answer to the strain
localization problem.

6. Numerical examples

The application of the stabilized strain/displacement ε/u formula-
tionpresented in Part I of thiswork to theproblemof strain localization is
illustrated below by solving two different benchmark problems. Relative
performance of the irreducible displacement formulation and the
stabilized mixed strain/displacement formulation is tested considering



Fig. 12. Vertical reaction versus vertical displacement in rectangular strip under tension
using quadrilateral elements Q1 and Q1Q1.
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2D3-node triangular and4-node quadrilateralmeshes. The elements used
will be: P1 (linear displacement), P1P1 (linear strain/ linear displace-
ment), Q1 (bilinear displacement), Q1Q1 (bilinear strain/bilinear
displacement). Only low order elements are considered because they
are more effective in problems involving sharp displacement and strain
Fig. 13. Results for rectangular strip under tension using the irreducible formulation and qu
(b) damage index (c) major principal strain. (d) Vectors of major principal strain.
gradients. However, the proposed approach is very general. When the
stabilizedmixed strain/displacement formulation is used, values cε=1.0
and cu=1.0are taken for theevaluationof the stabilizationparameters τε
and τu, respectively.Wehave chosenCmin=(1−d)E, understanding that
the Young's modulus E is a characteristic value of the elastic tensor
(constants appearing in the minimum eigenvalue of the elastic tensor
may be included in the algorithmic constant cu in Eq. (10) of Part I).

In all examples, strain localization is induced by the local scalar
damage model with exponential strain softening described in Section 2.
The following material properties are assumed: Young's modulus E=
2 GPa, Poisson's ratio ν=0.0, tensile strength σo=1MPa and mode I
fracture energy Gf=250 J/m2.

The discrete problem is solved incrementally, in a (pseudo)time
step-by-step manner. Analyses are performed under displacement
control in order to trace the complete post-peak behavior. An automatic
time incrementation procedure is used to reduce the size of the time
steps when convergence due to the nonlinear effects is more difficult.
Within each step, amodifiedNewton–Raphsonmethod, togetherwith a
line search procedure, is used to solve the corresponding non-linear
system of equations. Convergence of a time step is attained when the
ratio between the normof the iterative and the incremental normof the
residual arrays is lower than10−3. It has tobe remarked thatno tracking
algorithm of any sort has been used in any of the computations.

Calculations are performed with an enhanced version of the finite
element programCOMET [52], developed at the International Center for
adrilateral meshes (top: mesh A, bottom: mesh B). Contours of: (a) total displacement,
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Numerical Methods in Engineering (CIMNE). Pre and post-processing is
done with GiD, also developed at CIMNE [53].

6.1. Rectangular strip under tension

The first example is a plane rectangular strip subjected to axial
vertical stretching applied by imposing null vertical displacements at
the bottom and increasing a uniform vertical displacement at the top.
Dimensions of the strip are 100×200 mm×mm (width×height) and
the thickness of the strip is 10 mm. For the evaluation of the stabiliza-
tion parameters in the mixed formulation, the width of the strip, L0=
100 mm, is taken as representative length of the problem.

For a perfectly rectangular strip, the elastic solution involves linear
vertical displacements and constant vertical strains and stresses in the
whole domain, and no unique strain localization solution exists as the
stretching is increased. Two symmetrical notches are introduced close
to the horizontal axis of symmetry of the strip to perturb the constant
strain and stress fields and to ensure uniqueness of the strain localiza-
tion problem.

This example is selected because it represents a sort of patch test for
pure mode I fracture. On one hand, the stress field is almost constant
before damage and it should remain so after localization. On the other
hand, the almost constant initial strain field bifurcates into twodifferent
strainfields inside andoutside the localizationbandafter damage.At the
end of the localization process, the apparent displacement jump across
the band must be constant.
Fig. 14. Results for rectangular strip under tension using the mixed formulation and quad
(b) damage index (c) major principal strain. (d) Vectors of major principal strain.
The example is used to assess the ability of the irreducible (IRR)
andmixed (MIX) formulations to reproduce these ideal conditions and
the dependence of the obtained results with respect to the mesh-bias.

