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Abstract: Measurements of pressure drop during experiments with fan-induced air flow in the 

open-cathode proton exchange membrane fuel cells (PEMFCs) show that flow friction in its open-

cathode side follows logarithmic law similar to Colebrook’s model for flow through pipes. The 

stable symbolic regression model for both laminar and turbulent flow presented in this article 

correlates air flow and pressure drop as a function of the variable flow friction factor which further 

depends on the Reynolds number and the virtual roughness. To follow the measured data, virtual 

inner roughness related to the mesh of conduits of fuel cell used in the mentioned experiment is 

0.03086, whereas for pipes, real physical roughness of their inner pipe surface goes practically from 

0 to 0.05. Numerical experiments indicate that the novel approximation of the Wright-ω function 

reduced the computational time from half of a minute to fragments of a second. The relative error 

of the estimated friction flow factor is less than 0.5%. 

Keywords: Colebrook equation; fuel cells; flow friction factor; open-cathode; pressure drop; 

symbolic regression; numerically stabile solution; roughness 

 

1. Introduction 

Flow friction is a complicated physical phenomenon and it is not constant but depends on flow 

rate and pressure drop. Because of its complexity, equations which describe the flow friction are 

mostly empirical [1]. The most used empirical formulation for turbulent pipe flow is given by 

Colebrook’s equation [2]. Here we will evaluate flow friction factor caused by air flow in the cathodic 

side of the observed proton exchange membrane fuel cells (PEMFCs) and we will provide accurate 

and consistent solution. 

1.1. Colebrook Equation for Pipe Flow Friction 

The standard Colebrook’s friction equation for turbulent pipe flow [2]; Equation (1), follows 

logarithmic law and is based on an experiment performed by Colebrook and White in the 1930s [3], 

while its graphical interpretation was given by Moody in 1944 [4]. 

1

√𝜆𝑇(𝑝)
= −2 ∙ 𝑙𝑜𝑔10 (

2.51

𝑅𝑒(𝑝)
∙

1

√𝜆𝑇(𝑝)
+
𝜀(𝑝)

3.71
) (1) 

where: 

𝜆𝑇(𝑝)—turbulent Darcy flow friction factor for pipes (dimensionless) 

𝑅𝑒(𝑝)—Reynolds number (dimensionless)—the same definition as for fuel cells 
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𝜀(𝑝)—relative roughness of inner pipe surface (dimensionless) 

𝑙𝑜𝑔10—logarithmic function with base 10 

𝑝—index related to pipes 

In Moody’s diagram, for the turbulent regime the Reynolds number 𝑅𝑒(𝑝) goes from around 

2320 to 108 while the relative roughness of inner pipe surface 𝜀(𝑝) from 0 for smooth surfaces to about 

0.05 for very rough surfaces (on the other hand, flow friction for laminar regime for pipe flow 𝜆𝐿(𝑝) 

does not depend of roughness 𝜀(𝑝) while the Reynolds number 𝑅𝑒(𝑝) goes from 0 to around 2320; 

the formula for laminar Darcy flow friction factor for pipe flow, 𝜆𝐿(𝑝) = 64 𝑅𝑒(𝑝)⁄  is not empirical but 

theoretically founded). 

Colebrook and White experimented with airflow through pipes of different roughness of inner 

surface [3]. They used a set of pipes from which one left with a smooth inner surface, while others 

were covered with sand of different size of grains. For each pipe, one uniform grain size with glue as 

adhesive material was used. Thus, the pipes in the experiment were gradually smooth to the fully 

rough. The experiment revealed that the turbulent flow friction depends on the Reynolds number 

𝑅𝑒(𝑝)  and on the relative roughness of inner pipe surface 𝜀(𝑝) . As can be seen from the Moody 

diagram [4], for the same values of the Reynolds number 𝑅𝑒(𝑝) the turbulent flow friction factor 

𝜆𝑇(𝑝) is higher in the pipes with higher relative roughness 𝜀(𝑝), where subsequently for the same 

flow, the corresponding pressure drop is higher, too. 

