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This paper presents a meshless implementation of dual analysis for 2D linear elasticity problems. The
derivation of the governing systems of equations for the discretized compatible and equilibrated models
is detailed and crucial implementation issues of the proposed algorithm are discussed: (i) arising of
deficiencies associated with the independent approximation field used for the imposition of the essential
boundary conditions (EBC) for the two parts of the boundary sharing a corner and (ii) determination
of the Lagrange multipliers functional space used to impose EBC. An attempt to implement the latter
resulted in an approximation which is nothing more than the trace on the essential boundary of the
domain nodal functions. The difficulties posed by such approximation are explained using the inf sup
condition.

Several examples of global (energy) and local (displacements) quantities of interest and their bounds
determination are used to demonstrate the validity of the presented meshless approach to dual analysis.
Numerical assessment of the convergence rates obtained for both models is made, for different poly
nomial basis degrees.

1. Introduction

Meshless methods for modeling complex problems in solid
mechanics are well developed. Most of them are based on strain
driven approaches, where the problem's weak form is built either
from equilibrium in the domain and on the static boundary
or from the potential energy [4,25]. For the same problems, an
alternative formulation the so called stress driven approach
can also be used. Here the problem's weak form may be derived
either by weakening the compatibility in the domain and on the
kinematic boundary or from a restrained complementary potential
energy statement. To the authors' knowledge, the use of the stress
driven approach with meshless approximations is restricted to a
single attempt [11,12].

Effectively, the implementation of this approach is more demand
ing than the strain driven one, mostly, due to the following
characteristics: (i) higher order derivatives may appear in the arising
differential operators (if, for instance, stress generating functions
are used), (ii) static boundary in most practical examples is larger
than the one where kinematic boundary conditions (BC) are defined
and (iii) some features of the problem can easily lead to numerical

instability. These issues are not related with a specific approximation
(FEM, Meshless, etc.), but are common to all of them. In fact, it results
in the relative unpopularity of this approach. When both models are
used in the analysis of a particular problem, it is possible to perform
the so called dual analysis, introduced for the first time by Fraeijs
de Veubeke with respect to the conventional finite element method
[8,9]. Regardless of the high computational cost, dual analysis can
be efficiently used to obtain upper and lower bounds of some
characteristic values of the system, typically, total strain energy, and
of local quantities in certain parts of the domain, like stresses and
displacements [7].

Due to the complexity of the equilibrated model, a strategy
commonly used nowadays is to recover an equilibrated solution
from a compatible one. To this end various approaches have been
proposed, e.g., the Ladevèze Maunder element wise equilibrium
recovery [15], a star patch recovery based on a partition of unity
technique [19], an NS FEM technique [18], which modifies the
Galerkin weak form and introduces smoothing domains inside
the elements, where strains are modified in order to deliver quasi
equilibrated solutions, etc.

Among the novelties of the paper the authors emphasize the
following:

(i) The numerical assessment of the convergence rates (for
several basis degrees) of the equilibrated model for plane
elasticity.
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(ii) The equilibrated model, together with the compatible one,
allowed the authors to obtain bounds not only of the global,
but also of the local quantities, using meshless approximations.

(iii) A new proposal is made in order to locally impose the
essential boundary conditions for both models. Instead of
using Lagrange polynomials for the discretization of the
independently approximated field on the essential boundary,
this proposal is based on the trace of the domain approxima
tion functions. This approach did not prove advantageous and
its limitations were identified resorting to a set of numerical
inf sup condition tests.

(iv) A detailed analysis of the implementation issues of both
models is performed.

Finally, for both models, the visualization of the stresses and
of the Lagrange multipliers is presented, thus allowing a simple
comparison of the solutions.

The structure of this work is as follows. Section 2 presents the
basic solid mechanics differential equations and the two models
required for dual analysis: compatible and equilibrated. The imple
mentation issues, particularly relevant for the equilibrated model,
are discussed in detail in Section 3. Section 4 discusses the compu
tation of local quantities of interest by means of both models.
Three numerical examples are then presented in Section 5: the
classical Timoshenko beam problem, the infinite plate with a
circular hole subjected to uniform tensile load and a perforated
plate. Finally, Section 6 summarizes the theoretical and numerical
results obtained.

2. Dual analysis

2.1. Linear elasticity equations

Consider a linear elastic plane domain, Ω, with boundary, Γ,
subjected to body forces, b, in Ω, distributed surface loads, t, on
the static boundary, Γt , and constrained by prescribed displace
ments, u, on the kinematic boundary, Γu. As usual, we require that
Γu \ Γt ¼ | and Γu [ Γt ¼Γ.

The relations governing the plane stress elasticity problem are
outlined below.

The compatibility equations in the domain are

ε¼ 1
2½∇uþð∇uÞT � in Ω ð1Þ

and on the kinematic boundary they are

u¼ u on Γu; ð2Þ
where ∇ is the gradient operator. The equilibrium equations in the
domain are

div rþb ¼ 0 in Ω ð3Þ
and on the static boundary they are

t¼ t on Γt ; ð4Þ
where the tractions on a facet with outward normal n are

t¼ r n: ð5Þ
The constitutive relation is

r¼D : ε; ð6Þ
where D is the fourth order constitutive tensor which, for two
dimensional plane stress case, is

D¼ E
1 ν2

1 ν
2

ðIþIT Þþν I � I
� �

: ð7Þ

Here several fourth order tensors [21] were introduced: the identity
tensor, ðIÞαβγδ ¼ δαγδβδ, the transposition tensor, ðIT Þαβγδ ¼ δαδδβγ ,

and the result of the dyadic product of two second order identity
tensors I, ðI � IÞαβγδ ¼ δαβδγδ. Notice that Greek letters, implying
summation from 1 to 2, are used in the preceding equations to
specify the components of the tensors.

Let us also introduce the potential energy, Π ¼ΠðuÞ, and
the complementary potential energy, Πn ¼ΠnðrÞ, both outlined
below. It can be shown [10] that, under appropriate conditions, the
exact value of the potential energy of the system is bounded by
these two values:

ΠoΠexactoΠn: ð8Þ
We start from the equilibrated model, making a short review of

the compatible one afterwards.

