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Abstract. Accurate dynamic simulations of 3D fiber-reinforced materials in lightweight struc-
tures motivate our research activities. In order to accomplish this, the material reinforcement
is performed by fiber rovings with a separate bending stiffness, which can be modelled by a
second-order gradient of the deformation mapping (see Reference [10]). With an independent
field for the gradient of the right Cauchy-Green tensor, we extend the thermoelastic Cauchy
continuum for fiber-matrix composites with single fibers. In addition, we use accurate higher-
order energy-momentum schemes in combination with mixed finite element methods to obtain
numerically stable long-term dynamic simulations and locking free meshes. Therefore, we in-
troduce additional independent fields of well-known as well as new mixed finite elements within
a variational-based space-time finite element method and adapt it to the new material formu-
lation. We use Cook’s cantilever beam as representative numerical example. We primarily
analyze the influence of the fiber bending stiffness as well as the spatial and time convergence
up to cubic order, but also look at the influence of Fourier’s heat conduction in the matrix and
fiber families.

1 CONTINUUM MODEL

As continuum model, we consider an anisotropic material with the fiber roving direction aaa0,
moving in the Euclidean space Rndim with the constant ambient temperature Θ∞. The strain
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energy function of the material with a thermoelastic matrix and fiber roving is given by

Ψ(CCC,Θ,aaa0) = ΨM(CCC,Θ)+ΨF(CCC,Θ,aaa0)+Ψ
X
HOG(. . . ,aaa0), (1)

which is split into a matrix part ΨM an fiber roving part ΨF and an higher order gradient part
ΨX

HOG. Here FFF define the deformation gradient, CCC = FFFT FFF define the right Cauchy-Green tensor
and Θ define the absolute temperature. With the volume dilatation J(CCC) = det[FFF ] =

√
det[CCC],

we assume the specific dependencies

ΨM(CCC,J,Θ) = Ψ
iso
M (CCC,J)+Ψ

vol
M (J)+Ψ

cap
M (Θ)+Ψ

coup
M (Θ,J) (2)

ΨF(CCC,Θ,aaa0, . . .) = Ψ
ela
F (CCC,aaa0)+Ψ

cap
F (Θ)+Ψ

coup
F (Θ,CCC) (3)

The elastic part of the matrix function ΨM is split into an isochoric part Ψiso
M and a volumetric

part Ψvol
M . We subdivided the thermo-elastic free energy of the matrix material into a heat

capacity part Ψ
cap
M and the part of the thermo-mechanical coupling effect Ψ

coup
M , where βM ist

the coefficient of linear thermal expansion for the matrix. The thermal part of the fiber roving
free energy is separated in the same manner. We consider a heat capacity function Ψ

cap
F and

the function of the thermo-mechanical coupling Ψ
coup
F with the coefficients of linear thermal

expansion βF, the structural tensor MMM = aaa0⊗ aaa0 and the fourth invariant I4 = tr[CCCMMM]. Both
coupling parts are given by

Ψ
coup
M =−2ndimβM(Θ−Θ∞)J

∂Ψvol
M (J)
∂J

Ψ
coup
F =−2βF(Θ−Θ∞)

√
I4

∂Ψela
F (I4, . . .)

∂I4
(4)

By the higher order gardient part ΨX
HOG we distinguish two different variants. One concerning

the gradient of the deformation gradient FFF and one concerning the gradient of the right Cauchy-
Green tensor CCC. This part capture the bending of the fiber roving, during Ψela

F considers the
fiber roving stretch. The formulation regarding FFF is shown in Reference [10]. Here the sixth
and seventh invariants are given by

IF
6 (FFF ,∇FFF) = κκκ

F
0 ·κκκF

0 IF
7 (FFF ,∇FFF ,CCC) = κκκ

F
0 ·CCC ·κκκF

0 κκκ
F
0 = ΛΛΛ

F ·aaa0 (5)

with the referential representation

ΛΛΛ
F(FFF ,∇FFF) = FFFT ·aaa0 ·∇FFFT (6)

