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Abstract This article presents the first application of the
Finite Calculus (FIC) in a Ritz-FEM variational framework.
FIC provides a steplength parametrization of mesh dimen-
sions, which is used to modify the shape functions. This
approach is applied to the FEM discretization of the steady-
state, one-dimensional, diffusion–absorption and Helmholtz
equations. Parametrized linear shape functions are directly
inserted into a FIC functional. The resulting Ritz-FIC equa-
tions are symmetric and carry a element-level free parameter
coming from the function modification process. Both con-
stant- and variable-coefficient cases are studied. It is shown
that the parameter can be used to produce nodally exact solu-
tions for the constant coefficient case. The optimal value is
found by matching the finite-order modified differential equa-
tion (FOMoDE) of the Ritz-FIC equations with the original
field equation. The inclusion of the Ritz-FIC models in the
context of templates is examined. This inclusion shows that
there is an infinite number of nodally exact models for the
constant coefficient case. The ingredients of these methods
(FIC, Ritz, MoDE and templates) can be extended to multiple
dimensions.

Keywords Finite calculus · Variational principles · Ritz
method · Functional modification · Stabilization · Finite
element · Diffusion · Absorption · Helmholtz · Nodally exact
solution · Modified differential equation · Templates

1 The Finite Calculus

The Finite Calculus (FIC) has been developed over the past
five years [23–34,36] as a general purpose tool for improv-
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ing the stability and accuracy of interior discretizations of
equations of mathematical physics and engineering. Consider
a problem governed by the residual equation

r(u) = 0, (1)

where u is an array of n primary variables. These in turn are
functions of the independent variables x, which may include
time. Generally Eq. (1) is an ordinary or partial differential
equation, to be solved by numerical methods.

Introduce n characteristic lengths hi collected in array h,
where each hi is paired with the function ui . These lengths
can be viewed as linked, through as yet unspecified means,
to mesh or grid dimensions. Using flux balance arguments
[26,27] a modified residual is constructed

r(u)+ rh(u,h) = 0. (2)

The simplest form of rh is −(1/2)∇r h, where ∇r is the gra-
dient matrix of r with respect to the independent variables.
The discretization process, which is usually Galerkin-based
FEM, is applied to Eq. 2 instead of Eq. 1. Consistency with
the latter requires that rh → 0 as hi → 0.

But the philosophy of FIC, as emphasized in its name, is
that in practice the hi remain finite. The key goal is to pick
rh and h so that stability and accuracy characteristics of the
solution for a given mesh are improved. Further analysis of
localized phenomena, such as sharp boundary layers, can be
carried out by multiscale devices [6,19,30]. The FIC analysis
process is diagramed in Fig. 1.

Finite Calculus has been primarily used for the solution of
fluid mechanics equations involving flow, advection, diffu-
sion, ocean waves and chemical reactions [23–34,36]. For
those applications it competes with stabilization schemes
such as SUPG, residual free bubbles and subgrid scale meth-
ods [3,4,9,10,19].

In a study of FIC methods for solid mechanics [37] it was
found that a variational form formally analogous to the Min-
imum Potential Energy principle could be obtained by mod-
ifying the displacement, strain and stress fields in a manner
similar to that done for the residual in the foregoing descrip-
tion, and adjusting their variations.
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Fig. 1 The weak-form-based Finite Calculus (FIC) analysis process

The approach technically falls into the class of variational
principles with noncommutative variations [44], also called
modified variational principles in the literature [8]. That find-
ing provided the departure point for the present study.

2 Modified variational forms

Suppose that Eq. 1 is derivable from a functional J [u] in the
sense that r(u) = 0 are the Euler-Lagrange equations of J .
The first variation is

δ J [u] = δuT r(u). (3)

Define a modified primary variable field:

ũ def= u + uh(h), (4)

such that uh → 0 as h → 0. The choice considered here,
suggested by a previous study as noted, is

ũ = u − 1
2 hαT ∇u. (5)

Here h is an overall characteristic length, array α collects
scaling parametersαi , and the factor −1/2 is for convenience
in matching to the standard FIC method.

Substituting Eq. 5 into J yields the modified functional

J̃h = J [ũ] = J + Jh, (6)

in which the augmentation term Jh vanishes as h → 0. The
Euler-Lagrange equation changes to

δ J̃h[u] = δuT [
r(u)+ r̃h(u)

]
. (7)

This has formally the same configuration as Eq. 3, and shares
with it the property that as h → 0 the Euler-Lagrange equa-
tion reduces to Eq. 1. But in general starting with rh(u) of
FIC, namely that in Eq. 2, does not reproduce r̃h . To avoid
confusion we qualify Eq. 7 as the FIC variational residual.
The functional J̃h will be called the FIC-modified functional,
or FIC functional for brevity. (The superposed tildes will be
eventually dropped for brevity when there is no danger of
confusion.)
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Fig. 2 The variational FIC analysis process

The numerical approximation is obtained by working
with J̃h in the usual way, assuming that h is known. The
residual may be used to study stability and accuracy proper-
ties of the approximation. The analysis process is diagramed
in Fig. 2.

3 The modified equation method

The “Accuracy Analysis” stage of Fig. 2 is done by the
method of modified equations. Since this is not a well known
technique for differential equations, a summary along with a
historical outline is presented here. An example relevant to
the target application problem is worked out in Appendix A.

3.1 Backward error analysis

The conventional way to analyze accuracy of a discrete
approximation is through forward error analysis: the amount
by which the discrete solution fails to satisfy the source
differential form. To make this measure practical, it is com-
puted using local estimators such as truncation or residual er-
rors (in FEM, through recovery from element patches). This
technique furnishes a posteriori error indicators, and is well
developed in the literature.

Backward error analysis takes the reverse approach to
accuracy. Given the computed solution, it asks: which prob-
lem has the method actually solved? In other words, we seek
an ODE or PDE which, if exactly solved, would reproduce
the computed solution. This ODE or PDE is called the mod-
ified differential equation, often abbreviated to MoDE in the
sequel. The difference between the modified equation and
the original one provides an estimate of the error. An impor-
tant practical advantage is that the modified equation can be
generated without actually solving the discrete problem.

This approach is now routinely used for matrix computa-
tions after Wilkinson’s definitive work in the 1960s [48–50]
and has become standard part of numerical linear algebra
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Fig. 3 Steps of the modified equation method. Achieving nodal exactness requires “closing the loop.” As discussed in Sect. 3.4, this may involve
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courses. But it is less known in differential equations. This
neglect is unfortunate, since the concept follows common
sense. Application problems involve physical parameters
such as mass, damping, stiffness, conductivity, diffusivity,
etc., which are known approximately. Transient loading ac-
tions (e.g, earthquakes, winds, waves) may be subject to
high uncertainties. If the modified equation models a “nearby
problem” with parameters within the range of experimental
uncertainty, it is as good as the original one. This “defect
correction” can be used as basis for controlling accuracy a
priori, before any computations are actually carried out.

3.2 Applying modified equations

Let rh(u,h,α) = 0 denote a discretization of an ordinary or
partial differential equation r(u) = 0. [As in Sects. 1 and 2, h
collects lengths (in space, time or both) related to mesh or grid
dimensions whereas α collects free parameters]. Processing
the modified equation involves three steps:

Step 1: Patch discretization → DDMoDE. The discrete
equations at a typical node (a patch in FEM terminology) are
rendered continuous in the independent variable(s). This pro-
duces a difference-differential form (called delay-differential
form when time is the independent variable), abbreviated to
DDMoDE.

Step 2: DDMoDE→ IOMoDE. The difference portion of the
DDMoDE is converted to differential form by Taylor series
expansion in the mesh dimensions collected in h. This step
produces a modified differential equation of infinite order,
abbreviated to IOMoDE.

Step 3: IOMoDE→FOMoDE. The IOMoDE is reduced to a
finite order differential equation, or FOMoDE. This is done

by systematic elimination of higher order derivatives. The
process typically produces an infinite series in the discreti-
zation dimensions. This series can be occasionally identified
and summed in closed form. Technically this is (by far) the
most difficult step. It generally requires the use of a computer
algebra system (CAS) to be viable.

By comparing the FOMoDE to the original problem one
can learn structural aspects of the discretization that go be-
yond comparison of physical parameter values. For example:
preservation of Hamiltonian flow or of conservation laws in
the discrete system. These are impossible or difficult to ana-
lyze with the conventional truncation error measures.

The procedural steps just outlined are flow-charted in
Fig. 3. This chart also shows a parameter matching step to
achieve nodal exactness, which is discussed in more detail in
Sect. 3.4 below.

3.3 A brief history of modified equations

Modified differential equations as truncated forms of infi-
nite-order ODEs appeared in conjunction with finite differ-
ence discretizations for computational fluid dynamics (CFD).
The prescription for constructing them can be found in Rich-
tmyer and Morton’s textbook [40, p. 331]. Modified forms
were used to interpret numerical dissipation and dispersion
in the Lax-Wendroff treatment of shocks, and to derive cor-
rective operators. Similar ideas were used by Hirt [18] and
Roache [41]. A drawback of this early work is that there is
no guarantee that truncation retains the relevant behavior for
finite mesh dimensions, since the discarded portion could be
well be dominant in coarse discretizations.

