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Abstract

Image registration methods are used to establish geometrical correspondences between different
datasets. Various characteristics of image data can be exploited to drive image registration algo-
rithms. Thus, the currently available schemes can be roughly divided into two classes: intensity-
based and feature-based registration schemes. In this paper, we present a mathematical frame-
work, based on the calculus of variations, for combining these two classes in order to benefit from
the advantages of both strategies. The goal is to obtain a registration algorithm which achieves
a good matching of datasets near landmark locations but also away from them (by matching the
corresponding intensities). The proposed approach includes the novel formulation of a disparity
term which simultaneously takes into account the structural similarity index (a similarity mea-
sure which considers spatial dependencies in the images) and the location of outstanding points.
Since the iteration which results of the variational formulation is translated into the frequency
domain, the implementation of the proposed algorithm offers a good speed-performance trade-
off when compared to other state-of-the-art image registration implementations. Experimental
results show the advantages, in the medical setting, of the combined SSIM- and landmark-based
approach over well-established registration techniques which use either landmark or intensity in-
formation alone. In particular, the registration of triple-phase 3D computed tomographies of the
liver under injection of a contrast agent has been chosen for such a comparison. The datasets are
acquired at different times depending on the arrival time of the contrast agent in arteries, portal
and hepatic veins, so they have to be registered in order to show the liver structures acquired at
each phase in a common framework. These multi-phase studies provide tumor enhancement on
the arterial and portal venous phases that support differential diagnosis of lesions in the liver.

Keywords: Image registration, variational methods, Fourier domain, structural similarity index,
landmark-driven registration, contrast-enhanced liver CT

1. Introduction

Image registration is the process of finding the spatial correspondence between two differ-
ent datasets (images or volumes), which typically represent different views of the same object
or similar ones; in other words, register is equivalent to align in this context. Particularly, in
medical imaging there are several applications that require a registration step (e.g. image fusion,
atlas matching, pathological diagnosis). Classical reviews of image registration can be found,
for example, in the references Brown (1992), Maintz and Viergever (1998), Zitová and Flusser
(2003) or Modersitzki (2004). More recent comprehensive overviews about image registration
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methods can be found in Sotiras et al. (2015) and Sotiras et al. (2013), where the state-of-the-art
advances in this field are described in a systematic fashion, and the techniques applied to medical
datasets are emphasized as well. When classified according to the image characteristics used to
estimate the transformation which geometrically relates the involved datasets, registration algo-
rithms are usually divided into three groups: geometric feature-based, which rely on the segmen-
tation, done generally before the registration process itself, of part or all of the images, therefore
obtaining objects that are registered by minimizing some geometrical distance between them;
intensity-based, which maximize a intensity similarity measure computed between points lying
at the same spatial position; and iconic feature-based, which can be understood as intermediate
between the two previous categories, since they use explicitly some type of geometrical distance
in addition to the intensity similarity measure, see Cachier et al. (2003). The performance of
intensity-based image registration methods is highly influenced by the choice of the similarity
measure. This measure can be defined directly on image intensities as, e.g., sum of squared dif-
ferences (SSD), correlation coefficient (CC), correlation ratio (CR), or mutual information (MI).
A complete analysis of all these metrics can be found in Loizou et al. (2014). These measures
often rely on the assumption of independence and stationarity of the intensities from pixel to
pixel without considering their spatial dependencies. Alternative metrics have been proposed in
order to consider intensity nonstationarities and complex spatially-varying intensity distortions.
For instance, in Myronenko and Song (2010) a similarity measure based on the residual com-
plexity is described. Another example is the structural similarity index (SSIM), introduced by
Wang et al. (2004), which achieves a good trade-off between speed and performance and is able
to cope with complex relationships between image intensity values. Due to the mathematical
properties of SSIM (Brunet et al., 2012) and its potentials in both theoretical development and
practical applications, it is being incorporated into optimization frameworks in order to improve
perceived image/video quality in a number of image processing problems, as e.g. Huang et al.
(2010) or Rehman et al. (2011). This similarity measure has been previously used in image reg-
istration in Ben Sassi et al. (2008), Amintoosi et al. (2009), Vishnukumar and Wilscy (2009),
Wang and Zhang (2009), Wirth and Bobier (2009), or Kalinic et al. (2011), but its use is still
not widespread —for example, the evaluation addressed in Ou et al. (2014) does not include
SSIM and the review in Sotiras et al. (2013) does not deal with similarity measures based on the
SSIM—.