2.2. Equilibrated model

To derive the associated weak form of the equilibrated model
the complementary potential energy functional [10] is used:

ΠnðrÞ ¼ 1
2

Z
Ω
r : D�1 : r dΩ

Z
Γu

t � u dΓu; ð9Þ

where r is an equilibrated stress field.
The static and kinematic BC are, in this case, the essential and

natural ones, respectively. The latter already appear explicitly
in the second term of the second member of (9), while the EBC
can be imposed in various ways [13]: introduction of Lagrange
multipliers [4], coupling to finite elements [5], resorting a penalty
formulation [27,1], using Nitsche's method [14], etc. In the present
work Lagrange multipliers are added into the complementary
potential energy functional (9), resulting in the following aug
mented functional:

Π
nðr;uΓt

Þ ¼ΠnðrÞ
Z
Γt

uΓt
� ðt tÞ dΓt : ð10Þ

It is trivial to prove that Lagrange multipliers represent the
static boundary displacements. The notation in (10) was chosen
to highlight this fact.

The augmented weak form of the problem can be recovered
equating the first variation of (10) to zero:Z
Ω
δr : D�1 : r dΩ

Z
Γu

ðδr nÞ � u dΓuZ
Γt

δuΓt � ðr n tÞ dΓt

Z
Γt

uΓt � ðδr nÞ dΓt ¼ 0: ð11Þ

To derive (11) we took into account (5) and the fact that variations
over prescribed quantities are zero, i.e., δu ¼ 0 and δt ¼ 0. The
weak statement (11) does not imply any special requirements for
the stresses, besides the ones arise from (3).

It is possible to discretize the weak form expressed by (11)
using the so called self equilibrated polynomial basis. The aim
of the present work is to use meshless approximation functions.
These ones cannot directly provide self equilibrated stress fields.
To locally satisfy internal equilibrium (3), we consider stresses to
be expressed by means of the scalar Airy stress function, Ψ [26]:

r¼ ðΔΨ þV ÞI ∇ � ∇Ψ ; ð12Þ
where Δ¼ divð∇Þ is the Laplacian and V defines a potential of the
domain body forces as follows:

b ¼ ∇V : ð13Þ
For simplicity of the forthcoming discretization we use Voigt's

notation, rewriting (11) in the matrix form:Z
Ω
δrTD�1r dΩ

Z
Γu

ðNδrÞTu dΓuZ
Γt

δuT
Γt
ðNr tÞ dΓt

Z
Γt

uT
Γt
Nδr dΓt ¼ 0; ð14Þ



where N is the boundary operator, gathering the outward normal
components, i.e.,

N¼
n1 0 n2

0 n2 n1

" #
ð15Þ

and D is the matrix form of the constitutive tensor, which for two
dimensional plane stress case is

D¼ E
1 ν2

1 ν 0
ν 1 0

0 0
1 ν
2

2
664

3
775: ð16Þ

For the two dimensional case (12) can be written in a simpler
manner:

r¼
s11
s22
s12

2
64

3
75¼

Ψ ;22

Ψ ;11

Ψ ;12

2
64

3
75þγV ; γ¼

1
1
0

2
64
3
75: ð17Þ

The domain and boundary variables are required to belong to
the following trial and variation spaces:

Ψ AU; δΨ AU where U�H2;

uΓt AF; δuΓt AF where F�H�1=2;
ð18Þ

H2 and H�1=2 being the corresponding Sobolev spaces.
Let us introduce a discretization for the Airy stress function and

its variation in matrix notation:

Ψ h ¼Φ ~Ψ and δΨ h ¼Φδ ~Ψ; ð19Þ

where

Φ¼ ϕ1 ϕ2 … ϕn

� � ð20Þ

is an n row vector of approximation functions. Substituting the
latter approximation for Ψ in (17) and taking into account that
δV ¼ 0 we obtain the discrete forms of the domain stresses and
their variations for the two dimensional case:

rh ¼ C ~ΨþγV
δrh ¼ Cδ ~Ψ

where C¼
Φ;22

Φ;11

Φ;12

2
64

3
75 ð21Þ

and ~Ψ is a vector that gathers the weights of the approximation.
We also introduce an approximation for the Lagrange multipliers
and their variations:

uh
Γt

¼ L ~uΓt and δuh
Γt

¼ Lδ ~uΓt : ð22Þ

Discretized approximation spaces for the domain and boundary
parameters are

Ψ hAUh; δΨ hAUh where Uh �U;

uh
Γt
AFh; δuh

Γt
AFh where Fh � F:

ð23Þ

Substituting (21) and (22) into (11) and after some simplifica
tions, it is possible to obtain

δ ~ΨT
Z
Ω
ΦTD�1Φ dΩ ~Ψþδ ~ΨT

Z
Ω
ΦTD�1γV dΩ

δ ~ΨT
Z
Γu

ΦTNTu dΓu δ ~uT
Γt

Z
Γt

LTNΦ dΓt
~Ψ

þδ ~uT
Γt

Z
Γt

LT t dΓt δ ~ΨT
Z
Γt

ΦTNTL dΓt ~uΓt

δ ~uT
Γt

Z
Γt

LTNγV dΓt ¼ 0: ð24Þ

Since the weak form (24) must hold for 8δ ~Ψ and 8δ ~uΓt , we can
finally write the governing system of equations:

F G
GT 0

� � ~Ψ
~uΓt

" #
¼ d

f

� �
; ð25Þ

where

F¼
Z
Ω
ΦTD�1Φ dΩ; ð26aÞ

G¼
Z
Γt

ΦTNTL dΓt ; ð26bÞ

d¼
Z
Γu

ΦTNTu dΓu

Z
Ω
ΦTD�1γV dΩ; ð26cÞ

f ¼
Z
Γt

LTNγV dΓt

Z
Γt

LT t dΓt : ð26dÞ

2.3. Compatible model

Following an approach that is complementary to the previous
model, the compatibility relations are satisfied a priori, instead
of the equilibrium ones. To derive the required weak form the
potential energy functional is used:

ΠðuÞ ¼ 1
2

Z
Ω
ε : D : ε dΩ

Z
Γt

u � t dΓt ; ð27Þ

where u is a compatible displacement field.
Complementary to the equilibrated model, the kinematic and

static boundary conditions are the essential and natural ones,
respectively. The latter are explicitly added as a second term
in (27) and the essential boundary conditions can be imposed in
various ways [13]. In the present work Lagrange multipliers are
added into the potential energy (27), resulting in the following
augmented potential energy functional:

Π ðu; tΓu
Þ ¼ΠðuÞ

Z
Γu

tΓu
� ðu uÞ dΓu: ð28Þ

From the physics of the problem it follows that Lagrange multi
pliers represent the kinematic boundary tractions. The notation in
(28) was chosen to reflect this fact.