Warming and Hyett [46] were the first to describe the
correct procedure for eliminating high order time deriva-
tives of PDE space-time discretizations on the way to the
finite-order modified equation (FOMoDE). (Space dimen-
sions were treated by Fourier methods.) They attributed the
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“modified equation” name to Lomax [22]. The FOMoDE
forms were used for studying accuracy and stability of several
CFD operators. In this work the original equation typically
models flow effects of conduction and convection, h includes
grid dimensions in space and time, and feedback is used to
adjust parameters in terms of improving stability as well as
reducing spurious oscillations (e.g. by artificial viscosity or
upwinding) and dispersion.

The first MoDE use to study space FEM discretizations
for structural mechanics can be found in [45]. However the
derivative elimination and force lumping procedures were
faulty, which led to incorrect conclusions. This was corrected
by Park and Flaggs [38,39] who, being aware of the methods
of [46], used modified equations for a systematic study of C0

beam, plate and shell FEM discretizations.
The method has recently attracted attention from the

numerical mathematics community since it provides an effec-
tive tool to understand long-time structural behavior of com-
putational dynamic systems, both deterministic and chaotic.
Recommended references are [11–14,42]. Web accessible
Maple scripts for the reduction process from infinite to finite
order are presented in [2]. Little of the work to date has used
modified equations for optimal selection of free parameters.
One exception is [12].

3.4 Free parameters for nodal exactness

Suppose that the discretization rh(u,h,α) = 0 contains free
parameters collected in α. As discussed in Sects. 1,2, this is
always the case for FIC discretizations, whether variation-
ally based or not. Obviously the free parameters will carry
over to the three modified equation forms: rDD(u,h,α) = 0,
rIO(u,h,α) = 0 and rFO(u,h,α) = 0. Assuming that the
latter is available, the question is whether the parameters can
be chosen so that

rFO(u,h,αM) ≡ r(u), for any h. (8)

Here subscript M stands for “matching.” If this is possible,
the discretization rh(u,h,αM) becomes nodally exact. That
is, it will give the exact answer at the nodes of any discret-
ization which generates the finite-order modified equation
being matched. For FEM discretizations this scheme may be
labeled a nodally exact patch test, since the modified equa-
tions are necessarily obtained from an element patch.

The idea is straightforward and attractive but fraught with
technical difficulties. In particular:

– Exact matching may be possible only with drastic restric-
tions on dimensionality, system properties and discretiza-
tion. For instance: constant coefficients, no source terms,
regular meshes. If an exact match is impossible, some
“measure of fit” (projection, minimization, etc.) has to be
chosen.

– Solutions may be imaginary, non-unique, inexistent, or
very hard to compute.

– The FOMoDE may contain “parasitic terms” not pres-
ent in the governing equation, which cannot be cancelled

out by choosing parameters. For example: the source is
the Laplace equation uxx + uyy = 0 whereas the FO-
MoDE holds a parameter-free cross-derivative term uxy .
The emergence of parasitic terms was in fact observed
by Park and Flaggs in their studies of C0 plate and shell
elements [38,39]. Such occurrences can be often traced
to consistency defects in the discretization; in that study
the presence of parasitic terms flagged element locking.

– Attaining a closed form for the FOMoDE will not be
generally possible in more than one space dimension.
Truncation is required. In that case the fit can at most be
expected to deliver a better solution over a fixed mesh.

– Symbolic manipulations may be prohibitive, even with
the help of a computer algebra system.

On the positive side, the approach is completely general, and
not linked to any discretization method. The provenance of
rh(u,h,α): finite elements, finite differences, boundary ele-
ments, etc., is irrelevant. It is not restricted by problem dimen-
sionality, and does not require knowledge of exact solutions.

For FEM discretizations, the first procedure to achieve
nodal exactness was Tong’s adjoint technique [43]; see also
[50, Appendix 7]. This requires finding exact homogeneous
solutions of r(u) = 0, to be inserted as weight functions in
a Petrov-Galerkin discretization. Related schemes are based
on localized enrichment by homogeneous and/or particular
solutions, for example [5,6]

3.5 Nodal exactness: advantages and limitations

Features of a nodally exact (NE) discretization are illustrated
in Fig. 4. This shows the exact solution to the variable-coeffi-
cient boundary-value problem (BVP), later used in Sect. 7 as
test example:

u′′ = −750 x u, u(−1) = 25,

u(1) = −4, (.)′′ ≡ d2(.)/dx2. (9)

This is compared with two FEM discretizations of six two-
node elements each. That labeled NELVC comes from a
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Fig. 5 Convergence behavior of discretizations for the BVP Eq. 9 : a 24 elements and b 96 elements

model that is nodally exact for a coefficient of u that var-
ies linearly in x over each element. That labeled FICM1 is
nodally exact for constant coefficients. (These two models
are developed in Sects. 5 and 7, respectively, along with sev-
eral others.) In both cases the FEM solution between nodes is
interpolated linearly. Both approximations are plainly inade-
quate but for different reasons. The NELVC piecewise linear
interpolation widely misses the fast variation of the exact
solution, particularly on the oscillatory side.

This deficiency can be resolved by either using a better
intra-element interpolation (for example, if the element was
derived from shape functions) or local refinement. Advanta-
ges for multiscale modeling are nonetheless clear: an individ-
ual element can be extracted and converted into a local BVP
using the end node values, and physical behavior at smaller
scale introduced if appropriate. No such postprocessing is
feasible with the nodally-inexact discretization, which is way
off in the oscillatory side.

As the mesh is refined, the NELVC solution quickly
“locks in” the correct behavior, as pictured in Fig. 5a for
24 elements. The other solution remains inadequate on the
oscillatory side x > 0 because only three elements fit in
the shorter wavelengths. Going to 96 elements the two FEM
solutions cannot be distinguished from the exact one at the
plotting scale of Fig. 5b. What happens is that with 12 ele-
ments per (shortest) wavelength the approximation power of
the FICM1 model is finally realized, as the coefficient of u(x)
is sensibly constant over each element.

4 The diffusion–absorption-Helmholtz problem

Sections 4,5,6 and 7 illustrate the variational FIC discretiza-
tion and the construction of modified equations for the steady-
state, one-dimensional diffusion–absorption and Helmholtz
equations. This problem has been recently examined by
Oñate, Miquel and Hauke [36] from a FIC-Galerkin stand-
point. That study includes advection terms that are not consid-
ered here. The governing differential equation that models a
one-dimensional, steady state, diffusion–absorption process
is

d

dx

(
k

du

dx

)
− su + Q = 0, in x ∈ [xm, x p] (10)

In this equation u is the state variable, x ∈ [xm, x p] is the
problem domain, k ≥ 0 is the diffusion, s ≥ 0 is the absorp-
tion (also called dissipation or destruction parameter) and Q
the source term. Using primes to denote differentiation with
respect to x , the foregoing ODE can be abbreviated to
(
k u′)′ − s u + Q = 0. (11)

With the flux defined as q = k(du/dx) = k u′, the boundary
conditions can be stated as

u = û on �u, q = q̂, on �q . (12)

where �u and �q are the Dirichlet and Neumann boundaries,
respectively. For the one-dimensional problem these consist
of four combinations taken at the ends of the problem domain.
This problem admits a classical variational formulation. The
source functional is

J [u] =
x p∫

xm

( 1
2 k(u′)2 + 1

2 su2 − Qu
)

dx . (13)

Taking the first variation δ J = 0 over admissible functions
u(x) that satisfy the essential BCs yields the differential
Eq. 10 as Euler-Lagrange equation, and the flux constraints
in Eq. 12 as natural boundary conditions.

4.1 The model problem

Following [36] and assuming k �= 0, a model form of Eq. 10
is obtained by introducing the dimensionless coefficient

w = sa2

k
, (14)

where a = x p −xm is the length of the problem domain. This
coefficient characterizes the relative importance of absorp-
tion over diffusion. The problem domain is adjusted to ex-
tend from xm = −1/2a to x p = 1/2a for convenience. We
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Fig. 6 Behavior of the exact solution of the model equation with a = 1, Dirichlet BCs u(−1/2) = 8 and u(1/2) = 3, and four values of w

assume zero source: Q = 0, and Dirichlet boundary condi-
tions at both ends: u(−1/2a) = um and u(1/2a) = u p. We
can now state the model problem as

u′′ − w

a2 u = 0 for x ∈ [− 1
2 a, 1

2 a],
u(− 1

2 a) = um, u( 1
2 a) = u p. (15)

The associated functional is

J [u] =
a∫

−a

1
2

(
(u′)2 + w

a2 u2
)

dx . (16)

where variation is taken over continuous u(x) that satisfy a
priori the Dirichlet BCs.

4.2 Exact solutions

If w > 0 the exact solution of the model BVP Eq. 15 can be
given in term of hyperbolic functions:

u(x) = sinh
( 1

2

√
w(1 − ξ)

)
um + sinh

( 1
2

√
w(1 + ξ)

)
u p

sinh(
√
w)

,

ξ = 2x/a. (17)

This expression becomes 0/0 ifw = 0 and suffers from can-
cellation errors if |w| is very small, say |w| < 10−8. For that
case a Taylor series about w = 0 gives to O(w):

u(x) ≈ 1 − ξ

2

[
1 + w

24
(ξ2−2ξ−3)

]
um

+1 + ξ

2

[
1 + w

24
(ξ2+2ξ−3)

]
u p, ξ = 2x/a.