Intensity-based approaches are in general fully automatic and usually yield good registration
results. However, they may perform poorly for specific, important locations such as anatomical
landmarks. On the other hand, geometric feature-based registration techniques are designed to
accurately match user specified landmarks, see e.g. Rohr (2001). Recent examples of landmark-
based registration methods in medical imaging scenarios can be found in Wen et al. (2015) or
Kolesov et al. (2016). A common drawback of most landmark-driven registration methods is the
fact that the intensities of the datasets are completely neglected. Consequently, the registration
outcome away from the landmarks may be very poor. In the literature, the registration results
are typically obtained by interpolating the transformation with a thin-plate spline (TPS) model
(Bookstein, 1989) or by combining iterative closest point (ICP) registration and parametric relax-
ation (Tosun et al., 2004), among other techniques. Although these approaches produce a smooth
transformation from one dataset to another, they do not define a consistent correspondence be-
tween the two datasets except at the landmark points. Some previous attempts to combine the
sparse correspondences with a intensity-based registration method can be found in Johnson and
Christensen (2002) or Urschler et al. (2006). However, to the authors knowledge, there has been
no attempt to formulate a registration method which combines in the distance term both a SSIM-
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based term and a landmark-based term. In recent works, such as Naranjo et al. (2015) or Legaz-
Aparicio et al. (2017), the authors of this paper dealt with intensity-based registration approaches
within the variational framework first presented in Larrey-Ruiz et al. (2008), whose formulation
in the frequency domain allowed for implementations of high efficiency (Verdú-Monedero et al.,
2008). Please refer to Amit (1994) or Zhang et al. (2006) for further details regarding variational
image registration. The aforementioned approaches involved similarity terms derived from SSD-
or CR-based measures, so none of them included a SSIM-based nor a landmark-based distance
term. Regardless, the method presented in Legaz-Aparicio et al. (2017) achieved better results
than publicly available state-of-the art approaches such as Elastix (Klein et al., 2010) and ANTs
(http://stnava.github.io/ANTs/).

The paper is organized as follows: Section 2 addresses the formulation, within the vari-
ational framework, of a novel registration method which combines in the distance term both
a SSIM-based term and a landmark-based term. Section 3 shows the results of applying the
proposed registration algorithm to a medical imaging scenario; in particular, the image registra-
tion of triple-phase 3D computed tomography datasets of the liver under injection of a contrast
agent has been chosen; the suitability of our approach in such a scenario is also proved in this
section through the comparison of the results it provides and the outcome obtained with the CR-
based version of the algorithm, which was recently reported to outperform other well-known
approaches in the medical setting (Legaz-Aparicio et al., 2017). The conclusions of the paper as
well as the future lines of research are discussed in Section 4. Finally, an appendix closes the
paper with the detailed derivation of the external forces field related to the proposed SSIM-based
distance term (i.e., the first addend of the corresponding Euler-Lagrange equation).

2. Mathematical framework

Let R and T be two datasets, a reference and a template respectively, which represent the same
object (or similar ones) by using the same or different imaging modalities. These d-dimensional
datasets are defined as R,T : Ψ → I, with Ψ ⊂ Rd being the domain where they are supported,
and I ⊂ R representing the intensity level in each spatial coordinate x = (x1, . . . , xd). We
search for a displacement field u : Ψ → Rd that makes the transformed template Tu : Ψ → I
similar to the reference dataset in the geometrical sense, i.e., xTu = xT + u(xT ) ≈ xR, where
u(x) = (u1(x), . . . , ud(x))>. This problem can be approached in terms of the variational calculus
by defining a joint energy functional to be minimized:

J[u] = D[R,T ; u] + αS[u] , (1)

where D is an energy term which quantifies the disparity between the datasets, S is a penalty
term which measures the roughness of the solution u(x), and α > 0 is a scalar parameter, usually
referred to as the regularization parameter, which is used to control and weight the influence
of the penalty term versus the distance term. It should be noted that the present formulation
considers the different functions to be continuous in the domain Ψ where they are supported; the
natural spatial (and temporal) discretization is tackled later in this section.

