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Abstract. Guided wave-based Structural Health Monitoring (SHM) tools utilize the guided wave re-
sponses to interrogate damage in structures. This research demonstrates the use of various objective
functions in single (mono) objective and multi-objective genetic algorithms for damage identification in
isotropic 1D structures. The time domain spectral element method and a deep-learning-based surrogate
is utilized for simulating wave propagation in an isotropic cracked rod. The genetic algorithms employ
results (“numerical experiment”) obtained from the spectral element model and the deep-learning-based
surrogate to determine the optimized crack locations and crack depths as output parameters. The ob-
tained optimized parameters from genetic algorithms are compared in terms of errors for various objec-
tive functions.

1 INTRODUCTION

Engineering structures such as buildings, bridges, offshore platforms, dams, and other civil infrastruc-
tures may experience damage during their operational life due to natural or human actions. Even a minor
flaw in a structure can lead to increased maintenance costs and significant failure. Therefore the early
diagnosis of structural damage is vital and helpful from the perspective of productivity and safety [1].
Structural health monitoring (SHM), as the name suggests, monitors the system’s structural health. It
monitors the structure’s performance and reliability in-service through sensing and can inform users of
signs of deterioration. Guided waves are an important tool for SHM of engineering structures as these
are highly sensitive to discontinuities in their propagation path, while they further have the potential to
propagate across long distances.

For structural damage detection or identification, one of the optimization methods, genetic algorithms,
has been studied widely. Traditional gradient-based algorithms perform substantially worse in terms of
global optimization than these approaches. In contrast to standard algorithms, genetic algorithms may
calculate the values of objective functions without requiring the objective function to be continuous, and
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they don’t require gradient information. So, the searching process makes it not only avoids falling into
local minima but also more efficient and effective.

A single-objective optimization problem occurs when the system has just one item to optimize. How-
ever, actual engineering systems are sometimes thought to be so complex that one object is insufficient;
instead, two or even more objects are required. As a result, genetic algorithms’ so-called multi-objective
function incorporates the benefits of several dynamic factors [2].

This paper presents a method for damage identification in an isotopic cracked rod using single-objective
and multi-objective genetic algorithms (GAs). In these approaches, the structural dynamic responses
(signals) of the system generated by a deep-learning-based surrogate models are used for ultra-fast com-
putation of the structural dynamic responses necessary to build objective functions. And, these objective
functions are compared with “numerical experiment” signals (obtained by time domain spectral element
method).

2 CRACKED ROD SPECTRAL ELEMENT

Several numerical methods have been developed for solving wave propagation problems, such as the
finite difference method (FDM), or the broadly exploited the finite element method (FEM). In this study,
the spectral element method (SEM), in the time domain, is utilized for modeling wave propagation in
an isotropic cracked rod [3]. A spectral rod finite element with a transverse open and non-propagating
crack is presented in Fig. 1. The element has six non-uniformly distributed nodes and one degree of

Figure 1: Spectral rod element. (based on Ref. [3]).

freedom per node corresponding to the longitudinal displacement. The nodal locations correspond to
Gauss-Lobatto-Legendre integration points. The crack is represented by a spring of stiffness k. Spectral
rod finite elements which include a crack can be formed by connecting two spectral finite elements with
nodes separated by a spring. The flexibility/stiffness of the spring representing a transverse, non-growing
crack is calculated by the laws of fracture mechanics. In these wave propagation simulations, a rod of
isotropic material of density 7860 kg/m3 and geometric length 2 m, cross-section height 0.02 m, and
width 0.02 m is considered. An excitation signal in the form of sine with five cycles, modulated by the
Hanning window, is applied.
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3 DEEP-LEARNING-BASED SURROGATE MODEL

To predict the wave propagation signals in a cracked rod, a deep-learning-based framework is used [4].
In this framework, a full wavefield was predicted. But in our work, the framework is constructed and
trained to predict the wave propagation signals sensed at both ends of the rod. To achieve this, the encoder
and decoder of the autoencoder parts were trained jointly. So, the decoder part can then be individually
used to reconstruct/predict the solutions from latent space. Next, a feed-forward neural network (FFNN)
is trained to learn the latent space encoded by the encoder part of the autoencoder for corresponding
crack locations and depths as inputs. The training phase of the deep-learning framework is schematically
represented in Fig. 2 and it can be summarized in the following steps:

1. Generate wave propagation solutions for various crack locations and crack depths.
2. Train the autoencoder and project the wave propagation solutions to the encoded space using the

encoder part of the autoencoder.
3. Train an FFNN to learn the encoded space for corresponding crack locations and crack depths.

