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Abstract. As majority of people spend 90% of their time in indoor environment, air quality has 

become an important scientific field in the last few decades. Indoor air quality is affected by 

many factors. One of the significant factors is outdoor air pollutions [1]. They enter the indoors 

through ventilation systems or natural ventilation and may stay indoors for a long time due to 

the airtightness of buildings. The present study especially focuses on nitrogen dioxide (NO2) 

concentration in a natural ventilating room that comes from outdoor pollutant sources such as 

vehicle emissions. In the present study, we have performed numerical simulations of a 

controlled environment in Sense-City urban area [2]. Sense-City is a unique full-scale 

equipment that can reproduce controlled conditions of temperature, humidity, airflow and 

pollution using an atypical climatic chamber. Reynolds Averaged Navier-Stokes (RANS) 

simulations have been carried out to calculate indoor and outdoor NO2 concentrations. RANS 

simulations are performed in two steps: district scale and building scale. Pressure values and 

pollutant concentrations are extracted from the district scale simulation and applied to the 

building scale simulation as boundary conditions. As expected, a sensitivity analysis study 

shows that the NO2 concentration in the building depends mainly on the pollutant 

concentration at the windows. Once opening windows, indoor pollutant concentration reached 

the almost same level of that of outdoor within a few minutes. Therefore, the interaction between 

indoor and outdoor air quality cannot be negligible for indoor air quality. This study can be 

useful for engineers and for local authorities to understand the importance of considering the 

interaction of the indoors and outdoors, the potential and limitation of RANS simulation in a 

natural ventilating. Considering the limitation of the number of sensors for air pollution in real 

applications, Computational Fluid Dynamics (CFD) is promising to obtain air pollutant 

distribution cartography. It can also be used as a decision-support tool for relevant urban 

planning such as the optimal placement of sensors and depolluting systems in urban areas. 
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1 INTRODUCTION 

As the majority of people spend 90% of their time in indoor environments, its air quality 

contributes to occupants’ health risk, comfort and work efficiency. According to World Health 

Organization (WHO), poor indoor air quality is responsible for 3.8 million of death every year. 

Indoor air quality is affected by many factors. One of the significant factors is outdoor air 

pollution [3,4]. They enter the indoor through ventilation systems and infiltration, and may stay 

inside for a long time due to the airtightness of buildings which are being improved nowadays.  

There are many studies using field measurements or numerical models to assess air quality. 

Some field measurement campaigns were performed to estimate outdoor pollutant levels e.g. 

[5]. The relationship between indoor and outdoor air pollutants was also monitored e.g.[6]. 

However, it is difficult to accurately capture inhomogeneous distributions of pollutant 

concentration using only a limited number of sensors. Here CFD addresses this issue. Unlike 

the measurements by commercial sensors, CFD constructs the spatial domain with high 

resolution of numerical grids, making it possible to visualize the nonuniform airflow and 

pollutant concentration. Today’s development of computational power assists the wide use of 

CFD for pollutant assessments both indoors e.g.[7] and outdoors e.g.[8]. Nevertheless, few 

researches consider the interaction between indoor and outdoor air quality in CFD. One of the 

reasons is that indoor and outdoor air quality are regarded as different scientific fields. 

However, as mentioned, their interaction is important for the air quality assessment. 

The present numerical study demonstrates two kinds of scenarios considering the interaction 

between indoor and outdoor air quality with RANS simulation in a controlled district Sense-

City where atmospheric conditions can be controlled. NO2 source is located on a road to imitate 

traffic emissions. The simulation is performed in two steps: district scale and building scale, 

namely decoupling simulation. For the building scale simulation, the boundary conditions 

(velocity and pollutant concentration) are extracted from the district scale simulation. 

2 BRIEF DESCRIPTION OF SENSE-CITY DISTRICT 

Sense-City shown in Figure 1 is a unique facility in Université Gustave Eiffel to aim to 

artificially provide a real and complex urban environment at the real scale. The facility can be 

used for a variety of studies regarding urban sustainability; energy performance, air and water 

quality, distribution networks for fluid and water, and so on.  

Sense-City has a movable climatic chamber, which surrounds 400m2 area and 8 m in height. 

When the climatic chamber is removed into a neighboring area, the real environment is 

(a) (b) 

Figure 1: Sense-City district: (a) without climatic chamber, (b) within climatic chamber 
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available. The climatic chamber generates and repeats a specific weather condition according 

to scientific needs; such as flow velocity, temperature, humidity and sunlight can be controlled. 