The Colebrook equation is implicitly given in respect to the unknown turbulent flow friction 

factor 𝜆𝑇(𝑝) and it can be rearranged in explicit form only in terms of Lambert W-function [5] or its 

cognate Wright ω-function, and even then further evaluation can be only approximated. Very 

accurate approximate formulas for the Colebrook equation for pipe flow based on the Wright ω-

function are available [6,7]. 

1.2. Modified Colebrook Equation for Flow Friction  

The Colebrook equation is empirical [3] and therefore possible modifications based on different 

conditions of flow can be done. We will evaluate here a modification for fuel cells [8,9]. Further, for 

example, US Bureau of Mines published a report in 1956 [10] that introduced a modified form of the 

Colebrook equation for gas flow where coefficient 2.51 was replaced with 2.825. Also, very recent 

modifications of a variety of empirical equations for pipe flow are available [11]. Here we analyze 

one modification for air flow friction in the open-cathode side of the observed type of proton 

exchange membrane fuel cells (PEMFCs) [8], and subsequently, we give a stable and computationally 

efficient explicit solution which is valid in this case. Analogous analyses can be done for air flow for 

cooling of electronic products from hand-held devices to supercomputers [12,13]. Here we discuss 

the only influence of hydraulic effects of flow through the open-cathode conduits of fuel cells while 

available literature [14–21] should be consulted for thermodynamic aspects. 

The Colebrook equation can be rearranged following data obtained from the experiment by 

Barreras et al. with fuel cells [8]. Based on this data and following analogy with pipe flow, it is 

estimated that virtual roughness is fixed by value 𝜀(𝐹𝐶) = 0.03086. Therefore, the Colebrook equation 

can be rewritten for the observed fuel cell as Equation (2). We will further analyze this equation to 

provide its stable numerical solution. The value of virtual roughness 𝜀(𝐹𝐶) = 0.03086 is from [9]. 

1

√𝜆𝑇(𝐹𝐶)
= −10 ∙ 𝑙𝑜𝑔10 (

65.6

𝑅𝑒(𝐹𝐶)
∙

1

√𝜆𝑇(𝐹𝐶)
+

𝜀(𝐹𝐶)

0.1415596
) (2) 

where: 

𝜆𝑇(𝐹𝐶)—turbulent Darcy flow friction factor for fuel cells (dimensionless) 

𝑅𝑒(𝐹𝐶)—Reynolds number (dimensionless)—the same definition as for pipes 

𝜀(𝐹𝐶)—virtual relative roughness of fuel cell (dimensionless) 

𝑙𝑜𝑔10—logarithmic function with base 10 

𝐹𝐶—index related to Fuel Cells 
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2. Proposed Model 

Proton exchange membrane fuel cells (PEMFCs) transform chemical energy from 

electrochemical reaction of hydrogen and oxygen to electrical energy [22–25]. Here we analyze fan-

induced air-forced flow, based on data from the experiment with pressure drop in the cathode side 

of air-forced open-cathode proton exchange membrane fuel cells (PEMFCs) by Barreras et al. [8]. 

Their experiment with fuel cells can be compared with the experiment performed by Colebrook and 

White with air flow through pipes [3]. Barreras et al. [8] use three different cathode configurations 

with aspect ratios ℎ/𝐻 from 0.83 to 2.5 to form a mesh of cathodic channels to supply the fuel cell 

with enough air for cooling and with oxygen for a chemical reaction (roughness is real physical 

characteristic of pipe surface [26], but not of cathodic channels of fuel cells in terms of hydraulic 

performances). 

Value of the Reynolds number 𝑅𝑒(𝐹𝐶) during the experiment was from 45 to 4000, while as a 

difference from pipes, during flow through the observed fuel cell, the transition from laminar to 

turbulent flow occurred around 𝑅𝑒(𝐹𝐶) = 500. In our numerical experiments, we use 𝑅𝑒(𝐹𝐶) between 

50 and 4100. 

