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Abstract. Nowadays, simulation is becoming more and more important in industries.
Here we consider a typical industrial application in the field of sheet metal bending.
A high number of simulations is necessary during the development process to perform
parameter studies and optimizations. On the other hand, simulation tools should be also
available for the customers of these machines, e.g., to plan the production of very specific
profiles. In such cases, the optimal process parameters only can be found by simulation.

Very important in this context are the license costs for commercial simulation software.
Frequently, the simulations are not limited by computational power but by the number of
available licenses, such that the duration for parameter studies is elongated. Also, with
license costs it very expensive to provide a simulation platform to the customers. The
presented case study has been carried out with the goal of comparing possible open source
alternatives to expensive commercial Finite Element software.

Exemplarily, we consider the elasto-plastic bending of a cantilever, using the Johnson-
Cook constitutive law. For this test case, a three dimensional Finite Element analysis
is performed, comparing the results of open-source software (Salome-Meca) and a com-
mercial counterpart (Abaqus). Different element types and mesh sizes are compared, the
usability of both tools, and the computational time.

Considering the obvious price difference, both platforms show comparable results.
Comparing the functionality of both programs, both are capable for modelling highly
detailed and complex models for elasto-plastic material processing. However, for under-
standing the structure of the user interface of Salome-Meca is far more time consuming.
Additionally, the performance of Salome-Meca on different operating systems is com-
pared: Salome-Meca on Linux, Salome-Meca on Linux, installed in a virtual machine on
Windows, and finally Salome-Meca on Windows. All in all, it turned out that depending
on the specific application Salome-Meca can be a powerful alternative to Abaqus for the
considered industrial application.
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1 INTRODUCTION

In industries, simulation becomes more and more important for optimizing products,
processes and systems. The present work refers to the industrial application of an auto-
matic panel bender of Salvagnini Group [1]. In an already two decades lasting research
project, a system of simulation models for the complete machine and process has been
created, and the final outcome is a digital twin [2]. The latter is used for designing new
machine types, for optimization, parameter studies, and also for an adaptive bending
strategy.

During the long period of the research project, the number and size of simulations has
grown continuously. For Finite Element computations of the nonlinear process involving
plastic deformation of the sheet metal, contacts and large deformations, the commercial
Finite Element software Abaqus [3] has mainly been used. Among others, advantages are
the user-friendly interface, high reliability, and highly optimized numerical algorithms.
On the other hand, high license costs are the main disadvantage. For research and de-
velopment activities, these costs are acceptable. However, it becomes more and more
important to do online simulations on the machine by the customer, e.g. for special bend-
ing applications and profile shapes. For this case, it would be a great advantage to have
open source simulation tools without license costs.

More than ten years ago, the software Salome-Meca, [4], already has been used in this
research project as open source tool for simple linear elastic Finite Element computations.
Salome-Meca consists of Salome for pre-and postprocessing, and Code Aster as Finite
Element solver. It is also part of the CAELinux project, [5], which is a Ubuntu-based
Linux distribution for scientific computation. In our research project, this software has
been used to implement an automatic simulation framework for a tool analysis, controlled
by a Pyhton script.

The goal of the present work is to find out if Salome-Meca would also be appropriate for
simulating elasto-plastic bending processes in our research project. For this sake, a simple
cantilever beam subject to a transverse pressure load is analyzed. The results of Salome-
Meca and Abaqus are compared, considering elasto-plastic deformations based on the
Johnson-Cook material model [6]. In this paper, first results of this analysis are shown, in
which two simplifications have been done: First, a quasi-static case is taken into account,
neglecting the influence of the strain rate. Secondly, a geometric linear analysis (linearized
strains) is performed. The next planned step are to extend the models considering large
strains and rate-sensitivity.