6.1.1. Triangular meshes: P1 and P1P1 elements
Let us start by considering triangular finite element meshes. The

rectangular notched domain is discretized in two different structured
meshes of triangles with different preferential alignments. On one
hand, mesh A (Fig. 7A.1) consists of rectangular triangles with
predominant directions at 0°, +45° and +90° with the horizontal
axis. As the strip is expected to damage along a horizontal line, the
elements in this mesh have one of their sides parallel to the damage
band. On the other hand, mesh B (Fig. 7B.1) also consists of almost
rectangular triangles, but themesh is “slanted” on purpose, so that the
predominant directions are −13°, +32° and +90° with the
horizontal axis. Therefore, the elements in this mesh do not have
any of their sides parallel to the expected strain localization band.
Both meshes consist of about 1,800 nodes and 3,600 elements, with a
relation L0/h=40.

The computed deformed shapes of the strip using meshes A and B
with the irreducible formulation are shown in Fig. 7A.2 and B.2,
respectively (imposed vertical displacement δ=1.0 mm, with a
displacement amplification factor of 10). As shown, the localization
band obtained with mesh A follows exactly a horizontal line, and the
deformation mode obtained is globally correct. Results are very
different for mesh B. Here one damage band starts from each notch at
rilateral meshes (top: mesh A, bottom: mesh B). Contours of: (a) total displacement,



Fig. 15. Triangular meshes A and B for the rectangular strip under tension and bending:
(1) undeformed shape, (2) deformed shape — irreducible form, (3) deformed shape —

stabilized mixed form.
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an angle which is spuriously determined by the mesh bias. These two
extension bands do not meet at the centre and they only change
direction at a very advanced stage of the localization process.

Correspondingly, Fig. 7A.3 and B.3 depict the deformed shapes
obtained using meshes A and B with the stabilized mixed formulation.
The localization band computed in mesh A, which is “properly”
aligned, follows exactly a horizontal line, and the global deformation
mode obtained is correct. Remarkably, the global deformation mode
obtained for mesh B, despite its strong unfavorable mesh-bias, is also
correct. Here, the localization band zig-zags through the mesh to
reproduce the expected horizontal “crack”.

Fig. 8 shows the load vs displacement curves obtained with both
the irreducible and the stabilized mixed formulations using the two
meshes. Note how three of the four results virtually overlap, and only
the curve corresponding to the irreducible formulation on mesh B
shows a different behavior. The trend corresponds with the deformed
shapes of Fig. 7. Results obtainedwith the stabilizedmixed formulation
in both meshes A and B are correct, both in terms of peak-load and
dissipated energy, showing no spurious mesh-bias dependence.

Let us consider in some detail the behavior of the two formulations.
Fig. 9 shows different results obtained with the irreducible formulation
on both meshes, when the localization band is well developed, for
imposed vertical displacement δ=1.0 mm. The first column shows
contours of total displacement, the secondcolumnshows contours of the
damage index, the third column shows contours of the major principal
strain, and the last column shows vectors of this major principal strain.

The differences between the top row, corresponding to results
obtained on mesh A, with the bottom row, corresponding to results
obtained onmesh B, are evident. The solution showed on the top row is
correct in every aspect. However, results on the bottom row differ
significantly. The first column shows displacement jumps across two
main localization bands, whose directions spuriously follow the mesh
alignment. The reason for this has to be sought in the pre-localization
discretization error referred to in the previous Section. The second and
third columns show corresponding contours of the damage index and of
the major principal strain, where the same strongly mesh dependent
behavior is evident. The last column shows vectors of the major
principal strain. Here, it can be clearly observed how the irreducible
solution is severely affected by the post-localization discretization error.

Fig. 10 shows the corresponding results obtained with the
stabilized mixed formulation on both meshes, for the same imposed
vertical displacement δ=1.0 mm. In this case, the differences
between the top row, corresponding to mesh A, with the bottom
row, corresponding to mesh B, are quite smaller. The solution showed
on the top row is in very good correspondence with the one obtained
with the same mesh and the irreducible formulation. The only
differences between them can be seen in the damage and strain
contours, where the mixed solution is slightly more “spread” due to
the inter-elemental continuity of the strain field. More interesting are
the results of the second row, where the mixed solution on mesh B
shows displacement jumps across only one zig-zagging localization
band, which is horizontal in average, successfully avoiding the
unfavorable alignment of the mesh. The second and third columns
show contours of the damage index and of the major principal strain,
and the same satisfactory behavior is observed. Note how the
contours of strain are optimally localized, with the maximum
resolution of the mesh. The last column shows vectors of the major
principal strain. Here, it can be observed that the localized strains
resulting from the mixed formulation are also affected by the post-
localization discretization error, but being the localization band
correctly located, the averaged effect of this error is diminished.