In the Sense-City district which is highly instrumented, there are a concrete building, two small 

houses, a road, etc. Herein we focus on the pollutant transport from the Sense-City district to 

an indoor room of the concrete building. 

3 CFD SIMULATION OF POLLUTANT DISPERSION AT DISTRICT SCALE 

3.1 Governing equation and solver setting 

In the first step, a simulation of the district scale was performed for pollutant dispersion. 

Before the pollutant dispersion simulation, a flow simulation was done by [9] where the flow 

was averaged over the last 10 min of the 20 min simulation. Based on the average velocity field, 

the advection-diffusion equation with a volumic pollutant source term is modeled as below:  

𝜕𝐶

𝜕𝑡
+ 𝒖̅ ∙ ∇𝐶 −

𝜈𝑡

𝑆𝐶𝑡

∇2𝐶 = 𝑆 (1) 

where  𝒖̅  is the average velocity, 𝐶  represents instantaneous concentrations, and 𝑆  is the 

pollutant source term, 𝜈𝑡 is the turbulent viscosity, and 𝑆𝐶𝑡 is the turbulent Schmidt number 

which is 0.7 now. The ratio of 𝜈𝑡 to 𝑆𝐶𝑡 provides the turbulent diffusion coefficient, making a 

big difference in the pollutant dispersion behavior. The governing equation was numerically 

solved with open source software: Freefem++ [10] based on the finite element method. To 

obtain numerical stability, SUPG method [11,12] was used. Time step was 0.1 s, and the total 

time step is 3000 steps corresponding to 5 min.  

3.2 Computational domain and boundary condition 

Figure 2 shows the numerical mock-up of Sense-City with the climatic chamber. Due to the 

limitation of representing details of geometry, some simplifications were done. In the district 

scale simulation, all buildings did not have any windows, meaning that all windows were  

considered closed or walls. Two boundaries were considered for the fan: inlet fan to generate 

(a) 

(b) 

Figure 2: Numerical mock-up of Sense-City district with climatic chamber and its equipment 
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flow and outlet fan to extract flow. Flow is also extracted by the 4 suction ducts at the corner 

of Sense-City climatic chamber. More detailed mock-up geometry is available in [9].  

In terms of boundary conditions, at the inlet boundary (inlet fans, inlets air ducts) Dirichlet 

condition for concentration, 𝐶 = 0, was applied. At outlets boundary (outlet fans and suction 

ducts) and wall surfaces (building, houses, climatic chamber, etc.), Neumann condition for 

concentration, ∇𝐶 ∙ 𝑛 = 0, was used. Figure 3 represents the position of the pollutant source 

and streamlines of the average flow. The source was located on a road between the concrete 

building and the small houses where flow distribution is similar to that of the street canyon. We 

considered a continuous release of pollutants from box-like source: 0.5 × 0.5 × 0.5 = 0.125𝑚3 

at 1.5 m height. Now we consider the source term 𝑆 in equation (1) as 𝑆 = 𝛾𝑓𝑠(𝑥) which is a 

combination of a strength of emission, 𝛾 and a function, 𝑓𝑠(𝑥) expressed by 

𝑓𝑠(𝐱) = {
       1    For 𝐱 ∈ Ω𝑠             

    0    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒           
 (2) 

where  Ω𝑠  is the volume of the source. Now 𝛾 is set to 1 as a unitary value. Hereafter we 

consider a simulation with this pollutant source as the elementary solution. The expression, 𝑆 =
𝛾𝑓𝑠(𝑥) , allows us to obtain a desired numerical solution 𝐶  by multiplying the elementary 

solution by the desired value (e.g. multiply the elementary solution by 1000 when the strength 

of source is 1000 𝜇𝑔/𝑚3/𝑠 ).  

An unstructured mesh with a local refinement near the source emission was performed using 

the open-source software SALOME [13] with the automatic mesh generator NETGEN method. 

After a parametric study of the sensitivity of the results to the grid spacing, a total cell number 

of about 1,845,707 was retained.  

