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Summary. The linear crack between two dissimilar elastic isotropic half-spaces under normal 

harmonic shear loading is considered. To take the crack faces interaction into account we 

assumed that the contact satisfies the Signorini constraints and the Coulomb friction law. The 

problem is solved numerically using the iterative process – the solution changes until the 

distribution of physical values satisfying the contact constraints is found. The numerical 

convergence of the method with respect to the number of the Fourier coefficients and mesh size 

is analysed. The effects of material properties and values of the friction coefficient on the 

distribution of displacements and contact forces are presented and analysed. Special attention 

is paid to the size of the contact zone and the results are compared with the classical model 

solutions obtained for the static problems with and without friction. 
 

 

1 INTRODUCTION 

Since all existing engineering materials contain cracks, notches, delaminations and other 

crack-like defects, a considerable body of work is devoted to the solution of two- and three-

dimensional fracture mechanics problems for cracked materials under static and dynamic 

loading [1–12].  

It shall be specifically noted that the opposite faces of the existing cracks almost always 

interact with each other under deformation, significantly changing the solution near the crack 

[13–23]. The nature of the dynamic contact interaction between opposite crack faces is very 

complex. Under deformation of the material the initial contact region changes in time; its shape 

is unknown beforehand and must be determined as a part of the solution. The complexity of the 

problem is further compounded by the fact that the contact behaviour is very sensitive to the 

material properties of the two contacting surfaces and parameters of the external loading. It is 

mailto:v.menshykov@khai.edu.ua
mailto:o.menshykov@abdn.ac.uk
https://www.abdn.ac.uk/engineering/people/profiles/o.menshykov
mailto:i.guz@abdn.ac.uk
https://www.abdn.ac.uk/engineering/people/profiles/i.guz


Vasyl A. Menshykov, Oleksandr V. Menshykov, Igor A. Guz 

 2 

only possible to solve these problems using advanced numerical methods, since the analytical 

solutions are limited to a relatively small number of idealized model problems corresponding 

to very special geometrical configurations and loading conditions. Consequently, due to the 

nonlinearity of the problem and substantial computational difficulties, researchers often neglect 

effects of crack faces contact interaction, for comprehensive reviews please see [16, 17]. 

The current study is devoted to the analysis of the size of the contact zone for the interface 

crack under shear loading. The results are obtained taking friction into account and completely 

disregarding it using the iterative algorithm [24], and the solution is compared with the classical 

model solutions for the static problems with and without friction [25]. 

 

2 STATEMENT OF THE PROBLEM 

Let us consider an elastic bimaterial consisting of two homogeneous isotropic half-spaces, 

Ω(1) and Ω(2), with the crack of finite length located at the interface between half-spaces. The 

crack has no initial opening, and the normal harmonic shear loading with the frequency of  𝜔 =
2𝜋/𝑇 is applied. 

In both half-spaces the equation of motion and the generalized Hooke’s law lead to the linear 

Lamé equations of elastodynamics for the displacement field with the standard initial and 

boundary conditions for displacements and stresses (namely, no initial deformations; given 

initial load at the crack faces, 𝛤(1)𝑐𝑟 and  𝛤(2)𝑐𝑟; continuity conditions at the bonding interface, 

𝛤∗ = 𝛤(1) ∩ 𝛤(2); and the Sommerfeld radiation-type condition at the infinity). Furthermore, the 

components of the displacement could be represented in terms of the boundary displacements 

and tractions using the Somigliana dynamic identity with the appropriate fundamental solutions 

𝑈𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝑡 − 𝜏) and 𝑊𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝑡 − 𝜏) [1, 7, 12, 16, 17, 20]: 

𝑢𝑗
(𝑚)(𝐱, 𝑡) = ∫ ∫ (𝑝𝑖

(𝑚)(𝐲, 𝜏)𝑈𝑖𝑗
(𝑚)(𝐱, 𝐲, 𝑡 − 𝜏) − 𝑢𝑖

(𝑚)(𝐲, 𝜏)𝑊𝑖𝑗
(𝑚)(𝐱, 𝐲, 𝑡 − 𝜏))𝑑𝐲𝑑𝜏

𝛤(𝑚)𝛤(𝑚)
, 

𝐱 ∈ Ω(𝑚),   t ∈ T,   j=1,2. 

(1) 

As it was mentioned before, due to the crack’s closure the traction vector at the crack surface 

is the superposition of the initial traction caused by the incident load, 𝐠(𝐱, 𝑡), and the contact 

force, 𝐪(𝐱, 𝑡), that arises in the contact region, which is unknown beforehand, depends on the 

properties of the bimaterial and the friction coefficient and must be determined as a part of the 

solution.  

