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Abstract. In this contribution, we study the properties of new promising graphene-
based materials with shape memory effects. While traditional shape memory alloys
have been extensively studied, it is a challenge to preserve shape memory proper-
ties at the nanoscale. As a result, new materials have been explored, among which
graphene oxide (GO) crystals with ordered epoxy groups where a recoverable strain
of 14.5% has already been reported. We use such nanoscale GO structures as a
benchmark example for our studies here. MBTR and SOAP representations are
employed in a general-purpose ML model to analyze the effect of long-range inter-
actions in GO. Finally, a physics-based ML model allows us to build interatomic
potentials for 2D and 1D systems. The model predicts quantum mechanical effects
due to the electronic confinement in narrow nanoribbons and shows the evolution
of the local minimal energies associated with two-phase states.

1 INTRODUCTION

The interest in graphene and its derivatives has increased due to its novel
properties. We particularly mention here a unique material based on a simple
monomolecular layer of graphite with oxygen-containing functionalities, graphene
oxide (GO). For this latter material, such interest is due to its cheaper and easy
production compared to graphene [1], as well as because it can show an enhance-
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ment of the desired properties depending on the functional groups attached to
the system. The presence of oxygen-based functional groups in GO makes the
system fluorescent due to the opening of the optical bandgap, and can be used
for biological imaging [2], hydrogen storage [3, 4], water purification [5, 6], among
other applications. GO is easy to deposit on a variety of substrates allowing its
application in sensors and flexible electronics [7]. Due to its high surface area,
it can be used for supercapacitor electrodes [8]. The content of oxygen epoxide
groups modifies the electronic and optical properties of GO, and it can be tuned by
applying laser energy doses [9]. GO can be synthesized by several methods, includ-
ing bottom-up techniques, CVD, Hummer oxidation, and exfoliation of graphite
[10]. GO can be mixed with different polymers to enhance its physical and chem-
ical properties. It also systematically exhibits shape changes when incorporated
with shape memory polymers (SMPs). Graphene nanocomposites with SMPs are
fabricated in the form of films, foams, and stretchable networks [11], and can be
employed as shape memory actuators due to their high electric conductivity, and
oscillators when integrated with magnetic fields. The higher strain shown by GO
can reinforce the shape memory effect when incorporated in polymers [12].

It is well known now that GO by itself, without the presence of a matrix, can
also exhibit shape memory effects. It has been reported that a GO with highly
ordered oxygen epoxide groups can experience recoverable strain rates up to 14%,
paving the way for such applications as shape memory devices at the nanoscale
dimensions [13, 14], resonators, artificial muscles, and molecular robots [15]. The
GO sheet presents stable phases at two different lattice constants, separated by
∼ 100 meV in the energy vs lattice constant space. It is the rearrangement of the
electronic distribution at the carbon-oxygen-carbon edge that is responsible for
the presence of these stable phases. The shape of the structure is characterized by
a bend at the oxygen atoms row due to the different hybridizations between the
carbon and oxygen atoms (sp2 for carbon, and sp3 for oxygen). After a force is
applied to stretch the system, it can return to the original shape by the application
of an electric field [13]. DFT calculations were performed for this discovery.

In this work, we use machine learning (ML) to study GO nanostructures to
reduce the computational cost involved in the estimation of the two stable phases.
Our goal here is twofold: to get a better insight into the characteristics behind
the formation of the phases in a GO sheet, and to predict the response of GO
nanoribbons.

2 METHODS

We focus our study on the C8O structure defined in [13], with unit cell depicted
in Fig.1. The system has periodicity along the X and Z directions, and thus
defines a 2D sheet. The oxygen epoxy groups are ordered in rows and define
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Figure 1: Top: Unit cell of the GO structure before structural optimization with lattice constant
alat as the cell’s length in the X-direction. Bottom: Side view of the relaxed GO structure.
Gray (red) balls represent carbon (oxygen) atoms.