3.3 Result: pollutant dispersion at building scale 

Figure 4 shows a time evolution of pollutant concentration of the elementary solution on a 

horizontal plain at z = 1.5m. The pollutants from the source are transported toward the concrete 

building and then most of the pollutants are sucked into the top left suction duct. Taking into 

(a) 
(b) (c) 

Figure 3: Location of pollutant source and stream line of average flow (both red and blue lines): (a) 3D 

view, (b) horizontal view, (c) vertical view 
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consideration the average flow, the dominant movement toward the left suction duct is caused 

by the flow of the blue streamlines in Figure 3 (a) and (b). This flow goes down from the inlet 

fan and directly moves toward the top left suction duct. Red streamlines, on the other hand, 

move upward along the wall of the concrete building (see Figure 3 (c)), resulting in a big 

circulation similar to the street canyon’s vortex. Therefore, the pollutants are mainly transported 

upward along the primary vortex (see Figure 5 (a)). From Figure 5 (a), since air pollutants move 

along the wall, we can note that air pollution can enter the inside concrete building if there is 

an opening on the wall. In terms of the outside pollutant magnitude from Figure 5, people would 

be exposed to the poor air quality at the pedestrian level while the pollutant magnitude decreases 

as it goes upward. However, the pollutant magnitude on the other side of the concrete building 

is close to zero even at the ground level. 

  

(a) (b) (c) 

Figure 4: Time evolution of pollutant concentration of the elementary solution: (a) t=5s, (b) t=30s, (c) t=60s 

(a) (b) 

Figure 5: Pollutant concentration at t=30s: (a) 3D view, (b) horizontal view 
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4 CFD SIMULATION OF FLOW AND POLLUTANT CONCENTRATION AT 

BUILDING SCALE 

4.1 Governing equation and solver setting 

We performed both the flow simulation and the pollutant dispersion simulation for the case 

of the building scale. The solver is Code_Saturne [14] based on finite-volume method for both 

the flow and pollutant dispersion simulation whereas Freefem++ was used for the pollutant 

dispersion at the district scale. The governing equation for the flow is Reynolds-Averaged form 

of incompressible Navier-Stokes equation and continuity equation:  

𝜕𝑢̅𝑖

𝜕𝑥𝑖

= 0 (3) 

𝜕𝑢̅𝑖

𝜕𝑡
+ 𝑢𝑗̅

𝜕𝑢̅𝑖

𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝̅

𝜕𝑥𝑖

+ 𝜈
𝜕2𝑢̅𝑖

𝜕𝑥𝑗𝑥𝑗

−
𝜕𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗

 (4) 

In the present simulation, the k-ω SST turbulence model [15] was employed, which optimizes 

the turbulence modeling according to the distance from the wall. The solver setting was 

identical to [9]. The special terms were discretized with second-order linear upwind (SOLU). 

The time-advancement scheme was first-order. SIMPLE algorithm is applied for pressure-

velocity coupling. Time step was a constant value of 0.1 s. The total simulation period was 30 

min. The last 20 min flow was used to obtain an average velocity field with which the advection-

diffusion equation was solved. The governing equation was identical to that of the district scale. 

The same solver setting with the flow simulation was used. The turbulent Schmidt number, 𝑆𝐶𝑡, 

was 0.7 which was identical to the district scale simulation. 

4.2 Computational domain and boundary condition  

Figure 6 shows the geometry of the target room located on the first floor of the concrete 

building including the three desks and a locker. The size of the floor is 9.6 m × 3.6 m and height 

of 2.3 m. Other small furniture is not mocked-up to simplify the geometry. Two windows are 

considered inlet and outlet boundary conditions each other in the simulation. One window is 

open on each side of the wall in the main room (green color shows inlet and red color shows 

(a) (b) 

Figure 6: Geometry of indoor building: (a) picture of Sense-City, (b) mock-up indoor building 
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outlet in Figure 6). The floor is separated by a movable wall, and a 1 m passage is kept open 

between the main and next room in this case. The distance between the ground and the center 

of the window is 4.35m.  

Figure 7 shows the mesh generated in SALOME. Mesh density varied in each room; refined 

mesh in the main room and coarse mesh in the next room. To obtain a stable computation, hexa 

mesh was used only near the inlet and outlet, and tetra mesh fills other spaces.  

The boundary conditions for wall, bottom floor, ceiling and furniture employed no-slip 

conditions. In the present simulation, a window facing the road is regarded as the inlet condition 

and an opposite side window was the outlet condition. In fact, the flow enters inside from the 

road side window due to the flow characteristics of Sense-City. At the inlet and outlet 

conditions, time-averaged pressures that were extracted from the district scale simulation [9] 

were imposed. Therefore, wind flow inside the room was driven only by pressure difference. 