The augmented weak form of the problem can be recovered by
equating variation of (28) to zero [24]:Z
Ω
δε : D : ε dΩ

Z
Ω
b � δu dΩ

Z
Γt

t � δu dΓtZ
Γu

δtΓu � ðu uÞ dΓu

Z
Γu

tΓu � δu dΓu ¼ 0: ð29Þ

The approximants for the domain displacements and unknown
boundary tractions are defined in the similar manner as it was
done above for the equilibrated model, being the only difference
now the fact that the domain approximation (for the displace
ments) has two degrees of freedom instead of one. Variables of
both types belong to the following trial and variation spaces:

uAV; δuAV where V�H1;

tΓu AF; δtΓu AF where F�H�1=2:
ð30Þ

Switching again to Voigt's notation, the displacements uh and
their variations δuh are approximated as

uh ¼Φ ~u and δuh ¼Φδ ~u; ð31Þ
where

Φ¼
ϕ1 0 ϕ2 0 … ϕn 0
0 ϕ1 0 ϕ2 … 0 ϕn

" #
ð32Þ



is a 2�2n matrix of approximation functions. The essential
boundary tractions, th, have the approximation gathered in
matrix L:

thΓu
¼ L~tΓu and δthΓu

¼ Lδ~tΓu : ð33Þ
Discretized domain, uh, and boundary, thΓu

, approximations should
belong to the following spaces:

uhAVh; δuhAVh where Vh �V;

thΓu
AFh; δthΓu

AFh where Fh � F:
ð34Þ

Eq. (29) leads to the following system:

K G
GT 0

� � ~u
~tΓu

" #
¼ f

v

� �
; ð35Þ

being

K¼
Z
Ω
BTDB dΩ; ð36aÞ

G¼
Z
Γu

ΦTL dΓu; ð36bÞ

f ¼
Z
Ω
ΦTb dΩþ

Z
Γt

ΦT t dΓt ; ð36cÞ

v¼
Z
Γu

LTu dΓu; ð36dÞ

where

B¼ ∂Φ: ð37Þ
Here ∂ is the compatibility operator, written for the 2D case as

∂¼

∂
∂x1

0

0
∂
∂x2

∂
∂x1

∂
∂x2

2
66666664

3
77777775
: ð38Þ

3. Implementation issues

The meshless methods implementation issues, crucial for the
equilibrated model and the subsequent dual analysis, are discussed
in the current section. General implementation aspects of the compa
tible one can be found in [22], where a complete and profound review
is given.

3.1. Domain approximation functions

Let xi be the coordinates of a particle i in a domain Ω contain
ing n nodes. Then the Multiple Fixed Least Squares (MFLS) appro
ximation f hðxÞ for an arbitrary function f ðxÞ is [20,4]

f hðxÞ ¼ΦðxÞf ; ð39Þ
where

ΦðxÞ ¼ pT ðxÞAðxÞ�1BðxÞ; ð40Þ
being

AðxÞ ¼ PTVðxÞP and BðxÞ ¼ PTVðxÞ: ð41Þ
Matrix P contains values of basis functions pðxÞ for each particle of
a domain:

P¼ ½pðx1Þ pðx2Þ … pðxnÞ�T : ð42Þ
The basis functions are defined as polynomials xk of degree k, but
any set of linearly independent functions can be used.

In (41) we also introduced

V¼ diag½wðr1Þ;wðr2Þ;…;wðrnÞ�; ð43Þ
where

ri ¼
‖xi x‖

hi
ð44Þ

and hi is the support radius of the i th particle. To specify V a
weight function, w(r), needs to be defined. For this particular case
we chose a quintic spline function with circular support:

wðrÞ ¼ 1 10r2þ20r3 15r4þ4r5 if rr1
0 if r41:

(
ð45Þ

Though the Multiple Fixed Least Squares approximation [23]
is used, it can be shown that all the conclusions obtained also hold
for the MLS case.

3.2. Computation of the support radius

According to the properties of approximation functions (39),
the support size influences significantly the sparsity of the stiff
ness and flexibility matrices and, consequently, the computational
cost. Hence, from the practical point of view, it is desirable to
choose the smallest possible support. However, its minimal size is
bounded by the requirement of generating a non singular moment
matrix, A, defined in (41).

Consider the usage of polynomial basis of degree k40. When
dealing with 2D problems, in order to avoid matrix ill condition
ing, supports must satisfy the following conditions [24,22]:

(i) each point of interest must be covered, at least, by 1
2ðkþ1Þ

ðkþ2Þ supports from its neighborhood;
(ii) a certain point of interest must be covered in each two non

collinear directions by, at least, m supports.

When these requirements are satisfied, it is possible, for a given
discretization, to adjust automatically the sizes of the supports
in order to guaranty matrix A invertibility and provide maxi
mum sparsity. During this procedure each support size is enlarged
according to a “safety” factor d, which normally ranges from 1.1 to
2.5 and in most examples below is considered to be d¼1.5.

For the compatible model to reproduce constant stress field we
have to use, at least, a linear basis for the approximation of the
domain displacements, since stresses are their first derivatives.
To reproduce such field with the equilibrated solution the basis
must be, at least, quadratic which results in a loss of sparsity.
For instance, to obtain an exact solution of the Timoshenko
beam problem, exposed in Section 5.1, it is required to use a 3rd
degree basis for the compatible model and a 4th degree for the
equilibrated one.

3.3. Lagrange multipliers approximation functions

To approximate the Lagrange multipliers two types of approx
imants were used within the proposed approach:

(i) Lagrange polynomials of a prescribed degree:

LðsÞ ¼ ∑
q

j 0
LjðsÞyj ð46Þ

where

LjðsÞ ¼ ∏
0r pr q

pa j

s sp
sj sp

ð47Þ



and sp, p¼ 1;2;…; q, are the coordinates of the boundary
nodes, used for discretization;

(ii) the trace of the domain approximation functions on the
essential boundary, Γe, i.e.

L¼Φ Γe
:

�� ð48Þ

The latter idea was originally proposed in [13], but was not
implemented and numerically assessed in that work.

These two approaches have completely different fundamental
behaviors. The first one implies that different spaces to approx
imate values within the domain and on the essential boundary are
used. Provided these spaces are chosen properly, this approach
will lead to a numerically stable scheme. However, the draw
back of such choice is that boundary conditions are not imposed
locally, i.e., are not satisfied exactly at each point of the essential
boundary.