In the Fig. 2, U(N,T ) represents the wave propagation signals, where N is number of sensors (i.e. two
in this work) and T corresponds to the time steps (1024 steps). After training the autoencoder and
subsequently the FFNN, the trained FFNN can be used to predict the latent space for a given crack depth
and location (or set of crack depths and locations). Next, the wave propagation signals can be predicted
by using the trained decoder of the autoencoder. The wavefield prediction phase of the framework can
be summarized in the following steps:

1. Predict the encoded space using trained FFNN by feeding a new crack location and crack depth.
2. Predict the wave propagation signals using the decoder part of the trained autoencoder.

A simple schematic of the wave propagation signals prediction phase of the deep-learning framework is
schematically represented in Fig. 3. The autoencoder is constructed using the Fourier layers [5], convo-
lution layers, batch-normalization layers, pooling layers, and activation layers. The FFNN is constructed
via the use of 4 hidden layers, each comprising 256 neurons. The last layer of the FFNN has 64 neurons
(latent size).

4 OBJECTIVE FUNCTIONS

Damage indices (DIs) are the tool that compares two signals and provides a scalar number that rep-
resents the extent of damage existing in the structure. The DIs are calculated by comparing a reference
signal, to the signal supplied by the system in the event of a failure or damage [6]. These DIs are used
as objective functions in GAs. Barreto et. al. used the root mean square error (RMSE) or also called the
Euclidean norm, mean absolute percentage deviation (MAPD), covariance (COV), and correlation coef-
ficient deviation (CCD) as damage indicators in their comparative study [7]. Xu et. al. used the relative
absolute error (RAE) as a metric for spatio-temporal dynamic problems [8]. Sun et. al. implemented the
mean absolute error (MAE) in GA for tuning the parameters of a least square support vector machine
(LS-SVM) model [9].

In our study, we utilized the RMSE, RAE, CCD, and CD as objective functions given by equations. 1
to 4 respectively, to implement in GA. RMSE and RAE evaluate the deviations at each data point of the
signals. However, CCD and CD measure the synchrony between the signals.
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Figure 2: Schematic of training phase of the deep-learning framework.
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Here, x represents “numerical experiment” signals, y represents “signals predicted by the deep-learning-
based surrogate model” for each generation in GAs.
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Figure 3: Schematic of prediction phase of the deep-learning framework.

5 GENETIC ALGORITHM: SINGLE-OBJECTIVE

Damage detection constitutes a system identification (inverse) problem, where the damage extent and
location are identified using an objective/fitness function through the use of an appropriate optimization
method, such as a Genetic Algorithm (GA) [10]. The GA is a search technique, which is formulated
based on Darwin’s theory of natural selection and survival of the fittest [11]. The differences between
conventional search techniques and evolutionary algorithms, such as the GA can be summarised as fol-
lows [3]:

• the GA works with a set of points (population), not a single point.
• the GA does not need derivative information. It only requires a fitness value which is computed

via the objective function.
• the GA applies only probabilistic rules of selection.

The GA process initiates with a randomly generated solution set or population and goes through some
specific steps. The main steps of the algorithm include initialization, crossover, mutation, and selection.
We implemented the real-valued GA as opposed to the commonly used binary-coded GA for the damage
detection problem. The binary-coded GA has some difficulties such as the “Hamming cliff” problem, loss
of precision, occupying higher computer memory, etc., when dealing with continuous search space [12].
The real-valued GA represents the optimization variables in real values, have fast convergence towards
the optima than binary-coded GA, also overcomes the issues of binary-coded GA [13].

