
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-–9 June 2022, Oslo, Norway

STRUCTURE-PRESERVING NEURAL NETWORKS FOR
THE N-BODY PROBLEM

ECCOMAS CONGRESS 2022

PHILIPP HORN1, VERONICA SAZ ULIBARRENA2, BARRY KOREN1

AND SIMON PORTEGIES ZWART2

1 Centre for Analysis, Scientific Computing and Applications (CASA)
Eindhoven University of Technology

PO Box 513, 5600 MB Eindhoven, Netherlands
e-mail: p.horn@tue.nl, b.koren@tue.nl

2 Leiden Observatory
Leiden University

PO Box 9513, 2300 RA Leiden, Netherlands
e-mail: ulibarrena@strw.leidenuniv.nl, spz@strw.leidenuniv.nl

Key words: Neural Networks, Structure-Preserving Computing, Symplectic Algorithms, As-
trophysics

Abstract. In order to understand when it is useful to build physics constraints into neural net-
works, we investigate different neural network topologies to solve the N -body problem. Solving
the chaotic N -body problem with high accuracy is a challenging task, requiring special numerical
integrators that are able to approximate the trajectories with extreme precision. In [1] it is shown
that a neural network can be a viable alternative, offering solutions many orders of magnitude
faster. Specialized neural network topologies for applications in scientific computing are still
rare compared to specialized neural networks for more classical machine learning applications.
However, the number of specialized neural networks for Hamiltonian systems has been growing
significantly during the last years [3, 5]. We analyze the performance of SympNets introduced
in [5], preserving the symplectic structure of the phase space flow map, for the prediction of
trajectories in N -body systems. In particular, we compare the accuracy of SympNets against
standard multilayer perceptrons, both inside and outside the range of training data. We analyze
our findings using a novel view on the topology of SympNets. Additionally, we also compare
SympNets against classical symplectic numerical integrators. While the benefits of symplectic
integrators for Hamiltonian systems are well understood, this is not the case for SympNets.

1 INTRODUCTION

The N -body problem is a surprisingly hard problem to solve, even though it is written down
quite easily. The difficulty stems from its chaotic nature and from the fact that no analytical
solution exists for N ≥ 3.

Resolving a chaotic 3-body problem may require very small time steps in a classical algorithm
and may therefore cost a lot of computing time. It may be the main bottleneck in larger N -body

1

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

simulations to resolve a close encounter of three bodies. A reasonable question to ask is: Can
machine learning or more precisely neural networks in the form of a surrogate model help? A
first paper trying to answer this question was published in 2020 [1].

The neural networks presented in [1] show extraordinary precision even for long integration
times. However, these neural networks also show some shortcomings of which the most funda-
mental is the inability to predict for a longer time than a fixed time tend defined through the
data. We analyze how integrating fundamental physical properties in the neural networks can
be helpful in creating surrogate models for the N -body problem. Possible benefits of neural
networks with embedded physics include: better extrapolation outside the training data, more
regularized predictions inside the range of training data and improved optimization behavior
due to the reduced search space.

2 HAMILTONIAN SYSTEMS

The system of ODEs describing an autonomous Hamiltonian system can be written as:(
ṗ
q̇

)
= −J∇H(p, q), J =

(
0 Id

−Id 0

)
, p, q ∈ Rd. (1)

It is called autonomous since the Hamiltonian H : Rd × Rd → R does not depend on time t. In
some Hamiltonian systems the Hamiltonian is separable, meaning:

H(p, q) = T (p) + U(q), (2)

where T : Rd → R is referred to as the kinetic energy and U : Rd → R as the potential energy.
Hence, H(p, q) is the total energy of the system.

