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This study reveals an analysis of plastic buckling and collapse of thin shell structures. For this purpose,
the co-rotational and layered plastic model as well as ANDES (Assumed Natural Deviatoric Strain) finite
element formulations are used. The co-rotational kinematics formulation splits the translational and
rotational deformations in a small deformation analysis. The ANDES finite element is modified to elasto-
plastic ANDES finite element by the introduction of the von Mises yield criterion elastoplastic formula-
tion on its original deformation model. In order to accommodate the plasticity formulation, the Gauss
point layered integration is inserted through of thickness of the element to produce the internal force
vector and material stiffness matrix. Special effort is devoted to maintain the consistency of the internal
forces and tangent stiffness as well as to enhance the robustness of element level computations. The arc-
length method is used to follow the postbuckling equilibrium path. Results are presented for several
benchmark elastoplastic shell problems available in the present literature, which are generally in agree-
ment with the present work.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The non-linear analysis of shell structures is being investigated
by researchers worldwide because of its large applicability in sev-
eral areas of structural engineering, such as bridges, ships, air-
planes, vehicles, roofing of large buildings, off-shore structures,
etc. In such cases the structure may reach a deformed configura-
tion after loading which differs significantly from that observed be-
fore loading. This happens basically because these structures have
high self-resistance and are submitted to low body forces. The
co-rotational kinematics formulation [1–12], which extracts defor-
mational displacements from total ones, simulates large displace-
ments with great accuracy and allows one to follow the
equilibrium path in a geometrically non-linear analysis. However,
when the internal stress state of the structure exceeds its maxi-
mum elastic limit stress, the plastic strain starts and the physically
non-linear analysis becomes necessary [13–16] in order to simu-
late the structural behavior closest to reality. Two main approaches
have been used in the literature to account for the material non-
linearity due to plasticity in shell/plate formulation: the stress
resultant approach (Ilyushin 1948, [17,18]) and the layer approach
[19,20]. In the stress resultant approach, local plastic iterations are
ll rights reserved.
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performed for each Gauss point on the middle surface over the area
of the element. This case offers the advantage of less computa-
tional effort. On the other hand, its disadvantage is that its yield
function has corners which makes the direct use of standard mate-
rial coefficients impossible. In the layer approach, local plastic iter-
ations are performed for each Gauss point along thickness and over
the area of the element. This case reveals the following advantages:
direct use of the local plasticity model and material coefficients be-
cause its yield function does not have corners; well-documented
local plastic integration algorithm; a more precise distribution of
plasticity through of thickness. As regards disadvantages, the layer
approach presents greater computational effort and a specific
treatment for plane stress needs to be implemented. The stress
resultant approach has been used in the literature with Total
Lagrangian, Updated Lagrangian [21], and co-rotational [18] kine-
matics descriptions. The layer approach has been used in the liter-
ature with Total Lagrangian and Updated Lagrangian kinematics
descriptions. The layer plasticity approach has been developed in
this work with the co-rotational description. The three-node trian-
gular shell finite element based on the ANDES formulation is used
to model shell structures. The linear version of this element was
developed by Felippa and Militello in 1992 [22]. Some changes
have been introduced to the basic concepts of the ANDES formula-
tion in order to accommodate the physically non-linear analysis. In
order to make the calculus of the internal force vector and of the
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Fig. 2. Nodal rotation of the shell element.
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stiffness tangent matrix more general as well as to maintain their
consistency and to enhance the robustness of the element level
computations, the tangent stiffness is derived directly from the
internal force vector. This procedure results in a new term for
the tangent stiffness of the ANDES element introduced by this
work: the coupling term between basic and high-order stiffness.
The new methodology is set with the Consistent Symmetrizable
Self-Equilibrated co-rotational formulation (CSSE) developed by
Haugen [10] in his thesis. The main proposal of this work is to per-
form both geometrically and physically non-linear analysis for thin
shell structures, applying respectively and together the CSSE co-
rotational formulation and the layer approach plastic model, via
the modified ANDES finite element and Simo’s plasticity
formulation.

2. Kinematics of the shell element

The kinematics used herein is the co-rotational formulation,
which has been described in details in many papers, e.g. by Felippa
and Haugen [11] and Battini [12]. This formulation extracts the
deformational displacements from the total ones (Fig. 1), to simu-
late large displacements in small strain domain. Hence, its is nec-
essary to establish the deformational displacements ve

d vector in
local frame, which stores the translational and rotational degrees
of freedom for each node of the element:

ðve
dÞ

T ¼ ½ðue
d1Þ

T
; ðhe

d1Þ
T
; . . . ; ðue

dNÞ
T
; ðhe

dNÞ
T �: ð1Þ

In Eq. (1), ue
dN and he

d1 are the translational and rotational degrees of
freedom of the node N. The vector ve

d is used in Eq. (45).

2.1. Translation of a shell element node, from the initial C0 to the
current Cn configuration

If one considers a shell element node, which moves from the
initial position given by the position vector r0 to the deformed po-
sition given by the position vector rn (Fig. 1), the nodal displace-
ments vector is

u ¼ uR þ ud: ð2Þ

In Eq. (2), the rigid body displacements uR take place from initial C0

to co-rotated CR configuration. The deformational displacements ud

take place from co-rotated CR to current Cn configuration. The vec-
tor ud is obtained by algebraic manipulations of Eq. (2), taking into
account geometrical considerations concerned to initial, co-rotated
and current configurations. This vector has to be taken to local
frame ue

d, in order to be ready for application in Eq. (1).
Fig. 1. Nodal translation of the shell element.
2.2. Rotation of a shell element node, from the initial C0 to the current
Cn configuration

The rotation of a shell element node may be represented by a
rotation tensor R, from the initial C0 to the final Cn configuration
(Fig. 2). One may assume that tensor R is the decomposition of
the rigid body RR and deformational Rd rotation, as follows:

R ¼ RdRR: ð3Þ

The deformational rotation in global frame may be extracted as
follows:

Rd ¼ RRT
R ¼ RTT

0Tn: ð4Þ

This deformational rotation may be expressed in local frame:

Re
d ¼ TnRdTT

n ¼ TnRTT
0; ð5Þ

which is assumed small but finite. In Eqs. (4) and (5), T is a linear
transformation matrix and TT is its transposed matrix.

The rotations in 3D space are not commutative like they are in
2D space. Hence, it becomes necessary (see [23–25,19]) either to
obtain the rotation tensor R or to extract the rotation pseudo-vec-
tor h from a given rotation tensor, for each node of the element.
This pseudo-vector, since it comes from Eq. (5), may be identified
as deformational rotational degrees of freedom he

d in local frame,
which is ready to be used in Eq. (1).

3. Elastoplasticity formulation

Two main approaches have been used in the literature to ac-
count the material non-linearity due plasticity, in shell/plate for-
mulation, which are: stress resultant approach (Ilyushin 1948)
and layer approach (originally mainly used with the so called
degenerated approach of shell modeling). In the stress resultant
case (plastic model directly written in term of shell quantities),
the local plastic iterations are performed for each gauss point on
the middle surface over the area of the element. In this case the
goal is to output the stress resultant and the tangent operator from
the plastic iteration, in order to calculate the force vector and the
tangent stiffness matrix by the integration over the area of the ele-
ment. In the layer approach case, the local plastic iterations are
performed for each gauss point along thickness and over the area
of the element. This means that each gauss point along thickness
of the element corresponds to a layer. In this case, the goal is out-
put the stress and the tangent modulus from the plastic iteration,
in order to calculate the stress resultant and the tangent operator
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(shell quantities) by the integration along thickness of the element,
and subsequently to calculate the force vector and the tangent
stiffness matrix by the integration over the area of the element.

The stress resultant approach have been used in the literature
with Total Lagrangian (TL), Updated Lagrangian (UL) [21] and co-
rotational (CR) [18] kinematics descriptions. The layer approach
have been done in the literature with Total Lagrangian (TL) and Up-
dated Lagrangian (UL) kinematics descriptions. The layer approach
with co-rotational (CR) description has been developed in this work.