As already mentioned, the original Colebrook equation is valid for turbulent flow of air, water, 

or natural gas through pipes. On the other hand, for laminar flow, 𝜆𝐿(𝑝) = 64 𝑅𝑒(𝑝)⁄  is used whereas 

the transition from laminar to turbulent flow is around 𝑅𝑒(𝑝) ≈  2320. This transitional border at the 

Moody’s plot [4] is sharp where the equivalent sharp transition from laminar to turbulent flow for 

the observed fuel cell starts at around 𝑅𝑒(𝐹𝐶) ≈  500 , as explained in [8]. Therefore, for airflow 

through the cathode side of the observed fuel cells, the flow friction factor 𝜆𝐿(𝐹𝐶) consists of two 

clearly defined types of flow: 

1. laminar flow 𝜆𝐿(𝐹𝐶)  that depends both on the Reynolds number 𝑅𝑒(𝐹𝐶)  and on the 

geometry of conduits; height ℎ and width 𝐻 of the mesh of conduits that forms a mesh of 

cathodic air channels, and 

2. turbulent flow 𝜆𝑇(𝐹𝐶) is solely the function of the Reynolds number 𝑅𝑒(𝐹𝐶) for the case 

from the experiment of Barreras et al. [8] (in general also on virtual roughness [9], which is 

in this case 𝜀(𝐹𝐶) = 0.03086). 

For solving implicitly given equations, instead of iterative procedures [27,28], appropriate 

explicit approximations which are accurate but also computationally efficient can be used (review of 

appropriate explicit approximations for pipe flow friction is available in [29]). A computationally 

efficient and stabile unified equation for the observed type of fuel cells which is valid both for laminar 

and turbulent regime will be given in this article [30]. 

2.1. Turbulent Flow 

In case of turbulent airflow during experiments with open-cathode proton exchange membrane 

fuel cells (PEMFCs), measurements show that pressure drop during turbulent flow at its cathode side 

follows logarithmic law, which form is comparable to the Colebrook’s flow friction equation for pipe 

flow, but with different numerical values [8]. The flow friction related to air flow is given by Equation 

(3): 

1

√𝜆𝑇(𝐹𝐶)
= −10 ∙ 𝑙𝑜𝑔10 (

65.6

𝑅𝑒(𝐹𝐶)
∙

1

√𝜆𝑇(𝐹𝐶)
+ 0.218) (3) 

where: 

𝜆𝑇(𝐹𝐶)—turbulent Darcy flow friction factor for fuel cells (dimensionless) 

𝑅𝑒(𝐹𝐶)—Reynolds number (dimensionless) – the same definition as for pipes 

𝑙𝑜𝑔10—logarithmic function with base 10 

𝐹𝐶—index related to Fuel Cells 
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During turbulent flow, numerical values for the flow friction factor in pipe and fuel cells are 

different and that difference can go up to 60%. To make a direct connection between Equation (1) for 

pipe flow and Equation (3) for the observed fuel cell, Equation (4) can be used [25]: 

1

√𝜆𝑇(𝐹𝐶)
= −14.17 + 5 · (−2 ∙ 𝑙𝑜𝑔10 (

2.51

𝑅𝑒(𝐹𝐶)
∙

1

√𝜆𝑇(𝐹𝐶)
+
𝜀(𝐹𝐶)

3.71
)) (4) 

where: 

𝜆𝑇(𝐹𝐶)—turbulent Darcy flow friction factor for fuel cells (dimensionless) 

𝑅𝑒(𝐹𝐶)—Reynolds number (dimensionless)—the same definition as for pipes 

𝜀(𝐹𝐶)—virtual relative roughness of fuel cell (dimensionless) 

𝑙𝑜𝑔10—logarithmic function with base 10 

𝐹𝐶—index related to Fuel Cells 

For Equation (4), virtual roughness can be recalculated based on the Colebrook equation as 

𝜀(𝐹𝐶) =  0.03086 for the observed fuel cell in the experiment [8]. This fuel cell was tested with three 

different cathode configurations [8]. As noted in [31], this roughness 𝜀(𝐹𝐶) is not a real measurable 

physical characteristic of the surface of the used material for conduits (on the contrary for pipes 𝜀(𝑝) 

can be measured or at least estimated accurately [32–37]). 