To interpret the results shown in Fig. 10, it has to be taken into
account that they correspond to the final stage of the simulation.
Then, displacements are totally localized, and strains, obtained from
the discrete geometric equation, likewise. However, damage has been
evolving monotonically during the whole process and it shows a
slightly more spread profile corresponding to less localized previous
stages. Results would show less smearing on mesh refinement.

6.1.2. Quadrilateral meshes: Q1 and Q1Q1 elements
Let us now consider quadrilateral finite elements. To this end, the

rectangular domain is discretized in two different structured meshes
of quadrilaterals with different preferential alignments. The two
meshes are obtained from the meshes of triangles used before, by
joining adequately every two adjoining triangles to form a quadrilat-
eral. Therefore, both meshes have the same number of nodes and
nodal locations as before, and exactly half number of elements. On one
hand, mesh A (Fig. 11A.1), consists of squares with predominant
directions at 0° and +90° with the horizontal axis. As the strip is
expected to damage along a horizontal line, the elements in this mesh
have one of their sides parallel to the damage band. On the other hand,
mesh B (Fig. 11B.1) also consists of almost square quads, but themesh
is purposely “slanted”, so that the predominant directions are −13°
and +77° with the horizontal axis. Therefore, the elements in this
mesh do not have any of their sides parallel to the expected strain
localization band. Both meshes consist of about 1800 nodes and 1800
elements, with a relation L0/h=40.

The example is used to assess the ability of the irreducible (IRR)
and mixed (MIX) formulations to reproduce constant displacement
jumps in quadrilateral discretizations and the dependence of the
obtained results with respect the mesh-bias.

The computed deformed shapes of the strip using meshes A and B
with the irreducible formulation are shown in Fig. 11A.2 and B.2,
respectively. As expected, the localization band obtained with mesh A



Fig. 16. Vertical reaction versus maximum vertical displacement in rectangular strip
under tension and bending using triangular elements P1 and P1P1.
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is exactly horizontal, and the deformation mode obtained is correct.
Contrariwise, results are very unsatisfactory for mesh B. Here, mesh
bias is evident in the deformed geometry, with two damage bands
starting from the lateral notches at angles which are spuriously
determined by the mesh alignment.

Fig. 11A.3 and B.3 show, respectively, the computed deformed
shapes of the strip using meshes A and B with the mixed formulation.
As in the case with triangular finite elements, results obtained with
Fig. 17. Results for rectangular strip under tension and bending using the irreducible form
displacement, (b) damage index (c) major principal strain. (d) Vectors of major principal s
mesh A are, as expected, correct. Noteworthier are the results
obtained with the “unfavorable” mesh B, where the two forming
localization bands progresses zig-zagging through themesh until they
correctly meet at the centre of the specimen. It has to be recalled that
no tracking algorithm has been used in the computations.

Fig. 12 shows the load vs displacement curves obtained with both
the irreducible and the stabilized mixed formulations using the two
quadrilateral meshes A and B. Results are very similar to those shown
in Fig. 7, corresponding to the triangular elements. The trend of the
different curves corresponds to the deformed shapes of Fig. 11. Results
obtainedwith the stabilizedmixed formulation in bothmeshes A and B
are correct, both in terms of peak-load and dissipated energy, showing
no spuriousmesh-bias dependence. They are slightly more dissipative
than the corresponding reference result because of the inter-element
continuity of the strains and the extended bandwidth of quadrilateral
meshes.

Fig. 13 shows different results obtained with the irreducible formula-
tion on both meshes, when the localization band is well developed.
The differences between the top row, corresponding to results obtained
on mesh A, with the bottom row, corresponding to results obtained on
mesh B, are evident.

Fig. 14 shows the corresponding results obtained with the stabilized
mixed formulation on both meshes. Comments on these two figures are
very similar to those referred to Figs. 9 and 10, corresponding to the
triangular meshes. This also applies to the apparent mismatch between
the strongly localized displacementfield and themore spread strain and
damage fields.
ulation and triangular meshes (top: mesh A, bottom: mesh B). Contours of: (a) total
train.
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6.2. Rectangular strip under tension and bending

The second example is a plane rectangular strip subjected to axial
vertical stretching and bending applied by imposing null vertical
displacements at the bottom and increasing vertical displacements at
the top that vary linearly, from a value of 0 at the left end to amaximum
value at the right end. Dimensions of the strip are 100×200 mm×mm
(width×height) and the thickness of the strip is 10 mm. For the
evaluation of the stabilization parameters in themixed formulation, the
width of the strip, L0=100 mm, is taken as representative length of the
problem.