The resultant approach has as advantage less computational ef-
fort. But as disadvantages, in this case the yield function has cor-
ners and one can not uses directly the material parameters
obtained from material testing. The layer approach has as advanta-
ges: no corners in the yield functions; directly use of the local plas-
ticity model and material coefficients; local plastic integration
algorithm well documented; and more precise distribution of the
plasticity through of thickness (more precise limit load, buckling
and bifurcation prediction). As disadvantages, the layer approach
presents more computational effort and specific treatment for
plane stresses has to be figured out.

There exist in the literature various ways to use the elastoplas-
ticity formulation to analyze the behaviour of a structure under ap-
plied loading. Both are based on the concept of Closest Point
Projector Method (CPPM) [14,26,15,27,13]. In this work the Si-
mo’s/CPPM [13] elastoplasticity formulation/algorithm has been
used. For simplicity, but without any loss of generality, the yield
criterion and the hardening rule of interest in this work are Von
Mises criterium, perfectly plastic material and isotropic hardening
rule. For the isotropic hardening rule, the linear isotropic harden-
ing and the exponential isotropic hardening are considered. The
analysis is rate independent, and the associated flow rule, which
allows the analysis without corners in the yield functions, is con-
sidered. Then, a short description of the Simo’s/CPPM formula-
tion/algorithm is shown in this subsection.

3.1. Elastoplasticity formulation for the isotropic hardening rule –
Simo/CPPM elastoplasticity formulation

Simo [13] introduced in the classic elastoplasticity formulation
[14,26,15,27,13] a ‘‘scaled” plastic multiplier _c, which has the fol-
lowing relation to the classic plastic multiplier _k:

_c ¼ j
_k
ksk : ð6Þ

Then, the classic elastoplasticity formulation can be re-written as
follows:

r ¼ Ceðe� epÞ; ð7Þ
_ep ¼ _cPr; ð8Þ

_p ¼
_c
j
ksk ¼

_c
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrT Pr
p

; ð9Þ

f ðr;RÞ � ksk � RðpÞ ¼ 0; ð10Þ

where r is the current state stresses; Ce is the elastic tangent ma-
trix; e is the total strain in the current step; ep is the cumulative
plastic strain at the previous step; _k is the plastic multiplier; p is
the effective plastic strain; s � Pr is the deviatoric part of the stress
state; ksk is the norm of the deviatoric part of the stress state; and
RðpÞ represents the isotropic hardening rule. Eq. (7) is the elastic
equation, which allows one to calculate the stress state in whatever
point on the path equilibrium; Eqs. (8) and (9) represent the flow
rule of the plastic model; and Eq. (10) is the yield function.

In Eq. (10), RðpÞ can be chosen like below:

– perfectly plastic material: RðpÞ ¼ r0

– linear isotropic hardening material: RðpÞ ¼ r0 þ Kp
– exponential isotropic hardening material: RðpÞ ¼ r0 þ Qð1�
e�bpÞ

where K, Q and b are constant material parameters.
Usually, Eqs. (7)–(10) can be time discretized using the (impli-

cit) Euler backward scheme, as follows: knowing all data from end
of the previous step, (i.e. rn, epn, pn, . . .), the problem is then to find
rnþ1, epnþ1, pnþ1 solutions for the current step:

rnþ1 ¼ rH � CeDepnþ1 ¼ rH � DcCePrnþ1; ð11Þ
Depnþ1 ¼ DcPrnþ1; ð12Þ

Dp ¼ Dc
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrT

nþ1Prnþ1

q
; ð13Þ

f ðrnþ1;Rnþ1Þ � ksnþ1k � Rðpnþ1Þ ¼ 0; ð14Þ

where by definition: D� or D�nþ1 � �nþ1 ��n; snþ1 � Prnþ1 is the
deviatoric part of the current stress state; and rH is the trial stress,
i.e. the value of rnþ1 assuming the step is elastic.

When performing plastic iterations (Euler backward scheme),
one has to consider the following relations, which are the Kuhn–
Tucker conditions:

Dk P 0; f 6 0; Dkf ¼ 0: ð15Þ

The Kuhn–Tucker conditions establishes that the plastic strain
never decreases and that the stress state has to be on the yield sur-
face, for the rate independent analysis.

In order to calculate the deviatoric part of the current stresses
state (in a plane stress consideration) and the direction of the plas-
tic flow, one can assume, also by definition:

P : SP#SD; s � Pr; P � 1
3

2 �1 0
�1 2 0
0 0 3

2
64

3
75; ð16Þ

where SP is the space of the plane stress tensor and SD is the space
of the deviatoric plane stress tensor, and

ksk2 � jsT As; s 2 SD; A �
2 1 0
1 2 0
0 0 2

2
64

3
75; ð17Þ

where kappa is just a scale factor (which is 2=3 for the Von Mises
criterion).

By the assumption that the step is elastic, the trial stress can be
written as

rH � Ceðenþ1 � epnÞ ¼ rn þ CeDenþ1; ð18Þ

where Denþ1 � enþ1 � en.
In a displacement finite element formulation, Denþ1 is usually a

given input parameter of the (local) plastic algorithm (i.e. deduced
from the displacement increment of the outer structural equilib-
rium loop). The local plastic algorithm is then usually called a
strain-driven scheme.

Remark. From now on, for simplicity every rnþ1 is going to be
replaced by r.
3.2. Algorithm for the Simo/CPPM elastoplasticity formulation

In order to evaluate Eqs. (11)–(13), first one needs to calculate
Dc, which can be determined by solving the scalar yield function
equation below and applying the Newton iteration method:

f ðrðDcÞ;Rðpnþ1ðDcÞÞÞ ¼ 0: ð19Þ

In Eq. (19), rðDcÞ is given by

½C�1
e þ DcP�r ¼ C�1

e rH ) r ¼ NðDcÞC�1
e rH; ð20Þ
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where

NðDcÞ � ½C�1
e þ DcP��1

:

The evaluation of Rðpnþ1ðDcÞÞ and dR
dc ¼ @R

@p
dp
dc is also necessary, which

is required in the Newton loop. Then, considering Eq. (6):

pnþ1ðDcÞ ¼ pn þ Dp ¼ pn þ
Dc
j
ksnþ1k ð21Þ

and

dp ¼ 1
j
ðdcksnþ1k þ Dcdksnþ1kÞ ¼

1
j
ðksnþ1kdcþ DcNT

nþ1drÞ; ð22Þ

where N � j s
ksk and Nnþ1 � j snþ1

ksnþ1k
(by definition) give the direction

of the plastic flow, and drnþ1 is obtained by deriving Eq. (11), as
follows:

dr ¼ �NðDcÞPrdc: ð23Þ

Finally, dp can be expressed as

dp ¼ 1
ksk

ksk2

j
� DcrT PNPr

" #
dc: ð24Þ

For the application of the Newton iteration method, one may con-
sider the consistency condition f þ df ¼ 0, that is the linearization
of f around of the current Dc, as follows:

f þ df ¼ f þ @ksk
@r

dr

dc
� dR

dc

� �
dc ¼ f þ NT dr

dc
� dR

dc

� �
dc ¼ 0: ð25Þ

The Newton iteration on Eq. (19) provides the following iterative
update of Dc:

Dc Dcþ dc; dc ¼ kskfnþ1

dR
dp
ksk2

j þ h2rT PNPr
; ð26Þ

where h2 � j� dR
dp Dc.

Remark. Eq. (19) can be solved in a general way by Newton
iteration, or by closed solution for simple isotropic hardening
models (i.e. isotropic elasticity with linear isotropic hardening
model using ‘‘~f ” as yield function # quartic equation in D�c � EDc).

Note that one can also ‘‘square” the yield function:

f ðr;RÞ ¼ 0() ~f � f ðr;RÞ � ðksk þ RðpÞÞ ¼ ksk2 � R2ðpÞ ¼ 0 ð27Þ

and determine Dc by solving

~f ðrðDcÞ;RðDcÞÞ ¼ 0: ð28Þ

Consistent elastoplastic tangent modulus.

