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Abstract. Targeted ENO (TENO) has been proposed to overcome the shortcomings of WENO schemes,
namely excessive dissipation of lower-order upwind-biased and degenerated schemes, and limited ro-
bustness of central-biased schemes. TENO offers a set of free parameters to shape the inherent effective
local dissipation and dispersion. In the original formulation of TENO, these free parameters have been
adjusting by means of the approximate dissipation-dispersion relation. Hence, the TENO formulation
may be superior in this aspect, yet, it does not necessarily outperform other schemes in flows involving
non-linear interaction of a broad range of scales. Data-driven methods enable optimizing these free pa-
rameters instead of adjusting them. In this work, we demonstrate the application of an iterative Bayesian
optimization approach on designing fifth-order TENO (TENO5) schemes. Exploiting that Bayesian opti-
mization efficiently and robustly finds an optimum of an expensive function with a low number of trials,
we construct specific TENO5-schemes for compressible flows with gas dynamic discontinuities as well as
for implicit large eddy simulation (ILES). For the former, we measure the error between under-resolved
simulations of the Sod shock tube and its analytical solution for automatically generated TENO5 formu-
lations as the objective. For the latter, under-resolved inviscid Taylor-Green vortex flows are evolved to
their turbulent state, in which their kinetic energy spectrum in the inertial subrange is compared to the
theoretical Kolmogorov-scaling solution to formulate its objective. We show that these two TENO5 for-
mulations perform superior to the original formulation of TENO5 relevant to the specific types of flows.
Also, a variety of benchmark test flows show that both specific TENO5 formulations outperform the orig-
inal one in terms of phase speed, shock-preservation, as well as physical consistency of fluid-dynamic
instabilities and turbulent flows.
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1 INTRODUCTION

When seeking to study flow structures such as strong shocks, instability phenomena or small-scale vor-
tices, computational fluid dynamics (CFD) relies heavily on robust, low-dissipative numerical scheme.
For implicit large eddy simulation (ILES) under-resolved scales are accounted for by a properly shaped
subgrid-scale model inherent in a nonlinear numerical scheme [1]. Schranner et al. [2] have optimized
the truncation error of a Weighted Essentially Non-Oscillatory (WENO) scheme to initiate physically
consistent transition of an under-resolved Taylor-Green Vortex (TGV) flow and recover the Kolmogorov
inertial subrange in its turbulent state. Targeted ENO (TENO) schemes have been proposed by [3]
to overcome the deficiencies of WENO schemes, e.g. excessive dissipation for lower-order schemes,
order degeneration, and limited robustness for central-biased or very high-order schemes. Similar to
WENO schemes, TENO schemes offer shaping of the inherent effective local dissipation and dispersion
by a set of free parameters. Fu et al. [3] have optimized TENO schemes based on the approximated
dissipation-dispersion condition (ADC) proposed in [4]. ADC builds upon the approximate dispersion
relation (ADR) [5] derived for linear analysis. Hence, nonlinear shock-capturing schemes optimized
with ADC, may not necessarily transfer optimal behavior to physical flow problems that incorporate a
range of interacting scales.

Data-driven methods for shaping numerical schemes for CFD, and especially Neural-Networks (NN)-
based ones have gained momentum recently and proven to be beneficial. E.g. Bezgin et al. [6] have
constructed a 3rd order low-dissipation scheme WENO3-NN where each stencil weight is computed
based on a trained neural network. Some drawbacks of NN are the need for a large number of training
data or the need for careful hyperparameters selection. By contrast, Bayesian optimization (BO) is
a data-driven method for optimization that relies on a limited number of trials and does not require
derivative information, i.e. it is highly efficient while providing solutions of high confidence. Design
optimization (DO) methods have been introduced to shape nonlinear numerical schemes for ILES in
[2], thereby, the design objective of shaping a WENOCU6-M1 scheme to predict physically consistent
inertial subrange scaling has been followed. Winter et al. [7] have further-developed the DO approach by
employing BO to the same optimization problem. Their work [7] has shown that BO performs superior
to the DO approach of [2]. Nevertheless, their work is limited to weakly compressible flows and a
two-dimensional optimization problem. Comparing with WENOCU6-M1, TENO not only provides free
parameters to optimize the nonlinear dissipation, yet, also provides adjustability to the linear weights,
allowing to optimize the inherent dissipation of the background linear scheme. Hence, TENO, when
shaped accordingly is superior to WENOCU6-M1 for compressible flows and may also be superior for
vortical or turbulent flows.