The paper is organized as follows: First, the simulation models are described, as well
as the used material law. Then, the results obtained by Abaqus and Salome-Meca are
compared for different configurations, considering linear elastic (Hooke) and elasto-plastic
behavior (Johnson-Cook). It turns out that the selection of elements and numerical
settings must be done carefully to get the same results. Finally, a very good agreement
of Abaqus and Salome-Meca results is demonstrated for the chosen settings.
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2 FINITE ELEMENT MODELING

The Finite Element Method (FEM), e.g. [7], is well established in industries for solving
and optimizing different kinds of engineering design problems. There are many commercial
and open source software tools for all fields of physics. The goal of this study is to test
the usability of the open-source FEM software Salome-Meca for the analysis of industrial
problems involving elasto-plasticity, and compare it with the commerical software Abaqus.

No doubt, Salome-Meca is a powerful software that is used by many professionals, given
the diverse and complex applications a FEM software could be of help to. However, many
companies and users might be skeptical when having to deal with a new software with a
different layout and module topology. Also, the usability of open source tools frequently
is less comfortable compared to commercial software, and often there is the doubt if the
results are correct.

In this study several cases have been analysed to compare the results and performance
of 3D Finite Element analyses on both programs. In a parameter study different kinds of
elements, mesh sizes, load cases, and solver settings have been compared. It has turned
out that the numerical settings have to be done very carefully to obtain comparable
results.

2.1 Test case

In the following we consider a cantilever beam loaded by a transverse pressure as shown
in Figure 1. At the left end, the beam is clamped by setting all displacements on the left
face in the yz-plane to zero, U1 = U2 = U3 = 0. As load a homogeneously distributed
pressure on the top face normal to the xz-plane is defined.

Figure 1: Boundary conditions for the bending test case

The magnitude of the pressure was varied in the range 0 ≤ P ≤ 1 MPa with increments
of 0.1 MPa for the nonlinear elasto-plastic simulations and 0 ≤ P ≤ 15 MPa with
1 MPa increments for the linear elastic simulations. The simulation time is set to 1 s
with a maximum time increment of 0.1 s and a minimum time increment of 10−6 s. For a
first basic comparison of the two simulation programs, a small strain analysis is performed
by setting DEFORMATION=’PETIT’ in Code Aster and nlgeom=NO in Abaqus.
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2.2 Material model

In the considered industrial application, elastic and plastic deformations play an im-
portant role. At the beginning of the bending process the strains are small and thus
elastic. After reaching the yield limit, plastic strains occur. Finally, after removing the
load, there is an elastic springback.

The elasto-plastic behavior of a material is usually determined by a uni-axial tensile
test. For the sheet metals typically used on the panel bender, the elastic and plastic
domain can be clearly determined. For small strains, the stress-strain diagram can be
approximated by a linear function, yielding Hooke’s law as

σ = E ε, (1)

where σ is the true stress (Cauchy stress) and ε is the true strain (Hencky strain), and
E is Young’s modulus, [8, 9]. Hooke’s law is valid for stresses lower than the yield stress
σY , i.e. σ ≤ σY .

After exceeding the yield stress, σ > σY , materials show hardening behavior based on
their lattice structure [9]. There are many ways to describe a flow curve [10]. Here, we
use the Johnson-Cook plasticity model as it is very suitable for the metal sheets used in
the industrial panel bender, as shown in [11]. According to [6] and [12] the Johnson-Cook
hardening model can be expressed as

σ (εp, ε̇p) =
(
A+Bεnp

)︸ ︷︷ ︸
hardening

[
1 + C ln

(
ε̇p
ε̇p,0

)]
︸ ︷︷ ︸

strain rate

[
1 −

(
T − Tr
Tm − Tr

)m]
︸ ︷︷ ︸

thermal softening

, (2)

considering three effects: The first one is hardening under quasi-static conditions, i.e. for
deformations rising so slowly that the strain rate does not play a role. The second term
considers the rate sensitivity, i.e. an increasing strain rate causes an increase of hardening.
In case of high strain rates thermal softening becomes relevant, represented by the third
term: the material warms up so that there is a reduction of strength. In [11] these effects
have been identified for a typical industrial sheet metal.