For the seventh invariant, it is important to note here that I7 is depend on CCC as well as ΛΛΛ. Thus,
for the strain energy function of the higher order gradient, the dependencies are

Ψ
F
HOG(FFF ,∇FFF ,CCC,aaa0) = f (IF

6 (FFF ,∇FFF), IF
7 (FFF ,∇FFF ,CCC)) (7)

Ψ
F
HOG(ΛΛΛ

F,CCC,aaa0) = f̂ (IF
6 (ΛΛΛ

F), IF
7 (ΛΛΛ

F,CCC)) (8)

In Reference [11] a variant of the higher order gradient formulation in CCC is shown. From this
we derive the following formula for the sixth invariant

IC
6 (∇CCC) = (aaa0 ·∇CCC ·aaa0) · (aaa0 ·∇CCC ·aaa0) (9)
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If we now set

ΛΛΛ
C(∇CCC) = aaa0 ·∇CCC (10)

we get the same expressions for the invariants as for FFF , given by

IC
6 (∇CCC) = κκκ

C
0 ·κκκC

0 IC
7 (CCC,∇CCC) = κκκ

C
0 ·CCC ·κκκC

0 κκκ
C
0 = ΛΛΛ

C ·aaa0 (11)

and the final dependencies read

Ψ
C
HOG(∇CCC,CCC,aaa0) = f (IC

6 (∇CCC), IC
7 (∇CCC,CCC)) (12)

Ψ
C
HOG(ΛΛΛ

C,CCC,aaa0) = f̂ (IC
6 (ΛΛΛ

C), IC
7 (ΛΛΛ

C,CCC)) (13)

2 FINITE ELEMENT FORMULATION

The finite element discretization follows from the mixed principle of virtual power (see Ref-
erence [4, 5]). Here, we need the complete internal energy, which consists of the assumed
temperature field Θ̃, the entropy density field η as the corresponding Lagrange multiplier, the
superimposed stress tensor S̃SS to derive an energy–momentum scheme, an independent mixed
field C̃CC and the corresponding Lagrangian multiplier SSS. The internal energy functional reads

Π
int =

∫
B0

ΨM(C̃CC, J̃,Θ)dV +
∫

B0

ΨF(C̃CCA,Θ)dV +
∫

B0

1
2

SSS : (CCC(qqq)−C̃CC)dV +
∫

B0

S̃SS : C̃CCdV

+
∫

B0

η (Θ− Θ̃)dV +
∫

B0

Ψ
X
HOG(ΛΛΛ

X,C̃CCA,aaa0)dV +Π
X
HOG +

∫
B0

H̃HH : Λ̃ΛΛdV

+
∫

B0

p (J(C̃CC)− J̃)dV +
∫

B0

p̃J̃dV +
∫

B0

1
2

SSSA : (C̃CC−C̃CCA)dV +
∫

B0

S̃SSA : C̃CCAdV (14)

To avoid locking effects we introduce an independent volume dilatation J̃ (see Reference [1])
and the field C̃CCA (see Reference [2]) for the anisotropic part ΨF. Here, the Lagrange multiplier
p plays the role of the hydrostatic pressure and the Lagrange multiplier SSSA represents the stress
tensor of the anisotropic part. To obtain an energy–momentum scheme, we also introduce the
superimposed pressure p̃ and superimposed stress tensor S̃SSA. For the higher order gradient
fomulation with respect to FFF , we introduce an independent field for FFF , for ∇FFF and for ΛΛΛF

Π
F
HOG =

∫
B0

P̃PP : (FFF− F̃FF)dV +
∫

B0

BBB�3 (∇(F̃FF)− Γ̃ΓΓ)dV +
∫

B0

HHH : (ΛΛΛF(F̃FF , Γ̃ΓΓ)− Λ̃ΛΛ)dV (15)

By the independent definition of F̃FF and Γ̃ΓΓ it is later in the discrete setting not necessary to
construct a double gradient of the spatial shape functions. The introduction of Λ̃ΛΛ is necessary to
have an objective quantity for the construction of an energy–momentum scheme. For the higher
order gradient fomulation with respect to CCC, we build the functional in the same manner