For a perfectly rectangular strip, the elastic solution is an identical
linear distribution of strains and stresses along each horizontal section
of the strip and, therefore, there is no unique localization solution as
the bending is increased. As in the previous example, two symmetrical
notches are introduced close to the horizontal axis of symmetry of the
strip to ensure a unique localization band.

Consequently, the expected unique solution is a horizontal band
of damaged elements that starts at the right notch and progresses
horizontally towards the left notch. Because no compressive vertical
stresses must develop, tensile damage must progressively affect the
whole notched section of the specimen, and form a horizontal localiza-
tion band that spans from right to left. Vertical strainsmust progressively
localize inside this band. Apparent displacement jumps across the band
must be linear.

The example is used to assess the ability of the irreducible (IRR)
andmixed (MIX) formulations to reproduce these ideal conditions and
Fig. 18. Results for rectangular strip under tension and bending using the mixed formu
displacement, (b) damage index (c) major principal strain. (d) Vectors of major principal s
the dependence of the obtained results with respect the mesh-bias.
The test is far more demanding that the previously presented case
(pure stretching), because the simulation of linear displacement
jumps occurring across bands formed by low order triangular and
quadrilateral finite elements requires some attention ([41,43]). In the
case of linear P1 triangles, the corresponding strain field is constant
over the element. More conveniently, the linear P1P1 triangle
incorporates a linear strain field that can naturally accommodate a
linear displacement jump in a smeared fashion. The situation is
similar for quadrilateral Q1 and Q1Q1 elements, although far more
complex to analyze for general configurations of the quadrilaterals.

6.2.1. Triangular meshes: P1 and P1P1 elements
Let us start by considering triangular finite elements. The

rectangular domain is discretized in the same two different structured
meshes of triangles used for the pure tension test. Recall that mesh A
(Fig. 15A.1) consists of rectangular triangles with predominant
directions at 0°, +45° and +90° with the horizontal axis, while
mesh B (Fig. 15B.1) is “slanted” so that the predominant directions are
−13°, +32° and +90° with the horizontal axis.

The computed deformed shapes of the strip using meshes A and B
with the irreducible formulation are shown in Fig. 15A.2 and B.2,
respectively (maximum imposed vertical displacement δ=0.3 mm,
with a displacement amplification factor of 5). As shown, the
localization band obtained with mesh A follows exactly a horizontal
line, and the deformation mode obtained is correct. Results are
obviously incorrect for mesh B, where the damage band progresses at
lation and triangular meshes (top: mesh A, bottom: mesh B). Contours of: (a) total
train.



Fig. 19. Quadrilateral meshes A and B for the rectangular strip under tension and
bending: (1) undeformed shape, (2) deformed shape— irreducible form, (3) deformed
shape — stabilized mixed form.
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an angle that is totally determined by the mesh bias. This localization
band never reaches the notch at the left end.

Correspondingly, Fig. 15A.3 and B.3 show, respectively, the
computed deformed shapes of the strip using meshes A and B with
the mixed formulation. Again, correct global deformation patterns are
obtained for both mesh alignments: the localization band starts at the
right-end notch and progresses horizontally through the mesh until it
reaches the notch at the left-end.

Fig. 16 shows the load vs displacement curves obtained with both
the irreducible and the stabilized mixed formulations using the two
triangular meshes. In this case, all the four curves are very close, and
the severe misbehavior of the irreducible formulation on mesh B does
not show on this plot. Results obtained with the stabilized mixed
formulation in bothmeshes A and B are correct, both in terms of peak-
load and dissipated energy; they are slightlymore dissipative than the
corresponding reference result because of the inter-element continu-
ity of the strain field.

Figs. 17 and 18 give some further insight into the behavior of the
two formulations. Fig. 17 shows results obtained with the irreducible
formulation on both meshes. The differences between the top row,
corresponding to results obtained on mesh A, with the bottom row,
corresponding to results obtained onmesh B, are evident. The solution
showed on the top row is correct in every aspect, the displacement
and strain contours consistent with a linear displacement jump across
the correctly solved horizontal localization band. Results on the
bottom row differ from these very much. Even if the first column
shows a clear displacement jump across a unique localization band
and the strain contours in the third column are consistent with this,
the prediction of this “crack” is definitely determined by the spatial
discretization. Scatter of the damage contours in the second column
denotes unsuccessful attempts of the solution process to find
alternative branches. In the last column, the incorrect direction of
the vectors of the major principal strain demonstrates the incapacity
of the triangles to accurately represent the vertical displacement jump
across the inclined localization band.

