RAMSSES - Realisation and Demonstration of Advanced Material Solutions for Sustainable and Efficient Ships

Work Package 16 - Composite superstructure module on a steel deck for multi purpose vessels

WP leader: E. BILLAUDEAU
Naval Group
Content

Overview of the H2020 RAMSSES Project

Introduction to WP16

• Objectives
• Description of the demonstrator case
• Work program

Technical progress: Presentation of the work done so far

• Design and structural analysis of the demonstrator case
• Experimental campaign on coupons and assemblies

Work to be done

• Next steps and 1-year timeline
OVERVIEW OF THE H2020 RAMSSES PROJECT

SCIPEDIA

Realisation and Demonstration of Advanced Material Solutions for Sustainable and Efficient Ships

Register for free at https://www.scipedia.com to download the version without the watermark

European Commission

FibreShip Workshop: June, 2019; La Ciotat
RAMSES WP 16 – Composite superstructure module on a steel deck for multi purpose vessels ; WP leader: Emilien BILLAUDEAU (Naval Group)
Call Topic: MG-2.2-2016 Development and Use of High Performance and Lightweight Materials (IA)
Coordinator: CETENA (Italy) – Financial and Administrative
CMT (Germany) – Technical and Dissemination

The project RAMSSES has received funding under the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 723246. The information contained herein reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained herein.
Register for free at https://www.scipedia.com to download the version without the watermark.
<table>
<thead>
<tr>
<th>WP No</th>
<th>Cluster Title / WP Title</th>
<th>Lead</th>
<th>Focus Material</th>
<th>TRL Target</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP09</td>
<td>Modular Light System for Less Critical Internal Walls and superstructure</td>
<td>NetComp</td>
<td>BALTICO</td>
<td>6-7</td>
<td>(pre)approval</td>
</tr>
<tr>
<td>WP10</td>
<td>Lightweight Components for High Loads and Fire Class</td>
<td>PODCOMP</td>
<td>composite</td>
<td>6-7</td>
<td>(pre)approval*</td>
</tr>
<tr>
<td>WP11</td>
<td>Propeller blades by additive manufacturing</td>
<td>NG</td>
<td>metal</td>
<td>4-5</td>
<td>shore based</td>
</tr>
<tr>
<td>WP12</td>
<td>Lightweight Rudder Flap</td>
<td>BMS</td>
<td>composite</td>
<td>6-7</td>
<td>onboard</td>
</tr>
<tr>
<td>WP13</td>
<td>Ship Integration: Composite</td>
<td>DSNS</td>
<td>composite</td>
<td>7</td>
<td>onboard</td>
</tr>
<tr>
<td>WP14</td>
<td>Modular Decks for RoRo vessels</td>
<td>MEC</td>
<td>various</td>
<td>6</td>
<td>onboard</td>
</tr>
<tr>
<td>WP15</td>
<td>Lightweight aluminium and composite walls for Work Boats</td>
<td>ULU</td>
<td>composite</td>
<td>7</td>
<td>onboard</td>
</tr>
<tr>
<td>WP16</td>
<td>Composite superstructure module on steel deck for multi purpose vessels</td>
<td>DSNS</td>
<td>various</td>
<td>6</td>
<td>shore based</td>
</tr>
<tr>
<td>WP17</td>
<td>Custom Made Hull for Offshore vessel</td>
<td>DSNS</td>
<td>composite</td>
<td>6</td>
<td>shore based</td>
</tr>
<tr>
<td>WP18</td>
<td>Multi material lightweight cabin for passenger ships</td>
<td>CdA</td>
<td>various</td>
<td>6-7</td>
<td>shore based</td>
</tr>
<tr>
<td>WP19</td>
<td>Highly Loaded structural details from high tensile steel in passenger and research vessels</td>
<td>CET</td>
<td>FC</td>
<td>steel</td>
<td>6</td>
</tr>
<tr>
<td>WP20</td>
<td>Lightweight Decks using High Tensile Steel in cruise ships</td>
<td>CET</td>
<td>MT</td>
<td>steel</td>
<td>7</td>
</tr>
<tr>
<td>WP21</td>
<td>Composite Overlay to repair and improve metallic and non-metallic structures</td>
<td>CET</td>
<td>CARDA</td>
<td>various</td>
<td>7</td>
</tr>
</tbody>
</table>

commercial approval to be done outside the project based on data elaborated in RAMSSES
Register for free at https://www.scipedia.com to download the version without the watermark.
Objectives: Conception, production, testing and validation of a demonstrator for composite superstructure meeting multi-criteria made up of a module on metallic deck:

- Reduce production costs
- Reduce the weight of multifunction composite structures
- Fire resistance
- Health monitoring systems
- Quick & easy (dis)assembly on steel deck
- Noise insulation
- Mechanical resistance / product lifetime
- Use of recycled/bio-based/recyclable materials

Register for free at https://www.scipedia.com to download the version without the watermark
RAMSSES WP 16 - Schedule

|------------------------|---|--------------------------|----------------------------|-------------------------------|---------------------------|-------------------------|--------------------------|---------------------------------|

Register for free at https://www.scipedia.com to download the version without the watermark.

FibreShip Workshop: June, 2019; La Ciotat

RAMSSES WP 16 – Composite superstructure module on a steel deck for multi purpose vessels; WP leader: Emilien BILLAUME (Naval Group)
Design assessment of the WP16 demonstrator case
Analysis based on BV rules:
- NR 467
- NR 546

Task 16.3 – Requirements
Task 16.4 – Product design
Task 16.5 – Product engineering
Task 16.7 – Site testing
• Offshore Patrol Vessel

Ship particulars:
- Full Load Displacement at delivery: ≈ 3000 tons
- Draught: ≈ 3.9 m
- Length between Perpendiculars: 105 m
- Length Overall: 110 m
- Breadth at the waterline: 14 m

• Classification requirements
 - NR467 Part D chapter 16 of BV rules gives applicable requirements for ship classed with OPV service notation.
 - Loadings from NR467
 - Calculation methodology, testing, surveys from NR546
 - Safety coefficients from NR600
Structural analysis approach

- Serial approach:
 Global analysis first then transfer of boundary conditions to assemblies models

 - Experimental results (tests on coupons)
 - Mechanical properties
 - Assumptions note related to the application case

 Global Finite Element Analysis (FEA)
 Global model of the selected module in order to comply overall requirements

 - Experimental tests on Structural Assemblies
 - Experimental tests on adhesive lab Specimens

Task 16.4 – Product design
FEA of the superstructure block

Global model of the selected module in order to comply overall requirements:

- Eigen values
- Deflection
- Buckling stability
- Tsai-Wu failure criterion (GFRP)
- Core analysis

<table>
<thead>
<tr>
<th>Composite superstructure block (WP16 design)</th>
<th>Metallic superstructure block (Original design)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural calculation made by Naval Group</td>
<td>Up to 60% of weight reduction</td>
</tr>
<tr>
<td>Internal referential</td>
<td>4 t</td>
</tr>
<tr>
<td></td>
<td>11 t</td>
</tr>
</tbody>
</table>

Task 16.4 – Product design
• Overall design of the demonstrator case and its junctions
Selection of materials

- Material selection for the sandwiches panels
 - Skins: Glass/Vinylester for external bulkheads (evaluation of Carbon/Epoxy) Glass/Polyester or Glass/Vinylester for internal bulkheads
 - Core: 3D reinforced foams or balsa wood
 - Protection against fire: LEO Coated and/or intumescent paint

Sandwich lay-up (GFRP + reinforced foam) before vacuum infusion

Sandwich lay-up (CFRP + Balsa) before vacuum infusion

Sandwich pannel with intumescent paint
• Adhesive bonding with the disassembly function
 – Multi-material assembly
 – Flexible resin (damping, tolerance, thermal expansion)
 – Disassembly function by heating the metallic part

 Evaluation: Heating by a hot air device
 Industrial potential: Joule effect heater with addings in the adhesive or induction heating
• Experimental approach

General Campaign

- Experimental approach

Demonstrator scale tests
- Fire behaviour tests (WP07)
- Mechanical tests on assemblies

Intermediate level tests
- Joints and composite panels
 - Mechanical tests on joints (static and cyclic)
 - Fire behaviour (WP07 - RISE)
 - Resistance to marine environment evaluation