In Eq. (2) εp = ε − σ
E

is the plastic part of strain, ε̇p = εp
dt

is the plastic part of the
strain rate ε̇ = ε

dt
, ε̇p,0 is the quasi-static reference strain rate, and T is the temperature.

Moreover, the following parameters in Eq. (2) must be identified by experiments: A is
the quasi-static yield stress, B the strength coefficient, n the hardening exponent, C the
rate-sensitivity, Tm the melting temperature, Tr the reference temperature, and m is a
temperature coefficient. For the material DC01 which is typically used on the industrial
panel bender, these parameters have been identified in [11].

In this paper the first step of our study is presented, only considering the quasi-static
hardening: Setting C = 0 and m = 0 in Eq. (2) we obtain

σ = A+B εnp , (3)

which in the literature is also referred to as Ludwik-Hollomon law, [13, 14]. As shown in
[11], it is a very good approximation for the considered cold-rolled mild steel.
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2.3 Model parameters

The metal sheets processed on the industrial panel bender can be considered as plates.
For our software comparison purposes, we can reduce the number of Finite Elements by
modelling a beam. Thus, the lateral dimension is reduced compared to the sheets on the
machine. The structure is defined as a homogeneous solid beam with a length of 20 mm,
and a square cross-section with side length of 1 mm.

For the material parameters E = 2.1·106 N/mm2, A = 200 N/mm2, B = 600 N/mm2

and n = 0.19 are used. The stress-strain diagram for these parameters is shown in Figure
2. Moreover, the Poisson ratio is set to ν = 0.3. In the simulation model the material
behavior is defined in two ways: first by specifying the Johnson-Cook parameters A, B
and n, and secondly, the flow curve in Figure 2 is defined as a table.

Figure 2: Stress strain curve of the chosen material based on Johnson-Cook parameters

2.4 Meshing

As well known, meshing has a high impact on the results of a Finite Element simula-
tion. To find out the convergence behavior of the two considered software tools, different
linear and quadratic element types and mesh sizes have been analysed, starting with 160
elements, and ending up with a fine mesh of 12800 elements.

In a similar bending analysis of Hemanth [15], the results of different element types
were compared to an analytical analysis of James [16]. Their results showed that the fully
integrated linear elements (C3D8) and the reduced integration linear elements (C3D8R)
produced less accurate results on Abaqus, except with the enhanced hourglass control
option.

In our first simulations using linear elements in Salome-Meca, we observed a similar
trend. Finally, we compared 3D linear and quadratic fully integrated elements in Salome-
Meca and Abaqus.
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In Abaqus C3D8 are linear 3D hexahedral continuum elements with eight nodes and
eight integration points. As a variant C3D8R uses reduced integration with only one
integration point. Hexahedral continuum elements with quadratic trial functions are
C3D20 with 20 nodes and 27 integration points, and accordingly C3D20R are elements
with reduced integration.

Using Salome-Meca the beam is meshed with hexahedral elements in Salome. Then,
in Code Aster the element type is set to fully integrated elements by the keyword Mod-
elisation=’3D’, and to reduced integration by Modelisation=’3D SI’. Quadratic elements
can be used by additionally using the keywords CREA MAILLAGE and LINE QUAD.

3 SIMULATION RESULTS

Initially the models used the preset linear elements in both simulation tools: C3D8R
with reduced integration in Abaqus, and elements with full integration in Code Aster,
Modelisation=’3D’. As expected, these results showed a quite high discrepancy. After
using reduced integration elements also in Code Aster, Modelisation=’3D SI’, the dis-
crepancies were reduced, but still too high. To clarify, we started with unit test cases.

