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Predicting travel speeds on urban road networks is a challenging subject due to its uncertainty stemming from travel demand,
geometric condition, traffic signals, and other exogenous factors. This uncertainty appears as nonlinearity, nonstationarity, and
volatility in traffic data, and it also creates a spatiotemporal heterogeneity of link travel speed by interacting with neighbor links. In
this study, we propose a hybrid model using variational mode decomposition (VMD) to investigate and mitigate the uncertainty
of urban travel speeds. The VMD allows the travel speed data to be divided into orthogonal and oscillatory sub-signals, called
modes. The regular components are extracted as the low-frequency modes, and the irregular components presenting uncertainty
are transformed into a combination of modes, which is more predictable than the original uncertainty. For the prediction, the VMD
decomposes the travel speed data into modes, and these modes are predicted and summed to represent the predicted travel speed.
The evaluation results on urban road networks show that, the proposed hybrid model outperforms the benchmark models both
in the congested and in the overall conditions. The improvement in performance increases significantly over specific link-days,
which generally are hard to predict. To explain the significant variance of the prediction performance according to each link and
each day, the correlation analysis between the properties of modes and the performance of the model are conducted. The results
on correlation analysis show that the more variance of nondaily pattern is explained through the modes, the easier it was to predict

the speed. Based on the results, discussions on the interpretation on the correlation analysis and future research are presented.

1. Introduction

Forecasting travel speed on urban road networks are the most
critical component of intelligent transportation systems
(ITSs). An accurate prediction of link travel time allows trav-
elers to choose an alternative route to avoid congestion or
traffic incidents, and it reduces congestion. Therefore, the reli-
able predictions of recurrent congestion and of nonrecurrent
incidents are especially important, but they are challenging to
provide due to the complex and elusive characteristics of traffic
dynamics [1].

Travel speed on urban roads is more complicated than on
freeways or arterial roads due to the intrinsic uncertainty
associated with the roads. Many components in urban traftic
dynamics, such as travel demand, traffic signals, and stochas-
tic arrivals at intersections result in recurrent and

nonrecurrent congestion [2]. These phenomena causes the
nonlinearity, nonstationarity, and volatility, which are difficult
to model for statistical approaches, such as Kalman filtering
[3], autoregressive integrated moving average (ARIMA) [4],
and its variants [5].

Some researchers have provided extensive reviews in
which they compared various prediction schemes given on
the different types of data and models [1, 6]. They generally
have reported that a machine learning-based approach, such
as artificial neural network (ANN) [7], the support vector
machine (SVM) [8, 9], and the k-nearest neighbor method
(KNN) [10-12], outperform the parametric statistical
approach due to their ability to identify the nonlinear effects
through flexible restructuring [13]. However, the existing
learning-based approaches have difficulty dealing with the
uncertainty of urban traffic conditions, and the difficulty is
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compounded in unstable congestion [14]. Another character-
istic of urban travel speed is spatiotemporal heterogeneity.
Some researchers have reported that the same prediction
model shows significant differences in its prediction perfor-
mance across the network and during different time periods
[15-18]. This characteristic was observed between links, for
different days of the week, for different traffic conditions on
the same day. This phenomenon is due to the correlation of
neighbor links [16] and to volatility in the data [17].

Recently, the effects of spatiotemporal variables on the
prediction of travel speed have been discussed using multi-
point data, and multivariate approaches, such as modified
SVM [9], modified KNN [12, 13], deep neural networks [19],
and Bayesian networks [20]. These researchers tried to capture
the nonlinear spatiotemporal effects, and their critical pro-
cesses were selecting the variables that reflected the dynamics
of network traffic in various localities and determining the
causal relationships between different road segments. Various
techniques have been used to select the optimal variables,
either before the training process [13] or during the training
process [19, 20]. However, since the influences of links on their
neighbors change with time and they are heterogeneous in
space, only generally well-performed spatiotemporal variables
(i.e., the number and location of links and the optimal time-
lag) would be selected at a given point in time. These limita-
tions cause poor performance, particularly in nonrecurrent
conditions due to irrelevant variables [14, 16].