Autonomous Hamiltonian systems have two important properties, the first being conservation
of the total energy along trajectories:

d

dt
H(p(t), q(t)) = 0. (3)

Secondly, the flow map φh : x(t) 7→ x(t+ h) of the Hamiltonian system is symplectic, meaning:(
∂φh

∂x

)T

J
∂φh

∂x
= J, x =

(
p
q

)
∈ R2d. (4)

This property is characteristic for Hamiltonian systems, i.e., every system with a symplectic
flow map is at least locally a Hamiltonian system [2, Theorem 2.6].

The Hamiltonian of the gravitational N -body problem can be given as

H(p, q) =
1

2
pTM−1p︸ ︷︷ ︸

T (p)

−
N∑
i=1

i∑
j=1

G
mimj

||qj − qi||︸ ︷︷ ︸
−U(q)

, (5)

where d = 3N , G the gravitational constant and M the mass matrix. M consists of the masses
mi of the N bodies and reads in three-dimensional space:

M := diag(m1,m1,m1,m2, · · · ,mN ,mN ,mN). (6)

2

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

3 SYMPLECTIC NUMERICAL INTEGRATORS

Classically, if one wants to solve a Hamiltonian system one resorts to symplectic numerical
integrators. Compared to standard numerical integrators like Runge-Kutta methods, symplectic
numerical integrators preserve the symplectic structure. This means that the numerical flow
map Φh : xn 7→ xn+1 defined by the numerical integrator is symplectic as well and therefore
satisfies equation (4). This comes with good numerical stability properties. Next, we introduce
a known symplectic numerical integrator that is explicit for separable Hamiltonians and can be
important to understand SympNets. In Figure 1, we depict the type of numerical integrators -
in the following mostly shortly called integrators - to be considered here: single-step methods
(n := n+ 1).

(
pn

qn

)
Numerical
Integrator

(
pn+1

qn+1

)

n := n+ 1

Figure 1: Classic iterative scheme to solve an ODE using a single-step numerical integrator.

According to [2], the symplectic Euler method for Hamiltonian systems, given pn and qn, is
defined as:

pn+1 = pn − h∇qH(pn+1, qn), (7)

qn+1 = qn + h∇pH(pn+1, qn). (8)

For separable Hamiltonian systems this becomes an explicit method:

xn :=

(
pn

qn

)
→

(
pn − h∇U(qn)

qn

)
=:

(
pn+1

qn

)
→

→
(

pn+1

qn + h∇T (pn+1)

)
=:

(
pn+1

qn+1

)
=: xn+1. (9)

4 NEURAL NETWORKS FOR HAMILTONIAN SYSTEMS

The use of neural networks is very popular among stellar dynamicists. Whereas many special-
ized architectures for classical applications of machine learning exist already, specialized neural
networks for Hamiltonian systems have only started to emerge during the last two years.

There are two ways of using neural networks to predict trajectories of Hamiltonian systems.
Both are visualized in Figure 2. These two approaches are fundamentally different. Already the
data to train these neural networks is different. The iterative neural network needs coordinates
of a system as features and as labels the coordinates of the same system after a given time has
passed. The actual time is irrelevant. It is only important that the time difference between
features and labels is constant. Also, feature and label pairs do not need to lie on the same
trajectory, they can stem from trajectories with different initial conditions. On the other hand,
to train neural networks using the second approach one needs coordinates on trajectories at

3

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

(
pn

qn

)
NN

(
pn+1

qn+1

)

n := n+ 1

p0

q0
t

 NN

(
p(t)
q(t)

)

Figure 2: Iterative scheme to solve an ODE using a neural network (NN) compared to a non-iterative
neural network requiring t as an input.

different times. Since time is an additional feature, the feature space has an additional dimension
which needs to be covered during training, to prevent from moving outside the range of training
data during inference.

Both approaches have benefits and drawbacks. While the iterative scheme suffers, just like a
numerical integrator, from the accumulation of errors, the second approach always predicts the
coordinates from the initial conditions. Hence, an error made at an earlier point in time does
not influence the prediction at a later time. However, the second approach cannot be used to
predict for very long times since it is bound to run out of the training data domain at some
time. The iterative neural networks on the other hand can be used as long as the coordinates of
the system stay within the training data. In the remainder of this paper we focus on iterative
neural networks. The neural networks in [1] use the second approach.