On the other hand, it can be shown [24] that the exact
imposition of the essential boundary conditions is guaranteed
when: (i) both spaces for the approximation function inside a
domain and on a boundary coincide and (ii) the domain appro
ximation functions are able to exactly reproduce the imposed
displacements. In practice MFLS approximants cannot be used
explicitly in this manner. For instance, consider the domain in
Fig. 1a clamped on the left side and subjected to a unit tensile load,
uniformly distributed on the right side. Material parameters are
Young's modulus E¼ 1� 103 and Poisson's ratio ν¼ 0:3.

This problem was analyzed with the compatible model and
the two presented essential boundary approximants. A first degree
basis was used for the domain approximation. The results pre
sented in Fig. 2a were obtained with first degree Lagrange poly
nomials, i.e., using q¼1 in (46), for boundary approximation, as
defined in Section 3.6.

When approximation (48) is used, the deformed shape
depicted in Fig. 2b is obtained, where it can be seen that zero
value displacements propagate inside a domain, clamping not only
the boundary displacements along the line x1 ¼ 0, but also the
vertical displacements of the area where the domain unknowns

are approximated by the particles whose supports intersect the
essential boundary. It is visible that exactly two lines of particles
intersect the boundary and the area bounded by the second line
is completely locked, see Fig. 1b, where interacting particles are
marked with red stars, while the green color is used for noninter
acting ones. Notice that only 3 particles, out of the 12 nearest
to the boundary, are shown for comparison in order to make the
figure simpler.

To explain this result let us write the discrete bilinear form
related to systems (35) and (25) [2]:

aðuh; vhÞþbðvh;ϕhÞ ¼ f ðvhÞ 8vhAVh

bðuh;ψhÞ ¼ gðψhÞ 8ψhAFh;

(
ð49Þ

where uh and ϕh form an arbitrary solution of (49) and vh and ψh
are corresponding trial functions. For this case, the LBB condition
reads [3]

inf
ψh AFh

sup
vh AVh

bðvh;ψhÞ
‖vh‖Ω‖ψh‖Γ

¼ βhZβ40; ð50Þ

where β is a positive constant independent of h, the discretization
size parameter. Vh �H1 is the domain variable approximation
space, the first order Hilbert space, and Fh is the boundary
variables approximation space. The denominator of (50) contains
norms which can be introduced in a different manner. To simplify
further derivations we will use L2 norms for both approximation
spaces:

‖v‖20 ¼ ðvh; vhÞL2ðΩÞ ¼
Z
Ω

∑
2

i 1
ðviÞ2 dΩ; ð51aÞ

‖ψ‖20 ¼ ðψh;ψhÞL2ðΓÞ ¼
Z
Γ

∑
2

i 1
ðψ iÞ2 dΓ: ð51bÞ

The last ingredient of the inf sup condition, the numerator of (50),
can be expressed as

bðvh;ψhÞ ¼ ðJvh;ψhÞL2ðΓÞ ¼
Z
Γ

∑
2

i 1
ðviψ iÞ dΓ; ð52Þ

where J is an operator which projects domain approximation
space on the boundary.

Fig. 1. Tension test. (a) Problem statement. (b) Particles distribution. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)

Fig. 2. Comparison of Lagrange multipliers approximation functions. (a) Lagrange polynomials. (b) MFLS approximation functions.



The entire analytical proof of the inf sup condition is extre
mely difficult due to the complex nature of the interpolation
functions used in the current implementation of the meshless
method. So, for our scheme we proceed with a numerical inf sup
test [2], where we compute the inf sup parameter βh for
a sequence of discretizations of a certain problem. The problem
is stable once the inf sup parameter asymptotically approaches
a positive value greater than zero as the discretization is refined.

According to [2,6] the inf sup condition can be rewritten in the
matrix notation. To this end we rewrite the components of (50) in
the corresponding form:

‖vh‖20 ¼VT
hM

Ω
h Vh; ð53aÞ

‖ψh‖
2
0 ¼ΨT

hM
Γ
hΨh; ð53bÞ

bðvh;ψhÞ ¼ VT
hGhΨh; ð53cÞ

where Vh and Ψh are vectors of nodal values corresponding to vh
and ψh respectively, and MΩ

h , M
Γ
h and Gh are matrices, introduced

to compute the norms of the corresponding discrete values:

MΩ
h ¼

Z
Ω
ΦTΦ dΩ; ð54aÞ

MΓ
h ¼

Z
Γ
LTL dΓ; ð54bÞ

Gh ¼
Z
Γ
ΦTL dΓ: ð54cÞ

Notice that (54a) and (54b) are mass matrices (this fact has been
reflected in the chosen notation) and the matrix (54c) coincides,
apart from the sign, with matrix G introduced in (36).

Assume that there exists wh, such that ψh ¼ Jwh, where wh

belongs to the domain approximation space, as well as vh. In this
case it can be shown [2] that (52) may be written as

bðvh;ψhÞ ¼ ðJvh; JwhÞL2ðΓÞ ð55Þ

and its matrix form (53c) as

bðvh;ψhÞ ¼ VT
hRhWh; ð56Þ

being

R¼GhM
Γ�1
h GT

h ; ð57Þ
where vector Wh, similar to Vh, is a vector of nodal values
corresponding to whAVh. Consequently (53b) will take the form

bðvh;ψhÞ ¼ VT
hRhW

T
h : ð58Þ

With the aid of these simplifications the inf sup condition (50)
may be written in the following matrix form:

inf
Wh

sup
Vh

VT
hRhWh

VT
hM

Ω
h Vh

q
WT

hRhWh

q ¼ βhZβ40: ð59Þ

According to [2, p. 324], the inf sup parameter βh is given by the
square root of the smallest nonzero eigenvalue of the problem

Rhuh ¼ λMΩ
h uh: ð60Þ

Hence, if there are ðk 1Þ zero eigenvalues (since MΩ
h is a positive

semidefinite matrix) and we sort the eigenvalues in ascending
order, we find that

βh ¼ λk
q

: ð61Þ

In practice, problem (60) has a very large size and, as has just been
mentioned, lots of zero eigenvalues. To eliminate those eigen
values and reduce the size of the problem the equivalent problem
may be posed [6]:

R′
hqh ¼ λMΓ

h qh; ð62Þ

where

R′
h ¼GT

hM
Ω�1
h Gh: ð63Þ

This problem has no zero eigenvalues and the smallest one will
give the value of the inf sup parameter.