In order to express Eqs. (23) and (24) by the relation between dc
and de, one can write

dr ¼ NðDcÞ½de� Prdc� ð29Þ

and

dp ¼ ksk
j

dcþ Dc
j

NT dr ¼ ksk
j
� Dc

j
NTNPr

� �
dcþ Dc

j
NTNde: ð30Þ

Again coming from the consistency condition, in which df ¼ 0, and
in order to obtain the consistent tangent modulus, one can express
the following relations:

df ¼ NT dr� dR
dp

dp ¼ 0) dR
dp
ksk
j
þ h2

j
NTNPr

� �
dc

¼ h2

j
NTNde: ð31Þ

As N � j Pr
ksk, and introducing b as: b � 1

j
ksk2

h2

dR
dp

rT PNPr
, dc can be written

as
dc ¼ h2r
T PNde

dR
dp
ksk2

j þ h2rT PNPr
¼ 1
ð1þ bÞ

rT PNde
rT PNPr

; ð32Þ

so that

dr ¼ N� 1
ð1þ bÞ

ðNPrÞðNPrÞT

rT PNPr

" #
de ¼ N� NNT

1þ b

" #
de; ð33Þ

where

N � NPrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT PNPr
p :

Thus, the consistent tangent elastoplastic modulus is

CT ¼ N� NNT

1þ b
: ð34Þ

Remark. The Simo’s procedure can be greatly simplified in the
isotropic case, because Ce and P are diagonalisable in the same
basis

P ¼ Q �KP �Q T ; Ce ¼ Q �KC �Q T with Q�1 ¼ Q T

Q � 1ffiffiffi
2
p

1 1 0
�1 1 0
0 0

ffiffiffi
2
p

2
64

3
75; KP �

1
3 0 0
0 1 0
0 0 2

2
64

3
75; KC �

E
1�m 0 0
0 2l 0
0 0 l

2
64

3
75;

so that

NðDcÞ ¼ Q ½K�1
C þ DcKP��1Q T ¼ QNQ T ð35Þ

and

rnþ1 ¼ QNK�1
C Q T

rH ) Q T
rnþ1 ¼ NK�1

C Q T
rH ¼ CðDcÞQ T

rH ð36Þ

with

CðDcÞ � ½I þ DcKPKC ��1 ¼

1
1þ E

3ð1�mÞDc 0 0

0 1
1þ2lDc 0

0 0 1
1þ2lDc

2
6664

3
7775: ð37Þ

We can then directly work with the new variable n � Q T
r:

nnþ1 ¼ CðDcÞnH; ð38Þ

Dp ¼ Dc
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnT

nþ1KPnnþ1

q
; ð39Þ

f ðrnþ1;Rnþ1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnT

nþ1KPnnþ1

q
� Rðpnþ1Þ ¼ 0; ð40Þ

dp ¼ 1
j

dc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnTKPn

q
þ Dcd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnTKPn

q� �� �
; ð41Þ

rT PNPr ¼ nTKPNKPn; N �

3E
3ð1�mÞþEDc 0 0

0 2l
1þ2lDc 0

0 0 l
1þ2lDc

2
664

3
775: ð42Þ
4. Internal force vector and tangent stiffness matrix

In this chapter, it is initially explained how to obtain the inter-
nal force vector and the tangent stiffness matrix, in accordance
with the CSSE formulation, for the ANDES finite element. The CSSE
co-rotational formulation was proposed by Haugen in 1994 [10]
and the ANDES finite element was first presented by Felippa and
Militello in 1991/1992 [22,28]. Afterward the methodology pro-
posed by this work is presented. This work uses the basic concepts
of the CSSE and ANDES formulations, but it introduces some
changes in the ANDES formulation, in order to develop the physi-
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cally non-linear analysis and to improve the convergence of the
elastoplastic algorithm, by developing the internal force vector
and the stiffness tangent matrix in a general form.

4.1. Internal force vector and stiffness tangent matrix (CSSE
formulation [10,18])

After a brief description of equations that govern the geometri-
cal non-linear analysis, the internal force vector F and the stiffness
tangent matrix K are developed in this section, following the CSSE
co-rotational formulation. As Haugen has shown, this formulation
allows a good performance for the element, when it concerns the
self-equilibrium of the internal force vector, to the consistency
and symmetrization of the stiffness tangent matrix and to the
invariance and independence of the element.

4.1.1. Equations which govern the geometrically non-linear analysis
The global equilibrium equations of the geometrically non-lin-

ear analysis can be established, through of finite element method,
by the residual force vector R, which tends to disappear along a
equilibrium path, as below:

Rðv ; kÞ ¼ FðvÞ � PðkÞ ¼ 0; ð43Þ

where v ¼ vðkÞ.
The vector v collects the global nodal degree of freedom (trans-

lational and rotational) of the structure; F is the internal force vec-
tor generated by the displacements v; and P is the external load
vector, which exists as a function of the load parameter k.

Whether the residual force is zero, the first derivation of the
equilibrium Eq. (43) in relation to the load parameter k is also zero:

dR
dk
¼ @F
@v

dv
dk
� dP

dk
¼ Kw� q ¼ 0: ð44Þ

In Eq. (44), K is the stiffness tangent matrix, w is the displacement
incremental vector, and q is the load incremental vector.

4.1.2. Internal force vector (CSSE formulation [10,18])
In the CSSE formulation, the strain–displacement relation for

the co-rotated CR and current Cn configurations, in local frame
(�e) is

ee ¼ Beve
d; ð45Þ

where ve
d is the vector of the deformational displacements, which

exists between the co-rotated CR and current Cn configurations; Be

is the curvature (bending) matrix or the extensional (membrane)
matrix; and ee is the strain vector of the element. The linear elas-
tic constitutive relation for this formulation, also in the local
frame, is

re ¼ Ceee; ð46Þ

where Ce is the linear elastic material constitutive matrix and re is
the stress vector of the element.

If one considers the strain energy equation

U ¼ 1
2

Z
V
ðeeÞTredV ; ð47Þ

and takes into account the minimal work Castigliano’s theorem
(and also considering Eqs. (45) and (46)), the internal force vector
can be written in relation to the global frame as below:

FðvÞ ¼ TT PTeHTe
Z

V
BTeCeBedVve

d; ð48Þ

whereZ
V

BTeCeBedV ¼ Ke
LE ð49Þ
is the material linear elastic tangent stiffness matrix of the element;
TT is the linear transformation matrix, which transforms the inter-
nal forces from local to global frame; P is the projection operator,
which ensure the equilibrium of the internal force vector; and H
is the projection operator, which acts on the rotate degrees of free-
dom of the element, in order to ensure the symmetry of the consis-
tent tangent stiffness matrix. The consistent tangent stiffness
matrix is derived from the internal force vector. See [18] for details
about the matrices P and H.

4.1.3. The consistent tangent stiffness matrix (CSSE formulation
[10,18])

The tangent stiffness matrix is considered consistent since it is
the variation of the internal forces F , in relation to the displace-
ments vector v:

dF ¼ @F
@v i

dv i ¼
@F
@v dv ¼ Kdv ð50Þ

Taking into account Eqs. (48)–(50), one has

dF ¼ dTT PTeHTeFe þ TTdPTeHTeFe þ TT PTedHTeFe

þ TT PTeHTedFe ð51Þ

which also can be written as follows:

dF ¼ ðKGR þ KGP þ KGM þ KMÞdv: ð52Þ

Thus, for the co-rotational formulation CSSE, the consistent tangent
stiffness matrix is

K ¼ KGR þ KGP þ KGM þ KM; ð53Þ

where KGR is the rotational geometric stiffness; KGP is the equilib-
rium projection geometric stiffness; KGM is the moment correction
geometric stiffness; and KM is the material stiffness of the element,
which after algebraic manipulations becomes as below:

KM ¼ TT PTeHTeKe
LEHePeT; ð54Þ

where Ke
LE is the material linear elastic tangent stiffness matrix of

the element, as shown in (49). See [18] for details about the matri-
ces KGR, KGP and KGM .

4.1.4. Material linear elastic tangent stiffness matrix (ANDES Element)
The ANDES finite element was first developed by Felippa and

Militello in 1991/1992 [22,28] and later by Felippa’s works [29–
34]. The ANDES formulation generates the material linear elastic
tangent stiffness matrix Ke

LE and the internal force vector F of the
element, both used in the CSSE formulation.