(18)

Sample solutions are displayed in Fig. 6 for a = 1, um =
u(−1/2) = 8, u p = u(1/2) = 3, w = 1000, 50, 0 and
−50. If w = 0 the solution is a straight line. As w grows,
exponential boundary layers appear at Dirichlet boundaries.
This is illustrated in Figs. 6a, b. If w = 1000 the solution is
very small over most of the problem domain except for two
sharp boundary layers near x = ± 1

2 a.
If w < 0, Eq. 15 becomes the space Helmholtz equa-

tion of linear acoustics: u′′ + k2 u = 0 with wavenumber
k2 = −w/a2. Its solution is harmonic:

u(x) = sin
(
κπ(1 − ξ)

)
um + sin

(
κπ(1 + ξ)

)
u p

sin(2κπ)
,

ξ = 2x/a, 2π κ = √−w. (19)

The scaled wavenumber κ = √−w/(2π) = ka/(2π) rep-
resents the number of full-cycle oscillations over the domain
length a. Equation 19 is only valid if 2κ �= 0, 1, 2 . . ., as
otherwise the denominator vanishes. Figure 6d plots u(x) for
w = −50, in which case κ = √

50/(2π) = 1.1254 cycles.

4.3 Conventional Ritz

A standard FEM solution is easily constructed by the Ritz
variational formulation. Divide the domain into N e two-node
elements of length Le = a/N e = χa. The end nodes are i
and j , with coordinates xi and x j , and node values ui and
u j , respectively. Assume the piecewise linear interpolation

u(x) = ui Ni (x)+ u j N j (x), (20)

where Ni (x) = (x − xi )/Le, N j = (x j − x)/Le and Le =
x j−xi are the well known linear shape functions. Substitution
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into Eq. 16 gives the element stiffness equations

Seue = 1

Le

[
1 + 1

3ζ −1 + 1
6ζ−1 + 1

6ζ 1 + 1
3ζ

] [
ui
u j

]

=
[

0
0

]
, χ = Le

a
, ζ = wχ2 = s(Le)2

k
. (21)

If w = 0 this element relation gives, upon assembly,
the linear response correctly. However if w �= 0, the use of
Eq. 21, a scheme that may be labeled “unstabilized Ritz,”
displays a known defect: if w is large the solution oscillates
over coarse meshes. This is illustrated in Fig. 10a for Ne = 8
elements and w = 1,000. Negative u values are physically
incorrect if w > 0, which renders the solution useless.

This shortcoming is usually treated by Petrov-Galerkin
stabilization schemes with suitably adjusted weight func-
tions. The end result are unsymmetric equations for what
is a self-adjoint problem.

4.4 The FIC functional

We stay within the Ritz framework and piecewise-linear
shape functions, but change the functional by the method
outlined in Sect. 2. For this problem, the FIC function mod-
ification technique consists of formally replacing

ũ(x) = u(x)− 1
2 hu′(x), ũ′(x) = u′(x)− 1

2 hu′′(x). (22)

Modified functions ũ(x) and ũ′(x) are inserted into Eq. 15.
The tildes are then suppressed for brevity. This scheme yields
a modified functional Jh[u], where h is the FIC steplength.
That h was derived in the original FIC by flux balancing argu-
ments [26]. In the present context h may be simply viewed
as a free parameter with dimension of length.

For piecewise linear shape functions u′′(x) vanishes over
each element, and the second replacement in Eq. 22 may be
skipped. With this simplification the modified functional is

Jh[u] =
a∫

−a

1
2

(
(u′)2 + w

a2

(
u − 1

2 hu′)2
)

dx . (23)

The Euler-Lagrange equation given by δ Jh[u] = 0 is

(1 + wh2

4a2 )u
′′ − w

a2 u = 0. (24)

From this the FIC variational residual follows as δ Jh =
δu

[
(1 + 1

4wh2/a2)u′′ − (w/a2)u
]
.

The Eq. (24) shows that a nonzero h injects artificial diffu-
sion ifw > 0. Furthermore, the sign of h makes no difference
in the interior of the problem domain. As h → 0 the original
ODE Eq. 15 is recovered. But the key idea behind FIC is to
keep h finite and directly related to mesh size.

5 The Ritz FIC equations

The FIC functional Eq. 23 is used in conjunction with the
piecewise-linear interpolation Eq. 20 to construct stabilized

Ritz equations for the model diffusion–absorption problem.
The steplength h = he may change from element to element.
For convenience define he = αe Le where αe is a dimen-
sionless parameter to be determined over each element. The
analysis that follows is restricted to constant w and elements
of equal size Le. The same α is used for all elements. This
restriction is removed in Sect. 7, which studies a variable
coefficient variant of the model problem.

With exact element integration (equivalently, a two-point
Gauss integration rule), the following Ritz FIC element equa-
tions are obtained:

Se ue =
[

Se
ii Se

i j
Se

i j Se
j j

] [
ui
u j

]

= 1

Le

[
1 + ( 1

3 + 1
2α + 1

4α
2)ζ 2 −1 + ( 1

6 − 1
4α

2)ζ 2

−1 + ( 1
6 − 1

4α
2)ζ 2 1 + ( 1

3 − 1
2α + 1

4α
2)ζ 2

]

×
[

ui
u j

]
=

[
0
0

]
, (25)

in which χ = Le/a and ζ 2 = wχ2 = s(Le)2/k.

5.1 Patch and modified equations

The stiffness equations for a patch of two equal-size elements
comprising nodes i, j, k, as pictured in Fig. 7, are

1

Le

⎡

⎢⎢
⎣

1 + ( 1
3 + 1

2α + 1
4α

2)ζ 2 −1 + ( 1
6 − 1

4α
2)ζ 2 0

−1 + ( 1
6 − 1

4α
2)ζ 2 2 + ( 2

3 + 1
2α

2)ζ 2 −1 + ( 1
6 − 1

4α
2)ζ 2

0 −1 + ( 1
6 − 1

4α
2)ζ 2 1 + ( 1

3 − 1
2α + 1

4α
2)ζ 2

⎤

⎥⎥
⎦

×
⎡

⎣
ui
u j
uk

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ (26)

To investigate choices for α we need modified equation ver-
sions of Eq. 26. The patch equation for node j is

Si ui + S j u j + Sk uk = 0, (27)

in which Si = Sk = [−12+ (2−3α2) ζ 2]/(12 Le) and S j =
[24 + (8 + 4α2) ζ 2]/(12Le). Equation (27) is “continuified”
into a difference–differential modified equation (DDMoDE)
by formally replacing u j → u(x), ui → u(x−Le) and uk →
u(x+Le) to get

Si u(x−Le)+ S j u(x)+ Sk u(x+Le) = 0. (28)

Node values u(x ± Le) are linked to u(x) and its derivatives
at x = x j by Taylor series:

u(x−Le) = u j − Leu′
j + 1

2 (L
e)2u′′

j − · · · ,
u(x+Le) = u j + Leu′

j + 1
2 (L

e)2u′′
j + · · · , (29)

x = x − x

i j

j

k

L = a χeL = a χe
_

x

Fig. 7 A patch of two equal length elements
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Replacing into Eq. 28, setting Le = aχ and collecting terms
yields the infinite-order modified equation (IOMoDE):

− 6w

γ a2 u + 1

2!u
′′ + 1

4!a
2χ2u′′′′ + 1

6!a
4χ4u′′′′′′ + · · · = 0,

(30)

in which γ = 12 + (3α2 − 2)wχ2. Truncating Eq. 30 to the
second derivative and making Le → 0, which is the same as
making χ → 0, reduces it to the original equation:

u′′ = 12w

γ a2 u

= 12w
[
12 + (3α2−2)wχ2

]
a2

u
χ=0�⇒ u′′ = w

a2 u. (31)

The limit Eq. 31 confirms the consistency of the Ritz
equations with the original ODE as Le → 0, and plays an
important role in the templates developed in Sect. 6. It is
not useful, however, to find nodally exact discretizations. For
that all derivatives higher than two in Eq. 30 must be system-
atically eliminated with the techniques outlined in Appen-
dix A. Elimination yields the finite-order modified equation
(FOMoDE):

u′′ = 4

a2χ2

(
arcsinh

χ
√
μ

2

)2

u,

with μ = 4

χ2

(
sinh

χ
√
w

2

)2

. (32)

Equations (26), (31) and (32) are used next to study suitable
choices for parameter α.

5.2 Positivity lower bound

Suppose ui > 0 and uk > 0 are prescribed in the patch
equations in Eq. 26. Solving for u j from the second equation
gives

u j = 12 + (3α2 − 2)wχ2

24 + (6α2 + 8)wχ2 (ui + uk). (33)

If w ≥ 0, the denominator is positive for any χ ≥ 0 and real
α. A non-negative u j is guaranteed if 12+(3α2−2)wχ2 ≥ 0.
This is met by taking α2 ≥ α2

P , where

α2
P = 2

3
− 4

wχ2 . (34)

The subscript P stands for “ensuring positivity.” This result
gives a useful modeling guideline: if wχ2 ≤ 6, α may be
set to zero, which collapses variational FIC to conventional
Ritz, without impairing positivity. For example, if w = 600,
a mesh of ten or more elements, i.e. χ < 1/10, may have
α = 0 while precluding nonphysical oscillations.