Let us recall the problem proposed in Fig. 1a and solve it with
four nested distributions of particles. A linear basis was chosen in
order to involve a minimum number of domain particles in the
boundary approximation (see discussion in Section 3.2). In order
to perform numerical test with representative results, special
attention should be given to the generation of the domain particle
distribution. For instance, if domain is discretized using a regular
arrangement of nodes, like the one from Fig. 3a, the smallest
eigenvalue of the problem is extremely low, 6:45� 10�6, and once
the discretization is refined, this value does not decrease, but
oscillates around its initial number. Such behavior arises since
the magnitude of the eigenvalue is small, being easily affected by
numerical errors, which come out mainly from the numerical
integration procedure and the eigenvalue problem solver. In fact,
appearance of eigenvalues of this order of magnitude, 10 6 10 7,
already allows us to conclude that the problem is not stable, but to
be fully consistent with the idea of the numerical inf sup test it
is desirable to observe the smallest eigenvalue decreasing, rather
than being so low from the first discretization.

The magnitude of smallest eigenvalue for the discretization
(Fig. 3a) is specified by the nature of the approximation functions
built by the proposed meshless method. Since they decrease sud
denly when approaching the border of their supports, the trace of
the second line of the particles has a very small value (see traces 4,
5 and 6 in Fig. 4a): the maximum value is of the order of magnitude
of 10 3, which square gives something � 10�6, what has been
observed in the numerical test. Moreover, if one more line of particles
intersects the boundary, its trace will be even smaller. Notice that the
requirements from Section 3.2 imply that the boundary is always
intersected by at least two lines of particles.

Fig. 3. (a) Regular and (b) modified regular discretizations for the inf–sup test.



To overcome this difficulty, another type of discretization is
proposed (see Fig. 3b), where an extra line of particles was placed
near the boundary. This discretization gives the trace of the second
line of particles of the order of magnitude of 10 1 (see traces 4
and 5 in Fig. 4b), which makes the smallest eigenvalue less
sensitive to numerical errors. Positions of the extra particles
depend on the average distance between particles, h. Therefore,
a sequence of meshes of this kind is more suitable to track the
behavior of the smallest eigenvalue.

The result of the inf sup test depends only on the topology of
the domain and on the chosen approximations. It is not related
to the model being considered. The test was performed for basis
degree k¼1 with various support sizes, which were adjusted by
means of a factor d¼1.1…1.9 (see Section 3.2). As expected, if large
supports are considered, more domain particles are involved in the
boundary approximation: 5 for d¼1.1, 8 for d¼1.5, 11 for d¼1.9,
and the most distant ones lead to traces with very low maximum
values. This results in lower values of the inf sup parameter
log ðβhÞ, however, in Fig. 5 a tendency of its steady decrease is

still observed for all cases, meaning that the analyzed discretiza
tion schemes are said to fail the inf sup test. The results confirm
that the choice of traces of meshless approximation functions for
the boundary values approximants for the problems presented
cannot lead to a stable solution scheme.

3.4. Rank deficiency of the flexibility matrix

Both the flexibility matrix (26a) and the stiffness matrix (36a)
are rank deficient, since they do not include any information
regarding the essential boundary conditions. In the compatible
model they are imposed directly on the displacements which are
the domain unknowns, but for the equilibrated model they are
imposed on the stresses, which do not coincide with the domain
parameters (the weights of the Airy stress function approxima
tion). Hence, for the stress function three rigid body modes are not
restrained, even after the essential boundary conditions have been
imposed. To eliminate this ill conditioning, extra conditions have
to be imposed on the Airy function, which can be set to arbitrary
values at any three noncollinear points. Effectively, if Ψ ðx1; x2Þ is a
solution of (25), then Ψ ðx1; x2Þ ¼Ψ ðx1; x2Þþax1þbx2þc is also a
solution of the system, where a, b and c are arbitrary constants,
since

∂2Ψ ðx1; x2Þ
∂x21

¼ ∂2Ψ ðx1; x2Þ
∂x21

; ð64aÞ

∂2Ψ ðx1; x2Þ
∂x1∂x2

¼ ∂2Ψ ðx1; x2Þ
∂x1∂x2

; ð64bÞ

∂2Ψ ðx1; x2Þ
∂x22

¼ ∂2Ψ ðx1; x2Þ
∂x22

: ð64cÞ

These restrictions are imposed by means of discrete Lagrange
multipliers at the aforementioned points:

λΨi ðΨ i Ψ iÞ ¼ 0; ð65Þ
where Ψ i is the imposed value of the Airy stress function on the
ith point, i¼ f1;2;3g.

3.5. Linear dependencies on the essential boundary

When imposing essential boundary conditions, one should
take care of possible linear dependencies which arise in vertices
connecting two adjacent boundaries. This problem appears in both
models. We present it for the compatible one only.

In Fig. 6 two boundaries with prescribed boundary conditions
are connected at point A. Since this point belongs to discretization
of both boundaries its displacements are constrained twice and
Lagrange multiplier vectors λΓt1

A and λΓt2
A turn out to be linearly

Fig. 4. Boundary traces for (a) regular and (b) modified regular discretizations.

Fig. 5. Inf–sup test results for various supports sizes. (a) Inf–sup test for d 1.1,
d 1.5, d 1.9. (b) Inf-sup test for d 1.5, d 1.9 (enlarged).



dependent. To release this constraint we add extra Lagrange
multipliers in the following manner:

α λΓt1
A λΓt2

A


 �
¼ 0: ð66Þ

We also note that it is necessary to ensure the admissibility of
nonhomogeneous boundary conditions. For example, at point A,
the horizontal displacement in Γt1 must coincide with the one
in Γt2 . The complementary conditions, which constrain imposed
tractions, apply to the equilibrated model.

3.6. Relation between domain and boundary approximations

The approximation of the Lagrange multipliers should be care
fully chosen in order to provide an optimal number of boundary
degrees of freedom. On one hand, if the number of boundary
constraints is too low, the EBC are imposed insufficiently and, on
the other hand, if the boundary is overconstrained, it leads to the
ill conditioning of the governing system of equations. In general,
domain and boundary approximations are totally independent, so
the latter one can be built separately (see Fig. 7a). Our experience
shows that one of the most optimal and reliable ways to build the
boundary approximation is to make it coincident with the domain
one, i.e., those domain particles, which belong to the essential
boundary, are used as boundary nodes for Lagrange multipliers
approximation (see Fig. 7b). This idea is followed throughout all
examples.