To include the contact interaction into account, the Signorini unilateral constraints and the 

Coulomb friction law with the friction coefficient 𝑘𝜏 must be imposed for the normal and 

tangential components of the displacement discontinuity, [𝐮(𝐱, 𝑡)] = 𝐮(1)(𝐱, 𝑡) − 𝐮(2)(𝐱, 𝑡), and 

contact forces: 

[𝑢𝑛(𝐱, 𝑡)] ≥ 0,  𝑞𝑛(𝐱, 𝑡) ≥ 0,  [𝑢𝑛(𝐱, 𝑡)]𝑞𝑛(𝐱, 𝑡) = 0, (2) 

| 𝑞𝜏(𝐱, 𝑡) | < 𝑘𝜏𝑞𝑛(𝐱, 𝑡) ⇒
𝜕[𝑢𝜏(𝐱, 𝑡)]

𝜕𝑡
= 0, (3) 

| 𝑞𝜏(𝐱, 𝑡) | = 𝑘𝜏𝑞𝑛(𝐱, 𝑡) ⇒
𝜕[𝑢𝜏(𝐱, 𝑡)]

𝜕𝑡
= −

𝑞𝜏(𝐱, 𝑡)

|𝑞𝜏(𝐱, 𝑡)|
|
𝜕[𝑢𝜏(𝐱, 𝑡)]

𝜕𝑡
| . (4) 
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The contact constraints (2)–(4) ensure that there is no interpenetration of the opposite crack 

faces, the normal component of the contact force is unilateral; and the opposite crack faces 

remain immovable with respect to each other in tangential direction while they are held by the 

friction force before the slipping occurs [16, 17, 20, 24].  

Contact interaction makes the problem non-linear and the solution even for the case of 

harmonic loading becomes cyclic, but non-monoharmonic. That is why the normal and 

tangential components of the displacement discontinuity and the traction at the crack surface 

can be approximated by the following exponential Fourier series with respect to the time [16]:  

𝑓(•, 𝑡) = 𝑅𝑒 {∑ 𝑓𝑘(•)𝑒𝑖𝜔𝑘𝑡
+∞

𝑘=−∞
},    𝑓𝑘(•) =

𝜔

2𝜋
∫ 𝑓(•, 𝑡)𝑒−𝑖𝜔𝑘𝑡

𝑇

0

𝑑𝑡, (5) 

where 𝜔𝑘 = 2𝜋𝑘/𝑇 and 𝑖 is the imaginary unit. 

Thus, the system of boundary integral equations in the frequency domain can be represented 

as follows [20, 24]:  

− ∫ 𝑝𝑖
𝑘,(1)(𝒚)𝑈𝑖𝑗

(1)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(1)cr

= −
1

2
𝑢𝑖

𝑘,(1)(𝐱) − ∫ 𝑢𝑖
𝑘,(1)(𝐲)𝑊𝑖𝑗

(1)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(1)cr

+ 

∫ 𝑢𝑖
𝑘,∗(𝒚)𝑊𝑖𝑗

(1)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲

𝛤∗
− ∫ 𝑝𝑖

𝑘,∗(𝐲)𝑈𝑖𝑗
(1)

(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲,     𝐱 ∈ 𝛤(1)cr,
𝛤∗

 

 

(6) 

− ∫ 𝑝𝑖
𝑘,(2)(𝒚)𝑈𝑖𝑗

(2)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(2)cr

= −
1

2
𝑢𝑖

𝑘,(2)(𝐱) − ∫ 𝑢𝑖
𝑘,(2)(𝒚)𝑊𝑖𝑗

(2)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(2)cr

− 

∫ 𝑢𝑖
𝑘,∗(𝒚)𝑊𝑖𝑗

(2)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲

𝛤∗
+ ∫ 𝑝𝑖

𝑘,∗(𝐲)𝑈𝑖𝑗
(2)

(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲,     𝐱 ∈ 𝛤(2)cr,
𝛤∗

 

 

(7) 

− ∫ 𝑝𝑖
𝑘,(1)(𝐲)𝑈𝑖𝑗

(1)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(1)cr

= −
1

2
𝑢𝑖

𝑘,∗(𝐱) − ∫ 𝑢𝑖
𝑘,(1)(𝐲)𝑊𝑖𝑗

(1)(𝐱, 𝐲, 𝜔𝑘)𝑑𝒚
𝛤(1)cr

+ 

∫ 𝑢𝑖
𝑘,∗(𝐲)𝑊𝑖𝑗

(1)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲

𝛤∗
− ∫ 𝑝𝑖

𝑘,∗(𝐲)𝑈𝑖𝑗
(1)

(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲,    𝐱 ∈ 𝛤∗,
𝛤∗

 

 

(8) 