At the outlet, zero-gradient condition was imposed for flow and pollutant concentration. For 

the pollutant concentration, a concentration with a constant magnitude of 1 was imposed at the 

inlet boundary. Hereafter we regard a numerical solution with these boundary conditions as the 

elementary solution. Thanks to the linearity of the advection-diffusion equation, the pollutant 

concentration can be calculated by multiplying the elementary solution by the inlet 

concentration magnitude obtained from a time-average of the district simulation. The inlet 

concentration is considered constant in the short-duration simulation. 

4.3 Mesh convergence study  

Before performing the simulation, a mesh convergence study is conducted to obtain a mesh 

independence solution. Three types of mesh density are investigated. The detail of mesh 

information is shown in Table 1. Since it is expected that a dominant flow does not appear in 

the next room, the mesh size is larger than the main room. To avoid numerical instability, the 

size of hexa mesh near the windows remains. In accordance with German Guideline VDI6019 

suggesting a relationship between the number of mesh and volume of a room, the number of 

adequate mesh is 247,526 in this case. Therefore, we consider the mesh of 255,270 as the 

intermediate one.  

Regarding the average velocity field on the horizontal plane at 1.15 m, as can be seen in 

Figure 8, it is found that differences between the three cases are not obvious. However, the 

large-velocity area at the center of the main room (red color regions in Figure 8) elongates as 

(a) (b) 

Figure 7: Mesh configuration for indoor building: (a) 3D view, (b) horizontal view 
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the mesh become coarse. In the next room, the center of the circulation is changed each other. 

Coarse mesh provides a clear circulation in the next room, but this circulation is changed in the 

other cases. While the coarse mesh does not seem to be affected by the locker, the other two 

cases show disturbances near the locker leading to the complicated flows. This indicates that 

the coarse mesh cannot reproduce the flow separation by the locker. Accordingly, the coarse 

mesh case shows a simpler flow distribution. Given that the coarse mesh is not reliable and the 

difference between the intermediate and refined is not too big, we decided to choose the 

intermediate mesh for the following study of the building scale simulation. 

4.4 Result: flow and pollutant dispersion at building scale  

Figure 9 shows the average velocity magnitude and direction calculated from the last 20 min 

of RANS flow simulation. Flow direction from the inlet window heads toward the outlet 

window, and then the flow is separated into two directions creating two large 3D circulations 

in the main room. Accordingly, the center of the room has a lower velocity compared to near 

the walls. In the next room, one has a very low-velocity flow (i.e. less than 0.3 m/s). Near the 

movable wall, the flow moves upward from the bottom floor with a magnitude of about 0.7 m/s 

and turns into the next room through the passage between the rooms.  

Along this flow, the pollutants are transported in Figure 10. On the one hand, once the 

pollutants reach the outlet window, they propagate along the wall. On the other hand, regions 

Table 1: Mesh size 

(a)  

(c) (b)  

Figure 8: Average velocity field: (a) coarse mesh, (b) intermediate mesh, (c) refine mesh 
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far away from the wall (e.g. the center of the room) are not relatively contaminated at the 

beginning. Finally, they enter the next room, especially from the top of the passage.  

Figure 11 (b) shows time evolution of concentration at four probe points (see Figure 11 (a)) 

to show the sequence of contamination: where it is contaminated firstly, secondly, etc. Point 1 

is located in the center of the main room where the main flow occurs, Point 2 near the movable 

wall with high velocity (i.e. 0.7 m/s), Point 3 in the center of a vortex in the main room, and 

Point 4 in the next room. Point 1 observes high contamination within a few minutes as this point 

is in the main flow. Even though the positions of Point 2 and Point 3 are close to each other, 

their pollutant evolutions show different trends. Point 3 takes more time to reach the high 

concentration than Point 2. Thus, we can state that air pollutants are propagated from the 

perimeter to the center of the room gradually. Point 4 indicates a low-speed evolution. This is 

just the time lag for the pollutant to reach Point 4, and it reaches the same pollutant level of the 

(a) 
(b) 

Figure 9: Average velocity field: (a) 3D view, (b) horizontal view 

(a) (b) (c) 

Figure 10: Time evolution of pollutant concentration: (a) t=4s, (b) t=60s, (c) t=100s 

(a) (b) 

Figure 11: Time history of pollutant concentration on probe points 
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main room after 30 min. Consequently, hence after 30 min of the window openings, pollutant 

concentration may be homogeneous in the building room. 