The ANDES element has six degrees of freedom each node
(three membrane components and three bending components).
Among the membrane components there exists the ‘‘drilling” de-
gree of freedom. The tangent stiffness matrix of the ANDES ele-
ment is split in two parts, which are basic and higher order
stiffness. For the basic stiffness Kb, the stress is assumed constant
in the element. This approximation has been first used by Bergan
and Hanssen [35] and later by Bergan and Nygard [4,9]. Thus, the
basic stiffness matrix of the ANDES element is

Kb ¼
1
V

LCLT : ð55Þ

In the above equation, V is the volume of the element, which is re-
placed by either A (area), if one has a shell element, or L (length), if
one has a bar element; C is the linear elastic constitutive matrix;
and L is the matrix which has the deformational field of the ele-
ment, and also is responsible for the stress lumping in the nodes
of the element.

The higher order stiffness Kh takes into account the assumed
natural strain, instead of being based in the displacement modes.
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For its construction, the deviatoric strains of the element are used,
which are the subtraction of the principal strains from the total
ones. In this way, the higher order tangent stiffness matrix of the
ANDES element is

Kh ¼
Z

V
BT

dCBddV ; ð56Þ

where Bd is the matrix which represents the deviatoric curvatures
(bending) or deviatoric extensions (membrane). Thus, the material
linear elastic tangent stiffness matrix for the ANDES element is

Ke
LE ¼ Kb þ Kh ¼

1
V

LCLT þ
Z

V
BT

dCBddV : ð57Þ

Remark. From now on, the super-index �e, which represents the
local frame, is going to be omitted. But every formulation about the
force vector F and the material tangent matrix KT is supposed to be
in the local frame.
4.2. Elastoplastic ANDES element

Since the main proposal of this work is to perform geometrically
and physically non-linearities analysis for thin shell structures,
applying the layer approach (and using the CSSE co-rotational for-
mulation, the ANDES thin shell element and Simo’s plasticity for-
mulation) as plastic model, in this section is presented a new
way to obtain the internal force vector and the tangent stiffness
matrix for the ANDES thin shell finite element. The basic concepts
of the ANDES formulation are used herein, but this work introduces
some changes in the ANDES formulation, in order to develop the
physically non-linear analysis and to improve the convergence of
the elastoplastic algorithm, by developing the internal force vector
and the stiffness tangent matrix in a general form. The new method-
ology is set with the CSSE co-rotational formulation.

4.2.1. Internal force vector and tangent stiffness matrix
Following the ANDES framework, for a given elementary stress

field r, one can split the elementary internal force vector F int (in lo-
cal frame) into low or basic (F int;B) and higher (F int;H) order contribu-
tions, as follows:

F int � F int;B þ F int;H ¼ L�rþ
Z

Xe

BT
drddX ð58Þ

where �r is the constant or basic part and rd the ‘‘deviatoric” part of
the stress field r, which can be defined as

�r � 1
mesðXeÞ

Z
Xe

rdX;rd � r� �r ð59Þ

where mesðXeÞ is the ‘‘measure” of the domain Xe in the element
(i.e. the volume if Xe is a 3D domain, the area if Xe is a 2D domain,
or the length if Xe is a 1D domain). In the sequel, mesðXeÞ will be
abbreviated simply by Xe. L is the constant nodal force lumping
operator, and Bd is the ‘‘deviatoric” part of the ‘‘high order” ANDES
strain–displacement operator B, defined as

Bd � B� B; with B � 1
Xe

Z
X

BdX: ð60Þ

By construction, Bd has the following useful property:Z
Xe

BddX ¼ 0: ð61Þ

Accordingly, the strain field e can be split into basic and higher or-
der contribution as
e ¼ �eþ ed; �e � 1
Xe

Z
X

edX ¼ 1
Xe

Lved ¼ Bdv : ð62Þ

The (consistent tangent) stiffness matrix is obtained by deriving the
internal force vector F int:

dF int ¼ KT du;dF int ¼ Ld�rþ
Z

Xe

BT
ddrddX: ð63Þ

Splitting de as d�eþ ded, we obtain (noting that d�e is constant
throughout Xe):

d�r � 1
Xe

Z
X

drdX ¼ 1
Xe

Z
X

CtdedX ¼ Ce
t d�eþ 1

Xe

Z
X

CtdeddX; ð64Þ

where Ct is the constant part on Xe of the constitutive (consistent)
tangent operator Ct:

dr ¼ Ctde; Ct �
1
Xe

Z
Xe

CtdX ð65Þ

and with drd ¼ dr� d�r,Z
Xe

BT
ddrddX ¼

Z
Xe

BT
dCtdeddXþ

Z
Xe

BT
dðCt � CtÞd�edX

þ 1
Xe

Z
Xe

BT
d

Z
Xe

CtdeddX
� �

dX: ð66Þ

Using the property (61) of Bd, the last term of (66) is null:

1
Xe

Z
Xe

BT
d

Z
Xe

CtdeddX
� �

dX ¼ 1
Xe

Z
Xe

BT
ddX

� �
�
Z

Xe

CtdeddX
� �

¼ 0:

ð67Þ

Finally, with d�e ¼ 1
Xe

Ldu and ded ¼ Bddu, adding (64) and (66) and
considering (67), we obtain

KT �
1
Xe

LCtL
T þ

Z
Xe

BT
dCtBddXþ 1

Xe

Z
Xe

ðLCtBd þ BT
dCtL

TÞdX

� 1
Xe

Z
Xe

BT
dCtL

T dX: ð68Þ

The expression (68) can be further simplified: again using (61), and
noting that L and Ct are constant, the last term of KT is null:Z

Xe

BT
dCtL

T dX ¼
Z

Xe

BT
ddX

� �
� CtL

T ¼ 0 ð69Þ

thus,

KT �
1
Xe

LCtL
T þ

Z
Xe

BT
dCtBddXþ 1

Xe

Z
Xe

ðLCtBd þ BT
dCtL

TÞdX: ð70Þ

If one assumes that Ct is symmetric (either ‘‘naturally” symmetric if
derived from an associative plasticity model, or ‘‘artificially” sym-
metrized if from an non-associative plasticity model), the last term
of KT can be viewed as the symmetric part of LCtBd:

Ct symmetric :Ct ¼ CT
t ) LCtBd þ BT

dCtL
T ¼ 2½LCtBd�Sym;

where ½��Sym is the symmetric part of �, i.e. ½��Sym � 1
2 ð�þ�

TÞ. So
assuming Ct symmetric, the final expression of KT reduces to

KT �
1
Xe

LCtL
T þ

Z
Xe

BT
dCtBddXþ 2

Xe

Z
Xe

½LCtBd�SymdX: ð71Þ

Since it has been considered in this work the associated rule (plastic
flow normal to the yield surface), Ct is symmetric and Eq. (71) has
been used forward.

The last term of KT is a coupling term between the low and high
order deformation modes due to the (possibly) non-uniformity of
the tangent constitutive operator Ct in the element domain Xe.
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Note that if the element is ‘‘fully elastic”, this coupling term is null
(i.e. Ct ¼ Ct ¼ Ce, the elastic constitutive operator, andR

Xe
BddX ¼ 0): for example noting that L and Ce are constant, the

coupling term
R

Xe
LCeBddX simplifies toZ

Xe

LCeBddX ¼ LCe �
Z

Xe

BddX
� �

¼ 0

and the same for
R

Xe
BT

dCeLT dX. We then recover the standard AN-
DES stiffness splitting into low and high order contributions. Note
that this is a consequence of the ‘‘energy orthogonality” constrain
between the low and high order strain deformation modes.

Remark.

