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Abstract. This work implements and analyses an Immersed Boundary Method based on Vol-
ume Pezalization for the flow simulator Airbus-CODA (CFD for ONERA, DLR, and AIRBUS).
The Immersed Boundary Volume Penalization has unique advantages, e.g. easy to implement,
straightforward formulation for moving geometries, and numerical errors can be controlled a-
priori [1, 2], showing the potential for aeronautical applications. Numerical experiments will
assess the accuracy of the Immersed Boundary Volume Penalization in CODA.

1 INTRODUCTION

1.1 Immsered Boundary Volume Penalization

The Immersed Boundary Method (IBM) [3] is a popular numerical approach to mimic the
effect of boundary conditions in the flow without requiring body-fitted meshes. IBM reduce
considerably the effort of mesh generation and can easily handle moving geometries. In general,
the IBM can be achieved by the cut-cell approach [4], by the introduction of source terms such
as the ghost cell [5, 6], direct forcing [7] or volume penalisation, among others, or by interface
modification [8, 9].

Volume Penalization (VP) [10, 11, 12, 13] belongs to that class of IBM where the governing
equations (i.e. the compressible Navier-Stokes (NS) equations),

∂φφφ

∂t
+∇ · F = sη, (1)
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are penalized to drive the flow velocity to specied values (e.g. zero in stationary geometries) in
grid nodes representing the body. The boundary condition are imposed by introducing a source
term or penalty term,

sη = −χ
η

 0
ρ [u− us]

ρ

2
[u · u− us · us]

 (2)

to the computational nodes located inside the body. The conservative variable vector and the
total fluxes are respectively,

φφφ =

 ρ
ρu
ρe

 , F =

 ρu
ρu⊗ u + pI−E

[ρe+ p]u−Eu− q

 , (3)

with thermodinamics variables such as the static pressure, p = [γ − 1]ρT , and temperature,
cvT = e− u · u/2. Viscous stress tensor and heat flux are respectively,

E = µ

[
∇u + (∇u)T − 2

3
[∇ · u] I

]
, q = −κ∇T. (4)

In the above equations ρ is the density, u is the velocity vector, e is the total energy, γ is
the specific hear ratio, cv is the specific heat at constant volume, µ is the dinamic viscosity,
0 < η � 1 is the penalization parameter, and us is the solid velocity vector. The mask function,
χ, which distinguishes between the fluid, Ωf, and body, Ωb, regions, can be defined as

χ =

{
1, If x ∈ Ωb

0, Otherwise
, (5)

and is called sharp. Kolomenskiy and Schneider [14] point out another formulation to avoid
spurious oscillations of the hydrodynamic forces by smoothing the mask function. Following
[11], the smooth mask function can be defined as

χ =
[
1− exp

(
− (||x− xw||2/δ)2

)]
χsharp, (6)

where ||x − xw||2 is the Euclidean distance to the wall and δ is the width of the smoothing
function.

1.2 Mask function with triangular surface

Working with industrial (or academic) CFD aerodynamics solvers, the body geometry is
usually given in an STL file [15]. Now the body is represented by triangular surfaces given by a
cloud of points {xi, yi, zi} i = 0, . . . , n − 1. To answer if a computational node lives inside the
body, ones start by checking whether it is inside an Oriented Bounding Box (OBB) around the
body, following Mukundan [16].

An OBB is the minimal cuboid that encloses a set of points in space (i.e., the triangular
points of the STL file). The procedure begins by calculating the centroid of the body, (x, y, z),
and defining the matrix,
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V =

x0 − x x1 − x . . . xn−1 − x
y0 − y y2 − y . . . yn−1 − y
y0 − z z3 − z . . . zn−1 − z

 ∈ R3×n (7)

and the covariance matrix (symmetric),

C =
1

n

(
VVT

)
∈ R3×3 (8)

The principal directions of C are then determined to orient the faces of the OBB and the
eigenvalues, {λ1, λ2, λ3}, of C to give the half-width of the OBB face, {wj =

√
λj} j = 1, 2, 3.

