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Abstract. In situ tests for geotechnical investigations can provide a reliable prediction of the 

soil behaviour because they accurately represent the stress state while preserving the soil 

structure and the inherent material fabric. These tests complement the information obtained 

from laboratory element tests on undisturbed or reconstituted specimens. The pressuremeter 

test is one such example of an in-situ tool that is used to obtain soil properties based on 

measured pressure-volume data. The pressuremeter test is considered a large deformation 

problem within a numerical framework. Furthermore, it is commonly idealized as a cylindrical 

cavity expansion within the realms of conventional finite element schemes. In order to address 

the issue related to excessive mesh distortion aspects, the Eulerian-Lagrangian approach 

developed within a continuum framework, namely the Material Point Method (MPM), has been 

adopted in the present study to investigate the pressuremeter expansion process. First, the 

results obtained are benchmarked against those from classical cavity expansion problems for a 

pressure-dependent frictional material. The computed results are in good agreement with both 

the closed-form solutions and displacement-controlled experiments reported in the literature. A 

parametric study was performed to further investigate the influence of the loading rate, material 

properties, and heterogeneities on the pressuremeter test simulations. 
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1 INTRODUCTION 

A pressuremeter is an in-situ testing tool performed against the wall of a borehole using a 

cylindrical probe that is expanded radially [1, 2]. Pressuremeter tests have been used to evaluate 

soil parameters, such as in-situ shear strength and deformation parameters, offering insights 

into the mechanical behaviour of geomaterials. It offers several advantages over traditional 

laboratory tests by directly measuring properties in their natural environment, as well as 

capturing the effects of true heterogeneity and anisotropy of the material. It is important to note 

that while many theoretical interpretations of the pressuremeter test idealize it as a cylindrical 

cavity expansion problem, such simplified assumptions can sometimes introduce significant 
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errors in the derived soil properties [3]. This discrepancy arises partly due to considering soil 

as an element and not as a boundary value problem.  

Numerical simulations of pressuremeter tests offer a cost-effective, safe, and controlled 

method to gain insights into soil-pressuremeter interactions and predict soil behaviour under 

various conditions. However, capturing the nuances of this test within a numerical framework 

has often been challenged since it is perceived as a large deformation problem. Although 

effective, numerical techniques in continuum framework, viz. classical Finite Element Methods 

(FEM), have had their inherent limitations, especially when dealing with the idealization of the 

test as a cylindrical cavity expansion problem [4]. Actual FEM simulation of pressuremeter 

tests would usually result in severe mesh distortion issues due to excessive deformation. Within 

a discrete setting, the simulation of the pressuremeter test in granular material showed 

promising results when particle shape and friction were considered [5]. Nonetheless, the 

significant computational cost of DEM can pose an undesirable trade-off, especially when 

granular-scale micro-mechanical responses are not the primary interest of the study.   

The Material Point Method (MPM) is a numerical approach developed within a continuum 

framework, where Lagrangian particles move through an Eulerian mesh, circumventing mesh 

distortion problems associated with large deformations. MPM integrates the strengths of 

continuum mechanics [4] and particle techniques [5], presenting a formidable solution for 

complex soil-structure interaction scenarios. It has recently garnered attention in the 

geotechnical engineering community for its ability to address large deformation [6, 7, 8] and 

the interaction between various materials. One such open-source tool, Anura3D [9], has notably 

advanced the field by integrating the MPM framework while catering to the specific needs of 

the geotechnical community. In light of these advancements, this research further explores the 

use of MPM for the numerical modelling of the pressuremeter test, firstly benchmarking with 

conventional cylindrical cavity expansion problems and then evaluating its consistency with 

experimental findings already existing in the literature [10]. 

2 MPM FORMULATION 

We recourse to Anura3D to perform simulations using an explicit 2D axisymmetric MPM 

model [11] to benchmark the cavity expansion problem. It is further extended to the actual 

pressuremeter test problem. The following sub-sections provide a detailed exploration of the 

specific MPM formulation employed in this study. 