Both, Equations (3) and (4) are numerically unstable for 𝑅𝑒(𝐹𝐶) <  575, which can be a critical 

problem knowing that turbulent zone starts for 𝑅𝑒(𝐹𝐶) >  500. However, the novel solution proposed 

in this article is numerically stable. 

Generally, implicitly given equations can be transformed in explicit form through the Lambert 

W-function [38,39]. The Lambert W-function [5] is defined as the multivalued function W that 

satisfies 𝑧 =  𝑒𝑊(𝑧) · 𝑊(𝑧) . However, such transformation for the Colebrook equation for pipes 

contains a fast-growing term 𝑒𝑥 and because of that, overflow error in computers is possible [40,41]. 

Happily, results with fuel cells show that the solution is not in the zone where 𝑒𝑥 is too big to be 

stored in registers of computers. The model for fuel cells is given in Equation (5), while the related 

model for pipe flow friction model can be seen in [42]. 

1

√𝜆𝑇(𝐹𝐶)
= 𝑎(𝐹𝐶) · 𝑊(𝑒

𝑥(𝐹𝐶)) −
𝑅𝑒(𝐹𝐶)

𝑏(𝐹𝐶)
·
𝜀(𝐹𝐶)

𝑐(𝐹𝐶)

𝑥(𝐹𝐶) = 𝑙𝑛 (
𝑅𝑒(𝐹𝐶)

𝑎(𝐹𝐶) · 𝑏(𝐹𝐶)
) +

𝑅𝑒(𝐹𝐶)

𝑎(𝐹𝐶) · 𝑏(𝐹𝐶)
·
𝜀(𝐹𝐶)

𝑐(𝐹𝐶)

𝑎(𝐹𝐶) =
10

𝑙𝑛(10)
𝑏(𝐹𝐶) = 65.6

𝜀(𝐹𝐶)

𝑐(𝐹𝐶)
= 0.218 → 𝑐(𝐹𝐶) = 0.1415596

}
 
 
 
 
 

 
 
 
 
 

 (5) 

where: 

𝜆𝑇(𝐹𝐶)—turbulent Darcy flow friction factor for fuel cells (dimensionless) 

𝑅𝑒(𝐹𝐶)—Reynolds number (dimensionless)—the same definition as for pipes 

𝜀(𝐹𝐶)—virtual relative roughness of fuel cell (dimensionless) 

𝑎(𝐹𝐶), 𝑏(𝐹𝐶), 𝑐(𝐹𝐶)—constants 

𝑥(𝐹𝐶)—variable  

𝑙𝑜𝑔10—logarithmic function with base 10 

𝑙𝑛—natural logarithm 

𝑒—exponential function 

𝑊—Lambert function 

𝐹𝐶—index related to Fuel Cells 

The parameter 𝑐(𝐹𝐶) for fuel cell is 𝑐(𝐹𝐶) =  0.1415596. 
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After procedures from [6,7,43], the following form for fuel cells expressed through the Lambert 

W-function and its cognate Wright ω-function is given in Equation (6): 

1

√𝜆𝑇(𝐹𝐶)
=

10

𝑙𝑛(10)
· [𝑙𝑛(𝛥(𝐹𝐶)) +𝑊(𝑒

𝑥(𝐹𝐶)) − 𝑥(𝐹𝐶) ]

1

√𝜆𝑇(𝐹𝐶)
=

1

𝑎(𝐹𝐶)
· [𝐵(𝐹𝐶)+𝜔(𝑥(𝐹𝐶)) − 𝑥(𝐹𝐶) ]

𝑥(𝐹𝐶) = 𝐵(𝐹𝐶) + 0.218 · 𝛥(𝐹𝐶)

𝐵(𝐹𝐶) = 𝑙𝑛(𝛥(𝐹𝐶)) = 𝑙𝑛(𝑅𝑒(𝐹𝐶)) − 5.652138

𝛥(𝐹𝐶) =
𝑅𝑒(𝐹𝐶) · 𝑎(𝐹𝐶)