Finally the two-dimensional rotating calipers method applies over their projections onto the
plane that is normal to the direction with the smallest associated eigenvalue.

If a computational node tests positive within the OBB, a second test is necessary to determine
if it is actually within the triangular surface. In order to do this, ones calculate signed distances
from the positive computational node towards surface projections, along vertical rays, defining
the vertical direction as the longest axis of the OBB.

2 NUMERICAL RESULTS

The implementation of the Immersed Boundary Volume Penalization (IBVP) previously de-
scribed is performed in the 3D solver CODA [17]. For spatial discretization, a second-order
cell-centered finite volume is used. Convective and diffusion fluxes are computed by the Roe-
upwinding and central schemes respectively. For temporal discretization, an implicit Euler
scheme with Switched Evolution Relaxation (SER) method [18] are used. The implicit scheme
allows for the penalty η to be arbitrarily high, enabling precision when imposing the IB.

2.1 Analysis

The solver is validated by simulating steady and unsteady flow past a cylinder with diameter
D immersed in an uniform Cartesion mesh. Simulations have been performed in a [−5D, 15D]×
[−D/2, D/2]× [−5D, 5D] domain with 200× 1× 160 nodes. The IBVP was configured with a it
sharp mask function. Flow field is plotted in Figure 1a with Reynolds number Re = 40 at low
Mach number of Ma = 0.2. The Reynolds number is defined by the cylinder diameter D and
the freestream velocity U∞, (i.e. Re := ρU∞D/µ). It is observed the momentum in x direction,
Figure 1b, drops zero within the origin because is in this region of the domain where the penalty
body force works driving the velocity of the fluid to zero.

Keeping the Reynolds number, a second test comprises an analysis where the change in the
flow field is evaluated upon the variation of the penalization parameter, see Figure 2. Smaller
the volume penalization parameter, the IBVP mimics a NS flow around a cylinder. Less than a
value of 10−5 it needs to set a smaller initial CFL number.

The implementation of a smooth mask function is plotted in FIgure 3. Bigger the value of δ,
bigger the zone of the of the zone of the penalization of the IBVP and smaller the initial CFL
number. In the simulations that were run with this mask function (and is not plotted here), it
was observed that a not right choice of values for the set {η, δ, CFLini}, turns the conservative
variable vector into negative.
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(a) Flow field.

IBVP analysis test (I)

11

 (x, y, z) Î [-5D,15D]x[-D/2,D/2]x[-5D,5D] m
 Cylinder: center at (0,0,0) and R = D/2 m
 Low/medium Re-number
 Ma = 0.2
 Convection scheme: Roe
 Time integration: implicit Euler

Figure 4. FV2 with a 200x1x160 mesh and Re = 40

(b) x-Momentum along the line z = 0.

Figure 1: IBVP simulation around a cylinder.
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12

h = 10-5 and CFLini = 1,0h = 10-4 and CFLini = 1,0

h = 10-3 and CFLini = 1,0h = 10-2 and CFLini = 1,0h = 10-1 and CFLini = 1,0h = 1,0 and CFLini = 1,0

h = 10-6 and CFLini = 0,02 h = 10-7 and CFLini = 0,002

(a) η = 1.0 and CFLini = 1.0

IBVP analysis test (II)

12

h = 10-5 and CFLini = 1,0h = 10-4 and CFLini = 1,0

h = 10-3 and CFLini = 1,0h = 10-2 and CFLini = 1,0h = 10-1 and CFLini = 1,0h = 1,0 and CFLini = 1,0

h = 10-6 and CFLini = 0,02 h = 10-7 and CFLini = 0,002

(b) η = 10−1 and CFLini = 1.0IBVP analysis test (II)