2.1 Governing Equations 

Thermodynamic laws govern a continuum body's behaviour, ensuring mass (Eq. 1), 

momentum (Eq. 2), and energy (Eq. 3) conservation. In the continuum framework, it is crucial 

to account for initial and boundary conditions and the material's stress-strain relationship using 

constitutive equations (Eq. 4). In this study, the explicit MPM dynamic formulation determines 

acceleration (𝒂) from the following equations: 

a. Conservation of Mass: 

𝑑𝜌

𝑑𝑡
+ 𝜌(∇. 𝒗) = 0

 
⇒

𝑑𝑛

𝑑𝑡
= (1 − 𝑛)(∇. 𝒗) (1) 
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 Where  𝜌 is the mass density of the material, 𝑛 is porosity, and 𝒗 is the velocity of the 

material. 

b. Conservation of Momentum:  

𝑀𝒂 = (1 − 𝑛)𝜌𝑠𝒂 =  ∇. 𝝈′ + (1 − 𝑛)𝜌𝑠𝒃 (2) 

Where 𝑀 is the total mass of material, 𝜌𝑠 is the density of solid grains, 𝝈′ is an effective 

stress tensor, and 𝒃 is a body force vector. 

c. Conservation of Energy:  

𝜌
𝑑𝑊

𝑑𝑡
=  𝜺̇T𝝈 (3) 

 Where 𝑊 is internal energy per unit mass, 𝜺̇T  is the transpose of strain rate tensor, and 

𝜎̇ is stress rate tensor. 

d. Constitutive Equation: 

𝝈̇ = 𝑫𝜺̇ (4) 

 Where 𝑫 is the stiffness matrix, and the relationship is incremental. 

2.2 Comprehensive Process for a Single Calculation Step in 2D Axisymmetric MPM 

For a single point (particle) and one phase method in MPM, the computational cycle of each 

time step (𝛥𝑡) can be broken down into the following general steps: 

a. Particle-to-Grid Transfer:  

    The mass, momentum, and other state variables from the material points (particles) are 

mapped to the background grid, typically an Eulerian grid. 

𝑀𝑖 =   ∑ ∑ NT(𝜉𝑚𝑝)𝑚𝑚𝑝

𝑛𝑚𝑝,𝑒𝑙

𝑚𝑝=1

𝑛𝑒𝑙

𝑒𝑙=1

 (5) 

𝑀𝑖𝑣⃗𝑖 =   ∑ ∑ NT(𝜉𝑚𝑝)𝑚𝑚𝑝𝑣⃗𝑚𝑝

𝑛𝑚𝑝,𝑒𝑙

𝑚𝑝=1

𝑛𝑒𝑙

𝑒𝑙=1

 (6) 

 Where the subscripts 𝑒𝑙, 𝑖 and 𝑚𝑝 represent the identities of elements, nodes, and 

material points, respectively, NT(𝜉𝑚𝑝) is the transpose of shape function of element (𝑒𝑙) at 𝜉𝑚𝑝 

position,  𝑛𝑒𝑙 is the number of elements, 𝑛𝑚𝑝,𝑒𝑙 is the number of material points in 𝑒𝑙𝑡ℎ element, 

𝑀𝑖 and  𝑚𝑚𝑝 are the mass of 𝑖𝑡ℎnode and 𝑚𝑝𝑡ℎ material point, respectively, while, 𝑣⃗𝑖 and  𝑣⃗𝑚𝑝 

are the velocities of 𝑖𝑡ℎnode and 𝑚𝑝𝑡ℎ the material point, respectively. 

b. Compute Grid Forces: 

    The internal forces (𝑓𝑖
𝑖𝑛𝑡) and any external forces (𝑓𝑖

𝑒𝑥𝑡) are calculated on the grid nodes. 