In the literature, several choices for the dissimilarity measure D can be found. Depending
on the particular datasets to be compared, statistical measures derived from the MI or the CR
are usually the most appropriate candidates. As an alternative, in this work we propose the novel
approach of incorporating both the SSIM (Wang et al., 2004) and the Euclidean distance between

3



identifiable corresponding points (i.e., landmarks) into the variational framework which is being
presented. The resulting disparity term is the following:

D[R,T ; u] =
−(2 µR µT + C1)(2σRT + C2)

(µ2
R + µ2

T + C1)(σRR + σTT + C2)
+
β

2

∫
Ψ

N∑
j=1

∥∥∥xR j − xT j − u(xT j )
∥∥∥2

dx , (2)

where µR, µT , σRR and σTT denote the mathematical expectations and variances of the intensity
levels of R and Tu, respectively; σRT represents the covariance; C1 and C2 are small constants
which aim to characterize the saturation effects of the visual system at low luminance and con-
trast regions and which assure numerical stability when the expectations or variances are very
close to zero; β > 0 is a scalar used to weight the influence of the landmark-based term versus
the SSIM-based term; N is the number of identified landmarks; and xR j and xT j denote the spatial
position of the j-th landmark in R and T , respectively.

The regularization term S is used to add some prior knowledge on the displacement field,
thus preferentially obtaining more likely solutions and giving the smoothness characteristics to
u(x). In this work, the regularizer is defined by

S[u] =
1
2

d∑
l=1

∫
Ψ

∥∥∥∇λul

∥∥∥2
dx , (3)

where ∇ denotes the d-dimensional gradient operator, and λ ∈ {1, 2} is the regularization order:
if λ = 1, the resulting term is the diffusion smoother (Fischer and Modersitzki, 2002); if λ = 2,
the regularizer is the curvature smoother (Fischer and Modersitzki, 2004).

According to the variational calculus, a necessary condition for a minimizer u of the joint
energy functional (1) is that the first variation ofJ[u] in any direction (also known as the Gâteaux
derivative) vanishes for all possible perturbations z ∈ Rd:

dJ[u; z] =
∂

∂ε
J[u + εz]

∣∣∣∣
ε=0

= 0 , ∀z ∈ Rd . (4)

The computation of the previous Gâteaux derivative leads to the following Euler-Lagrange
(E-L) equation:

1
VΨ

(
Ĝρ ∗

∂LSSIM
u

∂it

)
∇Tu + β

N∑
j=1

(
xTu j − xR j

)
+ α (−∆)λu = 0 , (5)

where VΨ represents the hypervolume of Ψ; Ĝρ : I2 → R is a Gaussian kernel (strictly pos-
itive and differentiable); ∗ denotes the d-dimensional convolution operator; ∆ is the Laplacian
operator; finally, we find the term

∂LSSIM
u

∂it
=

γ0 + C1 γ1 + C2 γ2 + C1C2 γ3

(µ2
R + µ2

T + C1)2(σRR + σTT + C2)2
, (6)

where the variables γ0, γ1, γ2 and γ3 are defined as

γ0 =4 µR

(
µ2

R(σRR σRT + σTT σRT − µR µT σRR − µR µT σTT + 2 µ2
T σRT + µT σRR ir + µT σTT ir − 2 µT σRT it)

− µ2
T (σRR σRT + σTT σRT + µR µT σRR + µR µT σTT − 2 µ2

T σRT − µT σRR ir − µT σTT ir + 2 µT σRT it)
)
,

(7)
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γ1 =2
(
µR(−µ2

R σRR − µ
2
R σTT + 2σRR σRT + 2σTT σRT + µR σRR ir + µR σTT ir − σRR C1 − σTT C1)

− µT (2 µ2
R σRR + 2 µ2

R σTT + µR µT σRR + µR µT σTT − 2 µR σRR ir − 2 µR σTT ir − µT σRR ir − µT σTT ir)

+ 2 µT σRT (µ2
R + µ2

T − σRR − σTT + 2 µR µT − 2 µR it − µT it + C1) + C1 ir(σRR + σTT ) − 2σRT it(µ2
R + C1)

)
,

(8)

γ2 =2 µR

(
µ2

R(σRR + σTT + 2σRT − 2 µR µT + 2 µ2
T + 2 µT ir − 2 µT it + C2)

− µ2
T (σRR + σTT + 2σRT + 2 µR µT − 2 µ2

T − 2 µT ir + 2 µT it + C2)
)
,

(9)

γ3 =2
(
µR(σRR + σTT − 2σRT − µ

2
R + µ2

T + µR ir − µR it + 2 µT ir + C2)