(1) The definition of F int;H in (58) uses the ‘‘deviatoric” stress rd.
But thanks to the property

R
Xe

BddX ¼ 0, F int;H can be directly
computed in term of r:
F int;H �
Z

Xe

BT
drddX ¼

Z
Xe

BT
drdX�

Z
Xe

BT
ddX

� �
� �r

¼
Z

Xe

BT
drdX: ð72Þ

Infact, BT
d filters out the constant component �r of r. This just

shows that the splitting of F int into low or basis (F int;B) and
high (F int;H) order contributions in (58) is completely consis-
tent from the implementation point of view

F int � F int;B þ F int;H ¼ L�rþ
Z

Xe

BT
drdX

¼
Z

Xe

1
Xe

LT þ Bd

� �T

rdX; ð73Þ

which is nothing than the standard expression of F int:

F int �
Z

Xe

BT
rdX; with B � 1

Xe
LT þ Bd ð74Þ

and thus

KT �
Z

Xe

BT CtBdX ð75Þ

Consequently this splitting is quite artificial, but it was
mainly done in this work to follow the ANDES framework.
Note that taking advantage of this splitting can produce a
better implementation (less flops needed: no need to explicit
build B) and provide a better understanding of the coupling
term in the stiffness matrix.
(2) The introduction of the scaling factor b of the high order con-
tribution (from the ANDES framework) can be easily done by
replacing each instance of Bd by

ffiffiffi
b
p

Bd. Doing so, one will
obtain Z

F int¼L�rþ

ffiffiffi
b

p
Xe

BT
drddX; ð76Þ

KT ¼
1
Xe

LCtL
Tþb

Z
Xe

BT
dCtBddXþ2

ffiffiffi
b
p

Xe

Z
Xe

½LCtBd�SymdX: ð77Þ

Note that in this case B is equal to 1
Xe

LT þ
ffiffiffi
b
p

Bd.

(3) The vector v is being used in this section to represent the

deformational part of the total displacements vector.
4.2.2. Elastoplastic ANDES element following the classical plate/shell
theories

As usual in classical plate/shell theories (see [36]), the position
vector X (in a global frame) of a point in a plate/shell element is
parameterized by
x � ðg; nÞ; X ¼ xþ z � nðxÞ; ð78Þ

where x is the position vector of an associated point on the plate/
shell mid-surface, nðxÞ is the normal to the plate/shell mid-surface,
and z is the coordinate along thickness of the element in the local
frame. Let ! and R be the plate/shell (generalized) ‘‘strains” and
‘‘stress”:

! � fe; vg; R � fN;Mg ð79Þ

where e and v are the extensional and bending/curvature part of the
plate/shell ‘‘strains”, and N, M are the associated static quantities,
i.e. stress resultant and moment. Note that all these quantities are
only function of the area coordinates:

! ¼ !ðxÞ; R ¼ RðxÞ: ð80Þ

They are constant throughout of thickness of the plate/shell (see
classical plate/shell theories). Anyway, we can easily compute local
3D classical strains e from plate/shell ‘‘strains” as (for classical
models):

eðXÞ ¼ eðx; zÞ � eðxÞ þ z � vðxÞ ð81Þ

and compute plate/shell ‘‘stresses” from local 3D/plane stress classi-
cal stresses by integrating the local stress field r through of
thickness:

NðxÞ �
Z

h
rðXÞdz; MðxÞ �

Z
h

z � rðXÞdz; rðXÞ ¼ rðx; zÞ: ð82Þ

Following the same way, from the local plane stress elastic and tan-
gent constitutive operator,

r ¼ Cee; dr ¼ Ctde ð83Þ

one can obtain plate/shell-like elastic and tangent constitutive
operators:

R ¼ De!; dR ¼ Dtd!: ð84Þ

In general case (excluding shear effect), D� (De or Dt) has the follow-
ing structure:

D� ¼
Dm
� Dmb

�

Dbm
� Db

�

" #
; Dbm

� ¼ Dmb
� ; ð85Þ

where Dm
� and Db

� are the membrane and bending elastic/tangent
constitutive operators, and Dmb

� is the coupling membrane-bending
term. This terms are obtained by integrating C� (Ce or Ct) through of
thickness:

Dm
� ðxÞ �

Z
h

C�ðx; zÞdz;

Db
�ðxÞ �

Z
h

z2 � C�ðx; zÞdz;

Dmb
� ðxÞ ¼ Dbm

� ðxÞ �
Z

h
z � C�ðx; zÞdz:

ð86Þ

In particular case of isotropic elasticity, one recovers the standard
expression of Dm

e and Db
e:

Dm
e �

Z
h

Cedz ¼ hCe; Db
e �

Z
h

z2 � Cedz ¼ h3

12
Ce; Dmb

e ¼ Dbm
e ¼ 0:

ð87Þ

In a Finite Element framework, plate/shell (generalized) ‘‘strains”
can be obtained from the elementary vector of freedom degrees v
by using the formulation/element dependant strain–displacement
operator:

!ðxÞ ¼ BðxÞv ¼ 1
Ae

LT þ
ffiffiffi
b

p
BdðxÞ

� �
v : ð88Þ
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4.2.3. Internal force vector proposed by this work
Following the ANDES Finite Element framework, the elemen-

tary internal force vector is computed from the plate/shell
‘‘stresses” R as:

F int � F int;B þ F int;H ¼ L�Re þ
ffiffiffi
b

p Z
Ae

BT
dRddA; ð89Þ

where

�Re �
1
Ae

Z
Ae

RdA;Rd � R� �Re

and Ae represents the area of the element.
But if one considers the following relations:

Re ¼ ðN;MÞ; N ¼
Z

h
rdz; M ¼

Z
h

zrdz; ð90Þ

�Re ¼ ðN;MÞ; N ¼ 1
Ae

Z
Ae

NdA; M ¼ 1
Ae

Z
Ae

zMdA; ð91Þ

L ¼ Lm 0
0 Lb

� �
; Bd ¼

Bm
d 0

0 Bb
d

" #
ð92Þ

then Eq. (89) can be written as

F int ¼
Lm 0
0 Lb

� �
N

M

" #
þ

ffiffiffi
b

p Z
Ae

Bm
d 0

0 Bb
d

" #T
N � N

M �M

" #
dA: ð93Þ
4.2.4. Material tangent stiffness proposed by this work
Assuming Dt symmetric, the (consistent) tangent stiffness ma-

trix KT is given by

KT �
1
Ae

LDtL
T þ b

Z
Ae

BT
dDtBddAþ 2

ffiffiffi
b
p

Ae

Z
Ae

½LDtBd�SymdA ð94Þ

with

L ¼ constant; Bd ¼ BdðxÞ; Dt ¼ DtðxÞ; Dt �
1
Ae

Z
Ae

DtdA:

Remark. The last term of Eq. (94) is the new parcel introduced by
this work in the material tangent stiffness of the ANDES element.
As shown in the previous section, this term is null in the case of the
linear elastic analysis, because the tangent operator is constant and
Eq. (61) can be applied.

Once more, if one consider Eq. (92) and the following one:

Dt ¼
Dm

t Dmb
t

Dbm
t Db

t

" #
; then, each parcel of Eq. (94) can be written as

follows:

LDtL
T ¼ LmDm

t LmT þ LbDb
t LbT þ LmDmb

t LbT þ LbDbm
t LmT ; ð95Þ

b
Z

Ae

BT
dDtBddA¼ bm

Z
Ae

BmT
d Dm

t Bm
d dAþ bb

Z
Ae

BbT
d Db

t Bb
ddA

þ
ffiffiffiffiffiffiffiffiffiffiffi
bmbb

q Z
Ae

BmT
d Dmb

t Bb
ddAþ

ffiffiffiffiffiffiffiffiffiffiffi
bbbm

q Z
Ae

BbT
d Dbm

t Bm
d dA;

ð96Þ

2
ffiffiffi
b
p

Ae

Z
Ae

½LDtBd�SymdA ¼ 2
ffiffiffiffiffiffi
bm

p
Ae

Z
Ae

½LmDm
t Bm

d �SymdAþ
2

ffiffiffiffiffi
bb

q
Ae

�
Z

Ae

½LbDb
t Bb

d�SymdAþ
2

ffiffiffiffiffiffiffiffi
bmb

q
Ae

�
Z

Ae

½LmDmb
t Bb

d�SymdAþ
2

ffiffiffiffiffiffiffiffi
bbm

q
Ae

�
Z

Ae

½LbDbm
t Bm

d �SymdA: ð97Þ
After algebraic manipulations, Eqs. (95)–(97) become

KT ¼ Km
T þ Kb

T þ Kmb
T þ Kbm

T ; ð98Þ

where

Km
T ¼ LmDm

t LmT þ bm
Z

Ae

BmT
d Dm

t Bm
d dAþ 2

ffiffiffiffiffiffi
bm

p
Ae

Z
Ae

½LmDm
t Bm

d �Sym;