Π
C
HOG =

∫
B0

1
2

SSSG : (C̃CC−C̃CCG)+
∫

B0

BBB�3 (∇(C̃CCG)− Γ̃ΓΓ)dV +
∫

B0

HHH : (ΛΛΛ(Γ̃ΓΓ)− Λ̃ΛΛ)dV (16)
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Here, we introduce an independent field for CCC, for ∇CCC and for ΛΛΛC. The further field with respect
to CCC is introduced because SSSG is assumed to be asymmetric, and therefore no symmetries in the
voigt notation are used later in the programming. Furthermore, it can be seen that ΛΛΛ depends
only on Γ̃ΓΓ, which later leads to a less complex weak form. For both formulations we introduce
an superimposed field H̃HH to obtain an energy–momentum scheme, as well. The superimposed
fields (see Reference [5] and [4]) are given by

S̃SS =
Ψ̃(1)− Ψ̃(0)−

∫ ∂Ψiso
M

∂C̃CC
: ˙̃CCC−

∫ ∂(Ψ
cap
M +Ψ

cap
F )

∂Θ
Θ̇

˙̃CCC : ˙̃CCC
˙̃CCC (17)

p̃ =
Ψ̃(1)− Ψ̃(0)−

∫ ∂(Ψiso
M +Ψvol

M )

∂J̃
˙̃J−

∫ ∂Ψ
coup
M

∂Θ
Θ̇

˙̃J ˙̃J
˙̃J (18)

S̃SSA =
Ψ̃(1)− Ψ̃(0)−

∫ ∂(Ψela
F +ΨX

HOG)

∂C̃CCA
: ˙̃CCCA−

∫ ∂Ψ
coup
F

∂Θ
Θ̇

˙̃CCCA : ˙̃CCCA

˙̃CCCA (19)

H̃HH =
Ψ̃(1)− Ψ̃(0)−

∫ ∂ΨX
HOG

∂Λ̃ΛΛ
: ˙̃

ΛΛΛ

˙̃
ΛΛΛ : ˙̃

ΛΛΛ

˙̃
ΛΛΛ (20)

For the mixed principle of virtual power, we also need the kinetic power, given by

Ṫ =
∫

B0

(ρ0vvv− ppp) · v̇vvdV +
∫

B0

ṗpp · (q̇qq− vvv)dV +
∫

B0

ppp · q̈qqdV (21)

with the velocity vvv, the linear momentum ppp and the mass density ρ0. As external power, we
assume

Π̇
ext =−

∫
∂B0

λλλq · (q̇qq− q̇qqref)dA−
∫

B0

ρ0ggg · q̇qqdV +
∫

B0

∇

(
Θ̃

Θ

)
·QQQdV (22)

QQQ =−
[

J(C̃CCA)
kF− kM

C̃CCA : MMM
MMM+ kJ(C̃CC)C̃CC−1

]
∇Θ (23)

In this case, QQQ denotes the Piola heat flux vector derived from Duhamel’s law (see Refer-
ence [5]), where kM and kF denotes the material conductivity coefficients for matrix and fiber
roving. Here, q̇qqref denotes the time evolution of a prescribed boundary displacement with the
Lagrange multiplier λλλq. The vector ggg denotes the gravitational force. The total energy balance
Ḣ thus reads

Ḣ = Ṫ (q̇qq, v̇vv, ṗpp)+ Π̇
ext(q̇qq,λλλq,Θ̃,Θ̇)

+ Π̇
int(q̇qq,Θ̃, η̇, ˙̃CCC, ˙̃J, ˙̃CCCA,SSS, p,SSSA,

˙̃
ΓΓΓ, ˙̃

ΛΛΛ,BBB,HHH, . . .) (24)

The superimposed fields (S̃SS,p̃,S̃SSA,H̃HH) as well as the Piola heat flux vector QQQ are defined as param-
eter fields and not as arguments. By variation with respect to the variables in the argument of
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Eqn. (24), that is
∫