In this work, we use BO to explore whether the 5th order TENO scheme, denoted as TENO5, can be
optimized for underresolved compressible flows that include discontinuities and a range of interacting
scales.

This paper is structured as follows: In Section 2, the two essential elements for BO, Gaussian process
regression (GPR) and expected improvement (EI), are introduced. A brief review of TENO5 and the
effects of its free parameters are given in Section 3. The objectives and optimization configuration can
be found in Section 4. Finally, the optimization results are presented and benchmark test cases are studied
in Section 5.

2



Yiqi Feng, Felix Schranner, Josef Winter and Nikolaus A. Adams

2 BAYESIAN OPTIMIZATION

BO has two elements: a probabilistic surrogate model and an acquisition function. As a probabilistic
surrogate model, a GPR is chosen in this work due to its robustness and analytical tractability [8, 9]. As
an acquisition function, the expected hypervolume improvement is used; it generates a candidate sample
by balancing the location of the expected optimum and area of high model uncertainty of the surrogate
model [10].

2.1 Gaussian Process Regression

Assuming an unknown noise-free scalar function f (x) with x ∈Rd denoting a bounded d-dimensional
input parameter space and f ∈ R denoting a scalar output space and given a finite set of n input sam-
ples X = {xi|i = 1,2, ...,n} drawn in the input space and their corresponding evaluations f = { f (xi)|i =
1,2, ...,n} in the output space, a training set shall be D = (X, f). Based on D , a GPR model can be
written as [8]

f̂(X)∼N (m(X);K(X,X)), (1)

where m(X) and K(X,X) denote the mean function and the n× n covariance matrix, respectively. The
latter evaluates the covariance function k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))] at all possible pairs
of input vectors in X. m(x) = 0 can be assumed [8].

The covariance function k(x,x′) is chosen such that with increasing distance r = |x,x′|, f (x) and f (x′)
correlate less. Within this work, the radial basis function (RBF) kernel k(x,x′) = θoexp

(
− r2

2l2

)
is used.

l is the length scale and θo a weighting factor which expresses the output scale or signal variance [8].
They are hyperparameters of the covariance function and denoted by θ = (l,θo) within the following.

Let x∗ denote an arbitrary trial for f̂ , its predictive mean and covariance function are:

µ(x∗) = k(x∗,X)K(X,X)−1f (2)

and
σ

2(x∗) = k(x∗,x∗)−k(x∗,X)K(X,X)−1k(X,x∗). (3)

To determine the optimal set of hyperparameters θ, the marginal log likelihood (MLL) of f̂(X)

log p(f̂|X,θ) =−1
2

fT ·K(X,X)f− 1
2

log|K(X,X)|− n
2

log(2π) (4)

is maximized. For this purpose, the Adam optimizer [11, 12] is employed. The converged f̂ (x) is denoted
as the posterior distribution or the surrogate model of f (x).

2.2 Expected Improvement

A GPR model provides an approximate interpolation of the real function f (x) by a normal distribution
of the prediction at an arbitrary point x∗, i.e. f (x∗) ∼ N

(
µ(x∗);σ2(x∗)

)
. To effectively and efficiently

find the optimum of f (x), further samples may need to be drawn, thereby approaching the location of the
expected optimum and reducing the model uncertainty of the GPR f̂ (x). Given a maximization scenario,
samples are drawn sequentially, and selected based on maximizing the expected improvement, i.e.[10]

xct = argmax EI(x). (5)
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with EI(x) = E
[
max( f̂ (x)− f ∗n ,0)

]
where f ∗n is the currently best output. This equation expresses the

expectation of the improvement comparing to the current optimum considering the variance of f̂ (x). In
this work, a sequential least squares programming method [13] is used to solve Eq. (5).

3 BRIEF REVIEW OF TARGETED ENO SCHEME

In this section the Euler equations and their discretization are introduced. Subsequently, a description
of the TENO5 scheme is provided. Thereby, the free parameters of TENO5 and their contribution to the
scheme inherent dissipation and dispersion are discussed.

