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Abstract This paper describes a novel version of the
method of Lagrange multipliers for an improved modeling
of multi-point constraints that emanate from contact-im-
pact problems, partitioned structural analysis using par-
allel computers, and structural inverse problems. It is
shown that the classical method of Lagrange multipliers
can lead to a non-unique set of constraint conditions for
the modeling of interfaces involving more than two or
multi-point substructural interface nodes. The proposed
version of the method of Lagrange multipliers leads not
only to unique construction of constraints but also en-
counters no singularity in modeling an arbitrary number
of multi-point constraints. An important utilization of the
present method is in the regularized modeling of interfaces
whose rigidities are radically different from one to an-
other. The present approach is demonstrated via several
examples for its simplicity in modeling constraints, ease of
implementation and computational advantages.

1
Introduction
This article presents a novel version of the method of
Lagrange multipliers that is simple to formulate and im-
plement for the modeling of multi-point constraints that
emanate from contact-impact problems, partitioned solu-
tion of ®nite element systems, and inverse problems. Even
though the method has been widely used in constraint
modeling, several versions of this method arise depending
on the way interface constraints are constructed. This in
turn greatly in¯uences computational strategies.

The classical version comes straight from Lagrange. His
original motivation was to derive the equilibrium equa-
tions of a system of constrained rigid bodies. Lagrange
treated the problem ``as if all bodies are entirely free'' and
formulated the virtual work by summing up the contri-

butions of ``entirely free'' individual bodies. He then
identi®ed the ``equations of condition'' [that is, the
equality constraint equations] among the kinematic dif-
ferential variables. Once identi®ed, each constraint equa-
tion was multiplied by an indeterminate coef®cient and
added to the virtual work of the free bodies to yield the
total virtual work of the system. He states: ``the sum of all
the terms which are multiplied by the same differential
[same variation in modern usage] are equated to zero,
which will give as many particular solutions as there are
differentials. . . . These equations, being then rid of the
indeterminate coef®cients by elimination, will provide all
of the conditions necessary for equilibrium.'' (Lagrange,
1788; Lanczos, 1970; Dugas, 1988).

We observe that the Lagrange multipliers that were
introduced so that the principle of virtual work is appli-
cable to model systems of interconnected components, are
in the end eliminated. Physically, this means that once the
individual components are assembled, the interaction
forces cancel one another due to Newton's 3rd law.
Therefore, regardless of how one constructs the con-
straints the resulting equilibrium equations that are free
from the unknown reactions become a unique minimum
set of equilibrium equations as long as there is no re-
dundancy in the constraint equations. In other words, the
®nal minimum set of equilibrium equations is indepen-
dent of the way constraints are constructed. Mach (1960)
characterized Lagrange's introduction of multipliers ``the
economy of science in analytical mechanics. This is echoed
in Routh (1905), ``Our object is to form the general
equations of motion of a dynamical system free from all
unknown reactions,. . .,. In order to eliminate reactions we
shall use the principle of virtual work [with indeterminate
multipliers].''

Over the past several decades, there has been a steady
shift away from elimination toward retaining of the
Lagrange multipliers in the formulation of constrained
mechanical and structural systems. This shift has been
largely in¯uenced by computational considerations in
multibody dynamics (Likins, 1970; Haug, 1984), parallel
computations (Farhat and Roux, 1991, 1994), and recently
structural inverse problems (Park, Reich and Alvin 1997).
When each of the ``entirely free'' individual bodies or
substructures is constrained to only one other body, the
classical method of Lagrange multipliers (hereafter called
the classical k-method) yields a straightforward formula-
tion. That is, add up the virtual work of individual bodies
to obtain the total virtual work of entirely free bodies
(e.g., an open chain link), multiply each of the kinematic
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constraints between any two bodies or two adjacent nodes
by the Lagrange multiplier vector and append one by one
to the total virtual work of the system. The stationarity of
the resulting constrained virtual work yields the system
equilibrium equations in terms of the displacements of
the ``entirely free'' individual bodies and the Lagrange
multipliers. For this case the constraint is uniquely con-
structed, leading to a unique set of Lagrange multipliers.

When a node in a substructure is connected to more
than one body, however, the uniqueness in the construc-
tion of corresponding constraints is lost, often yielding a
redundant set of constraints. While such redundancy can
be eliminated by employing a judicious constraint con-
struction procedure or via a rank search algorithm, it does
not in general offer the so-called one-to-one duality be-
tween the interface nodal displacements and the corre-
sponding Lagrange multipliers with the exception of a
single chain link. In other words, the physical interface
forces consist of a linear combination of the Lagrange
multipliers.

The objective of the present paper is to describe an
alternative modeling of constraints which offers: a unique
way of constructing constrains without any redundancy;
the one-to-one-duality between the interface displace-
ments and the corresponding Lagrange multipliers that
possess the physical interface force; and, an ability of
regularizing a ¯exibility mismatch when bodies of radi-
cally different rigidities are brought into assembly or
contact.

2
Review of the classical method of Lagrange multipliers
This section illustrates the two dif®culties alluded to in the
Introduction, one pertaining to unique constraint con-
struction and the other computational issues.

2.1
Non-uniqueness in constraint construction
Consider partitioning the assembled system (Fig. 1a) into
4 components, which gives rise to reaction forces along the
partition boundaries. One option is to partition body 1
®rst from bodies 2, 3 and 4 as shown in Fig. 1b. Note it is
not physically adequate for body 1 to separate away from,
e.g., body 2. This gives rise to 3 kinematic constraints:

c12 � u1 ÿ u2 � 0

c13 � u1 ÿ u3 � 0

c14 � u1 ÿ u4 � 0

�1�

where the double subscripts in the constraint equation
cij � 0 implies that the displacement of body i to be equal
to that of body j.