− ∫ 𝑝𝑖
𝑘,(2)(𝐲)𝑈𝑖𝑗

(2)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(2)cr

= −
1

2
𝑢𝑖

𝑘,∗(𝐱) − ∫ 𝑢𝑖
𝑘,(2)(𝐲)𝑊𝑖𝑗

(2)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(2)cr

− 

∫ 𝑢𝑖
𝑘,∗(𝐲)𝑊𝑖𝑗

(2)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲

𝛤∗
+ ∫ 𝑝𝑖

𝑘,∗(𝐲)𝑈𝑖𝑗
(2)

(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲,     𝐱 ∈ 𝛤∗

𝛤∗
, 

 

(9) 

where �̃�𝑖
𝑘,(𝑚)

(𝐱), 𝑝𝑖
𝑘,∗(𝐱), 𝑢𝑖

𝑘,(𝑚)
(𝐱) and 𝑢𝑖

𝑘,∗(𝐱) are the Fourier coefficients of the tractions and 

displacements at the crack’s faces and the bonding interface.  

Fundamental solutions in the frequency domain 𝑈𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝜔𝑘) and 𝑊𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝜔𝑘) have the 

following form [1, 9, 12, 16]: 

𝑈𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝜔𝑘) =
1

2𝜋𝜇(𝑚)
(𝜓(𝑚)𝛿𝑖𝑗 − 𝜒(𝑚)

(𝑦𝑖 − 𝑥𝑖)

𝑟

(𝑦𝑗 − 𝑥𝑗)

𝑟
), (10) 

𝑊𝑖𝑗
(𝑚)(𝐱, 𝐲, 𝜔𝑘) = 𝜆(𝑚)𝑛𝑖

(𝑚)(𝐲)
𝜕

𝜕𝑦𝑘
𝑈𝑘𝑗

(𝑚)(𝐱, 𝐲, 𝜔𝑘) + 𝜇(𝑚)𝑛𝑘
(𝑚)

(𝐲) [
𝜕

𝜕𝑦𝑘
𝑈𝑖𝑗

(𝑚)
(𝐱, 𝐲, 𝜔𝑘) +

𝜕

𝜕𝑦𝑖
𝑈𝑘𝑗

(𝑚)
(𝐱, 𝐲, 𝜔𝑘)]. 

(11) 

Here 𝛿𝑖𝑗 is the Kronecker delta, 𝜆(𝑚) and 𝜇(𝑚) are the Lamé coefficients, 𝑟 = |𝑥1 − 𝑦1| is the 

distance between the observation and load points. Functions 𝜓(𝑚) and 𝜒(𝑚) for the harmonic 

loading in 2D case are given as: 
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𝜓(𝑚) = 𝐾0(𝑙2
(𝑚)

) +
1

𝑙2
(𝑚)

[𝐾1(𝑙2
(𝑚)

) −
𝑐2

(𝑚)

𝑐1
(𝑚)

𝐾1(𝑙1
(𝑚)

)] , 𝜒(𝑚) = 𝐾2(𝑙2
(𝑚)

) − (
𝑐2

(𝑚)

𝑐1
(𝑚)

)

2

𝐾2(𝑙1
(𝑚)

), (12) 

where  𝑙1
(𝑚)

= 𝑖𝜔𝑘  𝑟/𝑐1
(𝑚)

, 𝑙2
(𝑚)

= 𝑖𝜔𝑘  𝑟/𝑐2
(𝑚)

;  𝐾𝑛(•) is the modified Bessel function of the second 

kind and order 𝑛; and 𝑐1
(𝑚)

= √(𝜆(𝑚) + 2𝜇(𝑚))/𝜌(𝑚) and 𝑐2
(𝑚)

= √𝜇(𝑚)/𝜌(𝑚) are the velocities of 

the longitudinal and transversal waves in the upper and lower half-spaces. 

The appropriate system of linear algebraic equations (similar to the one presented in [7]) can 

be obtained from the system of boundary integral equations (6)–(9) and solved numerically 

using the iterative algorithm. At the first step the monoharmonic solution of the problem 

neglecting the effects of the crack closure and friction is obtained. Then the correction of the 

solution is performed applying the contact constraints (2)–(4) and the Fourier coefficients are 

gradually changed until the cyclic solution satisfying the constraints is found. The detailed 

analysis of the algorithm convergence for homogeneous and layered materials can be found in 

[18, 24]. Note also that the appearing divergent integrals that depend on the type and order of 

the used space approximation shall be regularised and calculated. In the current study the 

simplest piecewise-constant approximation was used (as it successfully proved its efficiency 

for 2D problems comparing, for example, with the Galerkin method [19]).  

The detailed investigation of the solution’s convergence with respect to the number of 

Fourier coefficients used in series (5), the number of the boundary elements (and size of the 

elements in the vicinity of the crack’s tips) and the number of time intervals has been presented 

in [18] and [24] for linear cracks in homogeneous and layered materials under tension-

compression loading, thus in this study we followed the recommendations given in [24]. 