3.1 Numerical-Flux Formulation and Discretization

The Euler equations, without source terms, read in vector notation

∂U
∂t

+∇
T ·F(U) = 0, (6)

with

U =

 ρ

ρu
E

 , F(U) =

 uρ

ρu⊗u+ pI
u(E + p)

 (7)

being the vector of conservative states and the convective flux vector, respectively. Therein, ρ denotes the
density, t the time, u the velocity vector, p the pressure, I the identitiy matrixd and E = ρe+1/2ρu ·u the
total energy with the internal energy ρe and the kinetic energy 1/2ρu ·u. We employ the ideal equation-
of-state p = (γ−1)ρe, where γ denotes the ratio of specific heats, to close the system of equations. We
employ a finite-volume approach using cuboid finite volumes

d
dt

Ūi =
1

∆x

(
Fi− 1

2 , j,k
−Fi+ 1

2 , j,k
+Gi, j− 1

2 ,k
−Gi, j+ 1

2 ,k
+Hi, j,k− 1

2
−Hi, j,k+ 1

2

)
(8)

where ∆x denotes the cell size, and F, G, and H are the approximate cell-face fluxes in x−, y−, and z−
direction, respectively. We obtain the convective fluxes by solving the Riemann problem at cell faces
using a Roe Riemann solver [14]. To advance the solution in time, we employ a third-order Runge-Kutta
Total Variation Dimishing scheme [15]. We apply the low-dissipative high-order TENO5 reconstruction
scheme to stably recover discontinuities and entire range of scales of the considered flow problems.

3.2 Fifth-order Targeted ENO Weighting

To construct a cell-face value according to the TENO framework [3], in a first step, r sub stencils
f̂n,i+ 1

2
with n = 0, ...r− 1 are constructed from neighboring cell-averaged states. The target cell-face

value f̂i+ 1
2

of order (2r− 1) is obtained in a second step, by a weighted addition of the r sub-stencils,

i.e. f̂i+ 1
2
= ∑

r−1
k=0 wk f̂k,i+ 1

2
. To achieve an ENO-like behaviour, a stencil which contains a discontinuity

is suppressed. Within this work, a fifth-order TENO scheme, i.e. r = 3, denoted as TENO5 is used. The
three sub-stencils are:

f̂0,i+ 1
2
= 1

6 (− fi+1 +5 fi +2 fi+1) ,

f̂1,i+ 1
2
= 1

6 (2 fi−2−7 fi−1 +11 fi) ,

f̂2,i+ 1
2
= 1

6 (2 fi +5 fi+1− fi+2) .

(9)
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To determine the weights, the smoothness measures [16, 17]

γk =

(
C+

τ5

βk + ε

)q

,k = 0,1,2, (10)

are evaluated, where τ5 = |β1−β2| is the global reference smoothness indicator and ε is a small value to
prevent division by zero. C and q are two integer parameters that are free parameters. βk are the smooth-
ness indicators for each sub-stencil and listed in [3]. The three smoothness measures are normalized
according to χk = γk/∑

2
k=0 γk and compared to the cutoff parameter CT such that

δk =

{
0, i f χk <CT ,
1, otherwise.

(11)

Finally, the nonlinear weights wk are expressed in terms of the linear weights dk as wk = dkδk/∑
2
k=0 dkδk.

Note that, if δk ≡ 1 for all k = 0,1,2 and one chooses the ideal linear weights d0 = 0.6,d1 = 0.3,d2 = 0.1,
a 5th order upwind scheme is obtained.

3.3 The free Parameters of TENO5

The linear-combination of the sub-stencils determines the TENO5 dissipation and dispersion proper-
ties. Hence, by adjusting the weights dk, the dissipation-dispersion relation is optimizable. TENO5 can
be divided into a 4th-order upwind-biased and a 4th-order central-biased sub-scheme [3]

gu
i+ 1

2
= 1

12 ( fi−2−5 fi−1 +13 fi +3 fi+1) ,

gc
i+ 1

2
= 1

12 (− fi−1 +7 fi +7 fi+1− fi+2) ,
(12)

respectively. A higher order scheme is constructed by assembling these according to

f 5th

i+ 1
2
= ηgu

i+ 1
2
+(1−η)gc

i+ 1
2
, (13)

with η expressing the bias towards the upwind scheme. Choosing η = 0.4 leads to the original TENO5
scheme [3]. By selecting η = 0.2, Fu et al. [3] have constructed a TENO5 scheme that has beneficiary
dissipation-dispersion properties based on the ADC, see Section 1. In this work, we denote this TENO5
scheme as TENO5adc.