12

h = 10-5 and CFLini = 1,0h = 10-4 and CFLini = 1,0

h = 10-3 and CFLini = 1,0h = 10-2 and CFLini = 1,0h = 10-1 and CFLini = 1,0h = 1,0 and CFLini = 1,0

h = 10-6 and CFLini = 0,02 h = 10-7 and CFLini = 0,002

(c) η = 10−2 and CFLini = 1.0

IBVP analysis test (II)

12

h = 10-5 and CFLini = 1,0h = 10-4 and CFLini = 1,0

h = 10-3 and CFLini = 1,0h = 10-2 and CFLini = 1,0h = 10-1 and CFLini = 1,0h = 1,0 and CFLini = 1,0

h = 10-6 and CFLini = 0,02 h = 10-7 and CFLini = 0,002

(d) η = 10−3 and CFLini = 1.0

IBVP analysis test (II)

12

h = 10-5 and CFLini = 1,0h = 10-4 and CFLini = 1,0

h = 10-3 and CFLini = 1,0h = 10-2 and CFLini = 1,0h = 10-1 and CFLini = 1,0h = 1,0 and CFLini = 1,0

h = 10-6 and CFLini = 0,02 h = 10-7 and CFLini = 0,002(e) η = 10−4 and CFLini = 1.0

IBVP analysis test (II)

12

h = 10-5 and CFLini = 1,0h = 10-4 and CFLini = 1,0

h = 10-3 and CFLini = 1,0h = 10-2 and CFLini = 1,0h = 10-1 and CFLini = 1,0h = 1,0 and CFLini = 1,0

h = 10-6 and CFLini = 0,02 h = 10-7 and CFLini = 0,002(f) η = 10−5 and CFLini = 1.0

IBVP analysis test (II)

12

h = 10-5 and CFLini = 1,0h = 10-4 and CFLini = 1,0

h = 10-3 and CFLini = 1,0h = 10-2 and CFLini = 1,0h = 10-1 and CFLini = 1,0h = 1,0 and CFLini = 1,0

h = 10-6 and CFLini = 0,02 h = 10-7 and CFLini = 0,002(g) η = 10−6 and CFLini = 2 · 10−2

IBVP analysis test (II)

12

h = 10-5 and CFLini = 1,0h = 10-4 and CFLini = 1,0

h = 10-3 and CFLini = 1,0h = 10-2 and CFLini = 1,0h = 10-1 and CFLini = 1,0h = 1,0 and CFLini = 1,0

h = 10-6 and CFLini = 0,02 h = 10-7 and CFLini = 0,002(h) η = 10−7 and CFLini = 2 · 10−3

Figure 2: Flow filed for differents values of penalization parameter. The red circle represents
the immersed cylinder.
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 Smooth mask function:

 Not right choice of set {h, d, CFL}  State variable
vector turns negative

IBVP analysis test (III)

13

h = 10-1 and CFLini = 1,0 h = 10-1, d = 10-1 and CFLini = 0,01

h = 10-1, d = 10-2 and CFLini = 1,0

(a) η = 10−1, δ = 10−1, and CFLini = 10−2

 Smooth mask function:

 Not right choice of set {h, d, CFL}  State variable
vector turns negative

IBVP analysis test (III)

13

h = 10-1 and CFLini = 1,0 h = 10-1, d = 10-1 and CFLini = 0,01

h = 10-1, d = 10-2 and CFLini = 1,0(b) η = 10−1, δ = 10−2, and CFLini = 1.0

Figure 3: Simulations with a smooth mask function. The red circle represents the immersed
cylinder.
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Comparisons with other experimental and computational results of the length of recirculation
are tabulated in Tables 1, 2, and 3. The third column of the tables is the relative error with
respect to the body-fitted result. It is found that the IBVP with a sharp mask function the results
are comparable with other numerical simulations and experiments. The length of recirculation
for the IBVP with smooth mask function is bigger than other numerical results because δ is not
enough smaller.

Table 1: Length of recirculation for a cylinder at Re = 40 reported in the literature. (E) stands
for experimental; (body-fitted) and (IBM), numerical.