− µT (σRR + σTT + 2σRT + µ2
R − µ

2
T + 2 µR it − µT ir + µT it −C1 + C2) −C1 it

)
,

(10)

with ir , it ∈ I ⊂ R being the intensities of R and Tu, respectively.
In Appendix A, the first addend in equation (5) is deduced. The proof of the internal forces

field of the Euler-Lagrange equation (i.e., the last addend in eq.(5)) can be found in Larrey-Ruiz
et al. (2007). Finally, the addend which corresponds to the landmark-based term can be easily
obtained by applying the definition of the Gâteaux derivative to the last addend in eq.(2):

dDLM[R,T ; u; z] =
∂

∂ε

β

2

∫
Ψ

N∑
j=1

∥∥∥xR j − xT j − u(xT j ) − εz(xT j )
∥∥∥2

dx
∣∣∣∣
ε=0

=

∫
Ψ

〈
β

N∑
j=1

xR j − xT j − u(xT j ) − εz(xT j ),−z(xT j )
〉
Rd

dx
∣∣∣∣
ε=0

=

∫
Ψ

〈
β

N∑
j=1

(
xTu j − xR j

)
, z(xT j )

〉
Rd

dx ,

(11)

where 〈·, ·〉Rd denotes the inner (or dot) product in Rd.
In order to solve the Euler-Lagrange equation (5), an iterative time-marching scheme can be

used. For doing so, an artificial time t has to be added to the E-L equation and then the steady-
state solution has to be computed, i.e., ∂

∂t u + f + α (−∆)λu = 0 (where f gathers the first two
addends in eq.(5)). In the steady-state, the displacement field u converges and hence ∂

∂t u = 0.
The time t is discretized, t = ξ τ (with ξ ∈ N being the iteration index and where τ > 0 is the
time-step), and finally the temporal derivative is replaced with its discrete approximation (first
backward difference). Due to the fact that digital datasets are usually encoded by uniformly
distributed spatial elements in each dimension (e.g. pixels if d = 2 or voxels if d = 3), the
discretization of the spatial variable becomes a natural approach too. Therefore in the following
the notation u(ξ)[n] = u[n, ξ τ] is used, where n = (n1, . . . , nd) is the index of the discrete spatial
position, with ni = 0, . . . Ni − 1, and Ni being the number of discrete spatial elements in the i-th
dimension. Using this notation, the resulting semi-implicit iteration for the l-th component of the
displacement field is the following:

u(ξ)
l [n] = u(ξ−1)

l [n] − τ f (ξ−1)
l [n] − τ α q[n] ∗ u(ξ)

l [n] , (12)

where the discrete operator q[n] stands for a kernel which performs the discrete approximation
of the spatial derivatives of (−∆)λ.

As an alternative to the spatial approach, solving the iteration (12) in the frequency domain
provides a stable implementation for the computation of a numerical solution for the displace-
ment field u[n], and in a more efficient way than other existing approaches if the d-dimensional
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fast Fourier transform (FFT) is taken into account (Verdú-Monedero et al., 2008). Translating
the semi-implicit iteration (12) into the frequency domain results in

U(ξ)
l (ω) = U(ξ−1)

l (ω) − τ F(ξ−1)
l (ω) − τ αQ(ω) U(ξ)

l (ω) , (13)

where U(ξ)
l , U(ξ−1)

l and F(ξ−1)
l are the d-dimensional Fourier transforms of u(ξ)

l , u(ξ−1)
l and f (ξ−1)

l ,
respectively, and ω = (ω1, . . . , ωd) is the d-dimensional counterpart in the frequency domain
associated to the discrete spatial variable n. The operator Q(ω) performs the spatial derivatives
in the frequency domain and allows for their calculation by means of the product of spectra
(i.e., the translation of the spatial convolution into the frequency domain); as deduced in Verdú-
Monedero et al. (2008), its analytical expression is the following:

Q(ω) =
(
2

d∑
m=1

(1 − cosωm)
)λ
. (14)

It should be noted that, mathematically, any value λ ∈ [1, 2] makes sense in the frequency domain
(but not in the spatial domain). This allows for the design of hybrid diffusion-curvature regular-
izers with adaptable properties, please refer to Larrey-Ruiz et al. (2008) for further details.