The parameters C and q, see Eq. (10) control the extent the stencil smoothness is being taken into
account. Thus, a large C entails minimal influence of the smoothness metric τ5/(βk + ε) of the stencils,
which in the limit leads to recovery of the linear scheme with no nonlinear dissipation, thereby, the bias
towards a central or upwind-scheme depends on the choice of η. If q is large, minor non-smoothness
of a stencil may lead to its exclusion. Consequently, the three free parameters C, q, and η are used for
shaping optimal TENO5 schemes.

4 OPTIMIZATION OBJECTIVES AND CONFIGURATION

TENO5 in its formulations proposed in [3] behaves overly dispersive for intermediate and high wavenum-
bers in compressible flows, and overall excessively dissipative to be useful as a subgrid model for LES
[18, 19]. In this work, we make use of BO to explore its optimal formulations for compressible flows
with gasdynamic discontinuities and fluid-dynamic instabilities as well as turbulent or vortex flows. In
this section, the optimization objectives are defined and the optimization configuration is detailed.
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4.1 Optimization Objective for TENO5comp

To optimize a TENO5 scheme for compressible flows with gasdynamic discontinuities and fluid-
dynamic instabilities relevant to compressible flows, i.e. to state TENO5comp, the Sod shock tube [20] is
used as a training test case. The Sod shock tube is defined by the initial condition of

(ρ,u, p) =
{

(1.0,0.0,1.0) i f 0≤ x < 0.5,
(0.125,0.0,0.1) otherwise.

(14)

It is simulated in a domain of [0,1] with 40 uniform cells until a time of tend = 0.2. Then, the distributions
of ρ, u, and p are compared to an analytical solution, i.e. the capability of a scheme to recover the analyt-
ical solution is investigated. Since ρ, u, and p vary in magnitude, these are normalized by corresponding
minimum and maximum values of the initial simulations. The optimization objective can be defined on
basis of the normalized ρ, u, and p as

ocomp = ∑
s

∥∥ssim− sre f
∥∥

2 , s = ρ,u, p, (15)

where ssim, and sre f denote the simulation, and analytical data for ρ, u, and p, respectively, ‖·‖2 denotes
the L2 norm.

4.2 Optimization Objective for TENO5iles

To optimize a TENO5-scheme for vortex flows or turbulent flows, i.e. to state TENO5iles, the TGV at
an infinite Reynolds number as in [2, 7] serves as the test cases. A TGV develops from the initial laminar
condition

ρ = 1.0

(u,v,w) = (sin(x)cos(y)cos(z),−cos(x)sin(y)cos(z),0.0)

p = 100+
1
16

[(cos2x+ cos2y)(x+ cos2z)−2]

(16)

to a 3D, isotropic turbulent flow, decaying self-similarly only if the numerical model permits proper
evolution [2]. For the TGV, a cubic domain with4x = 2π

64 is used. At t = 10, the difference between the
numerically simulated Kolmogorov scaling inertial subrange E(ki) and the theoretical one, defined as

oiles =
∥∥∥logE(ki)− logAk−5/3

i

∥∥∥
2
, i = r,r+1, ...,s (17)

is measured. r = 3 and s = 33 mark the first and last wave number of the inertial subrange. Ak−5/3
i is

the reference Kolmogorov inertial subrange. Evaluation of this objective requires the value of A, which
differs from sample to sample. The regression analysis described in [2] is used to determine A.

4.3 Optimization Configuration

TENO5comp is intended for compressible flow simulations. While keeping the non-linear dissipation
contribution from non-smooth stencils as low as necessary, spurious oscillations originating from such
shall be suppressed, i.e. C and q shall be rather small. While η = 0.2 entails minimal dissipation [3] and
η = 0.4 recovers the original TENO5, that is excessively dissipative, a value of η favorable to the use for
compressible flow simulations is expected in between. Consequently, the values for q, C, and η shall be
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(a) (b) (c)

Figure 1: The (a) density, (b) velocity and (c) pressure profiles of Sod’s shock tube simulated with
TENO5, TENO5adc and TENO5comp schemes.

within [1,10], [1,100] and [0.2,0.4] for ocomp, respectively. Note that we use ∆(q,C,η) = (1,1,0.001)
for ocomp.