Partitioning body 2 from bodies 3 and 4 yields two
additional constraints (Fig. 1c):

c23 � u2 ÿ u3 � 0 c24 � u2 ÿ u4 � 0 �2�
Finally, partitioning body 3 from body 4 requires (Fig. 1d):

c34 � u3 ÿ u4 � 0 �3�
The virtual work of the ``entirely free'' 4 bodies is ex-
pressed as

W�u� � W1�u1� �W2�u2� �W3�u3� �W4�u4�

�
XNs

i�1

Wi�ui�
�4�

where Wi�ui� is the virtual work of ``entirely free'' body i,
and Ns is the number of partitioned substructures.

The constraints given in (1)±(3) lead to the following
constraint functional

pcl�u; kcl� �
Xmÿ1

i�1

Xm

j>i

cij kij �5�

where subscript (cl) refers to the classical method of
Lagrange multipliers, and m � 4 is the number of interface
nodes constrained at a same node. This is an elegant and
general treatment at the cost of introducing an additional
unknown for each constraint, namely kij for each cij � 0.
Physically, it is the reaction force between the two bodies
when they are partitioned. The amazing fact is that k12

appears linearly, regardless of how nonlinear the con-
straint is in the kinematic variables.

The total energy functional of the system is thus given
by augmenting the constraint functional (5) to the virtual
work:

P�u; kcl� � W�u� � pcl�u; kcl�

�
XNs

i�1

Wi�ui� �
Xmÿ1

i�1

Xm

j>i

cij kij �6�

While the constraints resulted from the three successive
partitioning steps are physically sensible, they lead to
mathematical redundancies. This is because c23; c24; c34

in (2) and (3) are obtained as linear combinations
of (1):

Fig. 1. Partitioning of 4 bodies
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c23 � c13 ÿ c12; c24 � c14 ÿ c12; c34 � c14 ÿ c13 �7�
Thus, a rank-suf®cient form of (6) is given by

P�u; kcl� �
XNs

i�1

Wi�ui� � c12 k12 � c13 k13 � c14 k14

�8�

Remark 2.1: There are several ways of partitioning. For
example, one may initiate partitioning by separating body
2 from bodies 1, 3 and 4. In other words, partitioning
process is non-unique.

Remark 2.2: There are a total of 6 constraints that emanate
from the 4-body partitioning. However, only any three of
them are linearly independent. For example, partitioning
of body 1 from bodies 2, 3 and 4 is all that is necessary to
yield the three independent constraints. If body 2 is par-
titioned ®rst from the rest of the three bodies, then the
resulting three constraints are different, implying that the
Lagrange multipliers would have different physical prop-
erties.

Remark 2.3: For 10-body partitioning, there are a total of
45 possible constraints yet only 9 are linearly independent.
In the partitioned analysis of 3D continua, such high
connectivities are not uncommon. In addition, the impact
of different choices of rank-suf®cient constraint sets on
computational ef®ciency and accuracy is not fully under-
stood. This is especially true for contact enforcement of
multiple elements being constrained.

Remark 2.4: If one chooses the three constraints emanat-
ing from the partitioning of body 1 from bodies 2, 3 and 4,
the resulting constraint functional reads:

pcl�u; kcl� � k12�u1 ÿ u2� � k13�u1 ÿ u3� � k14�u1 ÿ u4�
�9�

where the double subscripts are introduced in the
Lagrange multipliers to emphasize the fact that they are
common to the two interface nodes. For example, k12

constrains the two displacement u1 at node 1 and u2 at
node 2 to be the same. In other words, the classical
Lagrange multipliers are inherently global.

Remark 2.5: Finally, we note that the very task of selecting
a set of linearly independent Lagrange multipliers has been
a major issue in the classical force method (Argyris and
Kelsey, 1960; Denke, 1962; Przemieniecki, 1968; Patnaik,
1973; Kaneko et al., 1982; Felippa, 1987; Gallagher, 1987;
Felippa and Park, 1997).

2.2
Computational issues using the classical k-method
Let us now consider the partitioned four-spring system
given by Fig. 2. In terms of virtual work approach, the total
energy of the partitioned system in terms of partitioned
de¯ection u and the Lagrange multiplier kcl can be ex-
pressed as (see, e.g., Lanczos, 1970):

P�u; kcl� � uT

�
1

2
K uÿ f

�
� kT

cl CT
cl u

K �

k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4

26664
37775;

Ccl �
1 ÿ1 0 0

0 1 ÿ1 0

0 0 1 ÿ1

264
375 �10�

u �

u1

u2

u3

u4

8>>><>>>:
9>>>=>>>;; kcl �

k12

k23

k34

8><>:
9>=>;; f � 0:25

f1

f2

f3

f4

8>>><>>>:
9>>>=>>>;

where we have used Option 1 shown in Fig. 2b in order to
secure a linearly independent system. The stationarity of
the constrained energy functional (10) yields the following
partitioned equation:

K Ccl

CT
cl 0

� �
u
kcl

� �
� f

0

� �
�11�

Note that the physical reaction force vector is given by

fk � Cclkcl �
1 0 0
ÿ1 1 0
0 ÿ1 1
0 0 ÿ1

2664
3775 k12

k23

k34

8<:
9=; �

k12

ÿk12 � k23

ÿk23 � k34

ÿk34

8>><>>:
9>>=>>;

�12�
If one chooses Option 2 as shown in Fig. 2c, the reaction
force vector is given by

fk �
0 0 ÿ1
1 0 0
ÿ1 1 0
0 ÿ1 1

2664
3775 �k12

�k23
�k41

8<:
9=; �

ÿ�k41
�k12

ÿ�k12 � �k23

ÿ�k23 � �k41

8>><>>:
9>>=>>;
�13�

Observe that, while the reaction force fk is unique, its
representation depends on the choice of the constraints
with different Lagrange multipliers and with differing
computational consequences. Speci®cally, information
¯ow from one spring to adjacent ones becomes non-uni-
form when the classical k-method is used with a set of
rank-suf®cient constraints. For example, constraint
c13 � u1 ÿ u3 � 0 is not explicitly enforced in Option 1
whereas constraint c12 � u1 ÿ u2 � 0 is not explicitly en-
forced in Option 2. This may delay information ¯ow
during iterative solution or design iterations. This is crit-
ical in an iterative solution of the governing equations or
optimization iterations.