Alternatively, hybrid approaches using single-point data
have been proposed in many studies to cope with the uncer-
tainty of urban traffic conditions, and these are divided into
two branches i.e., feature extraction and “divide and conquer”.
The feature extraction is the process of converting raw data
into useful representations that enhance the efficiency and
generality of models [21]. In the hybrid approaches, the fea-
tures are mainly extracted in preprocessing with domain
knowledge, such as known periodicity of the phenomena [22]
and propagation of kinematic waves [23]. Therefore, the fea-
ture extraction requires the understanding of phenomena or
extensive empirical research. However, traffic dynamics on
urban networks remain elusive, and empirical calibration also
is difficult due to the various patterns of each link and on each
day. For practical application of the hybrid models, the concept
of “divide and conquer” (DC) was proposed for accurate,
data-adaptive, and easy-to-use prediction [24]. The principle
of DC is that a complicated modeling task can be simplified
by decomposing the data with multiple frequency components
into orthogonal functions with local frequency components.
The decomposed functions are respectively predicted and
summed to represent the predicted time series. For the
DC-based prediction, signal processing techniques, such as
Fourier transform (FT) [25], wavelet transform (WT) [26],
and empirical mode decomposition (EMD) [27, 28], have been
used to decompose the freeway speed and passenger flow, and
their improved performances were usually reported.
Furthermore, analyzing spectral and statistical properties of
decomposed functions can provide a better understanding of
traffic dynamics on urban networks. However, this approach
has not been applied to urban travel speed that has both prom-
inent uncertainty, and prominent diversity.
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In this study, variational model decomposition (VMD)
is used to decompose the speed data for DC-based predic-
tion. The VMD overcomes several limitations of conventional
techniques, such as the stationary assumption in FT, basis
wavelet selection in WT, and sensitivity to noise and sampling
in EMD [29]. The VMD decomposes the data into orthogo-
nal, and oscillatory sub-signals, called modes, with their
respective center frequencies. The notable strength of VMD
is the robustness to sampling frequency and noise, which can
separate the useful oscillatory patterns from noisy and vola-
tile speed data. The influential factors related to the uncer-
tainty of urban traffic conditions can be decomposed as
oscillatory modes, even in recurrent and nonrecurrent con-
gestion, and the properties of the modes can be used to
explain these uncertainties, which determines the possibility
to predict the speed, i.e., forecastability. Therefore, the VMD
can improve the prediction performance, and furthermore,
it can provide new insights for the factors determining the
difficulties of travel speed prediction.

The objective of this study is to propose a hybrid model
using VMD that contributes to understanding and improving
the prediction of urban travel speed by investigating and mit-
igating its uncertainty. The key contents of this paper are as
follows: (a) to propose a DC-based hybrid model using VMD
for predicting travel speed in the urban networks; (b) to eval-
uate the proposed model on various links, days of the week,
and for different traffic conditions for comparing with the
benchmark models in terms of accuracy and robustness; and
(c) to explain the intrinsic properties to forecast heterogeneous
urban traffic dynamics using the spectral and statistical prop-
erties of the decomposed modes.

The remainder of this paper is organized as follows. First,
we describe the studied site, and the collecting of the link-
travel speed data. In the next section, the decomposition
and prediction method are discussed in detail. Then, we
present the performance evaluation with an analysis of the
properties of the modes to interpret the results. Last, our
concluding remarks and our potential future research are
presented.

2. Study Site and Data Collection

The site of the study was the primary urban roadway network
in the Daegu metropolitan area in South Korea. The complete
data set included three months of individual vehicles’ travel
data collected by the roadside equipment (RSE) from April to
June 2016. When the vehicles equipped with an onboard unit
(OBU) device passed the RSE, travel data were collected using
dedicated short-range communication (DSRC) which connect
the OBU and RSE. The DSRC is more accurate than the data
obtained by GPS-enabled vehicles (i.e., floating car data). In
Korea, more than 60% of vehicles are equipped with OBU,
which guarantees the reliability of the data. We aggregated
the individual travel data into a 5-minutes time interval and
converted it into link travel time data. Figure 1(a) shows the
urban network that was studied, and it consists of 545 links
equipped with DSRC roadside detectors, including express-
ways, arterials, and other roads. We studied the links that are
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FIGURE 1: The urban road network that was studied: (a) spatial
distribution of the studied site with missing rate of link travel speed
data, (b) temporal distribution of missing rate of link travel speed
data, and (c) mean and standard deviation of the travel speed on links
that had a missing rate of less than 10%.