4.1 Hamiltonian neural networks

The first structure-preserving neural network architecture for Hamiltonian systems was pub-
lished by Greydanus et al. [3]. These neural networks, depicted in Figure 3, are named Hamil-
tonian neural networks (HNN).

pn

qn

H

−∇qH

∇pH

ṗn

q̇n

Figure 3: A Hamiltonian neural network as introduced in [3].

The key idea behind HNNs is to train the neural network to learn the Hamiltonian of a system
without requiring data of the Hamiltonian itself. Instead, one can use automatic differentiation
to calculate the derivatives of the neural network with respect to its inputs. According to
equation (1) those derivatives correspond to the derivatives of the coordinates. Hence, one
needs data that also includes the derivatives of the coordinates to evaluate a loss function. To
train the neural network, the error is then backpropagated through the layer that calculates the
derivatives and the rest of the neural network. During inference the derivatives of the neural

4

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

network can be used in combination with a numerical integrator to calculate updated positions
and momenta of the system. Here any integrator with any step size can be used. Because the
features and labels (coordinates and derivatives of coordinates) are taken at the same time, no
inherent step size is fixed through the data. However, this changes with the next neural network
architecture.

The second specialized neural network architecture for Hamiltonian systems was introduced
in [4]. In [4], instead of training HNNs directly on the derivatives of the trained Hamiltonian, the
numerical integrator is included in the neural network topology. The integrator is symplectic.
In order to backpropagate the error through the integrator it is necessary to use an explicit
integrator. Since explicit symplectic integrators only exist for separable Hamiltonian systems,
the neural network is split into two detached neural networks. One predicts the kinetic energy
and the second one the potential energy (Figure 4).

pn

qn

T

U

H

−∇qH

∇pH

Symplectic
Integrator

pn+1

qn+1

Figure 4: A Hamiltonian neural network as used in [4].

Because these neural networks directly learn the phase flow, they do not need data of the
derivatives of the coordinates but time-stepped data instead. The requirement of more informa-
tion of the system is traded against a few restrictions. These neural networks can only be used
to learn separable systems. Furthermore, they are no longer free to use any numerical integrator
and any time step once they are trained. The integrator is fixed in the neural network topology
and the time step is fixed through the data used to train the neural network. One might think
that during inference an integrator and time step can be used that are different from those used
during training, since in the neural network a Hamiltonian is learned that can be extracted.
However, it is already noted in [4] that the Hamiltonian in the neural network does not coincide
with the real Hamiltonian of the system. Rather it is a Hamiltonian that is trained to achieve
accurate predictions in combination with a specific integrator and time step. The predictions
of these neural networks are even more accurate than predictions of the same integrator (as
in the neural networks) using the same time step (as in the data) and the actual Hamiltonian
of the system instead of the trained one. This can be explained by the trained Hamiltonian
compensating for errors made by the integrator.

5

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

4.2 SympNets

The next type of neural networks tailor-made for Hamiltonian systems were published in [5]
and called SympNets. At first glance they are completely different from the HNNs introduced so
far. A SympNet never tries to learn the Hamiltonian of the system. Instead, it directly focuses
on learning the symplectic flow map. In [5], different symplectic layers are introduced. Because
a concatenation of symplectic maps is again a symplectic map, one can concatenate these layers
indefinitely.

The standard representation of a SympNet can be seen in Figure 5. Every update of p or q
with a trained gradient ∇Vi is called a module in [5]. Up and low modules are distinguished,
indicating whether p or q, respectively, is updated. In Figure 5, a SympNet with 2M alternating
modules is displayed.

pn

qn

p̂1

q̂1

p̂2

q̂2

p̂3

q̂3

· · ·
p̂2M−1

q̂2M−1

pn+1

qn+1

I

∇V
1

I

I

∇
V
2

I

I

∇V
3

I

I

∇
V
2M

I

Figure 5: A standard SympNet from [5].