In other words, when Option 1 is adopted as shown in
Fig. 2b, there is no intrinsic constraint acting between
springs 3 and 4. This means that, if a solution perturbation
or design modi®cation is introduced at spring 1, spring 4
will not feel it until at least after third design iterations.
Similarly, when Option 2 is adopted as shown in Fig. 2c,
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there is no intrinsic constraint acting between springs 1
and 2.

Remark 2.6: One way to achieve an instant information
¯ow from one node to the rest of the partitioned nodes is
to invoke the fully redundant constraints as shown in
Fig. 2a. This means there have to be 45 classical Lagrange
multipliers for 10-node constraints. This not only leads to
rank de®ciency, but also to increased Lagrange multipliers.
Finally, as discussed in Sect. 4, there does not appear to be
a rational regularization in conjunction with the classical
k-method when it is used to model interfaces whose sur-
face rigidities are radically different such as metal inter-
acting with rubber-like materials.

2.3
Loss of (u; kcl)-duality for inverse problems
In many structural inverse problems for identifying pa-
rameters that are dif®cult to model or structural damage
detection, measured data are often characterized in terms
of ¯exibility instead of stiffness (cf., Park et al., 1998). A
structural inverse problem is formulated by partitioning
the structure into several substructures and is used to
identify substructural parameters. Here, one-to-one dual-
ity between the substructural displacements and the
Lagrange multipliers for the same substructure plays a
crucial role for identi®cation process.

Speci®cally, consider Fig. 3 where 9 plate elements are
partitioned and the ¯exibility of element �e� is to be
identi®ed. First, there are numerous ways of introducing a
rank-suf®cient set of Lagrange multipliers. For the choice
indicated in Fig. 3, the pairing of the substructural
displacements and the associated Lagrange multipliers is
also given in Fig. 3. Note that they do not form a duality,
meaning that there are 4 nodal displacements whereas
there are a total of 8 Lagrange multipliers. Of course,
one can deliberately choose a set of Lagrange multipliers
for element �e� so that �u�e�; k�e�cl � form their duality.
However, this can only be accomplished by affecting non-
dualities for other elements.

For more complex problems, a selection of linearly in-
dependent set of Lagrange multipliers constitutes essen-
tially the same task that the classical force method has
been facing as discussed in Remark 2.6.

3
A localized version of the method of Lagrange multipliers
In this section we ®rst introduce the basic concept of a
localized version of the method of Lagrange multipliers,
which will be designated subsequently as the localized
k-method. We then show that the localized k-method leads
to a rank-suf®cient unique set of constraints regardless of
the number of nodes constrained to a node. We then

Fig. 2 a±c. Interface constraints by the
classical k-method for 4-spring problem.
a Fully redundant case; b Option 1 of rank-
suf®cient case; c Option 2 of rank-suf®cient
case

Fig. 3. Inverse problem modeling by the classical k-method for 9-element plate problem
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introduce a ¯exibility normalization procedure that offers
an improved modeling of contact, coupled-®eld problems
and parallel transient analysis.

3.1
Basic concept of localized Lagrange multipliers
One thought that came to the present authors' mind to
bypass the non-uniqueness of the interface compatibility
matrix Ccl was to employ the following approach.

Let us revisit the problem of partitioning of four bodies
discussed in Sect. 2.1. First, we introduce a reference node
herein designated g, to which all of the partitioned nodes
are constrained. Partitioning body 1 from the reference
body g, as illustrated in Fig. 4, gives rise to one constraint:

c1 � u1 ÿ ug � 0 �14�
Second, partitioning body 2 from the reference body g
yields:

c2 � u2 ÿ ug � 0 �15�
Third, partitioning body 3 from the reference body g
yields:

c3 � u3 ÿ ug � 0 �16�
Finally, partitioning body 4 from the reference body g
yields:

c4 � u4 ÿ ug � 0 �17�
The preceding successive four partitioning steps are il-
lustrated in Fig. 4. Note that the constraint relations are
characterized by ci with a single subscript in contrast to
the classical k-method for which cij is characterized by
double subscripts. In other words, the constraints are
localized. The method of Lagrange multipliers that adopts
the above constraints will be designated as the method of
localized Lagrange multipliers or simply the localized
k-method.

Remark 3.1: Observe that the order of partitioning does
not affect the resulting constraint conditions. For example,
if body 2 is partitioned from the reference body g ®rst, it
still gives rise to the same constraint condition, viz., (15)
without affecting the rest three constraints. This is in
contrast to the dependency of constraints on the order of
partitioning discussed in Remark 2.1 using the classical
method of Lagrange multipliers.

The constraints given in (14)±(17) lead to the following
constraint functional

p`�u; k`; ug� �
Xm

i�1

ci ki �18�

where subscript �`� refers to the localized method of
Lagrange multipliers, and m � 4 is the number of interface
nodes constrained at a same node.

The total energy functional of the system is given by
augmenting the constraint functional (18) to the virtual
work:

P�u; kcl� � W�u� � p`�u; k`; ug�

�
XNs

i�1

Wi�ui� �
Xm

i�1

ci ki �19�

The foregoing multiplier localization technique may not be
applicable to all possible constraint combinations. It works
effectively, however, for a wide spectrum of problems in
partitioned analysis wherein constraints ci � 0 consist of
linear functions of the partitioned variables. When appli-
cable, its key advantage is that it eliminates concerns about
constraint dependencies. Because all bodies are treated
equally the computer implementation is simpli®ed. On the
minus side it introduces further unknowns, namely the
degrees of freedom of the reference body, ug , in Fig. 4. This
is compensated by the reduction of Lagrange multipliers if
the number of interacting bodies exceeds 3. For example, if
8 bodies interact, the number of possible multipliers is cut
from 28 to 8. For two-body interactions the number of
unknowns using the multiplier localization technique be-
comes twice of those needed by the classical k-method.