ð99Þ

Kb
T ¼ LbDb

t LbT þ bb
Z

Ae

BbT
d Db

t Bb
ddAþ

2
ffiffiffiffiffi
bb

q
Ae

Z
Ae

½LbDb
t Bb

d�Sym; ð100Þ

Kmb
T ¼ LmDmb

t LbT þ
ffiffiffiffiffiffiffiffiffiffiffi
bmbb

q Z
Ae

BmT
d Dmb

t Bb
ddA

þ
2

ffiffiffiffiffiffiffiffi
bmb

q
Ae

Z
Ae

½LmDmb
t Bb

d�SymdA; ð101Þ

Kbm
T ¼ LbDbm

t LmT þ
ffiffiffiffiffiffiffiffiffiffiffi
bbbm

q Z
Ae

BbT
d Dbm

t Bm
d dA

þ
2

ffiffiffiffiffiffiffiffi
bbm

q
Ae

Z
Ae

½LbDbm
t Bm

d �SymdA: ð102Þ

As one can see in Eq. (98), the last two parcels are membrane/bend-
ing coupling terms. Furthermore, the low/high order coupling terms
are present in all parcels in Eq. (98), like it is shown in Eqs. (99)–
(102).

Still Eq. (98) can be written in matrix form:

KT ¼
Lm 0

0 Lb

" #
Dm

t Dmb
t

Dbm
t Db

t

" #
Lm 0

0 Lb

" #T

þ
Bm

d 0

0 Bb
d

" #
bmDm

t

ffiffiffiffiffiffiffiffiffiffiffi
bmbb

q
Dmb

tffiffiffiffiffiffiffiffiffiffiffi
bbbm

q
Dbm

t bbDb
t

2
64

3
75 Bm

d 0

0 Bb
d

" #T

þ
Lm 0

0 Lb

" # 2
ffiffiffiffiffi
bm
p
Ae Dm

t
2
ffiffiffiffiffiffiffiffi
bmbb
p

Ae Dmb
t

2
ffiffiffiffiffiffiffiffi
bbbm
p

Ae Dbm
t

2
ffiffiffiffi
bb
p
Ae Db

t

2
64

3
75 Bm

d 0

0 Bb
d

" #
ð103Þ

The last term of Eq. (103) was first introduced by this work, and it
accounts for the coupling term between basic and high order stiff-
ness. It was considered also in Eq. (103) the coupling term between
membrane and bending strains. Both coupling terms listed above
have an important influence in the algorithm’s convergence rate.
If one performs the isotropic elastic analysis (without composite
materials – for the case of the membrane/bending coupling term),
both coupling term vanish and the standard stiffness of the ANDES
element (Eq. 57) is recovered.

At this point the internal force vector and the full material tan-
gent stiffness matrix (for the elastoplastic ANDES element) are
ready to be implemented.
5. Numerical examples

Some numerical examples are analyzed below in order to eval-
uate the performance of the ANDES element, when it is subjected
to the co-rotational and elastoplastic formulations, as they are sug-
gested in this work. The results shown herein are concerned to as-
pects like convergence of the algorithm, variation of the number of
Gauss points through of thickness of the element, and mesh varia-
tion. Examples from the literature are used in order to compare the
answers (see references [18,37,38]).



Fig. 4. Path equilibrium of the plate.

Table 1
Convergence results of the plate at the 24th step.

Solver Unsymmetric Symmetric Symmetric Symmetric Symmetric

Km
T Complete Complete Complete Km

b þ Km
h Km

b þ Km
h

Kb
T Complete Complete Complete Kb

b þ Kb
h Kb

b þ Kb
h

Kmb
T Complete Complete – Kmb

b þ Kmb
h –

Kbm
T Complete Complete – Kbm

b þ Kbm
h –

Iterations kRk kRk kRk kRk kRk

1 2.39e+01 1.95e+01 3.32e+00 3.58e+00 3.69e+00
2 9.61e+00 8.44e+00 6.68e+00 1.16e+01 4.12e+00
3 1.09e+00 1.00e+00 3.53e�01 1.03e+00 9.93e�01
4 2.85e�02 2.16e�02 1.44e�03 2.95e+00 1.01e+00
5 3.43e�05 1.60e�05 4.51e�05 2.47e�01 1.57e�01
6 – – 2.00e�05 4.80e�01 1.80e�01
7 – – 1.80e�06 1.58e�01 5.92e�02
8 – – – 1.08e�01 3.23e�02
9 – – – 6.29e�02 3.10e�02
10 – – – 2.97e�02 1.17e�02
11 – – – 2.31e�02 1.25e�02
12 – – – 9.04e�03 5.03e�03
13 – – – 7.82e�03 4.43e�03
14 – – – 2.96e�03 1.94e�03
15 – – – 2.52e�03 1.47e�03
16 – – – 9.94e�04 6.95e�04
17 – – – 7.89e�04 4.66e�04
18 – – – 3.36e�04 2.41e�04
19 – – – 2.43e�04 1.45e�04
20 – – – 1.14e�04 8.25e�05
21 – – – – 4.44e�05
22 – – – – 2.84e�05
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5.1. Perfectly plastic analysis of a simply supported plate under
punctual load

A perfectly plastic analysis of a simply supported plate under a
punctual load on its center has been performed in this example,
either to emphasize the new terms of the tangent matrix and to
verify the influence of the number of Gauss points and the refine-
ment of the meshes in the analysis. The layer approach has been
used herein as plastic model. The plate has been analyzed for 3,
5 and 7 Gauss points through of thickness and 3 Gauss points over
the area of the element. This example consider the meshes with
10� 10� 2, 15� 15� 2 and 20� 20� 2 triangular ANDES ele-
ments. The closer to the applied load, the more discretized were
the meshes. The numerical simulation was performed with a quar-
ter of the plate because of its symmetry. The convergence tolerance
was 1:0� 10�10 for the arch-length iteration (either residual load
norm, displacements norm or energy norm) and also for the plastic
iterations. The geometrical and physically features of the plate are
(Fig. 3): square plate (16 m� 16 m), h ¼ 0:5 m, m ¼ 0:2, E ¼ 7:05�
106 N=mm2, rY ¼ 2:44� 102 N=mm2, K ¼ 0:0.

Fig. 4 shows that for a single mesh, as more Gauss points
through of thickness has the element, as closer to convergence is
the algorithm. Also, if the number of Gauss points remain constant,
the mesh refinement does not give significant change in the path
equilibrium. Possibly in this case a much higher discretization of
the mesh would be necessary to get closer to convergence. Other-
wise, the main difference occurs when the number of Gauss points
changes from 3 to 5. This means that 5 Gauss points through of
thickness are already enough to achieve a good approximation,
and nothing more than 15� 15� 2 elements are needed, once a fi-
ner mesh would not give significantly differences in results, in this
case. Hence, the mesh with 15� 15� 2 elements and 5 Gauss
points through of thickness have been used for the results listed
in Tables 1 and 2.

In order to emphasize the new terms of the tangent matrix, as
they were shown in Eq. (94), Tables 1 and 2 show the convergence
(residual norm) of the algorithm either for full material tangent
stiffness, without the membrane/bending coupling terms, without
the low/high order coupling terms or without both coupling terms
listed above (standard ANDES element). The algorithm was run for
the symmetric and unsymmetric cases. The mesh used in this test
was 15� 15� 2 triangular elements and it has been used 5 Gauss
point through of thickness of the element. Table 1 was constructed
with the results of the step 24 (k � 0:29961;UZ � �7:6383� 10�3),
and Table 2 with the results of the step 92 (k � 0:6416;UZ �
�6:0007� 10�2).