65.6
=
𝑅𝑒(𝐹𝐶)

284.9
1

𝑎(𝐹𝐶)
=

10

𝑙𝑛(10)
≈ 4.343

}
 
 
 
 
 

 
 
 
 
 

 (6) 

where: 

𝜆𝑇(𝐹𝐶)—turbulent Darcy flow friction factor for fuel cells (dimensionless) 

𝑅𝑒(𝐹𝐶)—Reynolds number (dimensionless)—the same definition as for pipes 

𝑎(𝐹𝐶)—constant 

𝑥(𝐹𝐶), 𝛥(𝐹𝐶), 𝐵(𝐹𝐶)—variable  

𝑙𝑛—natural logarithm 

𝑊—Lambert function 

𝜔—Wright function 

𝐹𝐶—index related to Fuel Cells 

However, symbolic regression applied on the explicit formulation, Equation (6), which involves 

𝑊(𝑒𝑥(𝑝))  − 𝑥(𝑝) =  𝜔(𝑥(𝑝))  − 𝑥(𝑝) gives very simple, but still accurate results in case of pipe flow [6,7] 

([44,45] confirm these results), but unfortunately these analytical formulas, which are optimized for 

pipes, cannot be directly applied on the fuel cell equation. Fortunately, symbolic regression gives also 

very promising results for fuel cells as given in Equation (7): 

𝑊(𝑒𝑥(𝐹𝐶)) − 𝑥(𝐹𝐶) = 𝜔(𝑥(𝐹𝐶)) − 𝑥(𝐹𝐶) ≈
26.723

𝑙𝑛 (
𝑅𝑒(𝐹𝐶)
284.9

) + 0.218 ·
𝑅𝑒(𝐹𝐶)
284.9

+ 6.2611

− 3.6795 
(7) 

where: 

𝑅𝑒(𝐹𝐶)—Reynolds number (dimensionless)—the same definition as for pipes 

𝑥(𝐹𝐶)—variable  

𝑙𝑛—natural logarithm 

𝑊—Lambert function 

𝜔—Wright function 

𝐹𝐶—index related to Fuel Cells 

To avoid repetitive computations, parameters 𝛥(𝐹𝐶) and 𝐵(𝐹𝐶) are introduced, in Equation (8). 

Both symbolic regression analyses were performed in Eureqa, a commercial software tool, which 

automates the process of model building and interpretation [46,47]. 

where: 

𝜆𝑇(𝐹𝐶)—turbulent Darcy flow friction factor for fuel cells (dimensionless) 

1

√𝜆𝑇(𝐹𝐶)
= 4.343 · (𝐵(𝐹𝐶)+

26.723

𝐵(𝐹𝐶) + 0.218 · 𝛥(𝐹𝐶) + 6.2611
− 3.6795)

𝛥(𝐹𝐶) =
𝑅𝑒(𝐹𝐶)

284.9
𝐵(𝐹𝐶) = 𝑙𝑛(𝛥(𝐹𝐶)) }

 
 

 
 

 (8) 
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𝑅𝑒(𝐹𝐶)—Reynolds number (dimensionless)—the same definition as for pipes 

𝛥(𝐹𝐶), 𝐵(𝐹𝐶)—variable  

𝑙𝑛—natural logarithm 

𝐹𝐶—index related to Fuel Cells 

2.2. Unified Model 

Although the expression for laminar flow through pipes is 𝜆𝐿(𝑝) = 64 𝑅𝑒(𝑝)⁄ , for fuel cells it is 

different, as given in Equation (9) [8]: 

𝜆𝐿(𝐹𝐶) =
58.91 + 50.66 · 𝑒−

3.4·ℎ
𝐻

𝑅𝑒(𝐹𝐶)
 (9) 

where: 

𝜆𝐿(𝐹𝐶)—laminar Darcy flow friction factor for fuel cells (dimensionless) 

ℎ

𝐻
—channel depth/channel width used only in laminar flow (dimensionless) 

𝑒—exponential function 

𝐹𝐶—index related to Fuel Cells 

Values of ℎ 𝐻⁄  are from 0.83 to 2.5. 