6 GENETIC ALGORITHM: MULTI-OBJECTIVE

The presence of multiple objectives in an optimization problem provides a set of optimal solutions
(Pareto-optimal solutions) instead of a single optimal solution [14]. These types of problems are known
as Multi-objective Optimization Problems (MOOP). By converting the multi-objective optimization prob-
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lem into a single-objective optimization problem (i.e., a vector of objective functions is changed to a
single function), a MOOP can be solved using traditional optimization techniques such as the Weight-
ing objectives method and the Global criterion method. [15]. However, when some technique of multi-
objective evolutionary algorithm is used to solve a MOOP, several solutions can be found at the same time
i.e., Pareto-optimal solutions. There are several multi-objective evolutionary algorithms that are based
on Pareto-optimal solutions or Pareto front, such as NPGA, NSGA, NSGA-II, SPEA, PESA, etc [16].
In our study, we utilized the computationally fast and elitist multi-objective evolutionary algorithm i.e.
Non-dominated sorting genetic algorithm II (NSGA-II) proposed by Deb et. al. [14]. A flowchart of the
NSGA-II algorithm is presented in Fig. 4. The combinations of the objective functions (equations. 1 to
4) is used for the multi-objective GA process.

Figure 4: Flow chart of NSGA-II algorithm process. (based on [17])

7 RESULTS

7.1 Single-objective GA

A deep-learning-based surrogate model is used to calculate the objective function for each generation
in the GA process. We used pymoo, an open-source Python library for optimization using the GA [18].
For damage identification in isotropic cracked rods, the population size is considered 100 for 100 gener-
ations. In this work, we implemented the real-valued GA in which two design variables (crack location
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and crack depth) are initialized as random real numbers. We considered 6 different crack locations (0.32
m, 0.61 m, 0.93 m, 1.23 m, 1.53 m, 1.73 m) and 6 different crack depths (7.07%, 12.27%, 18.77%,
24.22%, 29.10%, 34.35%), combination of these gives total 36 crack cases. In Table 1, optimized crack
locations and crack depths for 6 crack cases (out of 36) after 100 generations for all four objective func-
tions have been mentioned. The evolution of the objective functions and crack depth values after each
generation can be seen in Fig 5. and Fig 6., respectively. To make comparisons in objective functions
after each generation, the objective functions are normalized by their respective maximum value. The re-
sults obtained from single-objective GA shows that CCD and CD converges rapidly compared to RMSE
and RAE around zero as in Figure. 5, and predict better crack depth compared to RMSE and RAE (see
Figure. 6). Crack locations are accurately predicted by single-objective GA for all four objective func-
tions seen in Table. 1. Also, single-objective GA predicts the crack depths very accurately, even a very
small crack depth of 7.07%.

Table 1: Crack depths [%] at crack location 0.32 m along the rod.

Reference RMSE CCD CD RAE

location depth location depth location depth location depth location depth

0.32 7.07 0.32 7.24 0.32 7.13 0.32 7.23 0.32 7.26

0.32 12.27 0.32 12.40 0.32 12.40 0.32 12.42 0.32 12.28

0.32 18.77 0.32 18.91 0.32 18.91 0.32 18.90 0.32 18.79

0.32 24.22 0.32 24.35 0.32 24.36 0.32 24.36 0.32 23.61

0.32 29.10 0.32 29.18 0.32 29.15 0.32 29.15 0.32 29.18

0.32 34.35 0.32 34.44 0.32 34.44 0.32 34.44 0.32 34.38

7.2 Multi-objective GA

For the optimization parameters (crack depth and crack location), the number of generations chosen
is 100 and the population is 100. The design variable are encoded in real values as in single-objective
GA. Total 36 crack cases (as in single-objective GA) are considered for multi-objective GA. For a crack
case, the Pareto optimal fronts obtained by NSGA-II after 100 generations in pymoo are presented in
Fig 7. After obtaining a set of non-dominated solutions a single solution has to be chosen. This decision-
making process for multi-objective problems is also known as Multi-Criteria Decision Making (MCDM).
For the MCDM step, the compromise programming (pymoo in-built function) was used which uses
decomposition functions. More details about this decision-making by compromise programming can be
found in Ref. [18]. After making the decision criteria by giving the equal weights to both objectives
(i.e. both objective are equally important), the optimized results for 12 crack cases (out of 36) are given
in Table 2. and Table 3. CCD and CD are correlated objective functions, so they have not considered
together in multi-objective GA. The results a in Table. 2 & Table. 3 show that, the small crack depths
obtained after making decision criteria, have quite a large errors. These variations are directly related to
decision criteria. But, crack locations obtained after making decision criteria, are very accurate.
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(a) (b)

(c) (d)

Figure 5: Fitness curves of GA for crack depth of a) 7.07%, b) 18.77%, c) 24.22%, and d) 34.35% at crack location
0.32 m along length of the rod.

