Performance of Stochastic Restricted and Unrestricted Two-Parameter Estimators in linear Mixed Models
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Abstract
 In this article, two parameter estimation using penalized likelihood method in the linear mixed model is proposed. In addition, by considering the stochastic linear restriction for the vector of fixed effects parameters we are introduced the stochastic restricted two parameter estimation. Methods are proposed for estimating variance parameters when unknown. Also, the superiority conditions of the two parameter estimator over the best linear unbiased estimator, and the stochastic restricted two parameter estimator over the stochastic restricted best linear unbiased estimator are obtained under the mean square error matrix sense. Methods are proposed for estimating of the biasing parameters. Finally, a simulation study and a numerical example are given to evaluate the proposed estimators.
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1.Introduction
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Today many datasets lack the assumption of data independence, which is the main presupposition of many statistical models. For example data collected by cluster or hierarchical sampling, lengthwise studies and frequent measurements or in medical research that simultaneously provides data from one or more body members, the assumption of data independence is unacceptable because the data of a cluster, a group, or an individual are interdependent over time [1]. The default requirement for fitting linear models is the assumption of data independence that does not exist so the use of these models although it leads to unbiased estimates but the variance of estimating coefficients is strongly influenced by the default of data independence. In other words if the data are not independent then the standard error and therefore the confidence interval and the result test result will be for non-trust regression coefficients. Therefore in analyzing these data it is necessary to use methods that can consider this dependence. One of the most important ways to solve this problem is linear mixed models which are generalizations of simple linear models that provide the possibility of random and fixed effects with each other. Linear mixed models are used in many fields of physical, biological, medical and social sciences [2-5].
We consider the linear mixed model (LMM) as follows: 
										(1)
 ,  
where  is an  vector of observations,  with  is an  design matrix corresponding to the  -th random effects factor and q,    is an  observed design matrix for the fixed effects,  is a  parameter vector of unknown fixed effects,
 is a  unobservable vector of random effects and  is an  unobservable
vector of random errors.
 and  are independent and have a multivariate normal distribution as

where  and  are  and  vectors of variance parameters corresponding to  and , respectively. Henderson et al [6-7] introduced the set of equations called mixed model equations, and obtained  and  as

where  and . They  and  are called the best linear unbiased
estimator (BLUE) and the best linear unbiased predictor (BLUP), respectively. One of the most common estimators in linear regression is the ordinary least squares (OLS) estimator, which in the case of multicollinearity may lead to estimates with adverse effects such as high variance. To reduce the effects of multicollinearity. Hoerl et al (in [9-10]) proposed the ridge estimator and the Liu estimator respectively, which are the well-known alternatives of the OLS estimator. Yang and Chang [11] obtained the two parameter estimator  “Using the mixed estimation technique introduced by Theil et al (see [12-13]). They considered the prior information about  in the form of restriction as  where  and 
are respectively the ridge, Liu parameters and the ridge estimator”.
In , authors such as Gilmour, Jiang and Searl in  considered a state where the matrix  is singular. Eliot and Liu and  inquired the ridge prediction in LMM. Liu and  in [10] are obtained  and  as

where  and  are the ridge estimator of  and the ridge predictor of  respectively. Qzkale and Can [18] gave “an example from kidney failure data” to evaluate ridge estimator in linear mixed model. In [19], Kuran and Ozkale obtained the mixed and stochastic restricted ridge predictors by using Gilmour approach. They introduced “stochastic linear restriction as 
where  is an  vector,  is an  known matrix of rank  and  is an  random vector that is assumed to be distributed with  and  where  is  vector of variance parameters corresponding to  Also  and  are independent”
Then derived the stochastic restricted estimator of  and the stochastic restricted predictor of  respectively, as

Furthermore, they obtained the stochastic restricted ridge estimator of  and the stochastic restricted ridge predictor of  respectively, as