 

3 NUMERICAL RESULTS 

For the validation of the numerical model the crack of the length 2𝐿 under the normal shear 

loading of amplitude 𝜎0 and the frequency closed to zero (with the normalised wave number 

𝑘2
(2)

𝐿 = 𝜔𝐿/𝑐2
(2)

= 0.01) was considered. The mechanical properties of the material (𝜈(1) = 0.1, 

𝐸(1) = 29GPa, and 𝜈(2) = 0.49, 𝐸(2) = 400 GPa) were chosen to satisfy the following ratio [25]: 

𝛽 =
𝜇(2)(𝜅(1) − 1) − 𝜇(1)(𝜅(2) − 1)

𝜇(2)(𝜅(1) + 1) + 𝜇(1)(𝜅(2) + 1)
= 0.5, (13) 

where 𝐸(𝑚) is the Young’s modulus,  𝜅(𝑚) = 3 − 4𝜈(𝑚), and 𝜈(𝑚) is the Poisson’s coefficient. 

The distributions of the normal components of the displacements, 2𝜇0𝑢𝑛/𝜎0𝐿, at the crack 

faces and the bonding interface at a half-period of oscillation are given in Figures 1–4 for 

different numbers of the correction steps in the absence of the friction (𝑘𝜏 = 0.0), note that [9]: 

𝜇0 = 𝜇(1)
1 − 𝛾2

1 + 𝜅(1)
,   𝛾2 =

𝑎1

2
− 𝑎2,    𝑎1 =

𝜇(1) − 𝜇(2)

𝜇(1) + 𝜅(1)𝜇(2)
,   𝑎2 =

𝜅(1)𝜇(2) − 𝜅(2)𝜇(1)

2(𝜇(2) + 𝜅(2)𝜇(1))
. (14) 

Please note that after the correction (see Figure 4) the Signorini constraints (2) are satisfied 

on the entire surface of the crack, and the Sommerfeld conditions are satisfied at the infinity, 

so the iterative process effectively corrected the solution. 

The normal components of the displacement jump and contact forces at the crack surface are 

presented in Figures 5 and 6 for different values of the friction coefficient. The contact forces 
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and the size of the contact zone are compared with the model static solution by Comninou and 

Dundurs [25]. As one can see the results are in a very good agreement. It should be noted that 

the friction significantly affected the solution, changing the size of the contact zone and the 

distribution of the displacements and forces (even for the “quasi-static” case considered for the 

validation purposes).    
Furthermore, increase in the frequency of the loading changes the solution even more (for 

comparison, please see [26]). As an example, the time distributions of the normal and tangential 

components of crack faces displacements are given in Figures 7–10 for 𝑘2
(2)

𝐿 = 0.1, 𝑘𝜏 = 1.0. 

Note the significant difference in the displacement amplitudes caused by the shear loading. 

 

4  CONCLUSIONS  

Computing and full parametric analysis of the normal opening and shear modes of the stress 

intensity factors for different friction coefficients, will be the next stage of this study. Please 

also note that the suggested boundary integral approach has been successfully applied for two-

dimensional impact contact problems for homogeneous and layered materials [27–29]. In the 

future it can be extended to three-dimensional fracture mechanics problems for cracked 

materials under arbitrary dynamic loading, and the special attention shall be paid to the coupling 

oscillation singularities in the vicinity of the interface crack front [1–3, 13, 23]. 
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Figure 1: Normal displacements, 2𝜇0𝑢𝑛/𝜎0𝐿, before iterative corrections 

 

 

Figure 2: Normal displacements, 2𝜇0𝑢𝑛/𝜎0𝐿, after 25 iterations 
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Figure 3: Normal displacements, 2𝜇0𝑢𝑛/𝜎0𝐿, after 100 iterations 

 

 

Figure 4: Normal displacements, 2𝜇0𝑢𝑛/𝜎0𝐿, after 1000 iterations (correction is completed) 
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Figure 5: Normal components of the displacement jump and contact forces without friction (𝑘𝜏 = 0.0) 

 

 

Figure 6: Normal components of the displacement jump and contact forces with friction (𝑘𝜏 = 1.0) 
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Figure 7: Normal components of the crack faces displacements before correction, 2𝜇0𝑢𝑛/𝜎0𝐿 

 

 
Figure 8: Normal components of the crack faces displacements after correction, 2𝜇0𝑢𝑛/𝜎0𝐿 
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Figure 9: Tangential components of the crack faces displacements before correction, 2𝜇0𝑢𝜏/𝜎0𝐿 

 

 
Figure 10: Tangential components of the crack faces displacements after correction, 2𝜇0𝑢𝜏/𝜎0𝐿 

 


