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Abstract. A model order reduction technique in combination with mesh tying is used to efficiently sim-
ulate a large number of different structures that are assembled from a set of substructures. The stiffness
matrices of the substructures are computed separately and assembled into a global stiffness matrix with
tied contact formulation. The computational time can be further decreased by reducing the degrees of
freedom of each substructure with a projection-based model order reduction technique. The precom-
putations to obtain the mode matrices are computationally cheap because they can be carried out on
each substructure separately. For the development and optimization of new construction strategies for
fiber reinforced concrete, a large number of different combinations of the modules have to be tested. The
nonlinear anisotropic material behavior, like the primary directions of orthotropic materials, leads to
parameter-dependent mode matrices. The precomputations can only be done for a relatively small num-
ber of parameters. For all other parameters, the mode matrices have to be adapted with interpolation
methods to obtain an accurate solution .

1 INTRODUCTION

A set of modules can be used to assemble different global structures. The mechanical analysis of these
structures is computationally expensive. Model order reduction (MOR) techniques can be used to reduce
the computational effort by projecting the equations into a lower-dimensional subspace [3] [5]. In this
work, a MOR technique based on proper orthogonal decomposition (POD) is used [11]. In the past,
the POD method has been applied to nonlinear solid mechanics [10] [14] [15]. We combine the MOR
of modules with a tied contact formulation [17]. The stiffness and contact matrices of each module
are projected into the reduced space individually. The global system of equations is then assembled
from these reduced modules. The boundary and contact conditions can be chosen at will and depend
on the assembled global system. In widely used component mode synthesis (CMS) methods like the
Craig-Bampton method internal and interface degrees of freedom (DOF) are distinguished and only the
internal DOFs are reduced. An overview of substructuring in structural dynamics is given in[7].

In this article, we focus on the directional material behavior of fiber-reinforced materials [16], which
leads to parameter-dependent projection and stiffness matrices. These matrices are adapted to any fiber
orientation by interpolation methods. The interpolation of projection matrices requires interpolation
on a tangent space of the Grassmann manifold, which was first applied to reduced-order modeling in
[2]. In [8] the stability of Grassmann interpolations is discussed in the context of parametric MOR
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of mechanical problems with transversely isotropic materials. This interpolation falls into the class
of manifold interpolations, where a general framework of Riemannian computation on manifolds was
shown by Pennec et al. [12]. An overview of parametric MOR is given in [4]. The interpolation of
the reduced system matrices as it is shown in [1] can not be applied in this work because the boundary
conditions are not known beforehand and the projection matrices contain rigid body motions. Therefore,
whole stiffness matrices have to be interpolated. In [9] stiffness matrices are approximated with a Taylor
series expansion. In this work, the singular value decomposition (SVD) is used to reduce the high-
dimensional interpolation to a sum of one-dimensional cubic spline interpolations.

2 REDUCED ORDER MODEL OF SOLID MECHANICS WITH TIED CONTACT

To describe modular systems mechanically, each substructure is described by the balance of linear
momentum with additional contact conditions between different substructures. The balance of linear
momentum of a substructure s in reference configuration reads

div(FFFsSSSs)+ρ
s
0(bbb

s − üuus) = 0 in Ω
s
0,

uuus = ūuus on Γ
s
u,

FFFsSSSs ·NNNs = t̄tts
0 on Γ

s
σ,

(1)

where SSS is the second Piola-Kirchhoff stress tensor, FFF the deformation gradient, ρ0 the density in the
reference configuration, bbb the body force and üuu the acceleration vector. Additionally the tied contact
constraint

uuus = uuur on Γ
s,r
c , with s ̸= r, (2)

has to be fulfilled. It states that the displacements uuu of two bodies on their contact interface Γc are
equal. In the following, only quasi-static processes are considered, such that the acceleration vector üuu is
neglected. The weak form of the above problem reads

g =
ns

∑
s=1

(gs
BLM −gs

c) = 0, (3)

where additional to the weak form of the balance of linear momentum gBLM a contact term gc has to
be considered for every substructure. This contact can be interpreted as the virtual work done by the
tractions ttt acting on the contact interface. The weak forms read

gs
BLM =

∫
Ωs

0

(SSSs : δEEEs −ρ
s
0bbbs ·δuuus)dV −

∫
Γs

0

¯ttts
0 ·δuuudA, (4)

gs
c =

∫
Γs

c

(δuuus)T · tttsdA. (5)