As explained in previous paragraphs, it is taken into account that the datasets are discrete
and then the spatial variable x gives rise to the discrete spatial index n. Similarly, instead of
handling continuous spectra, the frequency domain is also discretized and only the Nm uniformly
sampled frequencies ωm =

(
0, 2π

Nm
, . . . , 2π

Nm
(Nm − 1)

)
are evaluated in each dimension. This way

the iteration (13) can be implemented efficiently using the fast algorithms for the computation of
the DFT which are provided by many programming languages (e.g., MATLAB’s fftn built-in
function which is based on the FFTW library by Frigo and Johnson (2005)).

Finally, the iteration of the proposed registration algorithm is the following:

u(ξ)
l [n] = IFFT

{
H[k] FFT{u(ξ−1)

l [n] − τ f (ξ−1)
l [n]}

}
, (15)

where H[k] = (1 + τ αQ[k])−1, Q[k] =
(
2
∑d

m=1(1 − cos( 2π
Nm

km))
)λ, k = (k1, . . . , kd), and km =

0, . . . ,Nm−1. Due to the fact that Q[k] results in a circulant block matrix, all the spectra products
and pseudo-inversions become Hadamard (i.e., pointwise) products and divisions, respectively
(Davis, 1979).

3. Results

In order to assess the performance of the proposed methodology, it is tested on 15 medical
experiments involving triple-phase 3D computed tomography (CT) volumes of the liver under
contrast agent injection. Although the acquisition of the different phases is continuous in most
cases, there is no exact correspondence between them, so they must be registered in order to
show the results in a common 3D framework. First, a study without contrast agent is acquired.
Once the contrast agent is injected, it reaches the arteries (arterial phase), then the portal veins
and next the hepatic veins. Hepatic and portal veins are then visible in the portal venous phase.
Image registration allows to locate exactly the vessels in 3D at each phase of contrast-enhanced
CT data in order to measure distances and volumes and provide objective parameters of the
pathology which facilitate comparisons between patients, the tracking of tumors (Charnoz et al.,
2005), to make calculations on the volume of the liver to be preserved prior to a liver resection
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Figure 1: Mean similarity between images in terms of mutual information for the three considered scenarios (arterial-
portal, arterial-non-contrast and portal-non-contrast) before and after the registration.
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(a) Box plot of the registration error
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(b) Close-up view of (a)

Figure 2: Spatial distances (in millimeters) between corresponding landmarks before and after the registration process.

(Elhawary et al., 2009), or to generate vessel models for planning surgical procedures (Lange
et al., 2005). The experiments carried out involve data from 5 patients. The acquisition device is
a GE LightSpeed VTC (General Electric Medical Systems). The size of the volumes vary from
512 × 512 × 34 to 512 × 512 × 51 voxels, with a resolution of 0.9102 × 0.9102 × 5 millimeters.

For the assessment of the proposed method, we carry out a comparison with the purely
intensity-based variational method recently presented by the authors of this work in Legaz-
Aparicio et al. (2017). This CR-based approach was reported to outperform publicly available
state-of-the art methods such as Elastix and ANTs in the medical setting. As can be seen in Fig.1,
the proposed framework shows excellent results for the three considered registration scenarios
(arterial-portal, arterial-non-contrast and portal-non-contrast), reaching average values of 1.47,
1.44 and 1.52 bits in terms of mutual information, corresponding to the arterial-portal, arterial-
non-contrast and portal-non-contrast cases, respectively; this represents a mean improvement
of 28.9%, 48.45% and 51.16% in relative terms of mutual information, thus outperforming the
CR-based registration algorithm, which achieves a mean improvement of 26.48%, 44.22% and
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(a) Arterial phase (reference dataset, R) (b) Non-contrast phase (template dataset, T )

(c) Registered template, Tu (CR-based method) (d) Registered template, Tu (proposed method)

Figure 3: Visual outcomes of experiment #1 (slice #9): registration of arterial and non-contrast phases of patient #1.