We now focus on the G-SympNets introduced in [5] and the so-called gradient modules. In
a gradient module a trainable matrix K ∈ Rn×d exists, which is similar to a weight matrix in
a classical fully connected feed-forward neural network. In addition, a trainable bias b ∈ Rn

and scale factors a ∈ Rn exist in a gradient module. An activation function σ has to be chosen
beforehand. Usually the sigmoid function σ(x) = 1

1+e−x is used. With this (and a slight abuse
of matrix vector multiplication notation) the upper and lower gradient modules are defined as:

Gup

(
p
q

)
:=

[
I σ̂K,a,b

0 I

](
p
q

)
=

(
p+KTdiag(a)σ(Kq + b)

q

)
, (10)

Glow

(
p
q

)
:=

[
I 0

σ̂K̃,ã,b̃ I

](
p
q

)
=

(
p

q + K̃Tdiag(ã)σ(K̃p+ b̃)

)
. (11)

The name of this module comes from the fact that σ̂K,a,b can approximate any gradient of a
function V : Rd → R (so any ∇V).

Because of this property of the gradient modules, a universal approximation theorem for the
G-SympNets can be proven [5, Theorem 5]. The theorem states that one can use G-SympNets
to approximate the flow map of a Hamiltonian system up to any desired accuracy. There is no
restriction to separable Hamiltonian systems. This is the same kind of universal approximation
theorem that has been proven for the standard fully connected feed-forward neural networks

6

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

(multi-layer perceptron, shortly: MLP). Note that an MLP can achieve this universal approxi-
mation with only one hidden layer. To prove the universal approximation of SympNets, neither
the depth nor the width of the neural networks can be fixed.

Additional research on the topic of neural networks for non-separable Hamiltonian systems
and a different neural network topology are presented in [6]. The neural networks in [6] are more
in line with HHNs and use an augmented phase space to be also applicable to non-separable
Hamiltonian systems.

We now focus on SympNets since for the N -body problem we know the Hamiltonian, so there
is no use in learning it. However, we want to see if it is possible to predict the trajectories of
the bodies faster or with higher accuracy than by using numerical integrators. Furthermore,
we study the effects of including the symplectic structure in the neural networks compared to a
simple MLP.

5 Connection between SympNets and HNNs

Before presenting the numerical experiments for the 3-body problem, we take a closer look
at the connection between SympNets and HNNs. This helps to understand some of our results,
when comparing SympNets with the physics-unaware MLPs. Even though SympNets have been
presented so far as completely different from HNNs, we are able to find a connection between
both neural network topologies.

To understand this connection we rename the SympNet updates for p as ∇U and those for
q as ∇T , instead of ∇V for both. If we also combine one up and one low module together and
count these as a single combined module, we get a SympNet as visualized in Figure 6.

pn

qn

p̂1

q̂0

p̂1

q̂1

p̂2

q̂1

· · ·
p̂M

q̂M−1

pn+1

qn+1

I

∇U
1

I

I

∇
T
1

I

I

∇U
2

I

I

∇
T
M

I

Figure 6: A SympNet with renamed updates.

So far, this is still very reminiscent of the visualization in Figure 5, but now we take a closer
look at one combined module. Since we focus on G-SympNets, let us assume that the updates
of p and q are done through gradient modules. From the definition of gradient modules one can
easily calculate the functions U(q) and T (p), of which the gradients are used in the updates:

∇U(q) = ∇qa
TΣ(Kq + b) = KTdiag(a)σ(Kq + b), (12)

∇T (q) = ∇pã
TΣ(K̃p+ b̃) = K̃Tdiag(ã)σ(K̃p+ b̃). (13)

Here, Σ is the anti-derivative of the activation function σ. Using this we can write the updates
in a combined module in a new way, as displayed in Figure 7.