Considering two neighboring substructures, the forces on both sides of the contact surface have to be in
equilibrium, which leads to the relation ttt2 =−ttt1. This can be used to write the contact term as

g1
c +g2

c =
∫

Γ
1,2
c

((δuuu1)T − (δuuu2)T )ttt1dA. (6)

The tied contact constrained is enforced with a penalty parameter ε. With the definitions www1 := uuu1
c −uuu2

c ,
δwww1 := δuuu1 − δuuu2, and ttt1 := εwww1, the contact term is rewritten in a way hat can be discretized by finite
elements
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g1
c +g2

c =
∫

Γ
1,2
c

δwww1
εwww1dA. (7)

The finite element discretization of the weak form leads to the nonlinear system of equations
ns

∑
s=1

RRRs(UUU s(t))+KKKs
cUUU

s(t) =
ns

∑
s=1

PPPs(UUU s(t)), (8)

where RRR(UUU(t)) and PPP(UUU(t)) are the internal and external force vector respectively. The contact part of
the equations is linear and contained in the matrix KKKc. For further information about tied contact finite
element formulations the reader is kindly referred to [13].

In this model order reduction technique each substructure is reduced individually by a projection
matrix ΨΨΨs. The n-dimensional displacement vector UUU s of a substructure s is approximated by a m-
dimensional reduced displacement vector UUU s

red with

UUU s ≈ ΨΨΨ
sUUU s

red. (9)

The m columns of the projection matrix ΨΨΨ
s form an orthonormal basis in which the displacement vector

UUU s is searched. These basis vectors are referred to as the modes of the substructure. The computation of
projection matrices is explained in section 4.1.

Inserting this relation (eq. (9)) into eq. (8) and applying a Galerkin projection leads to the reduced
order model

ns

∑
s=1

(
ΨΨΨ

sT RRRs(ΨΨΨsUUU s
red)+ΨΨΨ

sT KKKs
cΨΨΨ

sUUU s
red
)
=

ns

∑
s=1

ΨΨΨ
sT PPPs(ΨΨΨsUUU s

red). (10)

This nonlinear reduced system is typically solved with the Newton-Raphson method. For the special
case of linear mechanics it reduces further to

ns

∑
s=1

ΨΨΨ
sT KKKs

ΨΨΨ
sUUU s

red +ΨΨΨ
sT KKKs

cΨΨΨ
sUUU s

red =
ns

∑
s=1

ΨΨΨ
sT PPPs, (11)

where the residual vector Rs is replaced by the product of a stiffness matrix and a displacement vector
KKKsUUU s. With Dirichlet boundary conditions this system of equations can be solved.

3 MODEL ORDER REDUCTION FOR ANISOTROPIC MATERIALS

In this article, the modules are made of fiber-reinforced materials, and therefore behave transversely
isotropic. The fiber orientation of each module is not known before the assembly of the global system
and shall be chosen arbitrarily. The mechanical behavior of a substructure depends on the chosen fiber
direction, which can be expressed with the fiber angle α. Therefore, the projection matrix ΨΨΨ

s and the
stiffness matrix KKKs or force vector RRRs depend on the fiber angle parameter α. For the linear case this
leads to the parameter dependent reduced order model

ns

∑
s=1

(ΨΨΨs(α))T KKKs(α)ΨΨΨs(α)UUU s
red +(ΨΨΨs(α))T KKKs

c(α)ΨΨΨ
s(α)UUU s

red =
ns

∑
s=1

(ΨΨΨs(α))T PPPs. (12)

To avoid expensive precomputations for every new value of the parameter α the parameter dependent
matrices ΨΨΨ

s(α) and KKKs(α) have to be interpolated. The projection matrices are interpolated on the
tangent space of a Grassmann manifold, with the method first introduced in [2], and the stiffness matrices
are interpolated with a method based on singular value decomposition.
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3.1 Transverse isotropic material model

The material model used in this work is the transverse isotropic model from Reese et al. [16]. To
account for the anisotropy a structural tensor is defined

MMM := nnn⊗nnn, (13)

where nnn is the normal vector pointing into the fiber direction. The Helmholtz free energy consists then
of an isotropic and an anisotropic part