located in the downtown to ensure the reliability of DSRC
data with sufficient traffic volume to minimize the missing
rate of the data, and those links are highlighted in green lines

in Figure 1(a). Missing data are represented by some links that
remain unobserved during some time intervals. The missing
rate of the data is calculated by the number of unobserved
5-minutes aggregated travel speeds divided by the number of
unobserved and observed ones at each link. Among the links
located in the downtown, the links with an overall missing
rate of less than 10% are highlighted in orange lines in Figure
1(a). To evaluate the proposed method, it is necessary to con-
duct a consistent analysis of various locations of the urban
network. However, the links show varying missing rate con-
sidering the whole time period as shown in Figure 1(b).
Despite the high penetration rate of OBU, there exist some
missing data especially at dawn when the volume of DSRC
equipped vehicle was low.

In this study, we used those orange-lined 61 links data
from 06:00 A.M. to 23:55 P.M., where the missing rate is less
than 2%, to minimize the effect of the missing data, and the
remaining missing data were imputed using a linear-
ly-weighted moving average with 30-minutes windows. We
also removed the outlier that are the observations below the
15th percentiles or above the 85th percentiles. The average
length of the links that were used was 980 m. Distribution of
characteristics of the travel speed in each link is shown in
Figure 1(c). The mean travel speed and its standard deviation
had bell-shaped distributions in the ranges of 20-40 km/h and
4-12km/h, respectively, which reflected the heterogeneous
nature of the urban links.

3. Methodology

3.1. Overview of Hybrid Model. The traffic characteristics
of the urban roads can be treated as a combination of
regular components, such as commuters’ travel demand,
geometric conditions, and irregular components, such as
traffic incidents and other exogenous factors. Separating
all of these individual components is impossible. However,
typical patterns of regular components can be extracted
directly, and the uncertainty of the irregular components
can be transformed into a combination of orthogonal,
and oscillatory modes, which is more predictable than the
original components. Based on this principle, the VMD
decomposed the travel speeds into modes, and they were
predicted and summed up to represent the predicted travel
speed. The summation of the modes can be predicted more
accurately than the original travel speed data since some of
the modes mitigate the uncertainty in the original data, such
as nonlinearity, nonstationarity, and volatility. Figure 2 shows
the flow diagram of the proposed hybrid model. In order to
describe the processes, we first explain the VMD and then
present travel time prediction models, i.e., ANN and SVM,
for each mode. Next, the reconstruction process that can
finally derive predicted travel speed from the mode that is
presented.

3.2. Variational Mode Decomposition (VMD). To look for
the K number of modes that are compacted around a central
frequency with limited bandwidth, the VMD algorithm solves
the following minimization problem:
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FIGURE 2: Flow diagram of a hybrid model using variational mode decomposition.

min

K 2
{‘-‘k {“’k} {Z 2}
s.t. Z U, =
k=1

where 1, is the k™ decomposed mode, K is the number of
predefined modes, f is the original time-series, w, is the cen-
tral frequency of a mode k, 6 is the Dirac distribution, ||| is the
vector £, norm, j° = —1, * denotes convolutions, and 9, is par-
tial derivative of time t. The reconstruction constraint indi-
cates that summation over all modes equals to the original
signal. The meaning of solving this problem is described as
follows [29]: (a) the associated analytic signals, by means of
the Hilbert transform to obtain a unilateral frequency spec-
trum are computed for each mode, u;; (b) the frequency spec-
trum of the mode to “baseband” is shifted by mixing with an
exponential tuned to the respective estimated central fre-
quency; (c) the bandwidth is estimated through the Gaussian
smoothness of the demodulated signal (the squared L2-norm
of the gradient).