In Figure 7, one recognizes the resemblance of the update structure to the symplectic Euler
method. Indeed, this combined module performs one symplectic Euler step (with step size h)

7

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

p̂i

q̂i

p̂i+1

q̂i

p̂i+1

q̂i+1

I

∇qa
T Σ(K

q + b)

I

I

∇
p ãT

Σ(K̃p+ b̃)

I

Figure 7: One symplectic gradient module of a SympNet.

for the learned Hamiltonian H given by the following formula:

H(p, q) =
1

h
ãTΣ(K̃p+ b̃)︸ ︷︷ ︸

T (p)

− 1

h
aTΣ(Kq + b)︸ ︷︷ ︸

−U(q)

. (14)

Additionally, the structure of the functions U and T is very specific. It is the structure of a
simple feed-forward neural network with one hidden layer. The neural network for U receives q
as input, has weight matrix K, bias vector b, activation function Σ and weight matrix aT in the
output layer. The same holds for T , with different trainable parameters. Therefore, every two
gradient modules of a SympNet also learn a hidden Hamiltonian inside, which can be expressed
as the sum of two MLPs with one hidden layer each. This is visualized in Figure 8.

p̂i

q̂i

T

U

H

−∇qH

∇pH

Symplectic
Euler

p̂i+1

q̂i+1

Figure 8: One symplectic gradient module of a SympNet visualized similar to a Hamiltonian neural
network.

This graph looks similar to the one in Figure 4. In fact, one combined gradient module is
an HNN with one hidden layer for U and T and a specific choice of a symplectic integrator, the
symplectic Euler method. Therefore, a SympNet with 2M modules is equivalent to a concate-
nation of M independent specific HNNs. Each HNN uses one hidden layer and the symplectic
Euler method. The only difference is that the gradients of the Hamiltonian in an HNN are
calculated using automatic differentiation, while the gradients in a SympNet are pre-calculated.
Using this equivalence the final visualization of a SympNet is given in Figure 9.

By concatenating HNNs, SympNets are able to approximate the symplectic flow map of all
Hamiltonian systems even non-separable ones. A single HNN only is appropriate for separable
Hamiltonian systems.

This analysis can also be performed for the activation and linear modules introduced in [5].
However, the analysis becomes less elegant and the notation more cluttered then. One would

8

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

pn

qn

T

U

H SE

p̂1

q̂1

T

U

H SE

p̂2

q̂2

· · · SE

pn+1

qn+1

Figure 9: A SympNet using the new point of view (with SE meaning Symplectic Euler).

need to split the linear modules into the different sublayers since there is more than one trian-
gular update in one linear module in general. As a consequence, the number of learned hidden
Hamiltonians is larger but the individual Hamiltonians are simpler and no longer universal
approximators.

6 NUMERICAL EXPERIMENTS

With numerical experiments we study the benefits of using the physics-aware SympNets in
comparison with completely physics-unaware MLPs. Also, since we are in a scenario where we
know the Hamiltonian of the system and therefore can simply use a numerical integrator, we
compare SympNets against integrators like the symplectic Euler method.

6.1 Data

The data used in this research is created using the Brutus N -body solver [7]. Brutus uses
an arbitrary-precision library combined with the Bulirsch-Stoer method to integrate Newton’s
equations of motion. The eventual N -body trajectories calculated using Brutus are converged
solutions with a predefined tolerance. Because of the extreme precision and accuracy of Brutus
the trajectories are numerically as close as technically possible to the ground truth.

The neural networks are trained on two different datasets. The first dataset is practically the
same as the one used in [5]. It shares all the simplifications but is created using Brutus instead
of a Runge-Kutta method. This dataset consists of 5000 trajectories of three bodies. The bodies
are set to have equal masses 1, and G = 1 [8]. Every value given is dimensionless. All bodies are
in the x, y-plane on a circle around the origin with the radius sampled randomly between 0.9
and 1.2. On this circle, the three bodies are 120° apart from each other. The initial velocities
are calculated such that all bodies would perfectly orbit the origin on said circle. Finally, each
of the velocities is multiplied by an independent random factor between 0.8 and 1.2. The system
is then integrated up to tend = 10 (tend = 5 in [5]).