Settingα2 = α2
P into the element matrix Se of Eq. 25 can-

cels out the off-diagonal terms. The assembled S is therefore
diagonal. The solution for zero source and Dirichlet con-
ditions at both ends is therefore zero at all interior nodes.
This mimics well the boundary layer behavior for very large
and positive w; say w > 10000. For positive but smaller w

this solution can be way off, but it shows that Eq. 34 may be
viewed as a lower bound on acceptable values of α2, whereas
the highly diffusive setting α2

D = 2/3 found below is an
upper bound. The results of Sect. 5.9, however, show that
these bounds are of little practical value for moderate values
of w > 0. They are also useless for the Helmholtz equation,
in which case w is negative.

5.3 Diffusive upper bound

Suppose that the truncated modified equation on the left of
Eq. 31 is required to reduce to the original ODE for any χ ,
and not just χ = 0. This can be obtained by setting α2 = α2

D ,
where

α2
D = 2

3
. (35)

Computations show that using α2 = α2
D overestimates the

diffusion for all positive w. Thus it is “safe” in the sense
of providing physically correct solutions. But these can be
highly inaccurate for small or moderate w. The results of
Sect. 5.9 illustrate this point. However this method gives a
useful limit: if w → +∞ on a fixed mesh, α2 → α2

D = 2/3
for consistency. Consequently we have the bounds α2

P ≤
α2 ≤ α2

D ifw > 0. The nodally exact value of α2 found next
lies in this interval.

5.4 Nodally exact matching

To get a nodally exact solution following the technique out-
lined in Sect. 3.4, require that Eq. 32 match the original equa-
tion. u′′ = (w/a2) u for any {w,χ}. This gives

α2
M = 2

3
− 4

wχ2 + 1

sinh2
(
1/2χ

√
w

)

= 2

3
− 4

ζ 2 + 1

sinh2(ζ/2)
, (36)

where ζ = χ
√
w and subscript M stands for matching. Equa-

tion 36 is valid for any w > 0. For w → 0 or χ → 0
cancellations occur. These can be resolved by Taylor series
expansion

α2
M = 1

3
+ wχ2

60
− w2χ4

1512
+ w3χ6

43200
− w4χ8

1330560
+ · · · (37)

which shows that α2
M → 1/3 if χ → 0 or w → 0. Figure 8

illustrates the variation of α2
M as function of w and χ . The

latter varies between 0 and 1, attaining 1 only for one ele-
ment over the domain length a. For positive w, α2

M is always
positive but less than α2

D = 2/3.
Extension to negative w to cover the Helmholtz equa-

tion requires some caution. A computational difficulty is
that α2

M > 0 if and only if ζ 2 = wχ2 > ζ 2
cut, with

ζ 2
cut = −11.47463503286087328. If wχ2 < ζ 2

cut, α
2
M < 0

and αM is imaginary. The minimum number of elements to
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Fig. 8 Function α2
M(w, χ). a 2D plots for fixed w ∈ [1000, ζ 2

cut] with ζ 2
cut ≈ −11.4746. If wχ2 = ζ 2

cut, α
2
M = 0; if wχ2<ζ 2

cut, αM becomes
imaginary. b 3D plot of α2

M versus w ∈ [0, 100] and χ = [0, 1]

get a positive α2
M follows from the condition (1/N e) = χ ≤√

−ζ 2
cut/(2πκ) = 0.539125/κ , where κ = √−w/(2π) is

the number of full cycle oscillations of the exact solution
over the length a, cf. Eq. 19. Solving for N e gives
N e ≥ 1.85486 κ, (38)
A more easily remembered rule is N e ≥ 2 κ , or at least two
elements per wavelength. So if the solution cycles 16 times
over the domain, use 32 elements or more. If Eq. 38 is not
verified, however, a nodally exact solution is still obtainable
but may generally require use of complex arithmetic. If the
mesh consists of equal length elements and w is constant,
however, complex numbers occur only in the first and last
rows of the coefficient matrix, and disappear altogether on
applying Dirichlet BCs.

Another peculiarity associated with the Helmholtz equa-
tion is the presence of “Dirichlet resonances.” Ifw = −k2π2

for k = 1, 2, . . . then 2πκ = √−w = kπ → sin 2πκ = 0
and the exact solution Eq. 19 blows up. An exact number of
cycles k fit over [−a/2, a/2], and Dirichlet BCs with um �=
u p are inconsistent. In practice values of w close to those
will generate large amplitude oscillations. Numerical tests
in floating-point arithmetic show, however, that the nodally
exact Ritz-FIC solution has no problem matching those large
oscillations even if w is extremely close to a resonant value.

5.5 Pade approximants

For computer implementation, exponential functions in Eq. 36,
which may cause numerical accuracy problems forw > 105,
can be avoided by using Padé approximants to α2

M. The (2,2),
(4,4) and (6,6) diagonal approximants computed by Mathem-
atica are

α2
M22 = 1260 + 113wχ2

30(126 + 5wχ2)
,

α2
M44 = 3270960 + 339948wχ2 + 4787w2χ4

189(51920 + 2800wχ2 + 39w2χ4)
,

α2
M66 = 1966225060800 + 218635457040wχ2 + 4430449320w2χ4 + 27010573w3χ6

60(98311253040 + 6016210200wχ2 + 115773966w2χ4 + 671585w3χ6)
. (39)

For χ < 1
4 and w < 10000 these provide at least one, two

and three digits of accuracy, respectively. For moderate wχ2

the higher approximants give 10–12 digits of accuracy. As
wχ2 → ∞, α2

M22, α2
M44, α2

M66 and α2
M88 approach the limits

0.75333333333333, 0.64943698277032, 0.6703190462364
and 0.66590125338669, respectively. Since α2 should not
exceed α2

D = 2/3 on account of the consistency condition
discussed in Sect. 5.3, a cutoff may have to be implemented
for some approximants.

5.6 Nodal exactness verification

A valuable verification of Eq. 36 can be obtained directly by
equating u j in Eq. 33 to the exact node value for a BVP posed
over the two-element patch with prescribed node values ui
and uk :

uexact
j = 1

2 (ui + uk) sech ζ

= 12 + (3α2 − 2) ζ 2

24 + (6α2 + 8) ζ 2 (ui + uk). (40)

Solving for α2 and simplifying gives back Eq. 36. This
method, however, cannot be used if the exact solution is not
available, as it happens in two- and three-dimensional prob-
lems, whereas the modified equation method does not rely
on such knowledge.

5.7 Reduced integration element

The foregoing Ritz-FIC equations have been constructed with
exact element integration, which is equivalent to using a two-
point Gauss rule. If a one-point Gauss reduced integration
(RI) rule is used, the element equations become

Se ue =
[

Se
ii Se

i j
Se

i j Se
j j

] [
ui
u j

]

= 1

Le

[
1 + 1

4 (1 + α)2ζ 2 −1 + 1
4 (1 − α2)ζ 2

−1 + 1
4 (1 − α2)ζ 2 1 + 1

4 (1 + α)2ζ 2

][
ui
u j

]
=

[
0
0

]
,

(41)
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Fig. 9 Nodally exact ᾱM for reduced-integration (RI) Ritz FIC element. a ᾱM(,̃χ) plotted for w ≥ 0; b comparing nodally exact αM of exactly
and RI for positive and negative values of wχ2

The two-element patch equations are

1

Le

⎡

⎢
⎣

1 + 1
4 (1 + α)2ζ 2 −1 + 1

4 (1 − α2)ζ 2 0
−1 + 1

4 (1 − α2)ζ 2 2 + 1
2 (1 + α)2ζ 2 −1 + 1

4 (1 − α2)ζ 2

0 −1 + 1
4 (1 − α2)ζ 2 1 + 1

4 (1 + α)2ζ 2

⎤

⎥
⎦

×
⎡

⎣
ui
u j
uk

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ . (42)

Both α and α2 now appear in the difference equation and
the three modified equation forms. Proceeding as before one
obtains the nodally exact α as

ᾱM = 1 − (τ/ζ )

√
ζ 2 − 4 + 8/τ − 4/τ 2

τ − 1
,

ζ = χ
√
w, τ = cosh ζ. (43)

The variation of ᾱM(w, χ) is plotted in Fig. 9a. Its Taylor
series is

ᾱM = −1

6
wχ2 − 13

720
w2χ4 + 127

20160
w3χ6 + · · · (44)

which shows that ᾱM → 0 as w → 0 or χ → 0. The varia-
tion of ᾱM(w, χ) for the diffusion–absorption case w > 0 is
plotted in Fig. 9a. It is negative and smooth.

The behavior of ᾱM for the Helmholtz equation is more
complicated than that of αM, the positive square root of
Eq. 36. Both are plotted as functions of ζ 2 = wχ2 for
ζ 2 ∈ [−25, 25] in Fig. 9b. Whereas αM is real for wχ2 ≥
ζ 2

cut = −11.474635 . . . and varies smoothly, ᾱM is real for
all ζ 2 but jumps at ζ̄ 2

k = −k2π2/4 for k = 1, 2, . . .. These
are roots of cosh(i |ζ̄k |) = cos |ζ̄k | = 0. These jumps are
harmless, however, since they occur at the set of ‘Dirichlet
resonances” discussed in Sect. 4.2, where the exact solution
Eq. 19 blows up. In fact the RI model has the advantage that
ᾱM stays real for any w, whether positive or negative.