43.25%, respectively. Additionally, due to the analogous behavior (i.e., comparable final values
of mutual information) of the proposed method in the three scenarios, all available experiments
can be grouped into one ensemble in order to assess a more comprehensive validation of the
actual registration error. A ground truth was established by an expert in the form of identifiable
anatomical locations (landmarks) for all experiments. The registration errors were then obtained
by computing the spatial distance between the corresponding landmarks in the reference and
registered template datasets. Figures Fig.2(a) and Fig.2(b) show through box plots the registra-
tion error (in millimeters) achieved by the methods under comparison, gathering the results from
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(a) Arterial phase (reference dataset, R) (b) Portal venous phase (template dataset, T )

(c) Registered template, Tu (CR-based method) (d) Registered template, Tu (proposed method)

Figure 4: Visual outcomes of experiment #5 (slice #12): registration of arterial and portal venous phases of patient #2.

the three considered registration scenarios. These box plots collect the final spatial distances
between corresponding landmarks, along with the median distance error and its statistical signif-
icance (notch showing the 95% confidence interval of the true median). According to Fig.2(b),
the proposed method significantly improves on the registration error of the CR-based approach,
since it reduces the initial median error from 9.50 mm to a residual median distance between
landmarks of 1.41 mm, decreasing at the same time the outliers occurrence.

In addition to the previous measurements, the visual outcomes of two of the experiments are
shown in figures Fig.3 and Fig.4, whose purpose is to highlight the most illustrative differences
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Size CR SSIM+LM Elastix
512 × 512 × 16 2.40 2.52 5.69
512 × 512 × 32 5.03 5.27 11.20
512 × 512 × 64 10.42 10.93 22.01

Table 1: Mean execution time per iteration (in seconds) of the considered variational methods and Elastix, involving
datasets of different sizes. These times were obtained on a PC with Intel Core i5-2500K, 3.3 GHz, 16 GB RAM, running
Windows 8.1 (64 bits). All methods have been implemented in C++.

(from a medical point of view) between the results provided by the compared methods. In Fig.3,
we observe a normal size of the liver, with discretely irregular contours and homogeneous signal
intensity. In hepatic segment II, there is a lesion of 40 mm of maximum axis, encapsulated and
with well-defined contours and heterogeneous enhancement in arterial phase (after administra-
tion of intravenous contrast), suggestive of hepatocellular carcinoma (HCC). In this slice of the
CT scan, we can also observe the aorta that shines in the arterial phase, the lower area of the
stomach and the upper area of the spleen. In Fig.4, the liver has a normal size with discretely
irregular contours in relation to changes due to chronic liver disease. In hepatic segment IV, a 36
mm diameter focal lesion is identified, which has arterial phase enhancement with a small area
of necrosis of 13 mm; it corresponds to a HCC previously chemoembolized with partial necrosis.
In this slice of CT, we can also observe the aorta, the gastric chamber and the spleen. When com-
paring the two methods under study, it can be seen how in Fig.3 the resulting registered datasets
are very similar. However, looking closely, it can be noticed that in the right part of the image
(left side of the patient) the shape and width of the structures corresponding to the stomach and
the spleen in Fig.3(d) match better those in the reference dataset. Likewise, the part of the rib at
the upper right of the image is more similar to the same region in the reference dataset by using
the proposed method. Regarding the experiment shown in Fig.4, it can be easily appreciated how
the geometrical matching (with respect to the reference dataset, Fig.4(a)) of the structures in the
right side of the image (specially the gastric chamber) is visually more satisfactory in Fig.4(d).
Moreover, the area of tumor necrosis which results from the proposed method is also slightly
better aligned.

Throughout this work, the SSIM-based term uses the following parameters setting: C1 = 0.01
and C2 = 0.03. These are the empirically obtained values suggested in the reference paper
Wang et al. (2004). Regardless, we find that in the current scenario, the performance of the
proposed registration algorithm is fairly insensitive to variations of these values. Regarding the
remaining parameters, which are exclusively related to our variational approach, the values of
λ = 2 (i.e., curvature smoother, since the deformations to be corrected are notable in some
cases), α = 200, β = 5 (only applicable to the combined SSIM- and landmark-based method)
and τ = 1 were used for all experiments —we recommend a common set which achieves a
good balance between generalization and performance—. This parameter setting was obtained
following the guidelines first introduced in Larrey-Ruiz and Morales-Sánchez (2006). As for
the number of iterations, a value of ξmax = 80 grants convergence in all cases; the cost function
stabilizes after 50−70 iterations for both the CR-based and the proposed algorithm. From the
results gathered in Table 1, it can be concluded that the computational overhead introduced by
the novel approach does not increase significantly the execution time of the CR-based algorithm.
Moreover, both variational approaches outperform well-established registration methods such as
Elastix in terms of efficiency. Elastix was the fastest method which provided better results among
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the open source methods of image registration which entered in the second phase of Empire10
Challenge (Murphy et al., 2011). The overall complexity of each iteration of the compared
algorithms is O(N) —where N is the number of voxels of the datasets—, since doubling N
means doubling the computational time.