The experiment [8] shows that air flow through the cathode side of air-forced open-cathode 

proton exchange membrane fuel cells (PEMFCs) are (1) laminar for the lower values of the Reynolds 

number, 𝑅𝑒(𝐹𝐶) <  500  and (2) turbulent for the higher values, 500 < 𝑅𝑒(𝐹𝐶)  < 4000, where the 

Reynolds number is in hydraulics a very well-known dimensionless parameter that is used as a 

criterion for foreseeing flow patterns in a fluid’s behavior (defined in the same way for air flow 

through pipes and here discussed air flow through fuel cells). The dimensionless Darcy’s unified flow 

friction factor 𝜆(𝐹𝐶), is the function of the switching function 𝑦, the laminar flow friction 𝜆𝐿(𝐹𝐶), and 

the turbulent flow friction 𝜆𝑇(𝐹𝐶). The unified coherent flow friction model that covers both laminar 

and turbulent zones is set by Equation (10) [30]: 

𝜆(𝐹𝐶) = 𝑦 · 𝜆𝑇(𝐹𝐶) + (1 − 𝑦) · 𝜆𝐿(𝐹𝐶) (10) 

where: 

𝜆(𝐹𝐶)—unified Darcy flow friction factor for fuel cells (dimensionless) 

𝜆𝑇(𝐹𝐶)—turbulent Darcy flow friction factor for fuel cells (dimensionless) 

𝜆𝐿(𝐹𝐶)—laminar Darcy flow friction factor for fuel cells (dimensionless) 

𝑦—switching function 

𝐹𝐶—index related to Fuel Cells 

The novel switching function 𝑦 is given in Equation (11): 

𝑦 =
𝑅𝑒(𝐹𝐶)

𝑅𝑒(𝐹𝐶) + 𝑒
558−𝑅𝑒(𝐹𝐶)

 (11) 

where: 

𝑅𝑒(𝐹𝐶)—Reynolds number (dimensionless)—the same definition as for pipes 

𝑦—switching function 

𝑒—exponential function 

𝐹𝐶—index related to Fuel Cells 

The switching function was obtained by symbolic regression using HeuristicLab [47] and it is 

given in Figure 1. 
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Figure 1. Switching function given in Equation (11). 

The laminar flow friction 𝜆𝐿(𝐹𝐶) depends on the Reynolds number 𝑅𝑒(𝐹𝐶), but also on geometry 

of conduits, while the turbulent flow friction 𝜆𝑇(𝐹𝐶) depends only on the Reynolds number 𝑅𝑒(𝐹𝐶). 

In the case of fuel cells, both coefficients are empirical. In addition, the switching function 𝑦 contains 

the exponential function, (the similar situation is for calculation of 𝜆𝐿(𝐹𝐶) as already explained). 

To avoid numerical instability, it is recommended to use the explicit approximation which gives 

the following unified formula in Equation (12). 

𝜆(𝐹𝐶) = 𝑦 · 𝜆𝑇(𝐹𝐶) + (1 − 𝑦) · 𝜆𝐿(𝐹𝐶)

𝜆𝐿(𝐹𝐶) =
58.91 + 50.66 · 𝑒−

3.4·ℎ
𝐻

𝑅𝑒(𝐹𝐶)

1

√𝜆𝑇(𝐹𝐶)
= 4.343 · (𝐵(𝐹𝐶)+

26.723

𝑥(𝐹𝐶) + 6.2611
− 3.6795)

𝛥(𝐹𝐶) =
𝑅𝑒(𝐹𝐶)

284.9
𝐵(𝐹𝐶) = 𝑙𝑛(𝛥(𝐹𝐶))

𝑥(𝐹𝐶) = 𝐵(𝐹𝐶) + 0.218 · 𝛥(𝐹𝐶)

𝑦 =
𝑅𝑒(𝐹𝐶)