Using the exact solution to find ᾱM gives two solutions:
1 ± (τ/ζ )

√
ζ 2 − 4 + 8/τ − 4/τ 2/(τ − 1) with τ = cosh ζ ,

which appear as roots of a quadratic. Taking the minus sign
reproduces Eq. 43, whereas taking the plus sign gives an ᾱM
that “blows up” if wχ2 → 0, and is therefore less desirable.

5.8 Source terms

The MoDE treatment of a smooth source term q(x) in
u′′−(w/a2)u = q(x) can be done by entirely analogous tech-
niques, but there are representation choices. One is based on
expanding q(x) in Taylor series: q(x) = q(x j )+q ′(x j )(x −
x j )/a + · · · at node j , and inserting into the FIC functional
to derive a consistent node force term q j by the usual meth-
ods. Then q(x j ), q ′(x j ) . . . appear in the RHS of the IO-
MoDE→FOMode elimination system, and the solution se-
ries is identified into the FOMoDE. Alternatively q(x) can
be expanded in Fourier series [38,39]. Delta function source
terms can be processed directly.

5.9 Numerical results

This section present numerical results obtained with the Ritz-
FIC method for the model problem Eq. 15. The problem
domain is taken to have unit length (a = 1) extending from
xm = −1/2a = −1/2 through x p = 1/2a = 1/2. The
boundary conditions are of Dirichlet type: u(−1/2) = 8 and
u(1/2) = 3. The domain is divided into eight elements of
equal size; thus χ = Le/a = 1/8. Four values of w: 1000,
50, −50 and −1,000, are tested. Results are plotted in Fig. 10,
and listed to ten decimal places in Tables 1, 2, 3 and 4. Labels
shown in those tables are template names assigned in Sect. 6.

Results for w = 1000. The solution exhibits two sharp
boundary layers. Over the propagation region, which extends
roughly over the middle six elements of this discretization,
u(x) takes small positive values, of order 10−3 or less. The
problem is discretized using four choices of α: α = 0 (con-
ventional Ritz), α2

C = 2/3, α2
P = 101/375 = 0.410667 and

α2
M = 0.490503. Numerical results are shown in Fig. 10a,

and listed in Table 1. As expected the solution for α2
M is nod-

ally exact. The results forα = 0 oscillate giving unacceptable
negative values. Results for αD and αP give the correct physi-
cal behavior, and bound the boundary layer behavior on both
sides. Although the difference of results computed for αD
and αP with the exact solution are masked in the scale of the
plot, discrepancies at interior points are clear from Table 1.
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Fig. 10 Ritz-FIC results for eight-element discretization of the diffusion–absorption model problem with: a w = 1000, b w = 50, c w = −50,
d w = −1000. Dirichlet BCs u(− 1

2 ) = 8 and u( 1
2 ) = 3, for four choices of α, compared to the exact solution

Table 1 Ritz-FIC eight-element solutions, w = 1000

Node Exact α2 = 0(CR) α2
D = 2/3(FICD) α2

P(FICP) α2
M(FICM2)

1 8.0000000000 8.0000000000 8.0000000000 8.0000000000 8.0000000000
2 0.1535996812 −1.0514115126 0.4553713752 0 0.1535996812
3 0.0029491079 0.1381982018 0.0259204876 0 0.0029491079
4 0.0000566306 −0.0182784646 0.0014772218 0 0.0000566306
5 0.0000014948 0.0028186197 0.0001154770 0 0.0000014948
6 0.0000212544 −0.0071239995 0.0005580649 0 0.0000212544
7 0.0011059158 0.0518597445 0.0097204167 0 0.0011059158
8 0.0575998805 −0.3942838932 0.1707642790 0 0.0575998805
9 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000

Table 2 Ritz-FIC eight-element solutions, w = 50

Node Exact α2 = 0(CR) α2
D = 2/3(FICD) α2

P(FICP) α2
M(FICM2)

1 8.0000000000 8.0000000000 8.0000000000 8.0000000000 8.0000000000
2 3.3105043651 3.2068850933 3.4002474704 0 3.3105043651
3 1.3801678534 1.2942058990 1.4569382771 0 1.3801678534
4 0.6001402687 0.5439870932 0.6518621127 0 0.6001402687
5 0.3203030826 0.2823794489 0.3560532239 0 0.3203030826
6 0.3074243641 0.2744060401 0.3384109163 0 0.3074243641
7 0.5507702703 0.5129051224 0.5851521371 0 0.5507702703
8 1.2531588628 1.2120974286 1.2890434650 0 1.2531588628
9 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000

Results forw = 50. This case pertains to moderate absorption
to diffusion ratio Eq. 14. The boundary layers are diffuse
and the exact solution resembles a second degree parab-
ola. The problem is again discretized using four α choices:
α = 0, α2

C = 2/3, α2
P = −334/75 = −4.45333 and

α2
M = 0.345961. The numerical results are plotted in Fig. 10b

and listed in Table 2. Again the solution for α2
M is nodally

exact. The solutions for α = 0 and α2
C = 2/3 bound the exact

solution, maintain positivity and display reasonable accuracy.

The results for αP are way off as can be expected from the
rationale for its construction.

Results for w = −50. The solution to this Helmholtz equa-
tion goes roughly through one wavelength over the problem
domain. Negatives values of u(x) are physically admissible.
The problem is discretized with four α choices: α = 0, α2

C =
2/3,α2

P = 434/75 = 5.78667 andα2
M = 0.319898. Note that

α2
M is still positive because wχ2 = −50/64> − 11.4746,
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Table 3 Ritz-FIC eight-element solutions, w = −50

Node Exact α2 = 0(CR) α2
D = 2/3(FICD) α2

P(FICP) α2
M(FICM2)

1 8.0000000000 8.0000000000 8.00000000000 8.0000000000 8.0000000000
2 2.1905465154 0.0898920049 3.91683000520 0 2.1905465154
3 −5.2217158313 −7.8823533208 −3.22636343116 0 −5.2217158313
4 −8.8132821321 −10.4059673187 −7.84896043693 0 −8.8132821321
5 −5.9562263170 −5.7365163498 −6.33955710134 0 −5.9562263170
6 1.2589621643 2.8982685015 0.12262521967 0 1.2589621643
7 7.5529760894 9.5296419462 6.48900658781 0 7.5529760894
8 8.3205257619 9.5737052899 7.78585155923 0 8.3205257619
9 3.0000000000 3.0000000000 3.00000000000 3.0000000000 3.0000000000

Table 4 Ritz-FIC eight-element solutions, w = −1000

Node Exact α2 = 0(CR) α2
D = 2/3(FICD) α2

P(FICP) α2
M(FICM2)

1 8.0000000000 8.0000000000 8.0000000000 8.0000000000 8.0000000000
2 11.5432046602 −4.5551330632 −0.5903534034 0 11.5432046602
3 −23.8970551078 2.6374205639 0.0435651218 0 −23.8970551078
4 21.3673096334 −1.6039299876 −0.0032213812 0 21.3673096334
5 −5.5295477072 1.1081731645 0.0003261977 0 −5.5295477072
6 −13.7521345403 −0.9839426045 −0.0012230626 0 −13.7521345403
7 24.4686939039 1.1895887560 0.0163380309 0 24.4686939039
8 −19.9456285035 −1.7940565712 −0.2213826078 0 −19.9456285035
9 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000

and no imaginary numbers appear. The numerical results are
plotted in Fig. 10c and listed in Table 3. Again the solution
for α2

M is nodally exact. The results for α = 0 and α2
D = 2/3

bound the exact solution and follow its shape reasonably well.
The solution for αP is worthless.

Results for w = −1,000. The rapidly oscillatory response
goes roughly through five cycles over the problem domain,
since κ = √−w/(2π) ≈ 5.03. The problem is discretized
withα = 0,α2

C = 2/3,α2
P = 0.92667 andα2

M = −0.261754.
Here α2

M is negative becausewχ2 = −1000/64 = −11.875
< −11.4746. The numerical results are plotted in Fig. 10d
and listed in Table 4. Although α2

M produces a nodally ex-
act solution, an eight-element piecewise linear interpolation
over five wavelengths is plainly inadequate to capture intra-
element oscillations.

The effect of injecting more elements in the later case is
illustrated in Fig. 11. This shows results for three choices ofα
and 8 through 64 elements. A 64-element mesh places about
10 elements per wavelength, which should be adequate as
per well-known empirical rules for approximating sinusoi-
dal waveforms. The beneficial effect of nodal exactness is
evident. Results for the other two non-matching choices of
α, notably conventional Ritz, display erratic behavior even
for fine discretizations.

Replacing the exactly integrated Ritz-FIC model by the
reduced-integrated model with the matching ᾱM of Eq. 43
yields identical results.

6 Templates

The exact- and reduced-integrated FIC-based elements
obtained by setting α2 and α as per Eq. 36 and Eq. 43, respec-

tively, are nodally exact but lead to completely different finite
element matrices. A nodally exact model for the Helmholtz
equation, developed by Harari and Hughes [15–17] produces
yet another set of matrices. This surprising lack of unique-
ness raises the question: how many nodally exact elements
can be constructed for the absorption–diffusion-Helmholtz
equation with constant coefficients? Templates provide the
correct answer: an infinite number.