Ψ = Ψ(CCC,MMM) = Ψiso(CCC)+Ψani(CCC,MMM), (14)

where the isotropic part only depends on the right Cauchy-Green strain tensor CCC and the anisotropic
part additionally depends on the structural tensor MMM. The material model is formulated in terms of the
invariants of the right Cauchy-Green tensor

I1 = tr(CCC), I2 =
1
2
(I2

1 − tr(CCC2)), I3 = det(CCC), (15)

and two additional invariants depending on the structural tensors MMM

I4 =CCC : MMM, I5 =CCC2 : MMM. (16)

The parts of the Helmholtz free energy are

Ψiso = kiso
1 (I1 −3)2 + kiso

2 (I2 −3−2(I1 −3)) (17)

Ψani = kani
3 (I4 −1)2 + kani

4 (I5 −1−4(I4 −1))+ kcoup
5 (I1 −3)(I4 −1). (18)

Since this material model is linear the second Piola Kirchhoff stress is computed with

SSS =
∂Ψ

∂EEE
= C : EEE = (Ciso +Cani) : EEE, (19)

where EEE is the Green-Lagrange strain tensor. The elasticity tensor consists of an isotropic and an
anisotropic part that read

Ciso = (8kiso
1 +4kiso

2 )III ⊗ III −4kiso
1 I , (20)

Cani = 8kani
3 MMM⊗MMM+4kani

4 A +4kcoup
5 (III ⊗MMM+MMM⊗ III), (21)

where I is the fourth order identity tensor and A is a fourth order tensor with the coefficients

Ai jkl =
1
2
(δ jkMil +δikM jl +δilM jk +δ jlMik). (22)

3.2 Interpolation on Grassmann manifolds

Two obtain a projection matrix Ψ̄ΨΨ for a target parameter ᾱ we interpolate on the geodesic line on the
Grassmann manifold between neighboring projection matrices. An n×m-dimensional POD-base ΨΨΨ non
uniquely defines a point Y in the Grassmann manifold G(m,n). All projection matrices have the same
number of modes and are on the same Grassmann manifold.

To illustrate the interpolation scheme, we consider two points Y0 and Y1 represented by the matrices
ΨΨΨ0 and ΨΨΨ1 with their corresponding parameters α1 and α2. The second point is mapped into the tangent
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space TY0 of the origin point Y0 by a logarithmic mapping X1 = LogY0
(Y1). For Grassmann manifolds

this logarithmic mapping is defined as

ΨΨΨ1(ΨΨΨ
T
0 ΨΨΨ1)

−1 −ΨΨΨ0 =WWW 1ΛΛΛ1VVV 1 (thin SVD)

ΓΓΓ1 =WWW 1 arctan(ΛΛΛ1)VVV 1
(23)

On this tangent space the matrices can be interpolated with any interpolation method. For this interpo-
lation between two points a linear interpolation is used

Γ̄ΓΓ =
ᾱ−α0

α1 −α0
ΓΓΓ, (24)

where Γ̄ΓΓ represents the interpolated point X̄ on the tangent space. This point is mapped back to the
Grassmann manifold with an exponential mapping Ȳ = ExpY0

(X̄ ). The exponential mapping is defined
as

Γ̄ΓΓ = W̄WW Λ̄ΛΛV̄VV (thin SVD)

Ψ̄ΨΨ = ΨΨΨ0V̄VV cos(Λ̄ΛΛ)+ŪUU sin(Λ̄ΛΛ),
(25)

where Ψ̄ΨΨ is the interpolated projection matrix for the parameter ᾱ.

3.3 Higher order interpolation of matrices

In our method, it is required to accurately interpolate between stiffness matrices and points on the
tangent space of the Grassmann manifold. The singular value decomposition enables the reduction of
matrix interpolation to a sum of one-dimensional interpolations. For the one-dimensional interpolations,
common techniques like cubic spline interpolation can be used. For that, all matrices are converted to a
column vector and written into a matrix, which is then multiplicatively split with a SVD

AAA = [kkk1,kkk2, . . . ,kkkn] =WWWΛΛΛVVV (thin SVD). (26)

Since the rows in AAA correspond to the parameter α the interpolation can be performed in each mode of VVV .
For a target parameter ᾱ this interpolation in VVV leads to a interpolated vector v̄vv. The interpolated matrix
can then be obtained by multiplying v̄vv with ΛΛΛ and WWW

k̄kk =WWWΛΛΛv̄vv (27)

and reshaping the resulting vector k̄kk to the matrix format. For the interpolation of stiffness matrices, this
method has the advantage that the size of the data is compressed. Instead of all precomputed stiffness
matrices only the truncated SVD matrices WWW , ΛΛΛ, and VVV have to be saved.