TENO5iles shall be favorable for underresolved simulations of vortex flows. TENO5adc is too dissi-
pative for ILES to model the under-resolved scales [18], hence, η ≤ 0.2 favors a rather central-biased
TENO5 scheme. According to [2, 7] C and q are [1,20], and [1000,20000], respectively, for the WENOCU6-
M1 scheme. TENO5 can provide more dissipation than WENOCU6-M1, thus, by means of a large C,
non-linear dissipation shall be reduced. By means of screening, a range of values for C has been de-
termined. Overall, the values of q, C, and η are within [1,20], [1000,60000], and [0.0,0.2] for oiles,
respectively. Note that we use ∆(q,C,η) = (1,1000,0.001) for oiles.

For the Bayesian Optimization of TENO5comp and TENO5iles 20 initial samples are drawn from the
three-dimensional input parameter space using a Sobol-sequence [7, 9]. Employing the GPBO process
outlined in Section 2, 30 optimization iterations are passed. ALPACA [21, 22], an MPI-parallelized C++
framework for complex flow simulations is used to run the test cases. The Ax-platform [23], combining
the GP regression modeling implemented in GPyTorch [24] and the BO of BoTorch [25] is used for the
GPBO.

5 OPTIMIZATION RESULTS AND BENCHMARKING

5.1 Optimization Results

The optimal parameters for TENO5comp have been determined as (q,C,η) = (6,3,0.311). Figure 1
shows the distribution of ρ, u, and p for the Sod shock tube as simulated with TENO5, TENO5adc,
TENO5comp, and the analytical reference solution, respectively. For TENO5comp, the discontinuities are
resolved sharply without degenerating the smoothness of other regions. TENO5comp improves to TENO5
in the three dimensions ρ, u, and p of ocomp by 6.33%, 9.67%, and 6.30%, respectively. The optimal
parameters for TENO5iles have been determined as (q,C,η) = (13,56000,0.1). Figure 2 shows the tur-
bulent kinetic energy spectrum of the TGV in its turbulent state as simulated with TENO5, TENO5adc,
TENO5iles, and for reference, the Kolmogorov inertial subrange spectrum. As indicated in Figure 2,
TENO5 and TENO5adc are excessively dissipative, while TENO5iles does fulfill the design goal of re-
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Figure 2: Turbulent kinetic energy spectrum of TGV with TENO5, TENO5adc and TENO5iles

(a) (b)

Figure 3: The spectral properties for TENO5, TENO5adc, TENO5comp and TENO5iles. (a) presents the
dispersion, the real part of the Φ(ϕ), and (b) presents the dissipation, the imaginary part of the Φ(ϕ).

covering the Kolmogorov-scaling inertial subrange spectrum well. oiles has been evaluated for TENO5,
and TENO5adc as 10.82, and 8.92, respectively; it is 1.19 for TENO5iles.

Figure 3 presents the spectral properties of dispersion and dissipation according to [5], for TENO5,
TENO5adc, TENO5comp and TENO5iles. While TENO5comp outperforms TENO5adc significantly in
terms of the dispersion error it is more dissipative than TENO5adc in the higher wave number range.
TENO5comp and TENO5 indicate a similar dispersivity, yet, TENO5comp is less dissipative. TENO5iles
compares in terms of dispersion properties to TENO5adc for low wave numbers, yet, for higher wave
numbers the dispersive error is lowest for TENO5iles. Out of the compared TENO5 family members the
dissipative error, especially for high wave numbers, is least for TENO5iles.

5.2 Benchmark tests

Within the following, the performance of the TENO5 schemes is studied with selected benchmark
tests. With 5.2.1, and 5.2.2 we demonstrate the superiority of the TENO5comp scheme that has a reduced
- when compared to TENO5 and TENO5adc and properly balanced dispersive and dissipative error for
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(a) (b)

Figure 4: Shu-Osher problem simulated with TENO5, TENO5adc and TENO5comp: (a) density; (b)
entropy.

flow phenomena common to compressible flows.

5.2.1 Shu-Osher Problem

The Shu-Osher [26] problem is an ideal one-dimensional test case to study the “shock-capturing and
wave-resolution capability” [3] of a scheme. Given the initial conditions

(ρ,u, p) =
{

(3.857,2.629,10.333) i f 0≤ x < 1,
(1+0.2sin(5x),0,1) i f 1≤ x≤ 10.

(18)

the flow is simulated in a domain discretized with 200 uniform cells until tend = 1.8. Figure 4 shows
the density and entropy field in those part of the domain most relevant to indicating the performance
in “shock-capturing and wave-resolution capabilities” [3] of high-order numerical schemes. Comparing
the simulation of the oscillation in the region of 5.5 ≤ x ≤ 6.5, the amplitude error of TENO5adc in
comparison to TENO5, and TENO5comp is lowest, yet, the phase error of TENO5comp is significantly
lower than for TENO5adc.