𝑅𝑒(𝐹𝐶) + 𝑒
558−𝑅𝑒(𝐹𝐶) }

 
 
 
 
 
 

 
 
 
 
 
 

 (12) 

where: 

𝜆(𝐹𝐶)—unified Darcy flow friction factor for fuel cells (dimensionless) 

𝜆𝑇(𝐹𝐶)—turbulent Darcy flow friction factor for fuel cells (dimensionless) 

𝜆𝐿(𝐹𝐶)—laminar Darcy flow friction factor for fuel cells (dimensionless) 

𝑅𝑒(𝐹𝐶)—Reynolds number (dimensionless)—the same definition as for pipes 

ℎ

𝐻
—channel depth/channel width used only in laminar flow (dimensionless) 

𝑥(𝐹𝐶), 𝛥(𝐹𝐶), 𝐵(𝐹𝐶)—variables 

𝑦—switching function 

𝑒—exponential function 

𝑙𝑛—natural logarithm 

𝐹𝐶—index related to Fuel Cells 

For 216 = 65536 Sobol Quasi Monte-Carlo pairs [48], which cover 𝑅𝑒FC = 50–4100 and for ℎ/𝐻 

from 0.83 to 2.45, the maximal relative error of the final calculated flow friction factor 𝜆FC  using 

Equation (12) is 0.46% compared with the original Equation (2). The accuracy and speed of execution 

are tested through the code given in the next section. 
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3. Software Code and Measurement of Execution Speed 

The unified equation for laminar and turbulent fan-induced air flow through open-cathode side 

of the observed proton exchange membrane fuel cells (PEMFCs) is given in Equation (12), where the 

algorithm from Figure 2 should be followed.  

 

Figure 2. Algorithm for solving Equation (12). 

The turbulent flow friction 𝜆𝑇(𝐹𝐶)~ 𝐿𝑇 (with the intermediate step through 1 √𝜆𝑇(𝐹𝐶)⁄ ~ 𝐿𝑇) can 

be expressed using “wrightOmega“ function as 𝐿𝑇 = (𝐵 + 𝑤𝑟𝑖𝑔ℎ𝑡𝑂𝑚𝑒𝑔𝑎(𝑥) − 𝑥)/𝑎, but it can be 

executed faster using approximation as given in Equation (8), as 𝐿𝑇 = 4.343 ∗ (𝑏 + 26.723./(𝑏 +

0.218 ∗ 𝑎 + 6.2611) − 3.6795). The MATLAB code also works in GNU Octave, but it can be easily 

translated in any programming language. The final unified fuel cell model given by Equation (12) is 

coded in MATLAB as: 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐿 = 𝑃𝐸𝑀𝐹𝐶𝑠(𝑅, ℎ)
𝑎 = 𝑙𝑜𝑔(10)/10;
𝑑 = 𝑅 ∗ 𝑎/65.6;
𝐵 = 𝑙𝑜𝑔(𝑑);

𝑥 = 𝐵 + 0.218 ∗ 𝑑;
𝐿𝑇 = 4.343 ∗ (𝐵 + 26.723./(𝑥 + 6.2611) − 3.6795);

𝐿𝑇 = 1./𝐿𝑇. ^2;
𝐿𝐿 = (58.91 + 50.66 ∗ 𝑒𝑥𝑝(−3.4 ∗ ℎ))./𝑅;

𝑦 = 𝑅./(𝑅 + 𝑒𝑥𝑝(558 − 𝑅));

𝐿 = 𝑦.∗ 𝐿𝑇 + (1 − 𝑦).∗ 𝐿𝐿; ⌉
⌉
⌉
⌉
⌉
⌉
⌉
⌉
⌉
⌉
 

  

in this code: 

Output parameters of the function: 

-flow friction factor 𝜆(𝐹𝐶) is given as 𝐿 

Input parameters of the function: 

-Reynolds number 𝑅𝑒(𝐹𝐶) is given as 𝑅 (from the interval 50 < 𝑅𝑒(𝐹𝐶) < 4100) 

-channel depth/channel width ℎ/𝐻 is given as ℎ (from 0.83 to 2.5) 

In MATLAB, symbol log() denotes the natural logarithm. 