The solution to the problem is the saddle point of the aug-
mented Lagrangian described with Lagrangian multipliers and
quadratic penalty. The quadratic penalty is a way to encourage
reconstruction fidelity, while the Lagrangian multipliers are a
common way to enforce constraints strictly. By combining these
two terms as in Equation (2), better convergence properties and
strict enforcement of the constraint can be achieved [29].
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where A(t) are Lagrangian multipliers, « is a balance ¢ parameter
of the data fidelity constraint., "x(t) Zk 1uk(t)" is a quad-
ratic penalty term for accelerating speed for convergence, and
<A(t), x(t) - Zk:luk > is the Lagranian term where (., ) is
the inner product. When « is large, the central frequency of a
mode k, w,, might be precisely estimated, but it yields large
violation of reconstruction constraint. The solution to
Equation (2) is a sequence of iterative, sub-optimization algo-
rithms, called the alternate direction method of multiplier
(ADMM), and more details are presented in [29].

3.3. Artificial Neural Network (ANN). The ANN is a well-known
learning-based approach for predicting time series. A multi-layer
perceptron (MLP) is a conventional neural network that includes
an input layer, one or more hidden layers, and an output layer.
The MLP can capture the nonlinear relationship in time-series
data by iteratively adjusting the weights and biases between
the interactions of neurons in multiple layers. A standard
backpropagation algorithm with a decay term [30] was used to
train our MLP. The algorithm consists of two steps: firstly, the
information of input neuron propagates forward to compute the
output information, and then connection weights are modified
by the difference between the computed and observed output
information. For travel speed prediction, lagged values of speed,
S,_jare used as an input data as in Equation (3) [7]

I M
S =h(Sepo-->Sm) = z Vsz( Z WS+ 9i>’ (3)
i=1 j=m

where ¢ is the number of input data (t = 1,...,n),mand M
are minimum and maximum lagged time, / is an estimate of
the nonlmear2 model, which is obtained by minimizing the
> 1( ) W, and w;; are weights of interaction between
neurons, and 0, is the bias. A MLP has been used extensively
for predicting short-term traffic parameters due to its ability
to work with multi-dimensional data and its good predictive
performance [31].



Journal of Advanced Transportation

3.4. Support Vector Machine (SVM). The SVM have been used
extensively for nonlinear regression. The SVM mapped the data
from the input space into high-dimensional feature space and
constructed the optimal decision functlon Given the observed
speed (S,), and its lagged values (S ( =[S Sl ), the
optimal decision function is shown in Equation (4):

S, = wT<I)(Sx) +b, (4)

where <l)(S ) is a nonlinear function that converts the data
to feature space, w is a weight, and b is a bias. The optimal
decision function is estimated by minimizing the regression
risk [8]:

Roy(f) = C Y 1(5,8) + 51w, 5)
t=1
sy |0 ﬂy S, | <e
L(St’st) - {|y S ' —¢& otherwise, (©)

where L() is a loss function, and C and ¢ are the regularization
parameters. The w can be represented in terms of input data, and
the optimal decision function can be written as Equation (8):

wia—a(). 7)
)o(Sy) + b

- t)q)(
(8)
(a — 0 )K( mt’sM)+b’

HM: HM:

where K(-) is the kernel function that coverts a nonlinear
learning problem into a linear learning problem, and a,, a, are
the Lagrangian multipliers used to estimate the optimal deci-
sion function. We used the radial basis function (RBF) kernel
for nonlinear regression. The SVM shows the excellent gen-
eralized performance for predicting travel speed [9].

3.5. Reconstruction in Hybrid Model. The decomposed
and predicted modes represent the regular and irregular
components of travel speed, and each mode is summed up to
reconstruct the predicted travel speed data. Based on two time-
series prediction models, P, i.e., ANN and SVM, represented
by the function, f,, the hybrid models are formulated as
Equation (9):

QVMD-P
S > Mk,t—M )’

(9)

where §; is a predicted travel speed at time t, estimated

by the hybrid prediction model, VMD — P. M} xe 18 apredicted
value of the decomposed mode k at time ¢, estimated by pre-
diction model, P. K is the number of decomposed modes by
VMD. Since the VMD is conducted by constraining that the
sum of the modes can be reconstructed to the original data as
in Equation (2), the sum of the predicted modes can represent
the predicted travel speed.

kt -m> kt m=1>"""

K
ME =
k_

HMN

QVMD-P .