𝑓𝑖
𝑖𝑛𝑡 =  ∑ ∑ ∑ BT(𝜉𝑚𝑝)𝜎𝑚𝑝Ω𝑚𝑝

𝑛𝑚𝑝,𝑒𝑙

𝑚𝑝=1

𝑛𝑛𝑜,𝑒𝑙

𝑖=1

𝑛𝑒𝑙

𝑒𝑙=1

 (7) 
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𝑓𝑖
𝑒𝑥𝑡 = ∑ ∑ [NT(𝜉𝑚𝑝)𝑓𝑚𝑝

𝑒𝑥𝑡,𝑡𝑟𝑎𝑐 + N𝑇(𝜉𝑚𝑝)𝑚𝑚𝑝𝑔⃗Ω𝑚𝑝]

𝑛𝑚𝑝,𝑒𝑙

𝑚𝑝=1

𝑛𝑒𝑙

𝑒𝑙=1

 (8) 

Where BT(𝜉𝑚𝑝) is the transpose of the gradient of shape function of element (𝑒𝑙) at 𝜉𝑚𝑝 

position 𝑔⃗ is the gravitational vector, Ω𝑚𝑝 is volume associated with 𝑚𝑝𝑡ℎ material point. 

c. Grid Acceleration Update: 

    The forces computed in the previous step are used to update accelerations (𝑎⃗𝑖
𝑡) on the grid. 

This is usually done using Newton's second law. 

𝑎⃗𝑖
𝑡 = (𝑓𝑖

𝑒𝑥𝑡 − 𝑓𝑖
𝑖𝑛𝑡)/𝑀𝑖 (9) 

d. Computing Material Point and Grid Velocity: 

    The material point velocity (𝑣⃗𝑚𝑝
𝑡+Δ𝑡) is updated using an explicit Euler time integration 

scheme as follows, 

𝑣⃗𝑚𝑝
𝑡+Δ𝑡 =  𝑣⃗𝑚𝑝

𝑡 + Δ𝑡 ∑ N𝑖(𝜉𝑚𝑝
𝑡 )𝑎⃗𝑖

𝑡

𝑛𝑛𝑜,𝑒𝑙

𝑖=1

   (10) 

 The grid velocity is calculated based on Eq. (6). 

e. Grid Update: 

    The nodal positions (Δ𝑢⃗⃗𝑖
𝑡+Δ𝑡), and any other state variables are updated. The updated grid 

velocities are used to calculate the updated nodal displacements as,  

Δ𝑢⃗⃗𝑖
𝑡+Δ𝑡 = 𝑣⃗𝑖

𝑡+Δ𝑡Δ𝑡   (11) 

f. Update Particle Stress/Strain, Volume and Density: 

    Using the updated velocities and deformations, the new stress or strain increments 

(Δ𝜺𝑚𝑝
𝑡+Δ𝑡)  for the particles are evaluated. This usually involves consideration of the material 

model and its constitutive behaviour. 

Δ𝜺𝑚𝑝
𝑡+Δ𝑡 = B𝑒𝑙

T (𝜉𝑚𝑝
𝑡 )Δ𝑢⃗⃗𝑖

𝑡+Δ𝑡   (12) 

Based on volumetric strain increment (Δ𝜺𝑉,𝑚𝑝
𝑡+Δ𝑡 ), Particle volume (Ω𝑚𝑝

𝑡+Δ𝑡) and mass 

densities (𝜌𝑚𝑝
𝑡+Δ𝑡) are updated as follows. 

Ω𝑚𝑝
𝑡+Δ𝑡 = Ω𝑚𝑝

𝑡 (1 + Δ𝜺𝑉,𝑚𝑝
𝑡+Δ𝑡 )  (13) 

𝜌𝑚𝑝
𝑡+Δ𝑡 = 𝜌𝑚𝑝

𝑡 /(1 + Δ𝜺𝑉,𝑚𝑝
𝑡+Δ𝑡 ) (14) 

g. Update Particle Displacements and Positions: 

    Using the updated particle strain increment, the new displacements (𝑢⃗⃗𝑚𝑝
𝑡+Δ𝑡) and positions 

(𝑥𝑚𝑝
𝑡+Δ𝑡) of the particles are computed. 

𝑢⃗⃗𝑚𝑝
𝑡+Δ𝑡 =  𝑢⃗⃗𝑚𝑝

𝑡 + ∑ N𝑖(𝜉𝑚𝑝
𝑡 )𝑢⃗⃗𝑖

𝑡

𝑛𝑛𝑜,𝑒𝑙

𝑖=1

 (15) 



H.V. Kurugodu, D. Bhattacharya, P. Vangla and D. Frost. 