T δ∗Ḣ dt ≡
∫

T [δ∗Ṫ +δ∗Π̇
ext +δ∗Π̇

int]dt = 0, we obtain the total weak forms.
First, the weak forms which occur in both variants of the higher order gradient formulation read∫

T

∫
B0

[
1
ρ0

ppp− q̇qq
]
·δv̇vvdV dt = 0

∫
T

∫
∂B0

[
−λλλq

]
·δq̇qqdAdt = 0

∫
T

∫
∂B0

[
˙̃qqq− q̇qqref(t)

]
·δλλλqdAdt = 0∫

T

∫
B0

[
η+

∂Ψ

∂Θ

]
δΘ̇dV dt = 0

∫
T

∫
B0

[
Div[QQQ]

Θ
+ η̇

]
δΘ̃dV dt = 0∫

T

∫
B0

1
2

[
˙̃CCC−ĊCC

]
: δSSSdV dt = 0

∫
T

∫
B0

[
Θ− Θ̃

]
δη̇dV dt = 0∫

T

∫
B0

[
˙̃J− J̇

]
δpdV dt = 0

∫
T

∫
B0

[
p−
[

∂Ψ

∂J̃
+ p̃
]]

δ
˙̃JdV dt = 0∫

T

∫
B0

1
2

[
˙̃CCCA− ˙̃CCC

]
: δSSSAdV dt = 0

∫
T

∫
B0

[
1
2

SSSA−
[

∂Ψ

∂C̃CCA
+ S̃SSA

]]
: δ

˙̃CCCAdV dt = 0∫
T

∫
B0

[
1
2

SSS−
(

∂Ψ

∂C̃CC
+

p
2J(C̃CC)

cof[C̃CC]+
1
2

SSSA + S̃SS
)]

: δ
˙̃CCCdV dt = 0∫

T

∫
B0

[
ΛΛΛ

X(. . .)− Λ̃ΛΛ

]
: δ∗HHHdV dt = 0

∫
T

∫
B0

[
HHH−

[
∂Ψ

∂Λ̃
+ H̃HH

]]
: δ∗

˙̃
ΛΛΛdV dt = 0

∫
T

∫
B0

[
BBB−HHH :

∂ΛΛΛ
X

∂
˙̃
ΓΓΓ

]
�3 δ∗

˙̃
ΓΓΓdV dt = 0

The weak forms associated with the higher order gradient formulation in FFF are given by∫
T

∫
B0

[
SSS :

1
2

∂ĊCC
∂q̇qq

+PPP :
∂ḞFF
∂q̇qq
− ṗpp
]
·δ∗q̇qqdV dt = 0

∫
T

∫
B0

[
˙̃FFF− ḞFF

]
: δ∗PPPdV dt = 0

∫
T

∫
B0

[
PPP−

(
HHH :

∂ΛΛΛ
F

∂
˙̃FFF
+BBB�3

∂∇
˙̃FFF

∂
˙̃FFF

)]
: δ∗

˙̃FFFdV dt
∫

T

∫
B0

[
∇( ˙̃FFF)− ˙̃

ΓΓΓ

]
�3 δ∗BBBdV dt = 0

and the weak forms associated with the higher order gradient formulation in CCC take the form∫
T

∫
B0

[
SSS :

1
2

∂ĊCC
∂q̇qq

+SSSG :
1
2

∂ĊCC
∂q̇qq
− ṗpp
]
·δ∗q̇qqdV dt = 0

∫
T

∫
B0

[
˙̃CCC− ˙̃CCCG

]
: δ∗SSSGdV dt = 0

∫
T

∫
B0

[
SSSG−BBB�3

∂∇
˙̃CCCG

∂
˙̃CCCG

]
: δ∗

˙̃CCCGdV dt
∫

T

∫
B0

[
∇( ˙̃CCCG)− ˙̃

ΓΓΓ

]
�3 δ∗BBBdV dt = 0

Obviously, the dependencies for the higher order gradient formulation in CCC are reduced, since
ΛΛΛ

C is dependent only on ∇C̃CCG. Hence, many mixed derivations disappear and the tangent
becomes substantially simpler.