3.6. Identification of Traffic Congestion. To verify the
robustness of the proposed method, which is crucial for the
reliability of ITS, we tested our method in overall conditions
and in congestion conditions. There is no consistent method
to identify the traffic state. Many studies have used speed as a
primary factor for identifying congestion where the duration
time of speed under the threshold is sufficiently long [32, 33].
However, this measure cannot capture the transition from
free-flow to congestion, which the traffic information systems
should detect preemptively. In order to test the model just
before, during, and after congestion in this study, we propose
the congestion identification algorithm that is based on valley
searching and consists of three steps, i.e., (a) the link travel
speed is normalized to have a zero mean and unit variance for
applying the algorithm irrespective of the link; (b) the valley
that has a normalized speed less than —1.0 is detected; and (c)
a peak-valley-peak sequence of longer than 20 min finally is
identified as congestion.

Figure 3 shows the results of the proposed algorithm in
eight different links on Fridays. Congestion in both long and
short intervals was detected reasonably irrespective of various
traffic patterns, and congestion was represented from the
beginning to the end. The congestion detected by the algo-
rithm accounted for 26% of the total data.

3.7. Tuning Parameters. Tuning parameters are important
for reliable prediction of machine learning-based model. It
should be conducted in a systematic and reproducible way to
prevent underestimating or overestimating the performance
of the proposed hybrid models, i.e., VMD-ANN and VMD-
SVM, and the benchmark models, i.e., SVM and ANN. We
consistently performed the five-fold cross-validation for a
fair comparison of the proposed models with the benchmark
models.

The common parameter for all of the models was the
input lagged variable, and we calibrated them from ¢-3 (pre-
diction horizon in this study) to t-p where p = 3, 4,..., 13,
and determined whether the lagged variable presenting the
day before was included or not. For the ANN model, we
used the MLP with one hidden layer, and the number of
hidden neurons and the weight decay in the learning algo-
rithm were calibrated. For the SVM model, the RBF kernel
was used with two regularization parameters, i.e., C and e.
For the VMD, the number of mode K which are the most
critical parameters, were calibrated with the parameters of
the prediction models for each of the IMFs. Among the K's
from 8 to 12, the calibration of K was based on the accuracy
of the prediction of the link-day unit. The balancing param-
eter, a, in Equation (2) was set as 5,000 so that the recon-
struction error, which is the difference between original
time-series and the sum of the decomposed modes, was less
than 1%.

4. Results and Discussion
4.1. Evaluation Results. In this section, first, we evaluated

the prediction performance of SVM and ANN as benchmark
models and investigated the spatiotemporal patterns in
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urban traffic parameter predictions. Next, we compared the
prediction performance of two hybrid models, i.e., VMD-
ANN and VMD-SVM, with the benchmark models. We
used the travel speed data from 91 days to train and test the
model. The 84 days of data were used for training and the
remaining 7 days for testing the model. The five-fold cross-
validation was conducted using the training data to calibrate
the parameters of models for each link. The prediction
performance was evaluated by the results of 15-minute-

ahead speed prediction, i.e., three-step ahead prediction of
5 minutes aggregated data.

Figure 4 shows the prediction performance using two
benchmark models of which the mean absolute percentage
errors (MAPE) were calculated using 61 links with 7 days (427
link-days). With the evaluation in link units in Figure 4(a),
the SVM showed slightly better performance than ANN in
each link, and the difference became larger on the hard-to-
predict link. With the evaluation in link-day units in
Figure 4(b), the SVM also showed more accurate and robust
performance by producing the lower average and the lower
standard deviation of MAPEs, respectively, compared to the
ANN. Also, the results showed that the prediction perfor-
mance had a considerably broad range according to links and
days. This indicated that the prediction performances were
affected by different spatiotemporal patterns of the traffic state,
which vary depending on the day of the week and the geomet-
ric and environmental condition of the links. As shown in
Figure 4(b), the MAPE of both models showed skewed, bell-
shaped distributions, which presented the heterogeneity of
urban traffic dynamics with the existence of harsh conditions,
such as traffic incidents and special events.