3.1 Element Type Comparison

We considered three different load cases for a single Finite Element to investigate the
discrepancies between the two programs: a uni-axial displacement-driven tensile test, a
tensile test case with pressure load, and a bending test case applying a transverse pressure.
The element types considered for the unit tests were linear with reduced integration
(C3D8R), linear fully integrated (C3D8) and quadratic fully integrated elements (C3D20).
The unit test results for the element types are shown in Table 1.

Table 1: Element type unit test comparison for linear elastic material

VMIS stress VMIS stress

Element Type Test Case
results on results on %
Abaqus Salome-Meca Difference

Displacement-driven tensile test 20990.9 20203.6 3.75%
Linear Pressure load tensile test 149.837 136.5143 8.89%
(C3D8R) Bending test 0.998975 0.9229019 7.62%

Displacement-driven tensile test 23239.1 21752.06 6.4%
Linear Pressure load tensile test 160.44 141.3884 11.87%
(C3D8) Bending test 1.92664 1.465674 23.93%

Displacement-driven tensile test 20940.9 20940.5 0.002%
Quadratic Pressure load tensile test 157.902 157.901 0.001%
(C3D20) Bending test 2.30959 2.30958 0%

Because of the high deviations obtained by the linear elements, and the good coinci-
dence of the quadratic ones, we continued our analysis with the latter.
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3.2 Linear Elastic Bending

The linear elastic case was the simplest with regard to simulation effort and time. The
maximum displacement occurs at nodes of the free beam end, and the maximum v.Mises
stress at the clamped end. Accordingly, in Figures 3 and 5 the displacement is plot for a
node at the free beam end, and the v.Mises (VMIS) stress for the integration point closest
to the clamped end and the upper side of the beam, as marked in the contour plots in
Figures 7 and 8.

The maximum displacement and the v.Mises (VMIS) stress plots shown in Figures 3
and 5 illustrate the linear behavior with the increase in load pressure. The simulations
were run up to a load pressure of 15MPa, and the results show very good coincidence.

Figure 3: displacement, linear elastic case,
Maximum displacement = 17.12mm

Figure 4: Absolute displacement deviation, linear
elastic case, −0.05% ≤ deviation ≤ 0.03%

Figure 5: VMIS stress, linear elastic case,
Maximum stress = 20280N/mm2

Figure 6: Absolute VMIS stress deviation, linear
elastic case, −0.03% ≤ deviation ≤ 0.02%

The absolute deviation between Abaqus and Salome-Meca results shown in Figures 4
and 6 illustrate that the discrepancies are almost negligible, since the maximum devia-
tion for the displacements is −0.05% ≤ deviation ≤ 0.03%, and for the VMIS stresses
−0.03% ≤ deviation ≤ 0.02%.
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The contour plots for both programs in Figures 7 and 8 are also comparable, if we
consider that they are created in a different way: The results rendering on Code Aster
illustrates the stresses for every integration point in the contour plot. On the contrary,
Abaqus only displays an average of the 27 integration points for each element. Thus, the
contour plots are slightly different.

Figure 7: VMIS stress contour plot for linear elastic case on Code Aster

Figure 8: VMIS stress contour plot for linear elastic case on Abaqus

3.3 Nonlinear Elasto-plastic Bending

For the nonlinear elasto-plastic bending case the material defined by the Johnson-Cook
parameters was also simulated on both, Abaqus and Salome-Meca. The material law was
defined in two ways: by the Johnson-Cook parameters A, B. n, and as a tabular input.
The results show slight differences, also with respect to the computational performance,
as discussed in the following.

The elasto-plastic simulations were run up to a load pressure of 1MPa. Figure 9,
exemplarily shows the deformed shape for a load pressure of P = 0.6MPa, yielding a
maximum tip displacement of 1.66mm.