4. Computation of local quantities

Besides the computation of bounds of the strain energy, dual
analysis can also be applied in the evaluation of upper and lower
bounds for local quantities of interest. According to [7], a local

quantity is a weighted integral of a field in a sub region. Most
common choice for 2D problems is to consider computing of local
quantities along a certain part of the boundary. The weighting
function can be considered as a virtual action, therefore the local
quantity can be computed using the principle of virtual work,
resulting in

slocal ¼
Z
Γ̂ u

ûΓ � t dΓ

¼
Z
Ω
ε̂c : r dΩþ

Z
Ω
ûc � b dΩþ

Z
Γt

ûc � tΓ dΓ ð67Þ

and

δlocal ¼
Z
Γ̂ t

u � t̂Γ dΓ ¼
Z
Ω
ε : r̂e dΩ

Z
Γu

uΓ � t̂e dΓ; ð68Þ

where a hat is used for the virtual actions and solutions, subscript
“e” refers to equilibrated and “c” refers to compatible values.

We only demonstrate the computation of displacements for
homogeneous kinematic boundary conditions. For this particular
case (68) can be simplified by eliminating the second term.
We also introduce the following integrals, which represent the
same quantity computed by means of combining solutions of
different types:

δêe ¼
Z
Ω
ε̂e : re dΩ ð69Þ

and

δêc ¼
Z
Ω
ε̂e : rc dΩ; ð70Þ

where re and rc are stress fields computed with the equilibrated
and compatible models, respectively, and ε̂e is a virtual strain com
puted with the equilibrated model. We consider the mean value
of (69) and (70):

δêa ¼ 1
2ðδ

êeþδêcÞ: ð71Þ

We introduce a norm of the error between two solutions:

ε¼
Z
Ω
ðεe εcÞ : ðre rcÞ dΩ

s
: ð72Þ

Fig. 7. Boundary and domain approximations. (a) Independent domain and boun-
dary approximations. (b) Consistent domain and boundary approximations.

Fig. 8. Timoshenko beam problem. (a) Problem statement. (b) Particles distribu-
tion, integration cells and deformed shape.

Fig. 6. Dependencies in Lagrange multipliers on a boundary.



Similarly, the same quantity between virtual solutions can be
introduced as

ε̂ ¼
Z
Ω
ðε̂e ε̂cÞ : ðr̂e r̂cÞ dΩ

s
: ð73Þ

It can be shown [7] that an exact value of the local displacement is
bounded by

δêa 1
2 ε̂εoδoδêaþ1

2ε̂ε: ð74Þ

The essential part in obtaining this inequality is the usage of the
equilibrated solution for the virtual strain. If one desires to define
certain local stress, then the compatible solution for the prescribed
virtual displacement should be considered.

5. Numerical examples

5.1. Timoshenko beam problem

Consider a beam subjected to a parabolic tip load as repre
sented in Fig. 8a. The dimensions of the beam are L¼48, h¼12.
The cross section of the beam is considered to have unit width.
Material parameters are Young's modulus E¼ 3� 107 and Poisson's
ratio ν¼ 0:3.

The imposed tangential stress on the right edge is

t2 ¼
P
2I

x22
h2

4

 !
where I¼ h3

12
: ð75Þ

Hence, the total distributed load acting along the tip boundary renders

P ¼
Z h=2

�h=2
t2 dx2 ¼ 1000: ð76Þ

The left edge of the beam is subjected to the kinematic boundary
conditions defined by the exact solution for displacements:

u1 ¼
Py
6EI

ð6L 3x1Þx1þð2þνÞ x22
h2

4

 !( )
;

u2 ¼
P
6EI

3νx22ðL x1Þþð4þ5νÞh
2x1
4

þð3L x1Þx21
( )

: ð77Þ

Implementation of both meshless models requires numerical
integration and various strategies can be used to this end. The
most straightforward way is to use conventional Gauss integration
rules, which implies a mesh of so called integration cells to be
built within the domain. In our examples we consider two types of
cells, triangular (tri) and quadrilateral (quad), with different rules.
An example of particles distribution and quad integration cells
used for computation is presented in Fig. 8b, where the beam
deformed shape is also shown.

One of the most important parameters required for the con
struction of the approximation functions is the MFLS basis degree,
k. In this particular beam example 1rkr2 was used for the
compatible model and 2rkr3 for the equilibrated one. Lagrange
polynomials of the first degree for each particular case were
chosen for boundary values approximations.

The system strain energy was the main global quantity analyzed
during the computation. The exact solution of this problem is

Uexact ¼
2LP2ð3h2þ5L2þ3h2νÞ

5h3E
¼ 4:474667: ð78Þ

According to the results in Fig. 9a both models perfectly bound this
value. Note that, for this problem, the exact solution is obtained if

Fig. 9. Timoshenko beam. (a) Energy bounds and (b) convergence rates.

Fig. 10. Performance of compatible and equilibrated models.



3rd and 4th degree polynomials are used in the MFLS basis for the
compatible and the equilibrated models, respectively.

In order to estimate the convergence rates of the model, the
following energy norm was used:

JeJ ¼
Z
Ω
ðεnum εexactÞ : ðrnum rexactÞ dΩ

s
; ð79Þ

where εnum and rnum are the computed strain and stress fields
respectively and εexact and rexact are the exact ones. The energy
convergence rates (see Fig. 9b) for the compatible solution can be
estimated [16] and are matched by our numerical solutions.
However, for the equilibrated model the authors are not aware
of such theoretical estimates.

The comparison of the performance of the two models reveals the
main drawback of the equilibrated one: its high computational cost.
Fig. 10 shows the corresponding CPU time, consumed in the
construction of systems (25) and (35) and in obtaining their solution
(the same domain discretization and integration points distribution
are used for both models). As stated in Section 3.2, to get equal orders
of approximation for the stress field, bases of higher degree need to
be used for the equilibrated model, that, obviously, affects the CPU
time. However, even if the performance for the same approximation
bases is compared (see k¼2 bars), the compatible model appears to
be advantageous, mainly, due to two reasons:

(i) higher derivatives of MFLS approximation functions are
involved in the evaluation of the flexibility matrix (26a) (2nd
order instead of 1st);

(ii) larger size of matrix of constraints (36b), since for a parti
cular domain, normally, the static boundary is larger than the
kinematic one.