Implicitly given equations can be solved using iterative procedures [49,50], but also using 

appropriate accurate but also computationally efficient explicit approximations especially developed 

for the observed purpose. Our numerical results show that the computationally efficient 

approximation does not contain the time-consuming evaluation of the Wright ω-function [6,7], but 

simple polynomials found by symbolic regression [51], which can be easily evaluated on computers. 

It is because simple functions such as +, −, * and / are executed directly in the CPU and hence they are 

very fast [43]. 
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Using 216 = 65536 Sobol Quasi Monte-Carlo pairs [48], which cover 𝑅𝑒(𝐹𝐶) = 50–4100 and for ℎ/𝐻 

from 0.83 to 2.45, the evaluation of the MATLAB built-in “wrightOmega“ function required 30.9 s, 

while our novel approximation required only 0.0022 s (our approximation is around fourteen 

thousand times faster). Consequently, numerical tests show that the novel approximation presented 

here is very suitable for modeling of fan-induced flow friction in a mesh with virtual roughness for 

air-forced flow in the open-cathode proton exchange membrane fuel cells (PEMFCs), as it is very fast 

and still very accurate. 

4. Conclusions 

This paper gives a novel numerically stable explicit solution for flow friction during airflow in 

cathode side of open-cathode proton exchange membrane fuel cells (PEMFCs). Symbolic regression 

is successfully used for obtaining a cheap but still accurate approximation of the Wright-ω function 

for fuel cells-based explicit friction model and also for approximations of the switching function, 

which is needed for the unified formulation of fuel cell friction model. Numerical experiments 

indicate that the novel approximation of the Wright-ω function reduced the computational time from 

half of a minute to fragments of a second. The relative error of the estimated friction flow factor is 

less than 0.5%. 

In future research, further analyses and experiments are foreseen to show if and how this value 

of the virtual roughness 𝜀(𝐹𝐶) of fan-induced friction in a mesh of conduits for air-forced flow in the 

open-cathode proton exchange membrane fuel cells (PEMFCs) can be changed and how it depends 

on fuel cells parameters (type of fuel cells, size, geometry of channels, etc.). The study should be 

extended to cover other types of fuel cell, to include water and heat management, etc. [52–60]. 
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Notations 

The following symbols are used in this article: 

For pipes:  
𝜆𝑇(𝑝) turbulent Darcy flow friction factor for pipes (dimensionless) 
𝜆𝐿(𝑝) turbulent Darcy flow friction factor for pipes (dimensionless) 
𝑅𝑒(𝑝) Reynolds number (dimensionless)—the same definition as for fuel cells 

𝜀(𝑝) relative roughness of inner pipe surface (dimensionless) 

𝑝 index related to pipes 

For Fuel Cells:  

𝜆(𝐹𝐶) unified Darcy flow friction factor for fuel cells (dimensionless) 

𝜆𝑇(𝐹𝐶) turbulent Darcy flow friction factor for fuel cells (dimensionless) 

𝜆𝐿(𝐹𝐶) laminar Darcy flow friction factor for fuel cells (dimensionless) 

𝑅𝑒(𝐹𝐶) Reynolds number (dimensionless)—the same definition as for pipes 

𝜀(𝐹𝐶) virtual relative roughness of fuel cell (dimensionless) 

ℎ

𝐻
 channel depth/channel width used only in laminar flow (dimensionless) 

𝑥(𝐹𝐶), 𝛥(𝐹𝐶), 𝐵(𝐹𝐶) variables  
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𝑎(𝐹𝐶), 𝑏(𝐹𝐶), 𝑐(𝐹𝐶) constants 

𝐹𝐶 index related to Fuel Cells 

Functions:  

𝑙𝑜𝑔10 logarithmic function with base 10 

𝑙𝑛 natural logarithm 

𝑒 exponential function 

𝑊 Lambert function 

𝜔 Wright function 

𝑦 switching function 
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