4. Conclusions and discussion

In this work, a theoretical framework has been presented for approaching the image registra-
tion problem. In particular, we have formalized the variational formulation of image registration,
making it valid even for a general d-dimensional case. The resulting semi-implicit iteration,
which is solved in the frequency domain, allows for an efficient implementation if fast algo-
rithms for the computation of the DFT are taken into account. The main novelty of this paper
lies in the inclusion within such a framework of a disparity energy which combines the infor-
mation provided by both the structural similarity index (SSIM) and the location of geometrical
identifiable points (landmarks). With this purpose, the corresponding external forces fields of
the resulting Euler-Lagrange equation have been deduced, and their analytical expressions are
explicitly provided.

The suitability of the proposed methodology in the medical setting has been validated by
means of illustrative experiments involving liver CT data under different contrast agent injection.
When compared with an intensity-based method which was recently reported to outperform other
popular state-of-the-art methods, it has been shown that the novel approach achieves higher val-
ues for both the similarity measure considered (mutual information) and the actual registration
error (distance in space between corresponding landmarks). Moreover, the results provided by
the method proposed in this paper are subjectively considered more satisfying after being visu-
ally inspected by an expert. However, the main advantage of the proposed registration method
is its efficiency. As expected, the FFT-based, C++ implementation of our approach outperforms
fast methods such as Elastix in terms of computational cost, while keeping the execution times
in the range of its main contestant (the previously proposed CR-based algorithm). In a clinical
environment, where computational times should be kept as low as possible, this feature can be
of paramount importance. Regardless, it should be noted that comparing the performance of
different image registration algorithms is not a trivial task, since each approach has its own set
of user-defined parameters, which may heavily influence the final outcome. For instance, if they
are tested on datasets with different characteristics (e.g., modality or anatomical region), new
optimal parameters need to be determined. In this sense, open challenges are an interesting way
to categorize image registration software packages in a common context.

It should be noted that the proposed method considers the input directional field as a periodic
signal. Unless this is taken into account, the vectors located near the boundaries will be erro-
neous. As stated by other authors —see e.g. Fischer and Modersitzki (1999)—, this is hardly a
problem if the data is contained within a uniform background (e.g., when dealing with medical
images or volumes, as in the current scenario), or else it can be overcome by using a folded
algorithm which extends the dataset symmetrically, thus resulting in additional reflections of the
original input, see e.g. Bai and Feng (2007).

The most notable limitation of the present method is that the SSIM-based term would not be
an appropriate choice for the combined disparity energy unless matching voxels of the datasets
have similar intensities (i.e., in pure monomodal or pseudo-monomodal scenarios). In fact, this
is an inherent drawback of the structural similarity index, not a problem which arises with our
methodology. However, even if the aim was to register multimodal datasets, one could still use
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the proposed variational approach, but considering an alternative distance term instead (e.g., a
combined CR- and landmark-based disparity energy).

In ongoing research, we would like to address the application of our methodology to other
scenarios, such as the fusion of datasets from different modalities: for example, anatomical
(CT and MRI), metabolic (spectroscopic MRI and PET) and functional (f-MRI) volumes in the
medical setting. Alternative definitions of the joint functional, including additional energy terms
—e.g., a measure of the differences between forward and reverse transformations, so that the
resulting displacement field is consistent—, are currently being explored within the presented
theoretical framework.

Appendix A. Variational formulation of SSIM

In this work, we propose the opposite of the structural similarity index as the intensity-based
part of the disparity term of the joint energy functional (first addend in equation (2)). Thus, a
maximization problem is transformed into the minimization of the following cost function:

DSSIM[R,T ; u] := −SSIM[R,Tu] =
−(2 µR µT + C1)(2σRT + C2)

(µ2
R + µ2

T + C1)(σRR + σTT + C2)
. (A.1)

The mathematical expectations, variances and covariance µR, µT , σRR, σTT and σRT are defined
as follows:

µR = E{R} =

∫
I

ir pR(ir)dir , (A.2)

µT = E{Tu} =

∫
I

it pTu (it)dit , (A.3)

σRR = Var{R} =

∫
I

i2r pR(ir)dir − E2{R} , (A.4)

σTT = Var{Tu} =

∫
I

i2t pTu (it)dit − E2{Tu} , (A.5)

σRT = Cov{R,Tu} =

∫
I2

ir it pR,Tu (ir, it)dir dit − E{R}E{Tu} , (A.6)

where pR and pTu denote the marginal intensity distributions estimated from R and Tu, respec-
tively, and pR,Tu stands for an estimate of the joint intensity distribution. The intensities of the
datasets, ir , it ∈ I ⊂ R, are considered as random variables whose probability densities are
respectively given by pR and pTu .