In the last step, we transform the integrals to a reference element and discretize all quantities
over the element in space and time. For the shape functions in space, N, we use Lagrangian
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shape functions (see Reference [3]). For the shape functions in time we use Lagrangian shape
functions as well (see Reference [5]), given by

Mi(α) =
k+1

∏
j=1
j 6=i

α−α j

αi−α j
, 1≤ i≤ k+1 M̃i(α) =

k

∏
j=1
j 6=i

α−α j

αi−α j
,1≤ i≤ k (25)

The time rate variables and mixed fields (qqq,vvv,ppp,Θ̃,Θ,η,C̃CC,C̃CCA,J̃,Γ̃ΓΓ,Λ̃ΛΛ,F̃FF ,C̃CCG) are approximated by

(•)e,h =
k+1

∑
I=1

nno

∑
A=1

MI(α)NA(ξξξ)(•)eA
I

˙(•)e,h
=

1
hn

k+1

∑
I=1

nno

∑
A=1

M′I(α)N
A(ξξξ)(•)eA

I (26)

and the approximation of Lagrangian multipliers and variation fields (λλλq,SSS,SSSA,p,BBB,HHH,PPP,SSSG,δ∗•)
takes the form

(•)e,h =
k

∑
I=1

nno

∑
A=1

M̃INA(•)eA
I (27)

Here, nno is the number of nodes of the spatial discretization and k is the polynomial degree
in time. With the corresponding Gaussian quadrature rule we approximate each integral. We
condense out the resulting formulation at the element level to a displacement and temperature
formulation (see Reference [2]), after eliminating ppp and η. Therefore, all mixed fields, except
qqq and Θ, are discontinuous at the boundaries of spatial elements.

Next, the conservation of angular momentum must be corrected, since the higher gradient for-
mulation results in internal moments. If we follow the procedure described in Reference [6],
we obtain for the formulation in FFF

J n+1− J n =
∫ tn+1

tn

∫
B0

[(
HHH :

∂ΛΛΛ
F

∂
˙̃FFF
+BBB�3

∂∇
˙̃FFF

∂
˙̃FFF

)
× F̃FF

]
dV dt +

∫ tn+1

tn

∫
∂B0

[qqq×λλλq]dAdt

+
∫ tn+1

tn

∫
B0

[qqq×ρ0ggg]dV dt (28)

and for the formulation in CCC

J n+1− J n =
∫ tn+1

tn

∫
B0

[
BBB�3

∂∇
˙̃CCCG

∂
˙̃CCCG
× F̃FF

]
dV dt +

∫ tn+1

tn

∫
∂B0

[qqq×λλλq]dAdt

+
∫ tn+1

tn

∫
B0

[qqq×ρ0ggg]dV dt (29)

We use our In-House Matlab code fEMcon based on the implementation and ideas shown in
Reference [3]. To solve the linear systems of equations we use the Pardiso solver from Refer-
ence [8]. For the assembly procedure we use the fast sparse routine shown in Reference [9].
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3 NUMERICAL EXAMPLES

As numerical example serves a simple cantilever beam which oscillates in a gravitational field.
The geometry, configuration and simulation parameters can be found in Figure 1. The corre-
sponding strain energy functions are

Ψ
iso
M =

ε1

2
(tr[CCC]−3−2ln(J)) Ψ

vol
M =

ε2

2

(
ln(J)2 +(J−1)2

)
Ψ

cap
X = c0

X(1−Θ∞c1
X)(Θ−Θ∞−Θ ln

Θ

Θ∞

)− 1
2

c0
X c1

X(Θ−Θ∞)
2

Ψ
ela
F =

ε3

2
(tr[CCCMMM]−1)2

Ψ
X
HOG = l2 (IX

6
)2

x

y

z

0.15

0.02

0.01

A

ε1 = 0.1e6 βF = 1e−6
ε2 = 100e6 c0

F = 200
kM = 0.1 c1

F = 0.0002
βM = 1e−6 ρ0 = 1000
c0

M = 800 Θ∞ = 300
c1

M = 0.0008 T = 1
ε3 = 0 TOL = 1e−4
kF = 100 g = [0 −2 0]

Figure 1: Geometry, configuration and simulation parameters of the cantilever beam for nel = 24.