The second dataset consists of 1000 trajectories of two bodies in a solar system. The first
body is the central star and the second a planet orbiting it. Both bodies move in the x, y-plane.
The star has a mass of 1.7861 ·1029 kg while the planet has a mass of 8.2058 ·1024 kg. The semi-
major axis and eccentricity are taken from a normal distribution centered around 1.7264 · 109 m
and 6.22·10−3, with a standard deviation of 7.4799·107 m and 0.1, respectively. All other orbital
elements are set to 0. The system is integrated up to tend = 2 · 106 s. These parameter values

9

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

are the values of the star and the inner most planet in the Trappist-1 system [9]. However, in a
simplified (projected on the x, y-plane) and slightly randomized form.

6.2 SympNets versus MLPs

To compare the SympNets against the physics-unaware MLPs we trained them on exactly
the same time-stepped data generated from our first dataset. We cut the data at a final time
tend = 4.5. The motivation to do this is that for all 5000 trajectories the three bodies start close
to a stable configuration in which they would periodically orbit their center of mass. Therefore,
in the beginning all trajectories are rather similar.

We investigate how well the neural networks are able to predict the trajectories inside the
trained time frame and also outside. To be able to compare these different neural network
architectures we choose their width and depth such that their compute times for one trajectory
are the same and such that both neural networks are able to achieve reasonably low losses. This
leads to MLPs with 5 layers and 75 neurons per layer and SympNets with 20 modules and 50
units per module. In total this implies ∼70000 trainable parameters for the MLP and 8000 for
the SympNet. The results of this study can be seen in Figure 10.

0 1 2 3 4

Time
(a)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

R
el
at
iv
e
M
S
E

MLP

SympNet

0 2 4

Time
(b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

MLP

SympNet

0 2 4 6 8

Time
(c)

0

5

10

15

20

MLP

SympNet

Figure 10: Relative mean square error (MSE) over the full dataset for an MLP and a SympNet trained
on data until tend = 4.5 (dashed vertical line): (a) inside training data, (b) outside training data, (c) far
outside training data.

The clear exponential growth in the left most panel, that is still fully inside the data, can
be explained by the iterative nature of this approach. Since the input to the neural networks
already has an error after one time step, the prediction of the next step is even less accurate.
The same behavior can be seen in numerical integrators and is expected. It is interesting to note
that the MLP is more accurate inside the data than the SympNet. This means that even though
the SympNet has the correct mathematical structure embedded in its topology, the MLP is able
to approximate the flow map more accurately. Here, the high number of parameters outperforms
the mathematical structure.

However, if we step outside the range of training data, even just one time step, the predicted
trajectories by the SympNet are more accurate, and after another time step even an order of

10

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

magnitude more accurate. Hence, the SympNets are able to generalize (or extrapolate), whereas
physics-unaware MLPs are not. One possible explanation for the ability to generalize are the
learned hidden Hamiltonians inside the SympNet.

6.3 SympNets versus the symplectic Euler method

Since we know the Hamiltonian of the N -body problem as long as we know the masses of
the bodies, the question arises why one would even use a neural network, instead of a numerical
integrator. Therefore, we compare the performance of the symplectic Euler method with a
SympNet on a rather simple 2-body system. We choose a single planet orbiting a star because
it can be solved analytically and it results in a periodic solution, giving us the possibility to
perform long-term predictions without chaos interfering.

We train a SympNet on data with a rather large time step of h = 2 · 104 s, to see whether
there is a break-even point in the size of the time step beyond which using a neural network
becomes more efficient. A basic integration scheme like the symplectic Euler method will always
be faster to calculate a single step than a large neural network, at least for a Hamiltonian that
is easy to compute. However, a neural network might be able to predict over larger time steps
than the symplectic Euler method and therefore outperform the integrator that needs many
time steps.