8 CONCLUSIONS

In this work, a guided-wave-based approach for damage detection in an isotropic cracked rod is pre-
sented, relying on the use of genetic algorithms. A time domain-spectral element model is used as
a reference for simulating wave propagation scenarios (called “numerical experiment”) and a deep-
learning-based surrogate is exploited for computing the objective/fitness functions in the genetic al-
gorithm process. We utilized four types of objective/fitness functions in the study of single-objective
genetic algorithms and multi-objective genetic algorithms. In multi-objective GA, the combination of
these objective functions have used to obtain the optimized parameters (crack depth and crack location).
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(a) (b)

(c) (d)

Figure 6: Evaluation of crack depths for crack depth of a) 7.07%, b) 18.77%, c) 24.22%, and d) 34.35% at crack
location 0.32 m along length of the rod.

Six crack depths (7.07% 12.27% 18.77% 24.22% 29.10%, 34.35%) and six crack locations (0.32 m, 0.61
m, 0.93 m, 1.23 m, 1.53 m, 1.73 m) combined gives 36 crack scenarios considered for this work. The
obtained results from single-objective GA show that the approach is capable of detecting early defects
(small cracks). But in case of multi-objective GA, it is essential to choose wisely, the objective functions
and decision criteria to obtain trade-off solution from Pareto front. For the MCDM step, the compromise
programming was used by giving equal weights to both objectives. In the future, we are planning to work
with beam-like models to capture multiple wave reflections and dispersion. Currently, the deep-learning
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(a) (b)

(c) (d)

Figure 7: Pareto front obtained by NSGA-II for a crack depth of 29.10% at crack location of 0.61 m. × represents
the trade-off solution.

framework is limited to predicting problem-specific solutions because it was trained for only particular
material, the geometry of the rod, and the excitation signal. Also, it has another limitation of generating
the signals for a specific type of damage scenario as presented in Fig. 1. To implement it in real-life prob-
lems, this framework will be built to generate signals for different damage scenarios, various geometries,
materials, and excitation signals. Also, the “numerical experiment” signals will be replaced with the real
experimental signals (“measured signals”) where the deep-learning-based wave propagation surrogate
will be coupled.
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Table 2: Crack depths [%] at crack location 0.61 m along the rod.

Reference RMSE-RMSE RMSE-RAE RMSE-CD RAE-CD

location depth location depth location depth location depth location depth

0.61 7.07 0.61 8.17 0.61 8.23 0.61 8.18 0.61 8.25

0.61 12.27 0.61 12.24 0.61 12.25 0.61 12.26 0.61 12.24

0.61 18.77 0.61 18.78 0.61 18.82 0.61 18.82 0.61 18.84

0.61 24.22 0.61 24.44 0.61 24.46 0.61 24.46 0.61 24.46

0.61 29.10 0.61 29.24 0.61 29.16 0.61 29.18 0.61 29.16

0.61 34.35 0.61 34.42 0.61 34.49 0.61 34.55 0.61 34.49

Table 3: Crack locations [m] with crack depth of 12.27% along the rod.

Reference RMSE-RMSE RMSE-RAE RMSE-CD RAE-CD

location depth location depth location depth location depth location depth

0.32 18.77 0.31 18.90 0.31 18.90 0.31 18.85 0.31 18.89

0.61 18.77 0.61 18.77 0.61 18.82 0.61 18.82 0.61 18.84

0.93 18.77 0.93 18.78 0.93 18.81 0.93 18.79 0.93 18.81

1.23 18.77 1.23 18.91 1.23 18.91 1.23 18.94 1.23 18.92

1.53 18.77 1.53 18.76 1.53 18.69 1.52 18.70 1.52 18.69

1.73 18.77 1.73 18.70 1.73 18.73 1.73 18.75 1.73 18.74
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