Table 1 compares the performances of the proposed mod-
els with benchmark models in the overall condition and in the
congested condition. In the detailed comparison and analyses,
we used 16 randomly-selected links from Friday to Tuesday
(80 Link-days). The results indicated that the hybrid models
had better performances than moving average (MA) with
15min window, ANN, and SVM. In combination with the
VMD, the VMD-ANN outperformed the VMD-SVM in both
of the conditions. This indicated that, unlike raw travel speed,
the decomposed modes, which are the oscillatory patterns
mitigating the uncertainty of the original data, were trained
more properly in the ANN than in the SVM.

The comparisons of the models were focused on the best
benchmark and hybrid models, i.e., SVM and VMD-ANN.
The VMD-ANN showed an overall better performance than
SVM, and its MAPE value was slightly greater in congestion.
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TaBLE 1: Comparison of performances of benchmark models and proposed models.

o MAPE (%) MAE (km/h)
Statistic ) )
Overall Congestion Overall Congestion
MA 7.45 15.73 2.13 3.21
ANN 7.11 9.34 1.77 1.92
SVM 6.76 8.84 1.70 1.83
VMD-ANN 6.37 8.08 1.63 1.74
VMD-SVM 6.66 8.48 1.66 1.78
Percent difference (VMD-ANN, SVM) -6% -9% -4% -5%

Note. Percent difference (A, B) = {measure (A)—measure (B)} / mean (measure (A), measure (B)).

In particular, we found that VMD-ANN and SVM had differ-
ent characteristics in the prediction models according to traffic
state, which is supported by gray-shaded region in Figures 5(a)
and 5(b). Figure 5(a) presents the congestion on the weekend,
and it shows that the VMD-ANN stably tracked the periodic
patterns of transition to congestion, while the SVM sensitively
reacted to local speed variation before the heavy congestion.
However, in the case of stable and recurrent congestion, such
as a peak-hour or the congestion on a weekday, the predictions
of SVM were a little better than those of VMD-SVM as shown
in Figure 5(b).

Figures 5(c) and 5(d) show the advantage of the VMD-
ANN by plotting the percent differences of each link-day. The
percent differences of MAPE ranged from —72% to 18%. In
many cases, both models may have similar performance, but
the VMD-ANN showed a significant improvement in perfor-
mance over specific link-days, while the performance of SVM
was relatively low. The specific link-days may have large var-
iations, such as transitions of traffic state and abrupt changes
in speed.

4.2. Relationship between the Properties of the Modes and the

Accuracy of the Prediction. In this section, we examined how
the properties of the modes affected the performances of the
prediction models. We computed the spectral and statistical
properties of modes and investigated the relationship between
those properties and the prediction performance of SVM and
VMD-ANN. We conducted the VMD upto 84 days of training
data, and Figures 6(a) and 6(b) show the speed data for the
last three days and their corresponding modes from link 523.
Except for mode 1, which had an approximately monotonic
trend, each mode represented the oscillatory patterns of the
travel speed with a central period, i.e., the inverse of frequency.

Table 2 shows the central periods of modes according to
the best K from the link-day data. The modes obtained by the
different numbers of K had different bandwidths, but some
of the modes with a similar period usually were included. To
understand the effect of the characteristics of the mode on
prediction performance irrespective of K, we reclassified the
modes based on their periods. The bandwidths of the reclas-
sified modes were determined to minimize the coefficient of
variance (CV) of each mode's period. These modes could be
considered as the traffic patterns in an urban network, i.e.,
daily travel demand, commuting, stochastic fluctuation, and
overlapped effects of traffic dynamics. In subsequent analyses,

we investigated the properties of these eight reclassified
modes.