In this article, we obtain the new two parameter estimations in linear mixed models by taking Yang and Chang’s ideas [11] and considering restriction  In Section  we follow the idea of Henderson’s mixed model equations to get the two parameter estimator. Then, by setting stochastic linear restrictions  on the vector of fixed effects parameters, we derive the stochastic restricted two parameter estimation. In Section  estimates for the variance parameters are obtained when unknown. In Section  under the mean square error matrix (MSEM) sense we offer comparisons of new two parameter estimators. In Section  Methods are proposed for estimating of the biasing parameters. In Section 6 and 7 a simulation study and a real data analysis is given. Finally, summary and some conclusions are given in Section 8.

2. The Proposed Estimators

Under model (1), we have

and the joint distribution of  and  is given by

Where  and  are nonsingular. If the restriction used by Yang and Ghang [11] in linear regression is transferred to linear mixed model, we can produce the two parameter estimator using “penalized term” idea. So by unifying restriction  with model (1) to give

[bookmark: _GoBack],                                                                                                (2)

and  Then  and  are jointly distributed as 
where .The conditional distribution of  given  is  and the logarithm joint density of  and  given by

The penalized log-likelihood function is obtained by succession  and   as follows:
	(3)
From Equation (3), we get the partial derivative with respect to  and  then set the equations to
zero and by using  and  to denote the solutions give

By solving the equation of  is
		`		(6)
Using  into the equation of (4) we get
		(7)
Also using  this equation equals to
					(8)
In equation  if we put  is obtained as follows
			(9)
Due to  we get
							(10)
Using equation  equals to 
In section, we obtain the stochastic restricted two parameter estimation. For this, the stochastic Linear restrictions  can be unified to model (1) and the restriction 
to give
						(11)
where  and  Then
The conditional distribution of  given  is  and the logarithm
joint density of  and  given by

Substituting  and  to  the penalized
log-likelihood function is obtained as follows:

From Equation (12), we get the partial derivative with respect to  and  then set the equations to zero and by using  and  to denote the solutions give

By solving these equations similar to equations (4) and (5), the following results are obtained

3.Estimation of variance parameters

In linear mixed models, the variance parameter within  and  are often unknown that several methods have been proposed by Searle  to estimate them. In this section, we estimate the variance parameters using the ML method. The marginal distribution of  is  therefore we can write the marginal log-likelihood function of 

where  and are  and  vectors of unknown
parameters, respectively. Differentiating the equation (17) with respect to  and  the partial derivatives is obtained as
  						(18)
						(19)
				(20)

where . Setting equations  equal to zero and using 
and  and instead of  and  gives

solving the equations (21) and (23) yields the estimators

Equation (23) depends on  and  so iterative procedures must be used to solve
 's. In the statistical literature, there are four iterative procedures to estimates variance parameters, which include: "Newton-Raphson (NR), Expectation Maximization algorithm (EM),
Fisher Scoring (FS) and the Average Information (AI) algorithms". See [22] for details of these procedures. Note that in the stochastic restricted two parameter methods, the ML estimators is obtained similar equations (21),(22) and 

4. Comparison of estimators 
In this section, we compare the estimator  with  and the estimator  with  using the mean squares error matrix (MSEM) sense. The estimator  is superior to  with respect to the MSEM sense, if and only if  that is,
 is a positive definite (pd) matrix. The mean-square error matrix for the estimator  is given as

The variance matrix of  is

where  The bias  is given as

The mean-square error matrix for the estimator  is given as
where  and
bias 


4.1. Comparison the Estimator  with 

The  of  is  where  and the  of  is

The estimator  is superior to the estimator  under the MSEM sense, if and only if
 then

According to Farebrother  if  then the necessary and sufficient condition for  to be superior to  is 