5.2. Infinite plate with a hole

Consider the problem of the infinite plate [17] with a central
circular hole subjected to a unidirectional tensile load p¼1 in x1
direction. Plane stress conditions are assumed and Young's mod
ulus is E¼ 1� 103 and Poisson's ratio is ν¼ 0:3. Only the upper
right quadrant of the plate is modeled due to symmetry, see
Fig. 11a. To this end we apply on the right and top sides of the plate
the stresses which correspond to exact solution of the problem:

s11ðr;θÞ ¼ 1
a2

r2
3
2
cos 2θþ cos 4θÞ

� 

þ3a4

2r4
cos 4θ;

s22ðr;θÞ ¼
a2

r2
1
2
cos 2θ cos 4θÞ

� 

3a4

2r4
cos 4θ;

s12ðr;θÞ ¼
a2

r2
1
2
sin 2θþ sin 4θÞ

� 

þ3a4

2r4
sin 4θ; ð80Þ

where ðr;θÞ are the polar coordinates and θ is measured from the
positive x1 axis counterclockwise.

Meshes of triangular and quadrilateral integration cells were
built in the domain to obtain the governing system of equa
tions. Bases with degrees ranging from 1 to 4 were assumed for
both models and linear Lagrange polynomials were used for the
boundary value approximations.

The exact value of the strain energy for this problem is UexactC
0:0129754, which is strictly bounded by the compatible and
equilibrated solutions, see Fig. 12a. Both models demonstrate
similar convergence rates comparing to the ones given by the
previous example, as shown in Fig. 12b.

To show that the stresses in both cases coincide we provide
Fig. 13, where the stresses s11 on the left edge of the plate are
shown. For this case 2nd and 3rd degree bases were used to
build the compatible and the equilibrated solutions, respec
tively. Since the displacements in the x1 direction are pre
vented on the left edge due to symmetry conditions we can
also obtain the values of the Lagrange multipliers which
correspond to tractions t1 in the compatible model. These
tractions nearly coincide with the values of stresses computed
by both models, see Fig. 13. We also perform the similar
comparison for the stress field s11 on the entire domain,
obtained by means of both models. Fig. 13 shows that they
are very similar, but the compatible model gives slightly better
results, since stresses are only first derivatives of domain
variables, while in the equilibrated one they are defined by
second derivatives.

The equilibrated model does not provide domain displace
ments, but the deformed shape of its boundary can be com
puted as we have either prescribed displacements on natural
boundaries or values of the Lagrange multipliers on essential ones.
The corresponding result is shown in Fig. 14a, which nearly
coincides with Fig. 14b, where the displacements are computed
with the compatible model. In the latter the sides of the integra
tion cells were selected for the visualization.

We also compute the average displacement of the right edge of
the plate, Γ0, that is marked in Fig. 11a. To this end we apply a vir
tual uniformly distributed tensile load along that boundary with

Fig. 11. Plate with a hole. (a) Problem statement. (b) Stress r11 for x1 0.



the magnitude of 1=boundary length, i.e., 1
5. The exact average

displacement value is δexact ¼ 5:340758� 10�3.
The quantity of interest computation process has an important

implementation issue. In order to obtain its value two pairs of
solutions are required, and each of them can be computed with
different parameters, where the most important one is the degree
of the basis k. To make the solution behavior more predictable
we will set it for both models in such a way that the same degree
of stress approximants is obtained. Therefore to get linear stress
approximants the bases of degrees k¼2 and k¼3 should be
chosen for the compatible model and for the equilibrated model,
respectively. Consequently, to have quadratic stress approximants,
the degrees of both bases must be increased by 1.

Tables 1 and 2 show results for the desirable quantity of interest,
computed according to the methodology described in Section 4.
We can observe that (i) computed bounds never intersect the exact
value and (ii) the size of the interval reduces once the approximation
is refined. The data, presented in Tables 1 and 2, is summarized
in Fig. 15.

5.3. Perforated domain

Consider the perforated domain shown in Fig. 16a, where we
compute an average displacement of the part Γ0 of the domain's
right edge following the same technique previously applied. The
geometry of this example is no longer convex, resulting in the
possibility of interaction of particles from the upper part of the
domain with points of interest from the lower one. If the supports
are small enough, then overlapping, when it occurs, does not affect
the solution significantly, since the weight function tends to take
small values when the point of interest is located at a distance
r40:5h0, where h0 is a support size.

In this example only quadrilateral integration cells were used.
Also we consider bases of degrees 2rkr3 and 3rkr4 for the
compatible and equilibrated model, respectively. Linear Lagrange
polynomials were used for the boundary approximants.

Tables 3 and 4 represent lower and upper bounds of the
prescribed quantity of interest for different stress approximants
respectively and Fig. 17 summarizes this data graphically. We can

Fig. 12. Plate with a hole. (a) Energy bounds and (b) convergence rates.

Fig. 13. Plate with a hole, stress s11. (a) The compatible model. (b) The equilibrated model.



observe that the bounds tend to demonstrate a behavior similar to
what was obtained for the previous example.

Analyzing the slope of the interval size reduction in both
Figs. 15b and 17b, one can observe that the degree of the basis
used to build the approximation does not improve significantly the
results, unlike what would be expected, based on the experience
with similar plots for FEM models. But such direct comparison
between the FEM p refinement and the MFLS approximants basis
increment is misleading. The FEM p refinement assumes that the
number of elements is kept constant but the number of degrees of
freedom within each element increases according to the higher
order of the element, resulting in a larger number of degrees of
freedom. On the other hand, when the degree of the basis used to
build MFLS approximation functions is increased, the number of
degrees of freedom is kept unaltered. Therefore the change of the
basis for the meshless approximants cannot be directly compared
with the conventional p refinement in the FEM.

6. Conclusions

We successfully exploited the possibility of using a dual
analysis approach by means of meshless methods, with multiple
fixed least squares approximations used as the core for the
discretization process. Both equilibrated and compatible models
were presented: the former was given in more detail, while the
latter was shortly highlighted referring to previous well known
works. The dual approach was successfully used for bounds
computation of both global and local quantities in several numer
ical examples.

The main implementation issues, generally associated to the
equilibrated model, were outlined. In order to avoid the identified
difficulties, the following requirements are mandatory for a robust
implementation:

(i) To prevent ill conditioning of the moment matrix, A, used to
set up the MFLS approximation functions, the domain dis
cretization demands, even for simple cases, a larger number
of particles in comparison with the compatible model. This
requirement arises due to the high degree of the basis used to
build the equilibrated solution. We remark that, even though
for the same accuracy the equilibrated model requires more
particles, the number of degrees of freedom is comparable
with the compatible one, since it has one DOF per particle
instead of two.