To examine the effects of the modes on the prediction
performance, we conducted a correlation analysis on the per-
formance of two models and the explanatory power (EP) of
each mode based on the data. The EP was defined by the per-
cent of the variance of each mode, ¢, as in Equation (9).
Because the modes are approximately orthogonal and collec-
tively reproduced the original signal, S, the variance of the
original data approximates to the summation of the variance
of each mode, as in Equation (10) [29].

Var(c,)

- Zfilvar(ci), (10

K K
Var(Sg) = ) Var(g)+2) cov(cicj) ~ Y Var(c). (11)

ifj

Table 3 shows the correlation between the MAPE of the
models and the EP of each mode in overall and congested
conditions. The explained variance in the summation of the
modes ranged from 92% to 98% in our data. Only the training
data were used for the correlation analysis to enable pre-emp-
tive diagnosis for practical use.

For the correlation between performance measures,
MAPE of the SVM in the overall conditions and the congested
conditions have significant negative correlations with the per-
cent difference between the VMD-ANN and SVM. This result
shows that the VMD-ANN provided a better prediction in
congested and complex condition, whereas the SVM had trou-
ble predicting. Such an improvement in the model’s perfor-
mance, where reliable prediction needs, is a significant
advantage of our model.

For the EP on the overall patterns of the link, it should be
noted that modes with short periods (modes 5-8) showed
negative results that were statistically significant in all situa-
tions. In particular, in the EP of the training data in congested
traffic condition, the only modes with short periods were sta-
tistically significant. This indicated that the larger the propor-
tion of the modes with short periods becomes, the more
accurate the forecast will be in congested traffic condition. In
other words, the stochastic fluctuations in congested traffic
condition, which may be explained by the modes with short
periods, were transformed into combinations of more predict-
able modes than the original components. This was supported
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FIGURE 6: (a) Three days of travel speed data from Link 523; (b) Its corresponding decomposed modes with central frequencies.

by the fact that mode 3 with the commuting trend was statis-
tically insignificant in all situations of congested traffic con-
dition. The results showed how the proposed model in the
study could achieve better performance in congested traffic
condition.

5. Discussion and Conclusions

The purpose of this study was to develop a hybrid model to
predict and analyze the urban travel speed using VMD that
decomposes the data into multi-scale oscillatory modes. Travel
speed data were predicted by the “divide and conquer” strat-
egy, which respectively predicts the modes and summed up
to represent the predicted travel speed. The modes were

predicted more accurately than their original speed since they
were mitigating the complexity of the original data by extract-
ing the oscillatory pattern. In the performance evaluation, the
proposed hybrid method, VMD-ANN, outperformed the
existing machine learning models, SVM and ANN, and this
improvement in performance was greater in congested traffic
condition where it was difficult for the existing method to
predict.

We also analyzed the correlation between the performance
of the model, and the spectral and statistical properties of the
decomposed modes to provide an understanding of the inher-
ent ability to forecast travel speed in the urban networks. Our
analyses showed that the more the variance of nondaily pat-
terns were explained through the multiscale modes, the easier
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TaBLE 2: Central period of modes of different K from speed data and reclassified modes with their spectral and statistical properties.

Best K for link-day units

Reclassified modes

8 10 12
Period (hours) Period (hours) Period (hours) N Period (hours) % of variance
(min - max) (min - max) (min - max) (min - max) CV  (min - max)

Mode 1 - - - Mode 1 80 - - 1-15
Mode 2 11.9-28.9 12.3-29.2 12.0-29.2 Mode 2 70 23.0-30.0 0.07 44-86
Mode 3 3.9-12.7 4.0-12.7 5.9-11.4 Mode 3 38 10.5-13.0 0.05 11-56
Mode 4 2.6-4.8 2.7-6.0 3.4-5.8 Mode 4 32 7.0-9.0 0.04 11-15
Mode 5 1.7-2.7 1.8-3.5 2.6-3.4 Mode 5 52 4.5-6.5 0.10 2-16
Mode 6 1.2-1.9 1.5-2.0 1.8-2.2 Mode 6 120 3.5-4.5 0.21 1-19
Mode 7 0.7-1.2 1.1-14 1.4-1.7 Mode 7 156 2.5-35 0.19 1-11
Mode 8 0.5-0.8 0.8-1.1 1.1-1.2 Mode 8 196 0-1.5 0.25 0-3
Mode 9 - 0.6-0.8 0.8-0.9
Mode 10 - 0.3-0.6 0.6-0.7
Mode 11 - - 0.4-0.6
Mode 12 - - 0.3-0.5