graphene stripes of zigzag interfaces. Fig.1 also shows the optimized structure
using DFT calculations. The optimized structure is bent at the carbon-oxygen-
carbon row, with angle α, and defines zigzag interfaces with the oxygen row of
atoms. According to [13], the GO sheet posses two phases around α = 104◦ and
133◦ [13, 14], corresponding to lattice constants of alat ∼ 16Å and 18.5Å. The
two phases are separated by an energy of ∼ 100 meV. DFT calculations have been
used in our study to validate results and compare them with those available in
the literature. Specifically, we perform spin-polarized DFT calculations to relax
the atomic positions at several fixed lattice constants. All of our DFT calculations
were performed using the Quantum Espresso simulation package [16], using plane-
wave basis sets and ultrasoft pseudopotentials [17], while employing the gradient
approximation with the PBE exchange-correlation functional [18]. Our tests of
convergence showed optimal values for a wavefunction energy cutoff of 60 Ry and a
4×1×4 Monkhorst-Pack k-point grid (periodicity along the X- and Z- directions).
Here we used an interlayer separation of 18Å to ensure a minimum distance of
∼ 12Å between atoms, even with a bent structure for the range of lattice constant
values considered (from alat = 14Å to alat = 19Å).

2.1 Moment tensor potentials for GO

After the validation, we have employed ML approaches that can mimic the DFT
results and allows us to predict the behavior of nanoribbons with very big super
unit cells, instead of the 2D system with the unit cell shown in Fig.1. We use a
physics-based ML model designed for materials, coded in the MLIP package [19]
to build an interatomic potential for the GO system.

The MLIP code is based on moment tensor potentials (MTP) [19, 20]. In this
machine learning approach, the quantum mechanical energy of a structure (EQM)
is approximated as a sum of interatomic potentials (V ) dependent on the atomic
positions and species of the neighbor atoms (n)
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EQM ≈
∑
i

V (ni), (1)

where ni represents the neighborhood of the i-th atom, given by a collection of
atomic position and species of each neighbor atom. V is expressed as an expansion
of polynomials

V (ni) =
N∑
i=1

cαBα(ni), (2)

where the expansion in the polynomial Bα and its construction ensures V to be
invariant to structure’s rotation and permutations of the same species elements.
Bα is built in terms of the moment tensor potentials Mµ,v defined as

Mµ,v(ni) =
∑
j

|ri|2µ r⊗vi , (3)

where r⊗vi indicates the v-times the kronecker product of ri.
The model is trained by finding the coefficients cα that best fit not only the

quantum mechanical energy of the system in (1), but also the forces on each atom
(derivative of (1) with respect to atomic positions), and stress values (proportional
to the derivative of (1) with respect to lattice constants), values that were found
in DFT results.

The forces and stress values were used to relax the atomic positions. In the
relaxation process, the different configurations generated are graded according to
geometric considerations. If a configuration is found to be an extrapolation from
the training set and its grade is higher than a threshold grade value ("active
learning"), a static DFT calculation is required on the new configuration to obtain
the energy, forces, and stress.

2.2 Random forest regression for GO

For comparison purposes, we have also used another ML model, a random forest
regressor due to its capabilities to handle high-dimensional data. Its implemen-
tation has been based on the Scikit-Learn ML python library [21]. For our case,
features and targets are given by the atomic positions and their DFT energies,
respectively. However, atomic positions need to be translated to a representation
that is invariant to translation, rotation, inverse, and same-species atom permu-
tation operations. The conversion from atomic environments into ML readable
arrays is done by descriptors. Specifically, we use two implemented descriptors
from the DScribe python package [22] that can handle the periodic nature of the
GO sheet: the many-body tensor representation and the smooth overlap of atomic
positions representation.
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2.2.1 Many-body tensor representation (MBTR)

In the MBTR [23], chains of k-atoms are taken and a scalar is calculated ac-
cording to their relative positions. For k=2, we assign the inverse of the distance
between atoms as the scalar to represent a chain of 2 atoms. For k=3, the angle
between a central atom and its two neighbors in a 3-body chain is taken as the
scalar. We use an exponential weighting function with a cut-off radius of 14Å
(scale = 0.5, cutoff = 0.001) to remove contributions from far chains.

2.2.2 Smooth overlap of atomic positions (SOAP)

In the SOAP representation, the local density at one atomic site is the sum of
the Gaussian functions centered at each of its atomic neighbors,

ρ(r) =
∑
i

exp

(
−(ri − r)2

2σ2

)
, (4)

and the SOAP matrix elements are defined by the power spectrum

pZ1Z2nn′l(r) ∝
∑
m

c∗Z1nlm
(r)cZ2n′lm(r), (5)

where cZnlm is the projection of the Gaussian function onto a radial basis function
of degree n and the spherical harmonic of degree n and order m [22].