The elastic part of the fiber roving Ψela
F can be found in [7] and for the capacitive part the

function Ψ
cap
X in Reference [5] . We use an quadratic serendipity mesh (20 nodes) with nel = 24.

In order to avoid locking we approximate J̃ linear and C̃CCA constant. We introduce a length scale
parameter l2 with c = ε1l2 for the material parameters of ΨX

HOG.
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First we look in Figure 2 at the influence of the different higher order gradient fomulations. We
can see that the ∇FFF formulation is stiffening the bending behavior of the beam (red). But the ∇CCC
formulation also makes this possible, although not to the same level (green). With adjustment
of the material parameters, however, we also obtain similar behavior here (blue). As we can see
in Figure 3, the angular momentum is perfectly preserved in each variant.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

l2 = 0
∇FFF l2 = 10−5

∇CCC l2 = 10−5

∇CCC l2 = 10−4

t

yA
(t
)

Figure 2: Trajectory of point A for the parameters shown in Figure 1 and the different fomrulations and (aaa0)
T =

[1 0 0].

In the next step we set ΨX
HOG = l2IX

6 and analyze the influence of the fiber direction. The fiber
roving direction is specified here via the angle to the x-axis. In Figure 4 we can see the results
for three different angles for ∇FFF . The beam becomes stiffer as the angle increases. If we now
look at Figure 5, we can see that the ∇CCC formulation also shows similar behavior, but with a
much higher influence. Therefore, we reduced the length scale for ∇CCC compared to ∇FFF in order
to obtain simular results.

In the last step we take the ∇CCC formulation and add a fiber roving stretch stiffness Ψela
F . Also

we set ΨX
HOG = l2 (IX

6
)2. The resulting trajectory can be found in Figure 6. As we can see, the

additional formulation increases further the stiffness of the beam. We also can see in Figure 7,
the energy is perfectly preserved for this case. Finally, we look at the v. Mises equivalent stress
σV M and temperature distribution Θ in Figure 7. On the one hand, we observe the typical stress
distribution of a candilever beam with the highest values on the outside, and on the other hand,
we see that the fiber roving with its very high thermal conductivity distributes the heat caused
by the thermo-mechanical coupling to the whole beam.

4 CONCLUSIONS

We could show that a formulation of a higher order gradient based material formulation can
be expressd in terms of the right Cauchy-Green tensor, and achieve similar effects as the for-
mulation based on the deformation gradient. This is a remarkable result, because the former
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

l2 = 0
∇FFF l2 = 10−5

∇CCC l2 = 10−5

∇CCC l2 = 10−4

t

E
rr

or
J/

T
O

L

Figure 3: Error of angular momentum J for the parameters shown in Figure 1 and the different fomrulations and
(aaa0)

T = [1 0 0].

formulation requires considerably less numerical effort. Also, both formulations work in a
thermomechanical context. And we can also show, the higher-order energy-momentum time in-
tegrators conserve energy in all cases. In the next step, we aim to extend these formulations with
viscous dissipation. In addition, we would like to try to formulate the superimposed directly in
terms of ∇CCC and thus achieve a fiber roving independence.

Acknowledgments

The authors thank the ’Deutsche Forschungsgesellschaft (DFG)’ for the financial support of this
work under the grant GR3297/4-2 and GR3297/6-1 as well as Matthias Bartelt (GR 3297/2-2)
for providing the programming basis for the current implementation.

REFERENCES

[1] Simo, J. C., Taylor, R. L., and Pister, K. S. (1985). Variational and projection methods
for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl.
Mech. Engrg., 51(1–3), 177–208. https://doi.org/10.1016/0045-7825(85)90033-7
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