In order to obtain the external forces field related to the SSIM-based energy term (i.e., the
first addend in the Euler-Lagrange equation (5)), the computation of the corresponding Gâteaux
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derivative dDSSIM is required. Therefore, we carry out an explicit computation from the defini-
tion of the Gâteaux derivative (see eq.(4)):

dDSSIM[R,T ; u; z] =
∂

∂ε
DSSIM[R,T ; u + εz]

∣∣∣
ε=0

= −
(µ2

R + µ2
T + C1)(σRR + σTT + C2)(2 µR µ

′
T (2σRT + C2) + 2σ′RT (2 µR µT + C1))

(µ2
R + µ2

T + C1)2(σRR + σTT + C2)2

+
(2 µR µT + C1)(2σRT + C2)(2 µT µ

′
T (σRR + σTT + C2) + σ′TT (µ2

R + µ2
T + C1))

(µ2
R + µ2

T + C1)2(σRR + σTT + C2)2

∣∣∣∣∣∣
ε=0

=

∫
I2

LSSIM
u+εz (ir, it)

∂

∂ε
pR,Tu+εz (ir, it)dir dit

∣∣∣∣∣
ε=0

,

(A.7)

with LSSIM
u+εz being an intensity operator —whose definition, not necessary at this point, is not

explicitly provided for the sake of simplicity—, and where the notation (·)′ = ∂
∂ε

(·) is used.
Assuming a displacement u + εz, the joint intensity distribution estimated from R and Tu+εz

is provided by a non-parametric Parzen-Rozenblatt density model (Duda and Hart, 1973):

pR,Tu+εz (ir, it) =
1
VΨ

∫
Ψ

Ĝρ (R(x) − ir,T (x + u(x) + εz(x) − it)) dx , (A.8)

whereVΨ denotes the hypervolume ofΨ and Ĝρ : I2 → R is a Gaussian kernel (strictly positive
and differentiable):

Ĝρ(ir, it) =
1

2πρ2 e−
i2r +i2t
2ρ2 . (A.9)

At this point, derivatives of pR,Tu+εz can be easily computed. In particular,

∂

∂ε
pR,Tu+εz (ir, it) =

1
VΨ

∫
Ψ

∂

∂it
Ĝρ (R(x) − ir,T (x + u(x) + εz(x)) − it)∇T (x + u(x) + εz(x)) z(x)dx .

(A.10)
We now replace (A.10) in (A.7), and then let ε = 0:

dDSSIM[R,T ; u; z] =
1
VΨ

∫
Ψ

∫
I2

LSSIM
u (ir, it)

∂

∂it
Ĝρ (R(x) − ir,T (x + u(x)) − it)∇T (x + u(x)) z(x)dir dit dx

=

∫
Ψ

〈 1
VΨ

(
Ĝρ ∗

∂LSSIM
u

∂it

(
R(x),T (x + u(x))

))
∇T (x + u(x)) , z(x)

〉
Rd

dx

=

∫
Ψ

〈
fSSIM(x; u), z(x)

〉
Rd dx .

(A.11)

In the previous equation, a bidimensional convolution with respect to the intensity variable i =

(ir, it) appears naturally. This convolution conmutes with the derivative ∂
∂it

(since both are linear
operators). Moreover, by identifying the resulting expression with an inner product in Rd, the
external forces field of the Euler-Lagrange equation (5) which corresponds to the SSIM-based
energy term can be finally obtained:

fSSIM =
1
VΨ

(
Ĝρ ∗

∂LSSIM
u

∂it

)
∇Tu , (A.12)
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with
∂LSSIM

u

∂it
=

γ0 + C1 γ1 + C2 γ2 + C1C2 γ3

(µ2
R + µ2

T + C1)2(σRR + σTT + C2)2
, (A.13)

and where the definitions of γ0, γ1, γ2 and γ3 can be found in eqs.(7)-(10).
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