2.3 ML for GO wide nanoribbons

Finally, we extend the study to armchair GO nanoribbons (AGONRs) using
a ML interatomic potential. To increase the accuracy in the prediction of the
ML model, we use structures with relaxed atomic positions obtained from DFT
calculations, at different lattice constants for both, a 2D system and an AGONR
of 3 armchair lines, denoted as 3-AGONR. MTP can learn from the atomic en-
vironments of each structure, and we use the generated MTP potential as an
interpolation tool to estimate the energy vs lattice structure evolution for different
nanoribbon widths. This approach will let us study the effect of confinement on
the shape memory behavior of a GO sheet, and the evolution of the two phases at
finite nanoribbons widths.

3 RESULTS AND DISCUSSION

DFT validation results are shown in Fig.2(left). The 2D system exhibits a
stable phase at ∼ 18.5Å and a metastable phase at ∼ 15.5Å, separated by an
energy barrier of 60 meV. Fig.2(left) also contains information about the zigzag
edge magnetization, i.e., the magnetization for the first-neighbor carbon atoms
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Figure 2: Left: DFT vs lattice constant in blue. Red marks indicate the zigzag edge magneti-
zation around the oxygen atoms. Right: Magnetization for each atom site as defined in Fig.1,
for lattice constant alat = 17Å
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Figure 3: Left: Relaxed structures using DFT (blue) and MTP (red). The plot also contains
the evolution of the angle C-O-C at the highly ordered epoxy groups. Right: Same DFT relaxed
structures shown at the left plot (in blue) vs the energy prediction according to MTP (red)

around the oxygen atom, and distribution of the magnetization through the unit
cell. Magnetization is zero for both phases, and reaches a maximum at the energy
barrier around alat = 17Å. The row of oxygen atoms behaves as quantum wells,
effectively isolating the zigzag stripes. However, this scenario might change by the
application of an external electric field. It has been shown that the application
of a critical electric field intensity, parallel to the plane of the nanoribbon, can
turn off the metallic nature of electrons in one edge [24]. In the GO case, the
metallic nature of electrons at one of the minima in Fig.2 might turn off for the
right electric field intensity, and as a consequence, a rearrangement in the minima
positions. This insight agrees with the results found in [13] when the applied
electric field is perpendicular to the system. Since the system is bent at the
oxygen positions, a parallel electric field can be decomposed from the original field
direction. Note also that the authors of [13] show a critical electric field value
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Figure 4: DFT (blue) vs predicted energy values using MTP (red) for optimized structures of
different lattice constants

in which the system is no longer at the minimal energy, but evolutes into an
intermediate metastable phase. Importantly, the magnetization around the zigzag
interfaces might affect ML models that rely on the approximation shown in (1). To
explore the magnetization effects, we can compare MTP with a general-purpose
ML model predictions.

3.1 GO relaxation via MTP and DFT

For the ML model based on MTP, we have generated 300 structures, with
oxygen atoms at different positions over a flat graphene sheet, and static DFT
calculations were performed and the results were fed into MTP for training. In
fact, an infinite number of possibilities can be proposed, but we let MTP choose
representative structures from the relaxation trajectories of the initial training set.
Through several iterations of relaxing, training, and active learning, convergence
was achieved. During the active learning process, 399 representative structures
were used to train the interatomic potential. These structures span over a range
of 20 eV as shown in Fig.3(left). The error on the prediction was estimated to be
a maximum of 0.30 eV, or 1.5%. Once the interatomic potential is built, it can be
used to relax atomic positions. Fig.3(right) shows energy evolution for different
lattice constants after relaxing the atomic positions either, by DFT or MTP. The
MTP curve is shifted no more than 0.1 eV over the DFT results. MTP is not
only able to predict the two phases, but also the energy barrier separation of the
phases, ∼ 100 meV, which is approximately of the same order as the DFT results.
The difference between MTP and DFT energies seems to be relatively high due to
the low energy level window. To further increase the accuracy of the prediction,
we can redo the fitting by taking only DFT results from the structures located
in a narrow window width of some meV at the bottom of Fig.3(left), disregarding
the energetic structures. After the iterative process of relaxation, active learning,
and fitting achieves a convergence, we would have a trained interatomic potential
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Figure 5: Performance of the fitting model vs the ideal performance (black line) R2 = 0.972 for
two-body representation (right), and R2 = 0.978 for up to three-body representation (left)
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Figure 6: DFT vs predicted energy values for two-body representation (right), and for up to
three-body representation (left)

which is more accurate, but only valid for the small window of energies considered.
Fig.4 shows the energies for the relaxed structures using DFT, and the MTP

energy prediction of such structures. The plot does not show the same prediction
performance compared to the relaxation performance (Fig.3). The reason might
be attributed to long-range interactions in the GO system. MTP approximates the
quantum mechanical energy of the system to a sum of local energies (Eq.1), and
as stated in [20], the assumption may not be valid for all systems with long-range
interactions. In the case of GO, long-range interactions can be originated from
the polarized carbon atoms around the oxygen atoms as shown in Fig.2. In the
following, we analyze the effect of the carbon-oxygen-carbon interactions on the
total energy.
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Figure 7: Performance of the fitting model vs the ideal performance (black line) R2 = 0.86 for
the SOAP representation (right), and DFT vs predicted energy values (left)