Table 1 shows that the full material tangent stiffness (standard
ANDES formulation + membrane/bending coupling terms + low/
high order coupling terms) reaches the convergence already at
Fig. 3. Undeformed configuration of the plate.

Table 2
Convergence results of the plate at the 92th step.

Solver Unsymmetric Symmetric Symmetric Symmetric Symmetric

Km
T Complete Complete Complete Km

b þ Km
h Km

b þ Km
h

Kb
T Complete Complete Complete Kb

b þ Kb
h Kb

b þ Kb
h

Kmb
T Complete Complete – Kmb

b þ Kmb
h –

Kbm
T Complete Complete – Kbm

b þ Kbm
h –

Iterations kRk kRk kRk kRk kRk

1 6.41e+01 4.03e+01 6.97e+00 Div step 27 Div step 27
2 4.30e+01 3.13e+01 5.16e+00 – –
3 1.09e+00 2.58e+00 3.50e�01 – –
4 5.09e�01 1.81e�01 2.91e�03 – –
5 4.13e�03 5.03e�04 6.56e�05 – –
6 9.39e�07 8.98e�07 7.75e�06 – –
7 – – 1.05e�06 – –
8 – – 1.14e�06 – –



Fig. 6. Path equilibrium of the Scordelis roof.

Fig. 7. Deformed configuration of the Scordelils roof.
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the fifth iteration, either with symmetric or with unsymmetric sol-
ver. When the membrane/bending coupling term is off, the conver-
gence still is good, but two more iterations are necessary. When
the low/high order coupling term is off, 15 more iterations are nec-
essary. Using only the standard ANDES formulation, the algorithm
needs seventeenth more iterations to reach the convergence. In
this case (simply supported plate), the membrane/bending cou-
pling term does not have significant influence in the convergence
of the algorithm, because the bending efforts prevail over the plate.
At the step 24, 1102 integrations points had reached plasticity,
which means 8.4% over the domain. The convergence rate of the
algorithm is linear when the low/high order coupling terms are
not used, but it becomes quadratic when they are used.

Table 2 shows that if the low/high order coupling term is not
used, the algorithm diverges at the step 27. Also, at the step 92
the convergence rate is still quadratic and no more than six itera-
tions are needed to the algorithm reaches the convergence, in the
full stiffness case. The membrane/bending term continues insignif-
icant in this case. At this step, 9.712 integrations points had
reached plasticity, which means 74.4% of the domain.

5.2. Perfectly plastic analysis of a Scordelis roof under distributed load

In this example an perfectly plastic analysis of the Scordelis roof
under distributed load over its surface has been performed. As
plastic model the layer approach has been used. The roof has been
analyzed for 5 Gauss points through of thickness and 3 Gauss
points over the area of the element. The meshes used were
10� 10� 2 and 16� 16� 2 triangular ANDES elements and the
numerical simulation was performed with a quarter of the roof be-
cause of its symmetry. The boundary conditions can be seen in
Fig. 5, where circles means support nodes, squares means x–z sym-
metry nodes and diamond means y–z symmetry nodes.

The convergence tolerance was 1:0� 10�10 for the arch-length
iteration (either residual load norm, displacements norm or energy
norm) and also for the plastic iterations. The geometrical and phys-
ically features and the material properties of the element are:
h ¼ 76 mm, m ¼ 0:0, E ¼ 2:1� 104 N=mm2, rY ¼ 4:2 N=mm2,
K ¼ 0:0, F0 ¼ 4:0 kN= mm2, length ¼ 15:2 m, radius ¼ 7:6 m (from
center of curvature), h ¼ 80	 (between the edge sides).

The integration of the stress through of thickness of the ele-
ment, which is the subject of this work, gives more accurate results
than stress resultant analysis (as performed by Skallerud and
Haugen [18]), if one considers Brank [38] as reference, which ac-
counts even the shear effect - thick shell/plate (see Fig. 6). Also, a
refinement of the mesh gives more accurate results. Fig. 7 shows
the deformed mesh of the Scordelis roof after the last load step.

5.3. Linear isotropic elastoplastic analysis of a pinched cylinder under
punctual loads

In this example a linear isotropic elastoplastic analysis of a
pinched cylinder under two diametral opposite loads has been per-
Fig. 5. Undeformed configuration of Scordelis roof.
formed. As plastic model the layer approach has been used. The
cylinder has been analyzed for 5 Gauss points through of thickness
and 3 Gauss points over the area of the element. The meshes used
were 20� 20� 2 and 30� 30� 2 triangular ANDES elements and
the numerical simulation was performed with an eighth of the cyl-
inder because of its symmetry. The boundary conditions can be
seen in Fig. 8, where circles means diaphragm nodes, squares
means x–y symmetry nodes, diamond means y–z symmetry nodes
and triangle means x–z symmetry nodes.
Fig. 8. Undeformed configuration of pinched cylinder.
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The convergence tolerance was 1:0� 10�10 for the arch-length
iterations (either residual load norm, displacements norm or en-
ergy norm) and also for the plastic iterations. The geometrical
and physically features and the material properties of the element
are shown below: h ¼ 3:0 mm, m ¼ 0:3, E ¼ 3:0� 103 Mpa,
rY ¼ 24:3 Mpa, K ¼ 5:0� 101, lenght ¼ 300 mm, radius ¼ 300 mm.

Again, integration of the stress through of thickness of the ele-
ment, which is the subject of this work, gives more accurate results
than stress resultant analysis, obtained by Skallerud and Haugen
[18], if the reference is Brank et al. [38], which considers even
the shear effect – thick shell/plate (see Fig. 9). In this case, by using
the mesh 20� 20� 2 (present work) one can see the appearance of
local buckles on the path equilibrium. But a refinement of the mesh
gives a more accurate result, as is the case of the 30� 30� 2 mesh
(present work). Fig. 10 shows the deformed state of the pinched
cylinder, after the last load step.

In order to emphasize the influence of the tangent stiffness
contributions on the non-linear convergence history, Table 3
shows the convergence results at step 10 (k � 1:672102 and
uz � �3:9460101), for every cases considered in the previous con-
vergence tables. The triangular ANDES element mesh was made
with 30� 30� 2 elements. At this point, 375 integrations points
Fig. 10. Deformed configuration of the pinched cylinder.

Fig. 9. Path equilibrium of the pinched cylinder.
were already in the plastic domain (� 1:4% of the integrations
points were in the plastic domain).

Table 3 shows that for the pinched cylinder analysis, the full
unsymmetric material tangent stiffness gives the best result in
term of convergence at the step 10. The full symmetric matrix still
gives a good convergence at this step. But, the tangent stiffness
without membrane/bending coupling term needs 25 iterations at
the 10th step to reach the convergence, and the tangent stiffness
without low/high order coupling term needs 17 iterations at the
same step to reach the convergence. This means that in this case
the membrane/bending coupling term has more importance than
the low/high order coupling term, but both of them operate signi-
ficative changes in the convergence rate. The standard ANDES ele-
ment needs 33 steps to achieve the convergence.

5.4. Buckling linear-exponential isotropic elastoplastic analysis of a
clamped cylinder under axial load

In this example a linear-exponential isotropic elastoplastic
analysis of a clamped cylinder under axial loads has been per-
formed, where the following exponential isotropic hardening
function was implemented: RðpÞ ¼ rY þ Kpþ Q1ð1� e�b1pÞþ
Q2ð1� e�b2pÞ. As plastic model the layer approach has been used.
The cylinder has been analyzed for 5 Gauss points through of thick-
ness and 3 Gauss points over the area of the element. The meshes
used were 20 � 30 � 2 triangular ANDES elements and the numer-
ical simulation was performed with a eighth of the cylinder be-
cause of its symmetry.
Table 3
Convergence results of the pinched cylinder at the 10th step.