 5 

𝑥𝑚𝑝
𝑡+Δ𝑡 =  𝑥𝑚𝑝

𝑡 + ∑ N𝑖(𝜉𝑚𝑝
𝑡 )𝑢⃗⃗𝑖

𝑡

𝑛𝑛𝑜,𝑒𝑙

𝑖=1

 (16) 

h. Grid Reset and Advance to Next Time Step: 

    Once all particle information has been updated, the background grid is reset, i.e., all the 

quantities on the grid are zeroed out for the next time step. 

3 BENCHMARKING OF MPM MODEL WITH CYLINDRICAL CAVITY 

EXPANSION PROBLEM 

This section details the MPM numerical modelling scheme used to benchmark the 

cylindrical cavity expansion problem. To this end, as shown in Figure 1, a cylinder with the 

cavity is considered. Table 1 presents the cylinder with a cavity with different geometries 

(cavity radius, outer radius, thickness), material models, and boundary conditions (cavity and 

external pressures) to be modelled. Due to geometrical symmetry, this problem is modelled 

using 2D axisymmetric MPM formulation.  

 
Figure 1:  Geometry of the cylinder with cavity; 2D axisymmetric idealization and mesh discretization in 

MPM (shown in red box). 

Table 1:  Configurations of cylindrical cavity expansion problem considered for this study. 

Case I II III 

Geometry  

 Cavity radius (𝑟𝑖) 2 m 2 m 

 Outer radius (𝑟𝑜) 20 m 14 m 

 Thickness (𝑡) 1 m 1 m 

Boundary Conditions  

 Cavity pressure (𝑃𝑖) 0 20 MPa 400 KPa 
 External pressure (𝑃𝑜) 10 MPa 10 MPa 100 KPa 

Material Model Linear Elastic Mohr-Coulomb 

 Young's modulus, 𝐸: 70 GPa 70 MPa 

 Poisson ratio, 𝜐 0.3 0.3 

 Cohesion, 𝑐: kPa - 1 

 Ultimate friction angle, 𝜑u - 400 

 Ultimate dilation angle, 𝜓u - -20 

20 m

1
 m

 

 

      

   

2 m

16 Material points per element

Axisymmetric
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(a) 

 
(b) 

 
(c) 

Figure 2:  Comparison of radial (𝜎𝑟) and circumferential (𝜎𝜃) stresses with radial distance ′𝑟′ for MPM 

simulations against closed-form solutions (a) for Case I (b) for Case II; (c) for Case III. 
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The closed-form solutions of the classical cylinder with cavity problems are available from 

[12] and [13] for linear elastic and Mohr-Coulomb materials, respectively. The closed-form 

solutions are automated and solved by implementing routines in MATLAB. Figure 2 shows the 

variations for radial (𝜎𝑟) and circumferential (𝜎𝜃) stress along the radius of the MPM model 

compared with closed-form solutions. MPM results show high fidelity when compared with the 

closed-form solutions. In case III, as shown in Figure 2c, MPM simulations can distinguish the 

formation of plastic and elastic regions. 

4 MPM MODELLING OF DISPLACEMENT-RATE CONTROLLED 

LABORATORY PRESSUREMETER TEST 

An experimental study of pressuremeter tests conducted by Fahey [10] using thick 

cylindrical Leighton Buzzard Sand (LBZ) samples was considered to validate the proposed 

MPM framework. In the experimental study, the sample, initially having a cavity of 40 mm in 

diameter, was expanded inside a cylindrical sand specimen with 400 mm in diameter and 200 

mm in length. The testing apparatus was designed to maintain a stable boundary pressure of 90 

kPa and prevent axial movements. The cavity was expanded to achieve 10% cavity strain, and 

the corresponding cavity pressure was recorded.  