3.2 MBTR and SOAP representations for GO

We used the random forest regressor with two descriptors, MBTR and SOAP.
Figures 5 and 6 show prediction performance and predicted energies for DFT
relaxed structures, respectively. In the two-body representation, the features are
calculated from the collection of the inverse of the distance for groups of two
atoms. This representation can capture the two phases minima, but with a shifted
energy of 1eV. The prediction improves if we use the three-body representation.
The two phases minima disappear if we disregard interactions between atoms with
distances greater than 3Å.

To build the SOAP matrix representation, we take the contribution of all atoms,
with a cut-off radius of 14Å, on 4, 5, 6, 13, 14, and 15 sites only (oxygen and first-
neighbor carbon atoms shown at Fig.1). An average on the mentioned sites over
the matrix elements (see Eq.5) is performed to build the array of features. Fig.7
shows the performance prediction where it is seen that the two-phase minima get
closer to the DFT curve when compared to the MBTR representation. Therefore,
the main contribution to the total energy is due to the long-range interactions
between the oxygen and carbon atoms at the epoxy groups with the rest of the
atoms. The two minima in Fig.7 disappear if we consider instead an average over
all atoms in the unit cell.

3.3 GO nanoribbon critical width

Even though the issues shown are related to long-range interactions, MTP can
still be used to give an estimation of the total energy according to Eq.1 for different
unit cells not contained in the training dataset. In contrast, without additional
training, the random forest regression model would not be able to scale to correct
energies even if the number of atoms increases. Therefore, we choose MTP to
analyze the evolution of the stable phases in GO nanoribbons with different widths.
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Figure 8: Left: DFT energy/atom of the relaxed GO sheet (blue) and a 3-AGONR (red)
for different lattice constant values. Right: MTP energy prediction of n-AGONR for n =
3, 23, 43, ..., 400 armchair lines

Also, we choose MTP since wider nanoribbons with hundreds of atoms would be
computationally expensive if only DFT calculations were used.

As mentioned in Section 2, to train the interatomic potential, we use DFT re-
laxed structures for both, a 2D system and a 3-AGONR. Fig.8(left) shows the
curve of the total energy per atom relative to its minimum for the 2D GO sys-
tem, and for an armchair GO nanoribbon with only 3 armchair lines (3-AGONR),
and 26 atoms per unit cell. Fig.8(right) shows MTP energy predictions for dif-
ferent nanoribbon sizes. The stable phase is rapidly formed when increasing the
nanoribbon width, while the metastable phase (at alat ∼ 15Å) is formed at a
slow rate. Therefore, the metastable phase is associated with the formation of
new states due to the oxygen-oxygen interactions in the same row that strengthen
as the width increases (the 3-AGONR has no oxygen-oxygen interactions). The
metastable phase seems to be present at approximately 140 armchair lines, or at
a critical width of ∼ 19 nm, although two minima are obtained at 400 armchair
lines, or ∼ 50 nm. This critical value seems reasonable when compared to the
critical size of 60 nm found for FePd nanostructures [25]. Here we have used a
different approach on a different system to find a critical width in which the effect
of confinement suppresses the shape memory behavior in GO nanoribbons.

4 CONCLUSIONS

- In this contribution, a physics-based ML model (MTP) has been developed
to relax GO structures and to reproduce the two-phase minima in the energy
vs lattice constant space, already obtained by DFT results.

- It has been demonstrated that the interatomic potential generated can be
used to study nanoribbons with similar atomic environments found in the
GO sheet.
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- Moreover, we have found that the ML interatomic potential predicts a critical
nanoribbon width of ∼ 50Å, in which the two phases of the shape memory
material are suppressed.

- Finally, MBTR and SOAP descriptors in a random forest regression have
manifested the long-range effect of the magnetization around the oxygen-
based epoxy groups.
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