TABLE 3: Results of correlation analysis for properties of modes and predicted performances.

Performance (MAPE)
VMD_ANN SVM Percent Difference
Overall Congestion ~ Overall  Congestion Overall Congestion
P SVM_Overall 0.959"" 0.795"" 1 0.835™" -0.178 —-0.164
Performance (MAPE) SVM_Cong 0.738"* 0.858"°  0.835" 1 ~0.289"" ~0.292""
Mode 1 -0.494™" -0.350"" -0.487"" -0.321"" -0.011 -0.002
Mode 2 0.454™" 0.304" 0.464"" 0.287" -0.165 -0.009
Mode 3 -0.518™" -0.277 -0.466"" -0.264 -0.238 0.086
. 1 diti Mode 4 0.251 0.155 0.280 0.174 -0.092 0.008
EPIn overall conditions Mode 5 -0.623" ~0.395"  —0.651""  —0.442" 0.127 0.012
Mode 6 -0.503"" -0.283"" -0.461"" -0.228" -0.120 0.026
Mode 7 -0.462™" -0.287"" -0.426"" -0.233"" -0.125 -0.040
Mode 8 -0.545"" -0.377"" -0.520"" -0.317"" -0.035 —-0.028
Mode 1 -0.442™" -0.271" -0.441"" -0.267" 0.020 0.045
Mode 2 0.255" 0.167 0.284" 0.173 -0.223 -0.107
Mode 3 0.038 -0.092 0.078 -0.001 -0.204 —-0.081
EP in congested condi- Mode 4 0.306 0.394" 0.307 0.339" —-0.228 0.173
tions Mode 5 -0.436"" -0.286" -0.463"" -0.349" 0.090 0.058
Mode 6 -0.467"" -0.239"" -0.425™" -0.213" -0.148 0.066
Mode 7 -0.451"" -0.245"" -0.423"" -0.223"" -0.126 0.007
Mode 8 -0.446"" -0.257"" -0.416"" -0.238"" -0.118 0.049

Note:" p < 0.05; **p < 0.01.

it was to predict the speed. This tendency also was significant
even in unstable congestion. The possibility to forecast each
link-day, therefore, can be measured by the explained variance
of modes with a nondaily pattern and used to evaluate the
robustness of models for heterogeneous urban traffic
dynamics. Also, it can be used in the studies of influence fac-
tors that affect the complexity of urban traffic conditions, such
as the geometric condition, traffic signals, and the spatiotem-
poral correlation.

Further studies should be able to extend both the perfor-
mance enhancement of the hybrid model and the detailed

analysis of urban traffic dynamics. In order to emphasize the
practical uses of the model, we simplified the prediction pro-
cess into only three stages. i.e., decomposition, modes predic-
tion, and summation. However, a sophisticated model to
predict the modes [24], and to optimize the reconstruction
[28] can improve the performance of the hybrid models.
Although our model predicts the travel speed only using the
travel speed data from the target link, the neighbor links sur-
rounding it can affect the forecastability of the target link
which is explained by the statistical and spectral properties of
the modes. Spatiotemporal effects from the neighbor links and
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its impact on multiscale modes need to be discussed for a
better understanding of traffic dynamics. The physical mean-
ing of the modes other than the typical daily and commuting
patterns cannot be explained in this study since, we identified
the modes based only on their central periods. Additional
research will be required to complement the interpretability
of modes by introducing a statistical method, such as the inde-
pendent components analysis [34], and by analyzing micro-
scopic trajectory data associated with the travel speed data
[35].
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