Solver Unsymmetric Symmetric Symmetric Symmetric Symmetric

Km
T Complete Complete Complete Km

b þ Km
h Km

b þ Km
h

Kb
T Complete Complete Complete Kb

b þ Kb
h Kb

b þ Kb
h

Kmb
T Complete Complete – Kmb

b þ Kmb
h –

Kbm
T Complete Complete – Kbm

b þ Kbm
h –

Iterations kRk kRk kRk kRk kRk

1 1.19e+01 1.67e+01 1.60e+01 1.67e+01 1.60e+01
2 5.09e+00 9.10e+00 5.23e+00 8.90e+00 5.31e+00
3 3.64e�01 8.11e�01 1.41e+01 6.61e�01 1.52e+00
4 5.51e�03 7.61e�02 1.97e�01 1.40e�01 2.20e�01
5 1.05e�06 6.29e�04 4.10e�02 2.52e�02 6.72e�02
6 2.32e�10 2.52e�05 2.13e�02 7.09e�03 3.40e�02
7 – 1.90e�06 5.44e�03 1.82e�03 1.15e�02
8 – 8.53e�08 2.55e�03 5.19e�04 6.18e�03
9 – 6.45e�09 6.92e�04 1.39e�04 2.52e�03
10 – 3.79e�10 3.11e�04 3.94e�05 1.35e�03
11 – – 9.14e�05 1.09e�05 6.58e�04
12 – – 4.04e�05 3.09e�06 3.59e�04
13 – – 1.37e�05 8.72e�07 1.94e�04
14 – – 6.19e�06 2.48e�07 1.08e�04
15 – – 2.56e�06 7.09e�08 6.08e�05
16 – – 1.25e�06 2.03e�08 3.45e�05
17 – – 5.76e�07 5.84e�09 1.96e�05
18 – – 2.83e�07 – 1.12e�05
19 – – 1.42e�07 – 6.39e�06
20 – – 7.10e�08 – 3.65e�06
21 – – 3.60e�08 – 2.09e�06
22 – – 1.82e�08 – 1.20e�06
23 – – 9.26e�09 – 6.86e�07
24 – – 4.70e�09 – 3.93e�07
25 – – 2.40e�09 – 2.25e�07
26 – – – – 1.29e�07
27 – – – – 7.38e�08
28 – – – – 4.23e�08
29 – – – – 2.42e�08
30 – – – – 1.39e�08
31 – – – – 7.95e�09
32 – – – – 4.56e�09
33 – – – – 2.62e�09



Fig. 11. Undeformed configuration of clamped cylinder.

Fig. 12. Path equilibrium of the clamped cylinder.
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The boundary conditions can be seen in Fig. 11, where dia-
monds means displacements vx ¼ 0 and vy ¼ 0, rotations Rx ¼ 0
and Ry ¼ 0, circles means y–z symmetry nodes, squares means x–
y symmetry nodes and triangle means x–z symmetry nodes. The
Fig. 13. Evolution of the plastic st
convergence tolerance was 1:0� 10�10 for the arch-length iteration
(either residual load norm, displacements norm or energy norm)
and also for the plastic iterations. The geometrical and physically
features and the material properties of the element are shown be-
low: h ¼ 2:36 mm, m ¼ 0:274, E ¼ 2:16962� 105 Mpa, rY ¼
162:722 Mpa, K ¼ 1290:2697, Q1 ¼ 85:56 Mpa, b1 ¼ 183:3645,
Q2 ¼ 52:8282 Mpa, b2 ¼ 10394:7903, length ¼ 127:1 mm, radius ¼
2:36 mm.

Fig. 12 shows the good agreement of the present work in rela-
tion to the Branks’ curve. Brank et al. [38] have obtained results
for a thick shell/plate, which accounted even the shear effect. Like
one can see in this reference, the results are compared with avail-
able experimental results and representative numerical
simulations.

Fig. 13 shows the evolution of the deformed configuration and
the plastic strain over the surface of the cylinder (see the showing
up of the two rings symmetrically close to the ends of the cylinder).

5.5. Linear-exponential isotropic elastoplastic analysis of the V22
stiffened wing panel

This example is an application of the formulation proposed in
this work in a real case. It has been performed herein a linear-
exponential isotropic elastoplastic analysis for the V22 stiffened
wing panel (which belongs to V22 Osprey helicopter) under axial
loads, where the linear-exponential isotropic hardening function
which has been used is: RðpÞ ¼ rY þ Kpþ Q 1ð1� e�b1pÞþ
Q2ð1� e�b2pÞ. The layer approach has been used herein as plastic
model and all coupling terms of stiffness matrix have been consid-
ered. The panel has been analyzed for 5 Gauss points through of
thickness and 3 Gauss points over the area of the element. The
mesh used was 9136 triangular ANDES elements. The numerical
simulation was performed with a half of the object because of its
symmetry. Other geometrical features can bee seen in Fig. 14.

The convergence tolerance was 1:0� 10�10 for the arch-length
iteration (either residual load norm, displacements norm or energy
norm) and also for the plastic iterations. The panel is made with 2
different materials, which are: aluminium (m ¼ 0:36,
E ¼ 6:9� 104 Mpa, rY ¼ 305 Mpa, K ¼ 454:45, Q1 ¼ 16:287 Mpa,
b1 ¼ 592:0, Q2 ¼ 133:285 Mpa, b2 ¼ 16:30) and steel (m ¼ 0:3,
E ¼ 2:07� 105 Mpa, rY ¼ 1:0� 1010 Mpa, K ¼ 0:0, Q 1 ¼ 0:0 Mpa,
b1 ¼ 0:0, Q2 ¼ 0:0 Mpa, b2 ¼ 0:0). There are 22 different thin shell
element thickness over the panel. The axial load ð�1:5� 106 kNÞ
was applied on the middle node at the end of the panel, but it
was equally distributed through of panel width by the rigid cou-
pling nodes. The total projection area of the panel is
1930:4� 889:0 mm2. The stiffness of the panel is largely increased
by the longitudinal beams disposed over its area.

Fig. 15 shows the equilibrium path of the point A (see this point
in Fig. 16), in V22 wing panel, for the elastic and elastoplastic cases.
rain of the clamped cylinder.



Fig. 14. Undeformed configuration of the V22 wing panel.

Fig. 15. Vertical deflexion of point A on the V22 wing panel.
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Fig. 16 shows the deformed configuration over the body of V22
wing panel, and Fig. 17 shows its plastic strain.

6. Concluding remarks

The goal of this work was to perform the geometrically and
physically non-linearity analysis for thin shell structures by using
the CSSE co-rotational formulation, the ANDES thin shell element,
and Simo’s plasticity formulation. In order to achieve this goal, it
became necessary to create a new way to obtain the internal force
Fig. 16. Deformed configuratio
vector and the tangent stiffness matrix for the ANDES thin shell fi-
nite element. As a consequence of this development, the ANDES
thin shell element became more general, because it now accounts
for the coupling term between low- and high order stiffness and
the coupling terms between membrane and bending strains. At
the end of the present investigation, one may conclude the follow-
ing: (1) the integration of the stresses through of element’s thick-
ness and the consideration of the coupling terms (membrane/
bending strains – low/high order stiffness) provide more accurate
results than those obtained from the stress resultant analysis, be-
cause the first one allows a better description of the plasticity in
the shell thickness; (2) in cases where there exists prevalence of
membrane efforts over bending efforts or vice-versa, the mem-
brane/bending coupling term of the tangent stiffness scarcely
interferes on the convergence rate (see numerical example 5.1).
(3) Depending on the case to be analyzed, the low/high order stiff-
ness coupling term has more importance in certain situations
while the membrane/bending coupling term has more importance
in others. However, as regards the cases analyzed by the present
work, the full tangent stiffness always provides the best results
in terms of convergence. If one uses the unsymmetrical solver,
the results may be even better. (4) The mesh exerts influence on
the results; (5) this study revealed that at least 5 Gauss points
are required through of thickness of the element in order to cap-
ture the plastic strain distribution; (6) the benchmarks in the liter-
ature are generally in good agreement with the present work; (7)
from the results obtained thus far, it seems that the combined
co-rotational and elastoplastic formulations are attractive because
a substantial amount of the existing co-rotational formulation can
be reused, with the elastoplastic behaviour representing an addi-
tional capability implementation. Such simplicity is achieved at
the cost of assuming a small strain behaviour.
n of the V22 wing panel.



Fig. 17. Plastic strain of the V22 wing panel.
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