4.5 Sensitivity analysis  

In order to explore the impact of input variables (pressure difference, Schmidt number and 

pollutant concentration at the inlet), we performed a numerical sensitivity analysis. Simulations 

with 10% increase and decrease of pressure difference and Schmidt number were conducted. 

To evaluate the sensitivity, we consider a non-dimensional indicator of pollutant level 𝐼𝑑𝑖𝑓 on 

the first 15 min calculated by  

𝐼𝑑𝑖𝑓 =
𝐼𝑖 − 𝐼𝑟𝑒𝑓

𝐼𝑟𝑒𝑓

, 𝐼𝑟𝑒𝑓 =
1

15𝑚𝑖𝑛
∫ 𝐶𝑟𝑒𝑓𝑑𝑡

15𝑚𝑖𝑛

0

, 𝐼𝑖 =
1

15𝑚𝑖𝑛
∫ 𝐶𝑖𝑑𝑡

15𝑚𝑖𝑛

0

  (5) 

where “Cref” represents a reference concentration obtained considering Schmid number 𝑆𝐶𝑡 is 

0.7, pressure difference between inlet and outlet is 0.633 Ps and inlet concentration magnitude 

is 1.0. “Ci” represents a numerical concentration where a model parameter has been changed to 

10 % compared to its reference value. For instance, “Pre_min” indicates a case with a pressure 

difference of 10% decrease, “Sch_plus” shows a case with Schmid number of 10 % increase, 

and “Pre_min-Sch_plus” shows a case combining both above conditions.  

Table 1 shows the result of the sensitivity analysis in terms of the pressure difference and 

Schmidt number on the three probe points. For the impact of the inlet pollutant concentration, 

thanks to the linearity of the advection-diffusion equation, it is easy to estimate its impact 

without simulations. Namely ±10 % modification of pollutant concentration at the inlet window 

will lead to ±10 % variation of the indicator. Point 1 is not sensitive to the change of the pressure 

difference and Schmidt number. This can be attributed to the short time duration before 

reaching the high pollutant concentration even with the changed input variables. For Point 3 

and Point 4, it is found that the pressure difference has a relatively large impact compared to 

Schmidt number. However, recalling that the change of ±10 % of the inlet pollutant 

concentration gives 𝐼𝑑𝑖𝑓 = ±10% , the inlet pollutant is the most influential parameter. 

Therefore, to obtain an accurate prediction of the pollutant level in the room, one needs to 

previously know the pollutant concentration at the inlet opening from prior simulations or 

measurements.  

Table 2: Indicator of numerical sensitivity analysis: 𝐼𝑑𝑖𝑓, 𝐼𝑟𝑒𝑓 ,𝐼𝑖  
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5 CONCLUSIONS AND FUTURE PERSPECTIVE 

In the present study, the numerical simulations for flow and pollutant dispersion in Sense-

City were performed at both the district and building scales separately to study the interaction 

between indoor and outdoor pollutants. Then, in the sensitivity analysis, we investigated which 

kind of input variables in the simulations are influential on the pollutant concentration in the 

room. As a result, the following knowledge is obtained: 

 

- Pollutants emitted from the source on a road are transported along the flow and upward 

along with the building wall, and finally they reach a height of a window on the 1st 

floor. It can be mentioned that outdoor air pollution affects indoor air quality and it 

largely depends on the airflow direction and distribution. Thus, it is important to take 

the dominant flow direction and urban geometry into account when considering 

adequate actions plans reduce the individual human exposures. 

 

- Pollutants entered the room from the inlet window spread from the perimeter of the 

room to the center of the room. Even in a small indoor area, the air quality can be 

inhomogeneous in the first 15 min of the simulation. Therefore, it should be noted that 

opening windows does not always result in good indoor air quality and people should 

consider when adequate action plans should be implemented (e.g. opening windows). 

 

- As the indoor pollutant concentration in the simulation is sensitive to the pollutant 

magnitude at the inlet window, it is crucial for an accurate simulation to get an accurate 

pollutant magnitude at inlets or pollutant sources from outdoor simulations, 

experiments and field measurements in advance. 

 

This numerical study will be used to design an experiment in Sense-City (e.g. to know where 

should be monitored by sensors) and compared with the experiment for validation. Then 

cartography for air quality in Sense-City will be made. Based on the cartography, we will 

propose optical placements of depolluting systems using CFD results and an inverse method 

for Sense-City district. This series of methodology will be extended to a real urban area, Paris, 

in the future. 
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