Fig. 18 shows the corresponding results obtained with the
stabilized mixed formulation on both meshes. The concordance
between the top row, corresponding to mesh A, with the bottom
row, corresponding to mesh B, is remarkably good. Both solutions are
also in good correspondence with the one obtained with mesh A and
the irreducible formulation. Themain differences between these three
correct solutions are due to the inter-elemental continuity of the
strain field of the mixed formulation. Note how results obtained for
mesh B are optimally localized, given the resolution of the mesh. This
can be appreciated in the displacement and strain contour plots. The
last column shows vectors of the major principal strain. Like in the
irreducible case, the localized strains resulting from the mixed
formulation are affected by the post-localization discretization error,
but being the localization band correctly located and aligned, the
averaged effect of this error is greatly diminished.
Fig. 20. Vertical reaction versus maximum vertical displacement in rectangular strip
under tension and bending using quadrilateral elements Q1 and Q1Q1.
6.2.2. Quadrilateral meshes: Q1 and Q1Q1 elements
Let us finally consider quadrilateral finite elements for the bending

test. The rectangular domain is discretized in the same two different
structured meshes of quadrilaterals used for the pure tension test.
Recall that, mesh A (Fig. 19A.1) consists of squares with predominant
directions at 0° and +90° with the horizontal axis, while mesh B
(Fig. 19B.1) is constructed so that the predominant directions are
−13° and +77° with the horizontal axis.

The computed deformed shapes of the strip using meshes A and B
with the irreducible formulation and the mixed formulation are shown
in the second and third columns of Fig. 19, respectively. As it can be
seen, results are very similar to those obtained with the triangular
meshes and shown in Fig. 15, although the deformation pattern
obtained in the last case depicted is noteworthy.
Fig. 20 shows the load vs displacement curves obtained with both
the irreducible and the stabilized mixed formulations using the two
quadrilateral meshes. Again, all the four curves are very close, because
the incorrect failure mechanism produced by the irreducible formula-
tions on mesh B does not stand out on this plot. Results obtained with
the stabilized mixed formulation in both meshes A and B are correct,
although they predict a slightly higher peak load than the corres-
ponding result obtained with the irreducible formulation. This is due
to the inter-element continuity of the strains and the extended
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bandwidth of quadrilateral meshes. This collateral effect is reduced on
mesh refinement.

As in the pure tension case, results corresponding to displacement,
damage and principal strain distributions at failure are very similar to
those obtained for the triangular meshes (Figs. 17 and 18) and are
omitted.

7. Conclusions

This paper deals with the question of strain localization associated
with materials which exhibit softening due to tensile straining. The
analysis of both the irreducible and themixed continuous and discrete
forms of the problem shows that both are satisfactorily stable in terms
of global norms of displacements and strains. Lack of uniqueness of
the solution is solely associated with the strong nonlinear nature of
the problem. Therefore, the well-known observed mesh-bias depen-
dence of the results obtained using the standard irreducible formula-
tion is attributed to lack of convergence of local values of the strains
and stresses. This complication is solved using the fully stable
formulation of the mixed equal order strain/displacement mechanical
problem described in Part I of this work. Low order finite elements
with continuous strain and displacement fields (triangular P1P1 and
quadrilateral Q1Q1) and a standard local isotropic Rankine damage
model with strain-softening are used for this purpose. The derived
method yields a general and robust scheme, suitable for engineering
applications.

The proposed formulation is shown to attain satisfactory control
on the displacement and strain fields, removing global and local
oscillations induced by the geometry of the mesh. This translates in
the achievement of three goals:

• a significant reduction of the local error in the pre-localization
regime, ensuring convergence of the strain values at local level,

• the position and orientation of the localization bands are indepen-
dent of the directional bias of the finite element mesh, without the
need to resorting to ad hoc crack tracking techniques, and

• a correct global structural load-deflection response in the post-peak
regime.

Benchmark numerical examples show the substantial advantage of
the mixed formulation over the irreducible one to predict correct
failure mechanisms with localized patterns of strain, virtually free
from any dependence of the mesh directional bias.
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