4 NUMERICAL EXAMPLES

4.1 Precomputations

The projection matrices of each substructure are computed with the method of snapshots (cf. [6]).
In this method displacement vectors of a module are collected as columns of the snapshot-matrix and
decomposed into three matrices by a singular value decomposition

SSSSnap = [uuu1,uuu2, . . . ,uuuk] = ΦΦΦΛΛΛϒϒϒ (SVD). (28)
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Figure 1: Plot of the first three left modes of stiffness matrices over the fiber angle α. The points are the values in
the mode vector and the lines are their interpolation with cubic splines.

Figure 2: Illustration of boundary conditions for the snapshot computations of the square module. The same
snapshots are computed for all four sides of the Dirichlet boundary condition.
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Figure 3: Illustration of boundary conditions for the snapshot computations of the rectangular module. The same
snapshots are computed for the Dirichlet boundary conditions on the opposite side.

The projection matrix is obtained by taking only the first m columns of the matrix ΦΦΦ into account

ΨΨΨ = [Φ1,Φ2, . . . ,Φm]. (29)

To compute projection matrices that work for the modular model order reduction the snapshots have to
be representative of the mechanical behavior of the module.

In this work, two exemplary modules are considered. The first module is a square discretized with
7442 elements, and the second module is a rectangle with 12322 elements. For both modules, the projec-
tion matrices have to be computed for different values of the fiber angle α. For the square, the projection
matrices are computed at angles between 0◦ and 90◦ in steps of 10◦. The projection matrices of the
rectangular module are computed in the range between 0◦ and 180◦ to account for coordinate transfor-
mations when the module is rotated. The snapshots of each module contain snapshots that are generated
with two methods. In the first method, snapshots are computed by representative load cases and clamping
boundary conditions on one side of the module. This load cases are illustrated in fig. 2 for the square,
and fig. 3 for the rectangular module. The load cases of the square are computed for clamping of each
side of the module in the same way as it is illustrated in fig. 2 for clamping of the bottom side. For
the precomputations of the rectangle, the load cases shown in fig. 3 are computed for clamp boundary
conditions on the left and on the right side.

Additionally, snapshots for contact surface deformation are needed. First, all degrees of freedom
on possible interfaces are fixed, then a unit displacement is applied to each of the degrees of freedom
separately. The resulting displacement vectors are stored as columns in a matrix analogously to the
snapshot matrix. The dominant POD modes of this matrix are used as snapshots for the projection
matrix.

Furthermore, snapshots with rigid body deformations like rotation and translation are needed.
The resulting projection matrix of the square has 52 modes, and the projection matrix of the rectangle

has 40 modes. This relatively large number of modes is necessary to use the modules with different
contact- and loading conditions. The mode-matrix for the interpolation of the stiffness matrices contains
five modes for both modules.
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4.2 Example 1: Uniform fiber orientation

Figure 4: Sketch of the modular system for the first numerical example. The fiber direction in each module is the
same. The red arrows illustrate the Neumann boundary conditions. The degrees of freedom at the bottom are fixed
with Dirichlet boundary conditions.

In the first example, the quality of the solution with the reduced-order model is analyzed over the whole
parameter range. The geometry of the system with its Dirichlet- and Neumann boundary conditions, is
shown in fig. 4. The structure is made of two rectangular and one square module, where one of the
rectangles is rotated by 90◦. The fiber orientation in each module is the same. For each fiber direction,
three solutions are computed. The first solution is an unreduced reference solution where the stiffness
matrices of each module are computed normally. For the other two solutions, the stiffness matrices are
interpolated with the method described in section 3.3. The second solution is unreduced, and the third
solution is reduced.