Templates [7] are parametrized algebraic forms of FEM
matrices that include all possible elements once a priori
constraints, such as symmetry, are enforced. Setting
parameters to specific values or functions produces element
instances. The set of such values is called the template sig-
nature.

Assuming symmetry, the element coefficient matrix of
the model problem can be placed in the template framework
by splitting Se = Se

K + Se
M, with

Se
M = −wχ

2

6Le

[
2+β1+β2+β3 1−β1

1−β1 2+β1+β2−β3

]
,

Se
K = 1

Le

[
1+β4+β5+β6 −1−β4

−1−β4 1+β4+β5−β6

]
. (45)

Matrix Se
K (stiffness-like) and Se

M (mass-like) come from the
(u′)2 and u2 terms, respectively, in the variational formulation.
In Eq. 45 β1 through β6 are dimensionless parameters to be
chosen. If all of them vanish the conventional Ritz equations
Eq. 21 with piecewise linear shape functions result. Thus
the βi may be interpreted as specifying the deviation from
conventional Ritz. (If unsymmetric matrices are permitted,
as produced for example by Petrov-Galerkin methods, one
more parameter would enter each matrix for a total of eight.)

An obvious simplification is that only the sum Se
M + Se

K
appears in the FEM equations of the diffusion–absorption and
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Fig. 12 Nodally exact condition matching for patch equations (Eq. 48) with Si = Sk , which correspond to constant coefficientw and equal length
elements Le = aχ

Helmholtz problems, and three parameters become redun-
dant. Consequently one may either set β4 = β5 = β6 = 0
and leave SK unchanged, or set β1 = β2 = β3 = 0 and leave
SM unchanged. In the ensuing development the first choice
is selected. Thus Eq. 45 reduces to

Se
M = −wχ

2

6Le

[
2+β1+β2+β3 1−β1

1−β1 2+β1+β2−β3

]
,

Se
K = 1

Le

[
1 −1

−1 1

]
. (46)

If β2 + 3β1 = 0 and β3 = 0, on taking β1 = 1 − β0 and
β2 = 3(β0 − 1), β0 can be extracted as scaling factor of Se

M
and only one parameter remains:

Se
M = −wχ

2β0

6Le

[
2 1
1 2

]
, Se

K = 1

Le

[
1 −1
−1 1

]
. (47)

The general form of the two-element patch equations is

Si ui + S j u j + Sk uk = 0. (48)

For constant coefficients and equal-length elements, Si = Sk .
The modified equation processing steps for this particular
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Table 5 Template instances for 1D diffusion–absorption-Helmholtz with constant coefficients

Instance name Description Nodally exact? General performance

CR Conventional Ritz element Eq. 21 No Nonphysical oscillations for w > 0 if wχ2 > 6.
Erratic behavior for w < 0 (Helmholtz)

FICP Exactly integrated Ritz-FIC element No Zero solution at interior nodes, which mimics boundary-layer
with α2 = α2

P of (34), which behavior for huge w > 0. Useless for w < 0 (Helmholtz)
guarantees positivity if w > 0

FICD Exactly integrated Ritz-FIC element No Correct physical behavior for any w > 0, especially very large
with α2 = α2

D = 2/3 of Eq. 35, a values. Performs poorly for w < 0 (Helmholtz)
setting for high artificial diffusion

FICM1 Reduced integrated Ritz-FIC element CC-ELE Behavior identical to FICM2 for w ≥ 0. Higher wavenumber
with α set as per Eq. 42 validity range than FICM2 for w < 0 (Helmholtz)

FICM2 Exactly integrated Ritz-FIC element CC-ELE Behavior identical to FICM1 for w ≥ 0. Imaginary coefficients
with α2 set as per Eq. 36 if χ̃2 < ζ ∗ ≈ −11.4746

HHH Harari and Hughes [16] nodally exact CC-ELE Can be used for w > 0, where performance is identical to
element for one-dimensional exterior FICM1 and FICM2. For w < 0 (Helmholtz) SM becomes null
Helmholtz at wavenumbers noted in Table 6

NECC Template set to match FOMoDE for CC-VLE Performance identical to FICM1, FICM2 and HHH if w > 0
varying length elements and elements are of equal length. Maintains nodal exactness if

element lengths vary

CC-ELE: nodally exact for constant coefficients and equal-length elements; CC-VLE: nodally exact for constant coefficients and variable length
elements

case is diagramed in Fig. 12. The IOMoDE expression
displayed there indicates that consistency with the orig-
inal equation as the mesh is refined requires that μ =
(2Si + S j )/(χ

2Si ) → w as χ → 0. For the template
(Eq. 46), Si = Sk = 6w(β1 − 1)χ2/(6aχ) and S j =
(6 + 6w(β1 + β2 + 2)χ2)/(3aχ). Hence

μ = 2w(3 + β2)

(6 + w(β1 − 1)χ2

∣∣
∣∣
χ→0

= w(1 + 1
3β2) whence β2|χ→0 = 0. (49)

Matching for nodal exactness yields Si + 2S j cosh ζ = 0
with ζ = χ

√
w. In terms of the parameters of the template

Eq. 46, the condition is

6 + w (2 + β1 + β2)χ
2 = (

6 + w (β1 − 1)χ2) cosh ζ. (50)

Notice that β3 does not appear in Eq. 50 because of equal-ele-
ment-length cancellations. The foregoing condition, which
may be solved for either β1 or β2, shows that there is an infi-
nite number of nodally exact finite element models that form a
one-parameter family. Four instances of this family are shown
in Tables 5 and 6. These are identified by labels FICM1,
FICM2, HHH and NECC. The former two are the “matched
α” FIC elements obtained in Sects. 5.7 and 5.4, respectively,
whereas HHH was obtained by Harari and Hughes [16]. A
study of the variable-element-length case, omitted to save
space, shows that NECC is the only instance that is nodally
exact for such discretizations.

Each nodally exact instance of Tables 6, and 7 has “trou-
ble spots” when applied to the Helmholtz equationw < 0, if
κχ = χ

√−w/(2π) exceeds 1/2. Those spots are displayed
in Fig. 13.

7 Generalization to variable coefficients

This section studies the application of the foregoing discret-
ization methods to the variable-coefficient generalization of
Eq. 10 :

k u′′ − s(x) u + Q = 0, (51)

in which k ≥ 0 is constant but s is now a linear function of
x . As previously, the computational domain is x ∈ [xm, x p]
with Dirichlet boundary conditions u(xm) = um and u(x p) =
u p. Of particular interest is when s changes sign over the com-
putational domain. If so u(x) will exhibit boundary-layer
exponential decay behavior over the portion where s > 0,
transitioning to oscillations of varying frequency wherever
s < 0. This is illustrated by the analytical solution curves in
Figs. 4, and 5.

The goal is to investigate whether variational FIC meth-
ods can handle simultaneously the diffusion–absorption and
Helmholtz type of equations in the same BVP. The restric-
tion to linear variation in x is imposed to have a closed form
solution, in terms of Airy functions, available for compar-
ison. Although these functions are rarely useful in classi-
cal mechanics they find application in laser optics, quantum
mechanics, electromagnetics, and radiative heat transfer.

7.1 The VC model problem

As before we restrict the computational domain to ±1/2a,
set Q = 0, and redefine w(x) = s(x) a2/k as a linear func-
tion in x explicitly given as w = w0 + ψ (x/a). The model
problem is

u′′ − w

a2 u = 0 with w = w0 + ψ
x

a
, forx ∈ [− 1

2 a, 1
2 a],

u(− 1
2 a) = um, u( 1

2 a) = u p. (52)
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Table 6 Template signatures for elements of Table 5

Instance name Template form Template signature Trouble spots

CR Eq. 46 β1 = β2 = β3 = 0 Nonphysical oscillations if wχ2 > 6
FICP Eq. 46 ζ = χ

√
w, α2 = 2/3 − 4/ζ 2 β1 → ∞ if ζ 2 = wχ2 = 6

β1 = 1 − 6/ζ 2, β2 = 0, β3 = 3α
FICD Eq. 46 β1 = 1, β2 = 0, β3 = √

6
FICM1 Eq. 46 ζ = χ

√
w, τ = cosh ζ , If w < 0, entries jump at

√−wχ = 1
2πn, n = 1, 2, . . ..

ᾱ = 1 − (τ/ζ )

√
ζ 2 − 4 + 8/τ − 4/τ 2

τ − 1 See Figs. 9 and 13a

β1 = (3ᾱ2 − 1)/2, β2 = 3ᾱ, β3 = 0
FICM2 Eq. 46 ζ = χ

√
w, α2 = 2

3 − 4
ζ 2 + 1

sinh2(ζ/2)
If w < 0 and χ

√−w > 3.3874 . . .

β1 = 3α2/2, β2 = 0, β3 = 3α diagonal entries of Se
M become complex.