3.2
Equilibrium equations rendered by the localized k-method
The total energy of the partitioned system for the four-
spring system shown in Fig. 5 in terms of the localized
Lagrange multiplier k` can be expressed:

P�u; k`; ug� � uT �12 K uÿ f� � kT
` B�uÿ Lug�

Fig. 4. The multiplier-localization approach
to linearly independent constraints

Fig. 5. Four-spring interface modeling by the localized k-method
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u �

u1

u2

u3

u4

8>>>>><>>>>>:

9>>>>>=>>>>>;
; k` �

k1

k2

k3

k4

8>>>>><>>>>>:

9>>>>>=>>>>>;
; f � 0:25

f1

f2

f3

f4

8>>>>><>>>>>:

9>>>>>=>>>>>;
�20�

BT � I�4� 4�; LT � 1 1 1 1� �
The stationarity of (20) yields the following equilibrium
equation:

K B 0

BT 0 ÿLb

0 ÿLT
b 0

264
375 u

k`
ug

8><>:
9>=>;�

f

0

0

8><>:
9>=>;; Lb � BTL �21�

Remark 3.2: The above partitioned equation yielded by the
localized k-method consists of three variables �u; k`; ug�.
Comparing this with that rendered by the classical
k-method (11), we ®nd one distinct feature: the last row of
(21), namely, LT

b k` � 0 explicitly enforces Newton's 3rd
law at the partitioned interface regardless of the number of
nodes constrained.

Remark 3.3: Since every interface node is connected to all
its adjacent nodes through the reference node g as can be
seen in Fig. 5, each of the reaction forces is transmitted
instantly. In addition, the present localized Lagrange
multipliers are in fact the physical interface forces at the
interface nodes.

Remark 3.4: Figure 6 shows the one-to-one duality be-
tween the partitioned substructural boundary displace-
ments and the present localized Lagrange multipliers. This
duality plays a pivotal role in inverse problems as well as
leading to a direct ¯exibility equation (Felippa and Park,
1997) that requires no search for selecting a linearly in-
dependent set of Lagrange multipliers.

4
Flexibility normalization through the localized k-method
Consider two springs whose magnitude ratio is either
k1=k2 � 1 or k1=k2 � 1 as shown in Fig. 7. When the two
springs are partitioned for partitioned analysis or when
the two springs are in contact for contact/impact simula-
tion, the constraint functional to enforce the kinematic
constraint by the classical k-method is given by

pclassical�u; kcl� � k12�u1 ÿ u2� �22�
When using the localized k-method, the system constraint
functional can be normalized as

plocalized�u; k`; ug� � k1�u1 ÿ ug� � k2�u2 ÿ ug�
� �k1D1�u1 ÿ ug� � �k2D2�u2 ÿ ug�

�23�
where D1 and D2 are ¯exibility normalization factors to be
determined subsequently.

Observe that by taking appropriate values of D1 and D2

for the example case, one effectively scales the unknown
Lagrange multipliers k1 and k2. However, no such scaling
possibility exists when using the classical k-method since
each of the Lagrange multipliers enforces two contacting
or partitioned nodal displacements to be the same.

In order to determine the ¯exibility normalization fac-
tors, we recall the normalized kinematic constraints and
Newton's 3rd law from (23):

D1�u1 ÿ ug� � 0

D2�u2 ÿ ug� � 0

k1D1 � k2D2 � 0

�24�

where the superscript ��� is dropped for simplicity.
Thus, one ®nds the least-square solution of the refer-

ence nodal displacement ug as

ug � D2
1 u1 � D2

2 u2

D2
1 � D2

2

) _ug � D2
1 _u1 � D2

2 _u2

D2
1 � D2

2

�25�

By invoking the contact enforcement condition of the
elementary impact theory, if the impact is to be conser-
vative for two rigid bodies, we must have

Fig. 7 a, b. Classical and
localized k-methods. a Classical
method of Lagrange multiplier;
b a localized of the method of
Lagrange multipliers

Fig. 6. One-to-one �u; k`�-duality at partition interfaces by the
localized k-method
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_ug � m1 _u1 �m2 _u2

m1 �m2
) D2

1 � m1 and D2
2 � m2

�26�
Therefore, in order to cover both impact and contact
conditions for two elastic bodies, D1 and D2 must be, from
a dimensional consideration, of the following form:

D2
1 �

m1

cDt2
� k1; D2

2 �
m2

cDt2
� k2 �27�

where 4t is a characteristic time scale and c is a constant.

Remark 4.1: Note that the preceding relation yields the
quasi-static contact with 4t2 !1:

D2
1 � k1; D2

2 � k2 �28�
Using this relation, the incremental displacement for each
body to satisfy the quasi-static contact condition becomes

4u1 � u1 ÿ ug � k2�u1 ÿ u2�
k1 � k2

4u2 � u2 ÿ ug � ÿk1�u1 ÿ u2�
k1 � k2

�29�

which can be used for estimating the contact boundary in
an iterative computation of contact problems. For a gen-
eral dynamic contact problem, k1 and k2 should be re-
placed by D2

1 and D2
2 (27), respectively.

Remark 4.2: In addition, the use of the ¯exibility nor-
malization (23) with the choice of (27) is shown to accel-
erate the iterative solution of partitioned dynamic
equations of motion (cf. Sect. 7).

Remark 4.3: In general a typical substructure contains a
large set of interior nodes such that its stiffness may be
expressed as

K�s� � Kbb Kbi

Kib Kii

� �
Hence, the Guyan reduced boundary stiffness becomes
K
�s�
bb � Kbb ÿ Kbi Kÿ1

ii Kib. Ideally, it would be preferable to
use its diagonal. However, since it is usually never formed
explicitly in actually computations, it may be practical to
use the diagonal of Kbb instead.