The norms to quantify the error are

eu =
∥ uuuMOR −uuuref ∥

∥ uuuref ∥
, and eσ =

∥ σσσMOR −σσσref ∥
∥ σσσref ∥

, (30)

where eu is the displacement error and eσ is the stress error norm. In fig. 5 the errors are plotted over the
fiber orientation angle α.

The displacement errors of the reduced solution range between 1.7 10−4 and 3.54 10−3. The stress
errors of the reduced solution are higher and range between 3.9 10−2 and 9.1 10−2. The displacement
error grows with increasing fiber angle α, while the stress error has a peak for small values of α and
for large values of α. For small angles, the stiffness in the horizontal rectangle is maximum, and for
large angles the stiffness in the vertical rectangle is maximum. This suggests, that the MOR of the
rectangle for high stiffnesses performs slightly worse. Displacement errors in the vertical rectangle lead
to displacement errors in the horizontal rectangle, while displacement errors in the horizontal rectangle
do not influence the vertical rectangle. This leads to the larger displacement errors for higher values of
the fiber angle α.

4.3 Example 2: Random fiber orientation

The second example consists of 24 modules, where a random fiber direction is assigned to every
module. The geometry of the system with its Dirichlet- and Neumann boundary conditions, is shown in
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Figure 5: Displacement and stress error over the fiber angle α for the first numerical example with uniform fiber
orientation.

Figure 6: Sketch of the modular system for the second numerical example. The fiber direction in each module is
random. Dirichlet boundary conditions are applied on all degrees at the top and the bottom of the structure. The
red arrows illustrate the Neumann boundary conditions.
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fig. 6. The random fiber orientation requires interpolation of the projection matrix as well as the stiffness
matrix of every module. The system has originally 266448 degrees of freedom and is reduced to 1032
degrees of freedom. The unreduced computation took 251.9 and the reduced computation 15.2 seconds.
The speed-up factor f = tnormal/tMOR is 16.57. The interpolation of stiffness matrices and projection
matrices for the reduced computation took 9.4 seconds. This time includes the projection of all stiffness
matrices into the reduced space. The assembly of the system of equations took 5.45 and the solution 0.35
seconds. In the assembly process also the contact terms and Dirichlet boundary conditions are projected
into the reduced space. The computational time can be decreased by a more efficient implementation in
a low-level language like FORTRAN or C.

The displacement and stress errors norms defined in eq. (30) are eu = 0.0012 and eσ = 0.067. As in
fig. 5, the stress error is one magnitude larger than the displacement error. The approximation of the
stress field is still accurate. These results are analogous to the results in fig. 5.

In fig. 7 the contour plots of the von Mises stress and the von Mises stress error norm eσv = (| σv,MOR−
σv,ref |)/(| σv,ref |) are shown. It can be seen, that the qualitative differences in the contour plots of both
solutions are subtle. Large errors above 0.1 concentrate on the connection of four rectangles with one
square and are mostly at positions with small von Mises stress. Areas with high von Mises stress tend to
have a small error. The contour plots show that the reduced modular computation gives reasonable stress
results, even though global stress error norms are higher than the displacement errors.

The results show that the modules can be used in a flexible way. The square module is used with
two, three, and four adjacent modules, where always the same projection matrices are used to reduce the
module.

5 CONCLUSION

In this work, a model order reduction technique was presented, where global structures are assembled
from locally reduced modules. Furthermore, parameter dependencies of the reduced system coming
from anisotropic material behavior were analyzed. The adaption of the projection matrices for different
fiber directions was done by interpolation on a tangent space of the Grassmann manifold. With a singular
value decomposition, the interpolation of stiffness matrices could be reduced to a sum of one-dimensional
cubic spline interpolations. In the first numerical example, it was shown that the adaption of the reduced
system gives reasonable results over the whole parameter range. The second example showed, that the
method can also be applied to more complex structures and achieves a significant speed-up compared to
the unreduced solution.

In the future, a set of modules has to be developed, that allows for the computation of complex real-
world structures. Furthermore, the method has to be applied to nonlinear problems. The direct empirical
interpolation method (DEIM) can be used to approximate the nonlinear term and parameter-dependent
linear stiffness matrices.
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Figure 7: Contour plots of von Mises stresses for the unreduced (top) and reduced (middle) solution. The contour
plot at the bottom shows the error norm of the von Mises stresses.
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