(ii) The natural ill conditioning of the flexibility matrix should be
explicitly considered.

(iii) Some dependencies may arise on the essential boundary.
They should be eliminated, for instance, by means of the intro
duction of extra Lagrange multipliers. In fact, this problem
also appears in the compatible solution, but since the static
boundary is usually larger than the kinematic one, the equi
librated model is much more prone to this kind of problems.
Care should also be taken to ensure the admissibility of the
non homogeneous boundary conditions.

An attempt to impose the EBC locally was performed. This idea
leads to the usage of the boundary traces of the domain approx
imants as the Lagrange multipliers approximation basis for the
EBC enforcement. Once the suggested approach was implemented,
problems related to numerical stability of the obtained system of
equations arose. The inf sup test confirmed the observed problem.
It induces one to use totally different function spaces for the
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Fig. 14. Plate with a hole, deformed shape. (a) The compatible model. (b) The equilibrated model.

Table 1
Reduction of the size of the intervals bounding the exact displacement using linear
stress approximants for the plate with a hole problem.

h δêalower δêaupper ε̂ε

0.6919 5:310545� 10 3 5:694433� 10 3 3:838876 � 10 4

0.3883 5:336891� 10 3 5:395936� 10 3 5:904498 � 10 5

0.2070 5:340252� 10 3 5:341371� 10 3 1:119121 � 10 6

0.1070 5:340270� 10 3 5:340790� 10 3 5:201340 � 10 7

Table 2
Reduction of the size of the intervals bounding the exact displacement using
quadratic stress approximants for the plate with a hole problem.

h δêalower δêaupper ε̂ε

0.6919 5:313955� 10 3 5:724771� 10 3 4:108154 � 10 4

0.3883 5:337428� 10 3 5:419258� 10 3 8:183068 � 10 5

0.2070 5:340393� 10 3 5:341424� 10 3 1:031118 � 10 6

0.1070 5:340508� 10 3 5:340782� 10 3 2:740336 � 10 7



domain and for the boundary approximations in the case of the
meshless methods, making strict EBC enforcement impossible for
the proposed techniques. Nevertheless, the resulting lack of
equilibrium which may appear on the essential boundary is
negligible and can be disregarded.

Once these limitations are known, dual analysis can be per
formed efficiently. The presented numerical examples demon
strate the robustness of the described approach:

(i) the exact value of the strain energy is perfectly bounded by
the compatible and the equilibrated models;

(ii) the bounds of the error of local quantities are also strict;
(iii) the energy error reduces once the domain particles distribu

tion is refined, demonstrating adequate rates of convergence;
(iv) the results do not depend significantly on the integration cells

type, thus confirming the precision of the computed integrals;
(v) the graphical representation of the deformed shapes and

stress fields of both models reveals a close matching.

The stress model cannot replace the displacement one due
to the reasons mentioned above but it can serve as a natural
verification method for global (strain energy) and local (stresses

Fig. 15. Plate with a hole. Right edge displacement upper and lower bounds. (a) Displacement value. (b) Interval size.

Fig. 16. Perforated domain problem. (a) Problem statement. (b) Particles distribution, integration cells and deformed shape.

Table 3
Reduction of the size of the intervals bounding the exact displacement using linear
stress approximants for the perforated domain problem.

h δêalower δêaupper ε̂ε

0.100 1.344377376 2.220901954 8:765246� 10 1

0.050 1.398469053 1.448217192 4:974814� 10 2

0.033 1.405630965 1.429631618 2:400066� 10 2

0.025 1.407592593 1.422059353 1:446676� 10 2

Table 4
Reduction of the size of the intervals bounding the exact displacement using
quadratic stress approximants for the perforated domain problem.

h δêalower δêaupper ε̂ε

0.100 1.361946142 1.802515749 4:405696� 10 1

0.050 1.397846169 1.474901772 7:705560� 10 2

0.033 1.404219921 1.436820552 3:260064� 10 2

0.025 1.406491014 1.424092154 1:760114� 10 2



and displacements) quantities of interest, bringing confidence to
the obtained solution.
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Appendix A. The MATLAB code skeleton

To solve an arbitrary 2D plane elasticity problem by either of
two models, it is necessary to build an input file, defining:

(i) domain configuration as a closed boundary with internal
particles distribution, particles,

(ii) underlying integration grid, gaussPoints not a mandatory
operation, since the grid can be automatically constructed by
means of, e.g., a Delaunay triangulation, once the particles
distribution is defined,

(iii) static and kinematic boundary conditions that are later
assigned as natural and essential ones for the compatible
model and vice versa for the equilibrated one,

(iv) body forces,
(v) MFLS approximation function parameters, i.e., basis degree

k, support size scale factor d, a type of weight function
wfunction and a type of particles support (elliptical or
rectangular),

(vi) material parameters.

Thus, the implementation of both models is done within the same
program, where certain minor aspects are programmed indepen
dently. The general flowchart of the code looks as:

Some key components of the program are presented below as a
pseudo code.

Fig. 17. Perforated domain. Right edge displacement upper and lower bounds. (a) Displacement value. (b) Interval size.



Assignment of supports sizes is done according to methodol
ogy, described in Section 3.2:

The following function constructs stiffness/flexibility matrix:

where function gpointStiffness() implements either (26a) or

(36a), depending on the model. Function MFLSapproximation()

is a standard implementation of MFLS/MLS procedure [4,22] that
for a given point of interest constructs an approximation function
and its derivatives up to 1st order for the compatible model and up
to 2nd order for the equilibrated one.

A single function is responsible for imposition of both natural
and essential boundary conditions:



If the equilibrated model is being solved, as explained in (3.4), Airy
stress function is constrained to be zero at three predefined
points:

The construction of resulting systems of Eqs. (25) and (35) and
their solution is done in a trivial way:

Once the solution of two models is available, an implementa
tion of the local quantities of interest evaluation strategy, given in
Section 4, becomes straightforward:



In the listing above the evaluation of the corresponding QoI for the
problem with the homogeneous essential boundary conditions is
presented; however, computations with non homogeneous ones
do not face any significant difficulties and just involve slightly
more manipulations with boundary integrals, which are similar to
implementation of function boundaries(). Functions strain

Compat(), strainEquil(), stressCompat() and stressE

quil() evaluate strains and stresses for the compatible and the
equilibrated models respectively.
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