Remark 4.4: Finally, the term ¯exibility normalization
factors has been adopted from the following observation.
Recalling the four-spring example problem considered in
Sects. 2 and 3, we have

plocalized�u; k`; ug� � k1D1�u1 ÿ ug� � k2D2�u2 ÿ ug�
� k3D1�u3 ÿ ug� � k4D4�u4 ÿ ug�

�30�
When this is incorporated, (21) becomes

K D B 0

BTD 0 ÿDLb

0 ÿLT
b D 0

264
375 u

k`

ug

8><>:
9>=>; �

f

0

0

8><>:
9>=>;;

Dii �
����
ki

p �31�

Solving for u and substituting into the second equation of
(31) we obtain

BTD Kÿ1 D B D Lb

LT
b D 0

" #
k`

ug

( )
� BTDKÿ1f

0

( )
;

D �

�����
k1

p
0 0 0

0
�����
k2

p
0 0

0 0
�����
k3

p
0

0 0 0
�����
k4

p

2666664

3777775
Fb � BTD Kÿ1 D B � I; �32�

Kÿ1 �

k1
ÿ1 0 0 0

0 k2
ÿ1 0 0

0 0 k3
ÿ1 0

0 0 0 k4
ÿ1

2666664

3777775
Observe that D has the effect of normalizing the ¯exibility
matrix Fb. Of course, for multidimensional problems Fb

does in no way become an identity matrix as only D is
diagonal. However, it offers a surprisingly bene®cial im-
pact on the computational ef®ciency as discussed in Sect. 7
on numerical examples.

5
Comparison of the localized and classical k-methods
As a basis of comparing the classical k-method with the
present localized k-method, we recall from (31) that the
partitioned equilibrium equation given by the localized k-
method consists of three variables �u; k`; ug�. Observe that
ug can be projected out from (31) by pre and post-mul-
tiplying the second row and second column, respectively,
by

PD � Iÿ DLb �LT
b D2Lb�ÿ1 LT

b D �33�
to yield:

K D PD B

BTD PD 0

� �
u
�k`

� �
� f

0

� �
�34�

In particular, when no ¯exibility normalization is em-
ployed in conjunction with the localized k-method, i.e.,
D � I, the preceding equation reduces to

K PL

PL 0

� �
u
�k`

� �
� f

0

� �
; with D � I

since PL � Iÿ Lb�LT
b Lb�ÿ1 Lb

�35�

It can be shown that the projection operator PL has the
following speci®c forms for 2, 3 and 4-node interfaces,
respectively:

PL � 1

2

1 ÿ1
ÿ1 1

� �
� 1

2

1
ÿ1

� �
� 1 1� �

PL � 1

3

2 ÿ1 ÿ1
ÿ1 2 ÿ1
ÿ1 ÿ1 2

24 35
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� 1

3

1 1 0

ÿ1 0 1

0 ÿ1 ÿ1

264
375 � 1 ÿ1 0

1 0 ÿ1

0 1 ÿ1

264
375

PL � 1

4

3 ÿ1 ÿ1 ÿ1

ÿ1 3 ÿ1 ÿ1

ÿ1 ÿ1 3 ÿ1

ÿ1 ÿ1 ÿ1 3

26664
37775

� 1

4

1 1 1 0 0 0

ÿ1 0 0 1 1 0

0 ÿ1 0 ÿ1 0 1

0 0 ÿ1 0 ÿ1 ÿ1

26664
37775

�

1 ÿ1 0 0
1 0 ÿ1 0
1 0 0 ÿ1
0 1 ÿ1 0
0 1 0 ÿ1
0 0 1 ÿ1

26666664

37777775 �36�

+
PL � 1����

m
p Ccl �m� � 1����

m
p Ccl �m�T

where m is the number of interfaces and Ccl�m� is the fully
redundant constraint conditions. For example, for an in-
terface involving 8 nodes the size of Ccl�m� is �28� 8�,
implying that the number of Lagrange multipliers neces-
sary for the optimum constraints have to be 28.

The foregoing analysis suggests the following:

1. Comparing (35) with the partitioned equation (11)
rendered by the classical k-method, we conclude that
the constraint operator Ccl �m� utilizes only one part of
PL as can be seen from (36). Observe that P` explicitly
satis®es Newton's 3rd law given by the third row of (31),
namely, LT

b k` � 0. On the other hand, the partitioned
equation (11) rendered by the classical k-method sat-
is®es Newton's 3rd law only after the partitioned dis-
placement u has converged to a correct solution.

2. As for a similar ¯exibility normalization for the parti-
tioned equation rendered by the classical k-method, one
is tempted to modify Ccl �m� by

CT
cl �m� ) Dcl CT

cl �m� �37�
To the best of our ability, there does not appear to be
an equivalent form from the preceding modi®cation to
the present projector PD given in (33).

6
Application: solution of partitioned quasi-static flexibility
equation
One popular application of the method of Lagrange mul-
tipliers has been for parallel iterative solution of the par-
titioned ¯exibility equation for structural systems. The
other is the enforcement of contact conditions. In terms of
both the classical and present localized k-methods, the
iterative solution of the partitioned equilibrium equations

and the contact enforcement of substructural systems
constitute the same problem. To this end, we ®rst present
the partitioned equations of motion employing the present
localized k-method (Felippa and Park, 1997; Park and
Felippa, 1998a) which reduce to partitioned ¯exibility
equations upon eliminating the partitioned displacements.
The ¯exibility normalization is then introduced to both
dynamic and quasi-static partitioned ¯exibility equations.
The performance of these ¯exibility equations are then
assessed in Sect. 7.

6.1
Partitioned quasi-static flexibility equations
Now consider for example assembled continuum structure
partitioned into individual elements as shown in Fig. 8.
The individual nodal displacements u are related to the
assembled global displacements ug through the assembly
matrix L according to:

uÿ L ug � 0 �38�
Hence, the discrete energy functional can be expressed
in terms of the partitioned elemental displacements as

P�ug ; k; u� � uT �12 K uÿ f� � kT
` BT �uÿ L ug� �39�

where k` are the Lagrange multipliers that enforce the
partition boundary kinematical compatibility condition
(38), B is a Boolean matrix that extracts the partition
boundary degrees of freedom, and f is the applied force.

For computational considerations, it is convenient to
decompose the substructural displacement u according to
(Park and Felippa, 1998a):

u � d� Ra �40�
where R are the rigid-body modes, and d and a are the
generalized displacements corresponding to the deforma-
tion and rigid-body motions, respectively.