Figure 9: Displacement contour plot for nonlinear elasto-plastic case on Code Aster

The maximum displacement at the free end is shown in Figure 10 as a fuction of
the load pressure. The curve illustrates the linear relationship up to the yield point at
P = 0.2MPa. Afterwards, the relationship becomes nonlinear because of plasticity. The
displacement results show good coincidence: The absolute deviations between Abaqus and
Code Aster are shown in Figure 11. The relative deviations are in the range −0.07% ≤
deviation ≤ 0.03%.

In Figure 10 the difference between the tabular input versus the Johnson-Cook pa-
rameter definition is illustrated by the error bars. Comparing the differences of the two
simulation programs in Figure 11, the simulation with tabular input seems to be more
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stable having no discrepancy up to P = 0.5MPa, while for the Johnson-Cook parameter
definition the results seem to have more deviations. However, the deviations are very low.

Figure 10: Displacement, nonlinear elasto-plastic
case, Maximum displacement of 65.88 mm

Figure 11: Absolute deviation, nonlinear elasto-
plastic case, −0.07% ≤ deviation ≤ 0.03%.

Similarly the v.Mises (VMIS) stress plot in Figure 12 illustrates the linear behavior up
to the yield point at P = 0.2 MPa, and the nonlinear plastic behavior for P > 0.2 MPa.
For the VMIS stress the absolute deviations between Abaqus and Salome-Meca results,
shown in Figure 13, for both material models show good coincidence. The VMIS stress
deviation is in the range −0.09% ≤ deviation ≤ 0.29%.

Figure 12: VMIS stress, nonlinear elasto-plastic
case, Maximum stress = 747.9N/mm2

Figure 13: Absolute VMIS stress deviation, non-
linear elasto-plastic case, −0.09% ≤ deviation ≤
0.29%.

As for the linear elastic contour plots, the nonlinear elasto-plastic contour plots are
also comparable with slight differences, if we consider the different rendering of the two
programs. The contour plots for the Johnson cook material model on Code Aster and
Abaqus are shown in Figures 14 and 15.
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Figure 14: VMIS stress contour plot for nonlinear elasto-plastic case on Code Aster

Figure 15: VMIS stress contour plot for nonlinear elasto-plastic case on Abaqus

4 USABILTY REVIEW

The first impressions using both, Abaqus and Salome-Meca, can be summarized as
follows: On a first look Salome-Meca is composed of multiple modules, for geometry,
meshing and Code Aster for analysis, which can be used as a part of Salome-Meca or as
standalone module. The layout and user interfaces seem to be less interactive compared
to Abaqus. Moreover, the support material for Salome-Meca is strictly through their
user’s manual and Code Aster documentation. On the other hand, Abaqus has a simi-
lar extensive user manual and documentation, although the interface is more integrated
and self-explanatory for beginners and intermediate users. Abaqus is the more common
software with more community support in terms of professional studies, software tutori-
als and examples. On the other hand, the community forum for Code Aster was quite
beneficial and the test case assistant templates help ease in beginners getting accustomed
to the software. Since Salome-Meca is Linux based, it benefits from running on lighter
operating system compared to Windows and also runs fine on a virtual machine. Error
troubleshooting was not a problem in both programs. However, on Code Aster it requires
a certain level of know-how to be able to tackle some simulation errors.

Salome-Meca was originally designed for Linux. It is also possible to run it under Linux
in a virtual machine on Windows. Nowadays, also versions for Windows are available. In
our study, we compared the performance of the two simulation programs for the following
platform configurations:

• Abaqus 2019 on Windows 10

• Salome-Meca 2019.0.1 running on CAELinux 2020 (Ubuntu 18.04) installed on a
virtual machine (VMWare 16) under Windows 10.

• Salome-Meca 2019.0.1, running on CAELinux 2020 (Ubuntu 18.04) installed as na-
tive operating system.

• Salome-Meca 2019.0.3, running on Windows 10.

The comparison of the computational performance with these configurations is shown in
Figure 16. In all test cases Abaqus is considerably faster than Salome-Meca. Considering
the computation time difference, Salome-Meca still performs adequately on all platforms
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tested. An interesting result is the better performance on the windows machine and the
Linux virtual machine on Windows compared to the native Linux machine. As expected,
the best running stability was obtained on the native Linux machine.