5.2.2 2D Implosion

The 2D implosion originating from the initial conditions

(ρ,u,v, p) =
{

(0.125,0,0,0.14), i f (x+ y)< 0.15,
(1.0,0,0,1.0), otherwise.

(19)

as proposed in [27] serves to study the capabilities of a numerical scheme to robustly simulate Richtmyer-
Meshkov instabilities, one of the common types of fluid-dynamic instabilities. Thereby, robustly implies
that the solution is not deteriorated due to instabilities originating from numerical errors when resolution
is limited. Note that in ALPACA the numerical symmetry-preserving techniques proposed in [28] is em-
ployed. The domain is bounded by [0,0.3]× [0,0.3] with fully symmetric boundaries and discretized by
160×160 uniform cells. Figure 5 shows the simulation results as obtained with TENO5, TENO5adc and
TENO5comp, respectively. Comparing the plume and the lower left corner of Fig. 5a to Figs. 5b, 5c, only
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(a) (b) (c)

Figure 5: The density distribution (from 0.4 to 1.1) of implosion text case simulated by (a) TENO5, (b)
TENO5adc and (c) TENO5comp at end time t = 2.5.

(a) (b) (c)

Figure 6: The absolute vorticity field (from 0 to 65) of 2D free shear flow with a thin layer simulated by
(a) TENO5, (b) TENO5adc and (c) TENO5iles at t=1.0.

larger scales can be observed and the plume is shorter, which is due to the dominating dissipative error of
TENO5. Also, TENO5adc entails spurious oscillations at the reflected shock waves, most visible shock
distortions appear at the interacting shocks. We attribute these spurious oscillations to the excessively
dispersive error behavior of TENO5adc. A well-resolved and a long plume with no apparent spurious
oscillation in the vicinity of the reflecting or interacting shocks is produced with TENO5comp.

5.2.3 2D Free Shear Flow with Thin Layer

To benchmark TENO5iles, a thin-layer 2D free shear flow is studied. It originates from the initial
condition of [29]

(ρ,u,v, p) =
{

(1.0, tanh(θ(y−0.25)),δsin(2πx),100.0) i f y≤ 0.5,
(1.0, tanh(θ(0.75− y)),δsin(2πx),100.0) otherwise,

(20)
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where θ = 100 is the shear layer width and δ = 0.05. The domain is bounded by [0,1]× [0,1] with
periodic boundaries and discretized underresolvedly with 160×160 uniform cells. The Reynolds number
is 10000. Figure 6 shows the absolute vorticity field simulated by TENO5, TENO5adc and TENO5iles
at t = 1.0, respectively. As a direct consequence of an overly dissipative scheme, spurious vortices
form. An excessivly dispersive scheme would, in later stages lead to numerical instabilities. Due to
the excessive dissipation of TENO5 and TENO5adc the primary vortices are distorted, while TENO5iles
resolves the primary vortex properly. The spiral structure in the core of the primary vortex layer roll-upp
is well represented, which is in line with the diminishing dispersive error of TENO5iles.

6 CONCLUSIONS

The GPBO approach has been employed to efficiently develop TENO5-based schemes that balance
the dissipation and dispersion as required for specific types of flows. These schemes are particularly ad-
vantageous for underresolved simulations of either compressible flows with gas dynamic discontinuities
and instabilities, as well as vortex or turbulent flows. For these optimizations, two appropriate optimiza-
tion objectives have been defined. On the one hand, the Sod shock tube test flow poses the objective for
compressible schemes to resolve a discontinuity sharply while concurrently being as little as possible
adversely effected to dispersive errors. On the other hand, the TGV delivers the basis for the objective
of properly transitioning a flow from a laminar to a turbulent state with a proper Kolmogorov inertial
subrange and thus a proper subgrid-scale model for implicit large eddy simulations.

With a selected set test flows, the specialized TENO5 schemes are benchmarked. Thereby, we note that
the optimizations are robust in the sense that both optimal schemes are superior to the original TENO5
schemes of Fu et al. [3] for test flows incorporating the fluid-dynamic phenomena on basis of which an
optimization has been conducted. In practice, they also deliver improved results when applied to other
flow types that have not been used to define the optimization objectives.
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