Substituting this into (39) and carrying out its variation
for its stationarity yields the following discrete equation:

K ÿB 0 0

ÿBT 0 ÿRb Lb

0 ÿRT
b 0 0

0 LT
b 0 0

266664
377775

d

a`

ar

ugb

8>>>><>>>>:

9>>>>=>>>>; �
f

0

ÿRTf

0

8>>>><>>>>:

9>>>>=>>>>; �41�

Rb � BTR; Lb � BTL

Elimination of the deformation variable d leads to the
following quasi-static partitioned ¯exibility equation:

BTK�B ÿRb Lb

ÿRT
b 0 0

LT
b 0 0

266664
377775

k`

a

ugb

8>>>><>>>>:

9>>>>=>>>>; �
BT K�f

ÿRTf

0

8>>>><>>>>:

9>>>>=>>>>;; �42�

Rb � BTR

u � K� �f ÿ B k`� � Ra

where K� is a generalized inverse of K.
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6.2
Normalized partitioned flexibility equations
Following the four-spring example case given by (29) and
(30), the static partitioned equations (42) are modi®ed as

F̂b ÿ D Rb D Lb

ÿRT
b D 0 0

LT
b D 0 0

2664
3775

kD

a

ugb

8>><>>:
9>>=>>; �

D BT K�f

ÿRTf

0

8>><>>:
9>>=>>;

F̂b � D BT K� B D � D Fb D; �43�
D �

�����������������
diag Kbb

p
; kD � D k`

u � K� �f ÿ B D kD� � Ra

where D involves only the partition boundary attributes,
and Kbb contains the partition boundary stiffness
components.

The preconditioned conjugate gradient solution strate-
gy adopted iterates on the following residual (see, e.g.,
Justino et al. (1997) for details):

rP � P` S� P` �gk ÿ F̂b k`�; S� � F̂�b
P` � PD ÿ Ga�GT

a Ga�ÿ1GT
a

PD � Iÿ D Lb�LT
b D2 Lb�ÿ1 LT

b D

Ga � PD D Rb; gk � BT D K�f

�44�

Observe that the case without ¯exibility normalization is
recovered by setting D � I.

6.3
Comparison with the DFETI-1 algorithm
(Farhat and Roux, 1991; Farhat et al., 1994)
Farhat and Roux (1991), Farhat et al. (1994) presented the
DFETI-1 method that employs the following precondi-
tioned residual:

r�FR� � PT
cl F�cl Pcl �Dÿ Fclkcl�;

Fcl � CT
cl K� Ccl;

F�cl � CT
cl KS

bb Ccl;

d � CT
cl K� f ; �45�

Pcl � Iÿ Gcl�GT
clGcl�ÿ1GT

cl;

Gcl � CclR

where CT
cl enforces interface displacement constraints via

the classical method of Lagrange multipliers, KS
bb is the

partition boundary Schur complement of K.
The present static algorithm (44) and the algorithm of

Farhat and Roux (45) are comparable in terms of com-
putational effort. However, we observe that the present
simple algorithm is fundamentally different from the lat-
ter.

First, one may introduce the heterogeneous precondi-
tioner of Rixen and Farhat (1997) in place of F�cl , which
may be symbolically written as

F̂�cl � ĈT
cl KS

bb Ĉcl �46�
where Ĉcl for a two-spring interface (see Fig. 3) is given by

Ĉcl � ĉ1 ĉ2� �; c1 � k2

k1 � k2
; c2 � k1

k1 � k2
�47�

It can be shown that Ĉcl used in Rixen and Farhat (1997)
can be related to the present ¯exibility normalized pro-
jector PD by

Dÿ1 PD D � Dÿ1 P2
D D � Ĉcl CT

cl �48�
The preconditioned solution matrices of the two algo-
rithms thus become

Fig. 8a, b. Three beams rigidly linked at half station and the tip end. a Problem to be solved; b Lagrange multipliers after
partitioning by the localized k-method

Present Algorithm: P` F̂�b P` F̂b � P` �PD Dÿ1Fÿ1
b Dÿ1 PD� � P` � �D Fb D �

Rixen/Farhat

Preconditioner (1997): PT
clF̂
�
cl Pcl Fcl � PT

cl �ĈT
cl Fÿ1

b Ĉcl� Pcl �CT
cl Fb Ccl�

�49�
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For the special case when every partition is devoid of
¯oating modes, that is fully constrained, we have from (49):

Hence, the convergence rate of the two methods will be the
same for partitions without any ¯oating modes. In other
words, the Rixen and Farhat preconditioner F̂�cl and the
present normalized preconditioner F̂�b are algorithmically
equivalent.

For a general case of partitions having rigid body
modes, however, the two algorithms are different due to
their fundamental difference in the projectors, P` and Pcl.
Speci®cally, the difference can be observed by comparing
the two projectors:

Observe that the present projector P` incorporates the
¯exibility normalization effect whereas that of the DFETI-1
is independent of the heterogeneous preconditioning op-
erator Ĉcl. Since the computational overheads per iteration
of the present algorithm (44) and the DFETI-1 algorithm
(45) are equivalent, it would be interesting to see if the
present ¯exibility-normalized projector would offer any
iteration advantage.

For comparison purposes Table 1 list the ®ve algo-
rithms classi®ed according to their preconditioner and
projector (or coarse solver).

7
Illustrative problems
Four example problems are used to illustrate the perfor-
mance of the present localized k-method. The ®rst is a
comparison of the computational ef®ciency of the parti-

tioned ¯exibility equations employing the present ¯exi-
bility-normalized, localized k-method with that of
employing the classical k-method. The second is a plane
stress problem consisting of four subdomains with two
heterogeneous materials. The third is a beam tower that
gives rise to geometrical heterogeneities as the axial
(membrane) forces interact with the bending forces even
though every member of the tower beam elements has the
same cross section and material properties. Finally, the
fourth problem illustrates the performance of a simple

partitioned dynamic algorithm to assess the applicability
of the ¯exibility normalization for dynamic contact en-
forcement as well as parallel iterative solution.