5. Selection of Parameters  and 

In the linear regression model, choosing the parameter  is important so many statisticians were suggested several methods for obtaining this parameter. These methods were proposed by many researchers  and others. According to Ozkale and Can [18], "we rewrite model (1) in the form of a marginal model in which random effects are not explicitly defined:
						(26)
Because  is pd, then there is a nonsingular symmetric matrix  such that . If we multiply both sides of model (42) by , we get , where 
 and  The matrix  is symmetric, so there is an
orthogonal matrix  such that  and  where
 are the ordered eigenvalues of . Then model (26) can be rewritten in a canonical form as , where  and . Under this model, we get
the following representation:

we use  to find the optimal values of  and , where  is the
mean square error. Let  fixed, the optimal value of the  can be obtained by minimizing the following statement

notice that  Therefore

Getting  we obtain  Since the optimal 
depends on unknown  and  then according Hoerl and Kennard [9] we can get the estimate of  by substituting  and  as follows:
										(27)
Where  and  are the unbiased estimators  and . According to the estimator of  which
Kibria [25]and Hoerl and Kennard [9] proposed, the harmonic mean value of  in (27) is
Now, let  fixed, and we get the optimal value  by minimizing . Therefore getting  
			(28)

Since  is always be positive, in this section we get the positive condition of the estimator in equation (27). For this purpose, we use the following theorem.
Theorem 5.1 If
  
for all  then  are always positive.
Proof. If
  
then the values of  are positive. Since
 
 
must be positive for all . Then we get
  
and because
depends on the unknown parameters  and  so their unbiased estimators are replaced. Therefore  is always positive if  is selected as
 

Note that
  
is always less than one and since  must be between zero and one, we consider the inequality
  
as follows
							(29)
Since  in (28) depends on  and the estimators of  in  depend on , we consider an iterative method for these parameters by applying the following method. Step  calculate  from (29) . Step 2, calculate  by using  in step 1 . Step  calculate  from ( 28 ) by using the estimator  in Step 2 . Step  if  is not between zero and one use 

6. A Simulation Study

In this section, we compare the performance of  and  with a simulation
study. For this purpose, we calculate the estimated mean square error (EMSE) with various values of sample size, variance and degree of collinearity. Following McDonald and Galarneau [27], we are computed the fixed effects as
			(30)
Where  independent standard normal are pseudo-random numbers and  is the correlation between any two fixed effects. Three different sets of  were considered as 0.75,0.85 and  The  matrix is produced in a completely randomized design. Observation on responses are then determined by
	(31)
We consider two designs that in the first design  and in the second design . Also, the same value  and  are taken in both designs. Following Ozcale and Can (2017) “The  vector was chosen as the eigenvector corresponding to the largest eigenvalue of the  matrix”. The variances matrix of random effects  and  are  and 
respectively. They  are generated from the normal distribution . We are considered  and .The trial was replicated 1000 times by generating  and  For each simulated data set derived  and  and then the estimated mean squared error (EMSE) calculated as calculated the relative mean square (RMSE) as
when  is greater than one, it indicates that the estimator  superior to the estimator . For the stochastic linear restriction  the matrix  is  and generated from the normal distribution  and the matrix  is generated from the normal distribution  where  is taken as  ) with . In tables 1 , we obtain the values of EMSE and RMSE for  and  We have the following results for Table 1:
(i) In the whole table, the EMSE values of  is less than . Also, the EMSE values of  is less than . In general, the EMSE values of  is less than all estimators.
(ii) As  and  increase, the EMSE values of the estimators increase.
(iii) As  increases, difference between the EMSE values of the two parameter estimators and the EMSE values of the best linear unbiased estimators increase. This implies an increase in the improvement of the two-parameter estimators.
Table1, Estimated  and SMSE values with  and 
	p=0.75
	