Study Lrb/D |rel. error| [%]

Cuntanceau & Bouard [19](E) 1.89

Fornberg [20](body-fitted) 2.24 —

Ye et al. [4](IBM) 2.27 1.33(9)

Choi et al. [7](IBM) 2.21 1.33(9)

Brehm et al. [9](IBM) 2.26 0.89(3)

Table 2: Length of recirculation for a cylinder at Re = 40 computed with a sharp mask function.

Present study - sharp Lrb/D |rel. error| [%]

η = 10−7 2.21 1.33(9)
η = 10−6 2.27 1.33(9)
η = 10−5 2.29 2.23(2)
η = 10−4 2.28 1.78(6)
η = 10−3 2.27 1.33(9)
η = 10−2 2.28 1.78(6)
η = 10−1 2.37 5.80(4)

Finally, an unsteady simulation was performanced with Re = 100 and Ma = 0.2, see Figure
4. The computation of the Strouhal number (St := fD/U∞), quantity that characterizes the
shedding frequency of vortex f , is compared with experimental and numerical results reported
in the literature in Table 4. Here St has been estimated from the frequency taken by a vortex
going from point ”A” to point ”B”. Results similar to those of the literature are found.

2.2 Applications

To see the potencial of IBVP and the implementation of the mask function. In the first
case a oscillating cylinder was performanced at Re = 40. The motion is expressed as z(t) =
Am sin(π/2fmt), where Am and fm are the amplitude and frecuency of the oscillating motion.
The computational domain is the same as previous simulations but the mesh is set to 800×1×400.
The flow past around the moving cylinder is in Figure 5. In each iteration the code is able to
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Table 3: Length of recirculation for a cylinder at Re = 40 computed with a smooth mask function
with δ = 10−2.

Present study - smooth Lrb/D |rel. error| [%]

η = 10−7 2.77 23.66(1)
η = 10−6 2.78 24.10(7)
η = 10−5 2.77 23.66(1)
η = 10−4 2.77 23.66(1)
η = 10−3 2.78 24.10(7)
η = 10−2 2.79 24.55(4)
η = 10−1 2.85 27.23(2)

Figure 4: Vorticity magnitude at Re = 100. The red circle represents the immersed cylinder.

Table 4: Comparison of result for Re = 100 considering the Strouhal number (St). (E) stands
for experimental; (body-fitted) and (IBM), numerical.

Study St

Williamson [21](E) 0.161

Fet et al. [22](E) 0.165

Roshko [23](E) 0.167

Zhang et al. [24](body-fitted) 0.172

Mittal et al. [6](IBM) 0.166
Present study - sharp η = 10−5 0.154
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update the mask function without modify the mesh. A second case was performanced with an
Airbus XRF1 wing in a computational domain [0, 60]× [0, 40]× [0, 3] and a mesh 200×100×160,
see Figure 6. The geometry is given in a STL file with 13k elements. The time request to generate
the mesh was around 4.3 min.

(a) t = 3.19 s. (b) t = 6.19 s.

(c) t = 9.19 s. (d) t = 12.19 s.

(e) t = 15.19 s. (f) t = 18.19 s.

Figure 5: Moving boundary problem.

3 CONCLUSIONS

An Immersed Boundary Volumen Penalization (IBVP) is implimented in the Airbus-CODA
solver. The mask function can deal with STL files. An analysis of the IBVP founds results in
concordance with other Immersed Boundary Method (IBM) families. The sharp mask function
seems to be a good approach for an immersed body and we do not observe improvements when
using the non-sharp mask. Further study should be done, e.g. a von Neumann stability analysis,
for the smooth mask function to find the optimal values and determine when the smooth mask
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Figure 6: Fluid flow around a wing in a laminar regimen. The blue isosurface represents the
region of the domain where momentum drops near zero.
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is comparable to the sharp one. The IBM provides flexibility for static and moving geometries
and will be further extended to simulate aircraft configurations in CODA.
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