7.1
Importance of redundancies in the classical k-method
Let us consider the problem shown in Fig. 8a. When the
structure is partitioned into six beam elements, the local-
ized k-method gives rise to six and three Lagrange mul-
tipliers at the mid and tip-end nodes, respectively, as
shown in Fig. 8b. On the other hand, Fig. 9 illustrates a
rank-suf®cient and fully redundant modeling of the in-
terfaces by the classical k-method.

Figure 10 shows the global residual vs. the iteration
number for four different modeling of the interface con-
straints. The measure of solution error at each iteration
stage is given by

Table 1. Classi®cation of ®ve static algorithm compared

DFETI-1 DFETI-1P AFETI-1 AFETI-1PC AFETI-1P

Preconditioner �WCT
k KS

bbCk �W ĈT
k KS

bbĈk PLKS
bbPL PD

�DKS
bb

�DPD Same as
AFETI-1PC

Projector Pcl � Iÿ Gcl�GT
clGcl�ÿ1GT

cl Same as
DFETI-1

P` � Iÿ G`�GT
` G`�ÿ1GT

` P` � Iÿ GD�GT
DGD�ÿ1GT

D Same as
AFETI-1

Gcl � CclR G` � PLBTR GD � PDDBTR

Where �W �Wÿ1 and �D � Dÿ1

Algorithm Designation:
DFETI-1: Method of Farhat and Roux as summarized in (45).
DFETI-1P: Method of Farhat and Roux where the preconditioner is replaced by Rixen and Farhat (1997) as summarized in (47) and
(50).
AFETI-1: Method of Park, Justino and Felippa (1997) that can be obtained by setting D � I in (44).
AFETI-1PC: Method as summarized in (44).
AFETI-1P: Method of (44) except the projector P` is specialized by setting D � I.

Present Algorithm: P` F̂�b P` F̂b ) PD Dÿ1�Fÿ1
b Dÿ1 PDD Fb� D

Rixen/Farhat PT
clF̂
�
cl Pcl Fcl ) ĈT

cl �Fÿ1
b ĈclC

T
cl Fb� Ccl

Preconditioner (1997): � ĈT
cl �Fÿ1

b Dÿ1 PDD Fb� Ccl

�50�

Present Normalized Projector: P` � PD ÿ PD D Rb�RT
b DPD D Rb�ÿ1RT

b D PD

PD � Iÿ D Lb�LT
b D2 Lb�ÿ1 LT

b D

DFETI-1 projector: Pcl � Pcl � Iÿ Gcl�GT
clGcl�ÿ1GT

cl; Gcl � CclR

�51�
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rg � jfg ÿ Kg ug j=jfg j �52�
The AFETI residual curve is obtained by iterating on the
residual vector given by (51), which adopts the Lagrange
multipliers shown in Fig. 8b and converges in one itera-
tion.

The residual curves designated as DFETI-1 have been
obtained by using the partitioned ¯exibility equation
employing the classical k-method (Farhat and Roux, 1991;
Farhat et al., 1994) as summarized in (44). When one
chooses the rank-suf®cient Lagrange multipliers as shown
in Fig. 9a, 8 iterations are required to obtain a converged
solution. Observe that, when the fully redundant Lagrange
multipliers are utilized as shown in Fig. 9b, the DFETI-1
method also converges in one iteration. This is because the
information ¯ow from one partitioned node to the rest is
not instantaneous, whereas for the AFETI-1 method and
the DFETI-1 method with fully redundant constraints the
information ¯ow is instant.

The DFETI-1 method with various intermediate re-
dundant constraints was also tested. The results indicate
that only with the full redundancies of the classical k-
method the DFETI-1 method converges in one iteration.
This illustrates that the AFETI-1 algorithm employing the
localized k-method offers the same convergence perfor-
mance as the fully redundant DFETI-1 method.

7.2
Inverse problem: identification of substructural flexibility
The partitioned quasi-static equation (46) can be used to
identify substructural ¯exibility starting the known global
¯exibility Fg � Kg . To this end, solving for �k`; a� and
substituting them into

u � Lug � LFgfg �53�
one obtains the following Ricatti-like equation:

F � L Fg LT � F fB Fÿ1
B �Iÿ Lb FL LT

b Fÿ1
B � BT Fg

F � K�; FB � �BT F B�; FL � �LT
b Fÿ1

B Lb�ÿ1

�54�
F is called the substructural ¯exibility matrix.

In order to demonstrate the utility of the above equa-
tion for identifying the substructural ¯exibility matrices of
block diagonal form, a free-free ladder structure shown in
Table 2 is chosen from Park, Reich and Alvin (1997). The
ladder is modeled with eight plane beam elements which
include axial stiffness. In the present numerical experi-
ment, the global stiffness matrix is generated analytically.
The simulated global ¯exibility matrix is thus Fg � Kÿ1

g as
the starting point. Using the global ¯exibility as the known
¯exibility, the elemental ¯exibility F was determined by
solving for F via a homotopy nonlinear iteration method
(Richter and Collins, 1989).

Table 2 shows the convergence of the elemental eigen-
values of horizontal mid-element 2 shown in Figure 6. As
can be seen in the above table, the initial errors of the two
substructural bending eigenvalues are 74% and 6%, re-
spectively. However, after iterations, the extracted sub-
structural ¯exibility matrix yields the two bending modes
with four-digit accuracy.