See Figs. 9 and 13b

HHH Eq. 47 ζ = χ
√
w, τ = cosh ζ, β0 = 6(τ − 1)

ζ 2(τ + 2)
If w < 0 and χ

√−w = 2πn, n = 1, 2, . . ., β0 = 0 ,

which makes Se
M = 0. See Fig. 13c

NECC Eq. 46 ζ = χ
√
w, β1 = ζ 2 − 6 + 6ζ/ sinh ζ

ζ 2 , If w < 0 and χ
√−w = πn, n = 1, 2, . . .,

β2 = (6/ζ ) tanh(ζ/2)− 3, β3 = 0 entries of Se
M blow up. See Fig. 13d

Table 7 Template instances for 1D diffusion–absorption-Helmholtz with variable coefficients

Instance name Description Nodally exact? General performance

MNECC Modification of NECC to account No Reasonably accurate for w > 0 if variation is not abrupt.
approximately for the variable Requires fine mesh for Helmhotz
coefficient by matching a truncated MoDE

CUBVC Similar to NELVC with Airy functions No Excellent for w > 0, even for sharp coefficient variation.
approximated by cubic over element Less accurate for Helmholtz but better than MNECC

NELVC Uses Airy functions to match MoDE exactly Yes Nodally exact for any linear coefficient variation,
no matter how abrupt. Also exact for variable length
elements

Table 8 Template signatures for elements of Table 7

Instance name Template form Template signature Trouble spots

MNECC Eq. 46 β1, β2 = same as for NECC, Same as NECC

β3 = −3ψχ(ζ coth ζ − 1)
2wζ 2

CUBVC Eq. 46 d = 10w(11760 + 1456wχ2 + 28w2χ4 − χ6ψ2) Same as NECC
β1 = 7χ2(1960w2 + 36w3χ2 + 14χ2ψ2 − wχ4ψ2)/d
β2 = −7(4200w2χ2 + 100w3χ4 + 70χ4ψ2 − 3wχ6ψ2)/d
β3 = −3χψ(39200 + 2240wχ2 + 28w2χ4 − χ6ψ2)/d

NELVC Eq. 46 ϒ = ( 3
√
ψ2), zm = (w−(1/2)χψ)

ϒ
, z p = (w+(1/2)χψ)

ϒ
Fails for ψ = 0 if not checked

Ap = Ai(z p), Am = Ai(zm), Bp = Bi(z p), Bm = Bi(zm)
A′

p = Ai ′(z p), A′
m = Ai ′(zm), B ′

p = Bi ′(z p), B ′
m = Bi ′(zm)

d1 = A′
m Bm + A′

p Bp − Am B ′
m − Ap B ′

p
d2 = (A′

m−A′
p)(Bm−Bp)− (Am−Ap)(B ′

m−B ′
p)

d3 = A′
p Bm − A′

m Bp + Ap B ′
m − Am B ′

p, d = Ap Bm − Am Bp

β1 = 1 − 6/ζ 2 + 3 d1χϒ

d ζ 2 , β2 = −3 − 3 d2χϒ

d ζ 2 , β3 = −3 d3χϒ

d ζ 2

The associated functional is obtained by simply changing w
in Eq. 16 to w(x):

J [u] =
a∫

−a

(
(u′)2 + w0 + ψx/a

2a2 u2
)

dx . (53)

where variation is taken over continuous u(x) that satisfy
a priori the Dirichlet BCs. The solution of Eq. 52 can be

expressed in closed form in terms of the Airy functions Ai(x)
and Bi(x), as defined for example in [ 1 , Sect. 10.4], as fol-
lows. Assuming that ψ �= 0, compute:

ϒ =
(

3
√
ψ2

)
, ξ = 2x

a
, zξ = (w0 + (1/2)ξψ)

ϒ,

z p = (w0 + (1/2)ψ)

ϒ
, zm = (w0 − (1/2)ψ)

ϒ,
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Fig. 13 Trouble spots in coarse, nodally-exact discretizations of the constant-coefficient Helmholtz equation w < 0. Graphs plot entries of the
2×2 matrix Se

M for instances a FICM1, b FICM2, c HHH and d NECC, as functions of the scaled wavenumber κχ = √−wχ/(2π). The number
of elements per wavelength is N e

λ = 1/(κχ). Difficulties start at roughly κχ > 1/2, or N e
λ < 2. Jumps in (a) occur at Dirichlet resonances and

are harmless

Ap = Ai(z p), Am = Ai(zm), Bp = Bi(z p),

Bm = Bi(zm), Aξ = Ai(zξ ), Bξ = Bi(zξ ),

d = Am Bp − Ap Bm,

u(x) =
[
(Bp Aξ − Ap Bξ )

d

]
um +

[
(Am Bξ − Bm Aξ )

d

]
u p.

(54)

(In symbolic work, it is important to square ψ before taking
the cubic root.) If ψ = 0 the solution of Eq. 54 fails. In
that case w = w0 is constant and the exact solution in terms
of exponentials given by Eq. 17, 18 and 19 should be used.
As an example, Figs. 4, and 5 show the exact solution of
Eq. 9, a BVP that fits Eq. 52 with w = −3000x/a2, a = 2,
u(−1) = 25 and u(1) = −4.

The finite-order modified equation for this ODE requires
hypergeometric functions to be expressed in closed form, and
is omitted for brevity.

7.2 Reusing CC templates

An expedient approach to FEM discretization of Eq. 52 is to
reuse the template instances of Tables 5 and 6. If the nodal
values ofw(x) arewi andw j , the average valuewm = (wi +
w j )/2 is used to form the element. See Fig. 14. For example,
the reduced-integration Ritz-FIC element FICM1 is again
given by Eq. 41 except that α = ᾱM comes fromwm . For the
HHH and NECC instances wm is inserted in the formulas of
Table 6.

For the Ritz-FIC element FICM2 a slight refinement is to
evaluate w(x) = w(ξ) at the Gauss points ξ = ±1/

√
3,

xi j
w w

i
m

i

wj

jslope  ψ = w  - w 

L = a χe
L /2 L /2e e

Fig. 14 Variable coefficient variation over element

compute αM there, and use those in the two-point Gauss
quadrature. In the numerical experiments, however, the re-
duced integration FICM1 performed consistently better than
FICM2, even after the foregoing refinement was incorpo-
rated.

The reuse strategy was found to generally work well over
the exponential-behavior portion of the computational do-
main in which w > 0. For oscillatory (Helmholtz) portions
in which w < 0, convergence was erratic unless a very fine
mesh was used. These findings are clearly illustrated in the
plots of Figs. 4, and 5. In particular, Fig. 5b shows that 12 ele-
ments per shortest wavelength are needed to get satisfactory
convergence of FICM1 over the oscillatory region.

7.3 VC-customized templates

In an effort to improve convergence over oscillatory regions,
the Ritz-FIC steplength parameter α was allowed to be a
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Fig. 15 Convergence study of variable coefficient ODE u′′ = −3000 x u with a = 2, Dirichlet boundary conditions: u(−1) = 25 and u(1) = −4.
Results shown for 8, 16, 32 and 64 elements, nodally exact templates of Tables 6 and 7 plus CR

function of x : α = α(x), and matching with the modified
VC equation attempted. However, no matching was found.

Gradually it was realized was that a single steplength
parameter was insufficient, and the more general framework
of templates introduced in Sect. 6 was necessary. The devel-
opments are lengthy and only the final results are reported.
Three useful template instances customized to the VC case
are listed in Tables 7 and 8. Model NELVC is nodally ex-
act for linearly varying coefficient. (It is not known whether
NELVC is the only nodally exact model for this case). One
drawback of NELVC, however, is that its template parameters
are expressed in terms of Airy functions and their x-deriv-
atives. These may be difficult to evaluate unless appropri-
ate libraries are available. The other two template instances:
MNECC and CUBVC, generally produce better results than
those in Tables 5 and 6 for the same mesh, although they are
not nodally exact.

7.4 Numerical results for variable coefficients

The test BVP is Eq. 9, i.e. u′′ = −750 x u, a = 2, u(−1) =
25 and u(1) = −4. Consequently w = −750 x a2 =
−3000 x varies from 3000 on the left to −3000 at the right,
and ψ = −6000. Results for meshes with 8 through 64 ele-
ments are presented in Figs. 15 and 16.

Figure 15 collects results for the four constant-coefficient
nodally exact models of Tables 5, and 6: FICM1, FICM2,
HHH and NECC, plus Conventional Ritz (CR). All models
perform reasonably well in the exponential region x < 0,
and capture the boundary layer near x = −1 well as the

mesh is refined. In the oscillatory region x > 0 three models:
FICM1, NECC and HHH, start to converge satisfactorily at
32 elements, and agree well with the exact solution at 64 ele-
ments. The other two models: CR and FICM2, display erratic
behavior throughout; in fact convergence was noticeable only
on using 256 elements or more.

Figure 16 collects results for the three VC-customized
template instances of Tables 7 and 8: MNECC, CUBVC and
NELVC. Again the exponential side is accurately captured
even for the coarsest mesh. NELVC is of course nodally
exact, and its only deficiency is the intra-element variation.
The other two models begin to display nodal convergence
at 16 elements, even near x = 1, and can hardly be distin-
guished from NELVC at the plot scale for 32 and 64 ele-
ments. MNECC performs surprisingly well considering the
simplicity of its template signature, given in Table 8.

8 Conclusions

This article has presented a synthesis of three techniques:
FIC, variational Ritz and modified differential equations. The
major new contributions are:

1. The FIC approach to functional modification. This per-
mits effective stabilization of the diffusion–absorption
problem while staying within the ordinary Ritz frame-
work of finite elements. No separate choice of trial and
weight functions is necessary.