	

	ni
	3
	7
	3
	7

	
	0.0001526       
	7.3974e-05
	0.0003053         
	0.0001479

	
	0.0001461       
	7.1668e-05
	0.0002923         
	0.0001433

	
	0.0001032       
	6.9166e-05
	0.0001912          
	0.0001332

	
	9.9335e-05      
	6.7089e-05
	0.0001845         
	0.0001293

	
	1.4795             
	1.0695
	1.5965                
	1.1104

	
	1.4716             
	1.0682
	1.5845
	1.1083

	
	1.0389             
	1.0309
	1.0363                 
	1.0301

	p=0.85
	
	

	ni
	3
	7
	3
	7

	
	0.0002198
	0.0003460
	0.0004396        
	0.0002387

	
	0.0002076         
	0.0001134
	0.0004153         
	0.0002269

	
	0.0001332         
	0.0001045
	0.0002562         
	0.0002111

	
	0.0001277         
	0.0002460
	0.0002459        
	0.0002014

	
	1.6495                
	1.1414
	1.7156             
	1.1308

	
	1.6263                
	1.1373
	1.6889             
	1.1266

	
	1.0430                
	1.1219
	1.0418
	1.0481

	p=0.95
	
	

	ni
	3
	7
	3
	7

	
	0.0005729
	0.0003460
	0.0011459          
	0.0006920

	
	0.0005033        
	0.0003044
	0.0010066          
	0.0006088

	
	0.0002762        
	0.0002760
	0.0005201           
	0.0005272

	
	0.0002578        
	0.0002460
	0.0004927          
	0.0004716


	
	2.0743              
	1.2533
	2.2030                
	1.3125

	
	1.9524              
	1.2369
	2.0429                
	1.2908

	
	1.0713               
	1.1219
	1.0556                
	1.1178








7. Real data analysis

We consider a data set, which is known as the Egyptian pottery data to show the behavior of the new Restricted and Unrestricted Two-Parameter Estimators. This data set arises from an extensive archaeological survey of pottery production and distribution in the ancient Egyptian city of Al-Amarna. The data consist of measurements of chemical contents (mineral elements) made on many samples of pottery using two different techniques, NAA and ICP (see Smith et
al [30] for description of techniques). The set of pottery was collected from different locations around the city. We fit the data set by linear mixed model as  where  is  vector
of response variables,  and  which are regression matrix with dimensions  and  respectively. First, we are estimated the variance components by consider  and  Then, by calculating the eigenvalues of  the condition number 8322860 is obtained, which indicate severe multicollinearity. We considered the stochastic linear restrictions as  and selected 3 available data in the previous sections to the Egyptian pottery data.  and  are obtained using the iterative method introduced at the end of section 5,0.348 and 0.373 respectively. In Table 2 the estimated  values of the estimators are obtained by replacing in the corresponding theoretical MSE equations. We can see the estimated MSE values of  is less than . Also, the estimated MSE values of  is less than . In general, the estimated MSE values of  is less than all estimators. So, we conclude that the stochastic restricted two parameter estimator performs better than the other estimators. Note that in the results obtained for this data, all eigenvalues of  and  are positive and the condition of Theorem 4.1 and Theorem 4.2 are true. In Figure 1 , a plot of the estimated MSE values of  and  against  in the interval [0,2] with fixed  is drawn. Because  is not dependent on , its estimated  value is the same for all  values. It is obvious that estimated  values of  is always less than . Altogether, it is obvious that the two parameter estimators can perform better than the  in MSEM criterion under conditions.
Table 2. Estimated MSE values of the proposed estimators.
	
	

	

	

	


	EMSE
	1.216069
	1.201379
	0.1544953
	0.1541745




[image: ]
Figure  The estimated mean square error values of the estimators versus  with 
8. Conclusion
In this article, we proposed the two parameter estimator and the stochastic restricted two parameter estimator to overcome the effects of the multicollinearity problem in linear mixed models. We also obtained estimates of variance parameters and then using the mean squared error matrix sense made comparisons between the proposed estimators and some other estimators. Finally, we proposed methods for estimating biasing parameters and provided a simulation study and a data example to illustrate performance of new estimators.
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