7.3
Iterative solutions of partitioned quasi-static plane
stress problem
Figure 11 represents a plane stress problem adopted in
Rixen and Farhat (1997) in their study of preconditioners

Fig. 9a, b. Modeling of partitioned interface constraints by the classical k-method. a Rank-suf®cient case (this is one of many possible
choices); b redundant but computationally optimal case (There are a total of 15 and 3 multipliers for the two interfaces)

Table 2. Eigenvalues of horizontal element 2 from inverse identi®ed elemental ¯exibility

(6) (7) (8)
Mode Exact Initial Iterated

(4) (5) Bending 1 1.6666E + 05 2.8992E + 05 1.6672E + 05
Bending 2 5.2000E + 05 4.8771E + 05 5.2000E + 05

(1) (2) (3)
Axial 2.0000E + 06 2.0011E + 06 2.0000E + 06

Fig. 10. Global residual vs. iteration number for beam example
problem
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for accelerating the iterative solution by parallel algorithms
when the problem consists of material heterogeneities.
Note that the partition boundaries are marked in Fig. 11 by
bold lines. It should be noted that this problem can be
used to test not only the parallel solution algorithm but
also for the ef®ciency of contact enforcement as both
problems must solve for the interface forces acting along
the partition boundaries. The material heterogeneity is
chosen such that the ratio of Young's moduli of steel and
the soft material is 4096.

Figure 12 reports on the effect of the present ¯exibility
normalization vs. the case without normalization (D � I)
employing the present localized k-method designated
as AFETI-1PC and the AFETI-1 method, respectively.
Included in the same ®gure is the performance of the
preconditioning scheme of Rixen and Farhat (1997) in
conjunction with the DFETI-1 method (Farhat and Roux,
1991; Farhat et al., 1994) designated herein as the DFETI-
1P method. Note the marked improvement both by the
present ¯exibility-normalized (AFETI-1PC) and the Rixen
and Farhat preconditioning (DFETI-1P) schemes. This
demonstrates that the present ¯exibility normalization
offers a similar bene®cial effect on iteration acceleration as
that rendered by the preconditioning scheme of Rixen and
Farhat (1997), thus con®rming the analytical comparison
offered in (49)±(51).

7.4
Partitioned 40-bay tower problem
Whereas the plane stress problem analyzed is to assess the
performance of the ¯exibility normalization for material
heterogeneities, the 40-bay tower problem shown in Fig. 14

is chosen for its robustness in handling geometric heter-
ogeneities. The tower consists of 40 bays, with each bay
made of 14 beam elements. For the present numerical
experiments, two partitions are utilized: element-by-ele-
ment partition leading to 560 substructures and bay-by-
bay partition with a total of 40 substructures. It is noted
that a signi®cant coupling of axial and bending is effected
at each joint, thereby causing stiffness mismatch.

Observe from Fig. 14 that both the AFETI-1 and the
DFETI-1 methods perform relatively similar. When the
¯exibility normalization is invoked, that is, by using
AFETI-1PC a marked improvement (13 vs. 73 iterations) is
achieved.

It is found that DFETI-1 with the Rixen and Farhat
preconditioning scheme, labeled as the DFETI-1P method,
does not improve over the DFETI-1 method. As for the
marked performance improvement of the present ¯exi-
bility normalization strategy, we offer the following rea-
soning.

Observe that the AFETI-1PC projector P` given by (51)
incorporates the ¯exibility normalization whereas the
DFETI-1P projector Pcl does not account for the hetero-
geneity preconditioning. This difference, of course, is
dramatic for this problem as geometric hetrogeneities are
severe and everywhere along the partition boundaries.
This aspect is further examined by solving a heteroge-
neous plate problem.

7.5
Cantilever heterogeneous plate under quasi-static
uniform load
Finally, the present quasi-static algorithm summarized in
(44) will be evaluated in solving a plate response problem
as shown in Fig. 15. The plate is ®xed at its left edge and

Fig. 12. Plane stress problem with material heterogeneity

Fig. 11. Plane stress problem with material heterogeneity
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Fig. 14. Static analysis of 40 bay tower made of beam elements

Fig. 15. Cantilieverd plate
partitioned into 16 sub-
structures
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subjected to a uniform step load. An irregular 16-sub-
structural partitioning is used for the present analysis.
Material heterogeneities are introduced such that a pair of
soft and hard partitions are alternatively assigned for the
16 partitions with their rigidity ratio of 4096. Included in
the analysis is the DFETI-1 algorithm of Farhat and Roux
(1991), Farhat et al. (1994) with and without the Rixen and
Farhat heterogeneity preconditioner.

The performances of AFETI-1 and DFETI-1 are almost
identical. When AFETI-1PC is employed, the iteration
number is signi®cantly reduced from 425 to 44. The
DFETI-1P method that employs the preconditioning
scheme of Rixen and Farhat (1997) also signi®cantly re-
duced iterations from 425 to 52. For comparisons, the
AFETI-1P algorithm that invokes the ¯exibility normal-
ization only in the preconditioner but a standard projec-
tor, viz., P` with D � I, was also used to solve the same
problem. The result indicates that the AFETI-1P method
yields an identical performance to that of the DFETI-1P
method with the heterogeneous preconditioner. Hence, we
conclude that the performance difference between the
present ¯exibility normalized AFETI-1PC algorithm and
the DFETI-1P algorithm with the heterogeneous precon-
ditioner is primarily due to the projectors as can be seen in
Table 1.

8
Conclusions
The present paper has presented a formalization of the
localized k-method that has been employed in the deri-
vations of the partitioned equilibrium equations for
structures (Park, Justino and Felippa, 1998a). The parti-
tioned equilibrium equations and their specializations
have been applied to parallel computations (Park, Justino
and Felippa 1997; Felippa and Park, 1997), inverse prob-
lems (Alvin and Park, 1996; Park, et al., 1997; Park and
Felippa, 1998b), structural system identi®cation (Park
and Reich, 1998), and localized active vibration control
(Park and Kim, 1998).

It is shown that the localized k-method circumvents the
non-uniqueness issues associated with the classical k-
method for interface modeling where more than two nodes
are constrained.

The ¯exibility normalization presented in Sect. 4 offers
bene®cial effects for partitioned analysis and contact en-
forcement. In particular, it accelerates substantially the
iterative convergence for both material and geometric
heterogeneities. Although not elaborated herein, the con-
tact interface estimation formula (28) may offer a rational
basis for detecting contact interfaces.

Encouraged by the usefulness of the localized k-method
for applications cited so far, the method is now being
evaluated for contact-impact problems and sensitivity
derivations of design parameters in optimization via par-
titioned approaches.
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