4.1 Geometry, Material model, Boundary conditions and Discretization 

We take advantage of the geometrical symmetry of the problem, and thus, half of the 

geometry is used in MPM 2D axisymmetric simulation. The geometry shown in Figure 3 is a 

2D axisymmetric idealization of the experimental program carried out by Fahey [10]. The sand 

sample has a cavity with a radius 𝑟𝑖 = 20 mm, outer radius 𝑟𝑂 = 0.2 m and thickness 𝑡 = 0.2 m 

is constructed in GiD pre-processor [14], as shown in (Figure 3). LBZ sand is considered a 

Mohr-Coulomb material with calibrated properties based on [15] listed in Table 2. In MPM 

simulations, the inside and outside boundary pressures are kept constant (𝑃𝑜 & 𝑃𝑖 = 90 𝑘𝑃𝑎) 

while preventing axial movement as initial conditions. Then, the cavity is expanded radially at 

a rate of 1 mm/s till a cavity strain of 10% is achieved. The mesh and material point 

discretization of the MPM model is illustrated in Figure 3. The sixteen material points per 

element were found to be sufficient to simulate the pressuremeter tests after carrying out a 

parametric study by varying the number of points per element.  

 
Table 2:  Material properties of LBZ sand after [15] 

 

Property Value 

Young's modulus, 𝐸: kPa 100000 

Poisson ratio, 𝜐 0.25 

Cohesion, 𝑐: kPa 1 

Ultimate friction angle, 𝜑u 480 

Ultimate dilation angle, 𝜓u 16.50 
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Figure 3: Geometry of displacement-rate controlled laboratory tests [10]; 2D axisymmetric idealization and 

mesh discretization in MPM (shown in red box). 

 

 

4.2 Results and Discussions 

The displacement profile at the end of the test is shown in Figure 4. Cavity pressure recorded 

while expanding the cavity to 10% radial strain is achieved was plotted and compared with the 

experimental results of Fahey [10], as shown in Figure 5. The global response shows good 

agreement with displacement-controlled laboratory pressuremeter tests. In MPM simulations, 

a monotonic increase in cavity pressure is observed up to a 4% cavity strain, with maximum 

cavity pressures ranging between 600-700 kPa sustained until a 10% cavity strain is achieved. 

In contrast, experimental studies report a maximum cavity pressure of 655 kPa, indicating that 

MPM simulation results are within ±10% of the experimental findings. 

Further insights are gained into the radial stress history during the test. Figure 6 illustrates 

the evolution of radial stresses (𝜎𝑟) at 2.5%, 5%, 7.5%, and 10% cavity strains. Elevated stresses 

are predominantly localized at the cavity wall, whereas stresses at the external boundary remain 

unchanged. A uniform radial stress distribution is observed across the thickness of the sample, 

indicating high fidelity in MPM simulations. Access to such local responses offer advantages 

over experimental and theoretical interpretations of the pressuremeter test that treat soil as an 

elemental entity. 
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16 Material 
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Figure 4: Radial displacement contours of MPM simulations of displacement-rate controlled laboratory 

pressuremeter tests. 

 

 
Figure 5: Variation of cavity pressure against cavity strain of MPM simulations compared to experimental 

studies by [10]. 
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0.0015
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6: Evolution of radial stress (𝜎𝑟) contours of MPM simulations for pressuremeter test at (a) 2.5%, (b) 

5%, (c) 7.5%, (d) 10%. 

5 CONCLUSIONS 

This study investigates the Material Point Method (MPM) as a viable numerical scheme 

within the continuum framework for simulating the pressuremeter test, a cornerstone in 

geotechnical in-situ investigations. We utilize the open-source tool, Anura3D, for the MPM 

simulations and take advantage of the problem’s geometrical symmetry to adopt an explicit 2D 

axisymmetric MPM model. MPM findings are benchmarked against classical cavity expansion 

problems, highlighting the MPM's efficacy. Further findings of this study can be summarized 

as follows: 

• The global responses from the MPM simulation of the displacement-rate controlled 

pressuremeter test align with ±10% of the experimental findings.  

• MPM simulations can offer insights into localized behaviours, viz. displacement, stress 

and strain contours, presenting a distinct edge over experimental and theoretical 

interpretations of the pressuremeter test, which treats soil as a singular element. 

The congruence of our results with displacement-controlled experiments from existing 

literature further underscores the potential of MPM as an indispensable tool in geotechnical 
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numerical investigations. 
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