For the symplectic Euler method we choose a time step of h = 7·103 s to match the computing
time of the neural network for a full trajectory until tend = 2·106 s. The results of this comparison
can be seen in Figure 11 for one exemplary orbit of the dataset. The positions predicted by the

−3 −2 −1 0 1 2

x [106 km]

−2

−1

0

1

2

3

y
[1
06

km
]

Positions

Data (Brutus)

Integrator (SE)

SympNet

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time [d]

−6

−4

−2

0

2

4

6

E
n
er
gy

[1
0
3
4
J]

kinetic

potential

total

Figure 11: Trajectories of a planet orbiting a heavy central body, predicted by the symplectic Euler
method (SE) and a SympNet. The step size for the Euler method is chosen such that it matches the
speed of the neural network.

symplectic Euler method drift away from the true solution because the time step is too large
for precise predictions. In contrast, the SympNet can perform the even larger time steps very
accurately. The same behavior can be seen in the energy, even though a symplectic numerical
integrator is used.

11

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren and Simon Portegies Zwart

7 CONCLUSION

The symplectic structure in neural networks has other benefits than that in symplectic nu-
merical integrators. While symplectic integrators ensure long-term energy conservation and
stability, symplectic neural networks are not more stable than physics-unaware neural networks
inside the range of training data. However, the SympNets perform much better outside the
training data than the physics-unaware MLPs. This can be explained by the hidden Hamiltoni-
ans they learn from the data. All in all, while we are able to find better extrapolation outside
the training data, we neither observe more regularized predictions inside the range of training
data nor improved optimization behavior due to the reduced search space.

Furthermore, it can be concluded that even if the Hamiltonian of a system is known, it might
still be beneficial to use a neural network to integrate trajectories. In the case of large time
steps, a numerical integrator has difficulty to correctly calculate coordinates and therefore drifts
away from the correct solution over time. A neural network can learn to predict new coordinates
over long time steps. Therefore, if the state of a system after a long time is of interest, a neural
network can deliver accurate predictions faster than a numerical integrator.

REFERENCES

[1] P.G. Breen, C.N. Foley, T. Boekholt and S. Portegies Zwart, Newton versus the machine:
solving the chaotic three-body problem using deep neural networks, Monthly Notices of the
Royal Astronomical Society, Vol. 494, pp. 2465-2470, 2020.

[2] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer, 2006.

[3] S. Greydanus, M. Dzamba and J. Yosinski, Hamiltonian neural networks, Advances in
Neural Information Processing Systems, Vol. 32, NeurIPS, 2019.

[4] Z. Chen, J. Zhang, M. Arjovsky and L. Bottou, Symplectic recurrent neural networks, 8th
International Conference on Learning Representations, ICLR, 2020.

[5] P. Jin, Z. Zhang, A. Zhu, Y. Tang and G.E. Karniadakis, SympNets: Intrinsic structure-
preserving symplectic networks for identifying Hamiltonian systems, Neural Networks, Vol.
132, pp. 166-179, 2020.

[6] S. Xiong, Y. Tong, X. He, S. Yang, C. Yang and B. Zhu, Nonseparable symplectic neural
networks, 9th International Conference on Learning Representations, ICLR, 2021.

[7] T. Boekholt and S. Portegies Zwart, On the reliability of N-body simulations, Computa-
tional Astrophysics and Cosmology, Vol. 2, 2014.

[8] D.C. Heggie and R.D. Mathieu, Standardised units and time scales, The Use of Supercom-
puters in Stellar Dynamics, Lecture Notes in Physics, Vol. 267 , pp. 233–235, Springer,
1986.

[9] M. Gillon, E. Jehin, S. Lederer, et al., Temperate Earth-sized planets transiting a nearby
ultracool dwarf star, Nature, Vol. 533, pp. 221–224, 2016.

12