Figure 16: Computation time comparison between Abaqus and Salome-Meca on Windows, Linux and
Virtual Machine

5 CONCLUSION

Both, Abaqus and Salome-Meca are well established professional programs capable
of complex Finite Element analyses. For our test case of plastic bending, the results
are comparable, but the simulation time is higher in Salome-Meca. Comparing different
platforms, it turned out that Salome-Meca works well on all of them, with only very slight
differences of the computation time.

Great advantage of Salome-Meca are the license costs: Since the prices for commercial
software like Abaqus are quite high, Salome-Meca is an interesting alternative, especially
for research or small companies. For our considered industrial example of the panel
bender, Salome-Meca definitely is an interesting alternative for Abaqus.

However, several questions have to be answered in subsequent studies, as already has
been started: First of all the high discrepancies of the linear elements should be investi-
gated in more detail. Moreover, further effects are planned to be considered: large strains,
higher deformations, and the influence of strain rate and temperature.

ACKNOWLEDGEMENT

This work has been supported by the COMET-K2 “Center for Symbiotic Mechatronics”
of the Linz Center of Mechatronics (LCM) funded by the Austrian federal government
and the federal state of Upper Austria.

11



A. Abdelaty, C. Reisinger, W. Kunze and C. Zehetner

REFERENCES

[1] Salvagnini Maschinenbau GmbH, www.salvagninigroup.com

[2] Zehetner, C., Reisinger, C., Kunze, W., Hammelmüller, F., Eder, R., Holl H. and
Irschik, H. High-quality sheet metall production using a model based adaptive ap-
proach. Procedia Computer Science (2021), 180:249-258.

[3] Abaqus User Manual, Simulia User Assistance 2019, Dassault Systemes (2019).

[4] Code Aster and Salome-Meca, www.code-aster.org

[5] CAELinux, www.caelinux.com

[6] Johnson, G.R. and Cook, W.H. Fracture characteristics of three metals subjected
to various strains, strain rates, temperatures and pressures. Engineering Fracture
Mechanics (1985), 21:31-48.

[7] Bathe, K.J. Finite Element Procedures, Prentice Hall (2014).

[8] Hearn, E.J. Mechanics of Materials 1. Butterworth Heinemann, (1997), Chapter
14:361-400.

[9] Chen, W.F. and Han, D.J. Plasticity for Structural Engineers, Springer, (1988).

[10] Prakash, M. and Dixit, U.S. Plasticity. Fundamentals and application. Butterworth
Heinemann, CRC Press, (2015).

[11] Katzmayr, F., Reisinger, C. , Gross, T. , Sieberer, S., Kunze, W., Wagner, L. and C.
Zehetner. Material models for highly dynamic metal forming processes. Proceedings
of the XVI International Conference on Computational Plasticity. Fundamentals and
Applications, COMPLAS, (2021).

[12] Sobolev, A.V. and Radchenko, M.V. Use of Johnson–Cook plasticity model for nu-
merical simulations of the SNF shipping cask drop tests. Nuclear Energy and Tech-
nology. (2016) 2:272-276.

[13] Ludwik, P. Elemente der Technologischen Mechanik, Springer Verlag, (1909).

[14] Hollomon, J.H. Tensile deformations. Trans. Metall. Soc. (1945), AIME 162: 268-290.

[15] Hemanth R.H., Ruchin P., Gourav G., Venkatesha K.S., Ravi Kumar G.V.V., Sklyut
H., Kulak M., Heinimann M. Performance Evaluation of Finite Elements for Analysis
of Advanced Hybrid Laminates; Proceedings of the ABAQUS User’s Conference,
(2010)

[16] James, M.G. and Timoshenko, S.P. Mechanics of Materials. PWS Publisher, (1984).

12