2. The use of the modified equation (MoDE) approach to
find a value of the stabilization parameter that is nodally
exact for all values of the absorption-to-diffusion ratio,
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Fig. 16 Convergence study of variable coefficient ODE u′′ = −3000 x u with a = 2, Dirichlet boundary conditions: u(−1) = 25 and u(1) = −4.
Results shown for 8, 16, 32 and 64 elements, and templates of Tables 8 and 9

including negative values that morph the original ODE
into the Helmholtz equation.

One surprise was the discovery that nodally exact discret-
izations for the constant coefficient case are not unique,
which explains variants in the published literature. With the
introduction of templates as described in Sect. 6, all such in-
stances can be characterized once and for all. Templates also
allowed the variable coefficient case to be tamed, although
uniqueness remains an open question.

The chief attraction of the modified equation approach
is that availability of exact solutions of the source ODE
is not required to construct accurate discretizations. This
feature is important for application of the method in two
and three dimensions. For the one-dimensional problem dis-
cussed here, nodally exact discretization can be also obtained
by patch matching as illustrated in Sect. 5.6.

The logical extension of the present combination of meth-
ods is the study of two- and three-dimensional space discret-
izations by considering regular finite element patches. Since
exact solutions for such problems are rarely available, the
modified equation method appears to be a promising choice
for improving nodal solutions over fixed meshes. The Ritz
ingredient, however, may have to be dropped in problems,
such as advection, that are not easily formulated in a varia-
tional framework

Appendix A Processing modified equations

This Appendix presents two mathematical procedures that
find application in the modified equation method. Techni-

cally the most difficult operation in the process of Fig. 3 is
passing from the infinite order modified equation (IOMoDE)
to a finite order one (FOMoDE). There is no universal method
for doing this reduction because the process involves identi-
fication of series. Case by case is the rule. Nonetheless there
are some differential equations of mathematical physics that
naturally lead to Toeplitz matrix forms. If this happens, an
array of powerful techniques is available. This is illustrated
by an example that conveys the flavor of the method as well
as finding applications in the matching procedures for nodal
exactness of Sects. 5 and 6.

A.1 Reduction by series identification

Consider the homogeneous, even-derivative, infinite-order
ODE in the dependent variable u(x):

− μ

2a2 u(x)+ 1

2!u
′′(x)+ a2χ2

4! u′′′′(x)+ a4χ4

6! u′′′′′′(x)

+ · · · = 0, a > 0, μ �= 0, 0 < χ ≤ 1. (55)

Here μ and χ are dimensionless real parameters whereas a,
which is a characteristic problem dimension, has dimension
of length. The reduction to finite order can be obtained by a
variant of Warming and Hyett’s [46] derivative elimination
procedure, Differentiate (55) 2(n − 1) times (n = 1, 2, . . .)
with respect to x while discarding all odd derivatives. Trun-
cate to the same level in χ , and set up a linear system in
the even derivatives u′′, u′′′′, . . .. The configuration of the
elimination system is illustrated for n = 4:
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Fig. 17 Plot of the modulus
√

g2
r + g2

i of generating function (64) for {μ = 1/2, a = 1, χ = 1/4}, showing the only zero at x ≈ 0.4998, y = 0
and the convergence radius R

⎡

⎢
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a2χ2
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0 0 − 1

2μa−2 1
2!

⎤

⎥
⎥⎥
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⎦

⎡

⎢
⎣

u′′
u′′′′
u′′′′′′
u′′′′′′′′

⎤

⎥
⎦

=
⎡

⎢
⎣

1
2 a−2μ u

0
0
0

⎤

⎥
⎦ . (56)

The coefficient matrix of this system is Toeplitz and Hessem-
berg but not Hermitian. This can be solved for u′′ to yield a
truncated FOMoDE. Solving Eq. 56 and expanding in Taylor
series gives

u′′ = 56μ(360 + 60λ+ λ2) u

20160 + 5040λ+ 252λ2 + λ3

= μ

(
1 − 1

12
λ+ 1

90
λ2 + · · ·

)
u. (57)

whereλ = a2χ2μ. Increasing n, the coefficients of the power
series in λ are found to be generated by the recursion c1 = 1,
ck+1 = − 1

2 k2ck/[(k+1)(2k+1)], k ≥ 1, which produces the
sequence {1,−1/12, 1/90,−1/560, 1/3150,−1/16632,
. . .}. The generating function [46] can be found by Mathem-
atica’s package RSolve by entering «DiscreteMath‘RSolve‘;
g=GeneratingFunction [a[k+1]==–k*k/(2*(k+1)*(2*k+1))*
a[k], a[1]==1, a[k],k,λ]; Print[g]. The answer may be veri-
fied by Print [Series[g,{ λ,0,8 }]. The result is

4

λ

(

arcsinh

√
λ

2

)2

= 1 − λ

12
+λ

2

90
− λ3

560
+ λ4

3150
− λ5

16632

+ λ6

84084
− λ7

411840
+ · · · (58)

This yields the second-order FOMoDE

u′′= 4

a2χ2

(

arcsinh

√
λ

2

)2

u= 4

a2χ2

(
arcsinh

χ
√
μ

2

)2

u.

(59)

Suppose that the original ODE is that of the model BVP
Eq. 15 : u′′ = (w/a2) u, with constant w. For nodal exact-
ness, w = (4/χ2)

(
arcsinh( 1

2χ
√
μ

)2. If μ is the free param-
eter, solving for it gives

μ = 4

χ2

(
sinh

χ
√
w

2

)2

= 2
(

cosh(χ
√
w)− 1

)

χ2 . (60)

This is used in Sect. 5.4 to produce Eq. 36. In the forego-
ing analysis no term of the Eqs. 55 or 59 is assumed to be
small. The procedure for handling a forcing term f (x) fol-
lows essentially the same technique.

Occasionally it is useful to recover higher derivatives in
terms of u. This is done by repeated differentiation of the FO-
MoDE. For this example, if u′′ = C u, then u′′′′ = C u′′ =
C2 u, and likewise for higher derivatives.

A.2 Reduction by a theorem of Muir

The construction of Eq. 59 has a heuristic flavor: it relies
on recognizing a series. A more direct derivation that how-
ever requires more advanced mathematical tools, is presented
here. The method relies on the following theorem on deter-
minant recurrences [ 21 , p. 704]. Suppose that the smooth
generating function g(z), where z is complex, has the formal
Taylor series a0 +a1 z +a2 z2 +· · · at z = 0. The reciprocal
1/g(z) has the formal expansion

1

g(z)
= 1

a0 + a1z + a2z2 + a3z3 + · · ·
= A0 − A1z + A2z2 − A3z3 + · · · , a0 �= 0, (61)

Then the Toeplitz determinants formed with the ai coeffi-
cients satisfy

A1 = a−1
0 |a1| ,

A2 = a−2
0

∣
∣∣
∣
a1 a2
a0 a1

∣
∣∣
∣ ,

A3 = a−3
0

∣
∣∣∣
∣∣

a1 a2 a3
a0 a1 a2
0 a0 a1

∣
∣∣∣
∣∣
, A4 = a−4

0

∣
∣∣
∣∣
∣∣

a1 a2 a3 a4
a0 a1 a2 a3
0 a0 a1 a2
0 0 a0 a1

∣
∣∣
∣∣
∣∣
, . . . (62)
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with A0 = 1/a0. Now the determinants that appear in the
truncated Toeplitz n × n matrices in the derivative elimina-
tion process, exemplified by Eq. 56 for n = 4, have the form

A1 =
∣
∣∣
∣

1

2!
∣
∣∣
∣ ,

A2 =
∣∣
∣∣
∣

1
2!

a2χ2

4!
− 1

2μa−2 1
2!

∣∣
∣∣
∣
,

A3 =

∣
∣∣
∣∣
∣∣
∣

1
2!

a2χ2

4!
a4χ4

6!
− 1

2μa−2 1
2!

a2χ2

4!
0 − 1

2μa−2 1
2!

∣
∣∣
∣∣
∣∣
∣

, . . . (63)

The nth truncated-Toeplitz approximation to the FOMoDE
(n > 1) is u′′ = Cn u, with Cn = An−1/An . If the series
Eq. 61 has radius of convergence R, then Cn → 1/R as n →
∞. From Eq. 61 through Eq. 63 one obtains by inspection

a2χ2 g(z) = cosh(aχ
√

z)− (1 + 1
2μχ

2). (64)

The radius of convergence of 1/g(z) is the distance from
z = 0 to its closest pole, or what is the same, to the
zero of smallest modulus of g(z). As pictured in Fig. 17,
the function g(z) with z = x + iy, has a single zero
x = R on the real line y = 0. This is obtained by solv-
ing g(R) = 0 or, equivalently, cosh(aχ

√
R) = 1+1/2μχ2,

whence aχ
√

R = arccosh(1 + 1/2μχ2). See Fig. 17 for
a geometric interpretation. For μ > 0 this is equivalent to
R = 4a−2χ−2

(
arcsinh(1/2χ

√
μ)

)2, which leads to the same

solution: u′′ = Ru = 4a−2χ−2
(
arcsinh(1/2χ

√
μ)

)2 found
in Eq. 59. This method bypasses determinant expansions and
series identification, but is restricted to Toeplitz-Hessemberg
matrices.
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