Material coupons tests
- Mechanical tests (WP16 and WP07 - Fraunhofer)
- Physico-chemical tests (WP16 and WP07 - Fraunhofer)
- Fire reaction tests (WP07 - RISE)

- Task 16.7 – Site testing

- Load bearing Bulkhead – FRD Test according to FTP code part 11
- Non-load bearing Bulkhead - Fire Resisting Division Test (FRD) according to FTP code part 11
- Assembly on the steel deck
- T Assembly between nonload bearing and load bearing bulkhead
- L Assembly of load-bearing bulkhead
• Experimental approach – Tests on coupons

Mechanical
- **Monolithic and skins**
 - 3-point bending
 - ISO 14125
 - Interlaminar shear test
 - ISO 14130
 - Tensile test
 - ISO 527
- **Sandwich**
 - 3-point bending
 - NF T54-606
 - 4-point bending
 - NF T54-606
 - Interlaminar shear test
 - NF T54-606

Physico-chemical
- **Monolithic, skins and core materials**
 - Density
 - ISO 1183
 - Fiber content
 - ISO 1172
 - DSC
 - Differential Scanning Calorimetry
 - ISO 11357
 - TGA
 - ThermoGravimetric Analysis
 - ISO 11358

Fire
- **Sandwich samples**
 - Cone calorimeter
 - ISO 5660

• NI546 based approach:
 - A first campaign has been performed by Naval Group to select the materials
 - Then 2 materials will be tested at Fraunhofer within WP07 framework
Experimental Campaign

Task 16.7 – Site testing

- Experimental approach – Tests on coupons
 - Experimental campaign on monolithic coupons to feed a decision matrix based on mechanical and physicochemical tests
 - Reinforcements: Glass, Carbon, Basalt, flax
 - Resins: Vinylester, polyester, epoxy
 - Fire retardant: FR infusion resin, coated fabric, intumescent gelcoat
 - 3-point bending on sandwich samples

- Sandwich lay-up (vinylester GFRP + reinforced foam)
 Shear strength: 1.9 MPa

- Sandwich lay-up (polyester GFRP + balsa wood)
 Shear strength: 4.0 MPa

- Sandwich lay-up (epoxy GFRP + PET foam)
 Shear strength: 0.9 MPa

Tensile test on woven flax/baslat monolithic coupons
• Experimental approach – Intermediate level tests – Tests on adhesives

Modified Arcan test

Test on coupons

Objectives of this campaign:
- Adhesive multiaxial characterization (static and fatigue)
- Definition of the linear elastic material constants
- Definition of a failure stress based criterion

Objectives of this campaign:
- Evaluation of the intrusivity of the fibre bragg grating sensors
- Behaviour of the assembly with and without primary
- **Durability** (unaged and aged samples)
Experimental Campaign

Task 16.7 – Site testing

- Experimental approach – Intermediate level tests – Tests on adhesives
- **Experimental approach – Demonstrator scale tests – Test on junctions**

Mechanical tests on assemblies
Monotonous and cyclic loadings with SHM (sQRS and Bragg gratings)

<table>
<thead>
<tr>
<th>Configuration 1</th>
<th>Configuration 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonding principle of 2 external bulkheads</td>
<td>Assembly detail of steel deck and internal composite bulkhead</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration 3</th>
<th>Configuration 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly detail of steel deck and external composite bulkhead</td>
<td>FAUSST System</td>
</tr>
<tr>
<td></td>
<td>Assembly detail of steel deck and external composite bulkhead</td>
</tr>
</tbody>
</table>
Multiaxial fatigue platform (ENSTA Bretagne):

hydraulic actuators (400 kN): bending

Design of specific clamping device
Experimental Campaign

Task 16.7 – Site testing

• Characterization of structural specimens of bulkhead junctions
 – Structural specimen test campaign:
 • Design of a clamping device
 • 1 loading case: Bending
 • Monotonic and Fatigue tests
 – Numerical approach:
 • FEA linear elastic model from Composite (Naval Group) and Adhesive (ENSTA B.) material parameters
 • Based on a coupled approach: Definition of the process zone for each loading case to evaluate the stress criterion

![Diagram of clamping device and load cases]
Production of extra sandwich panels

- Fire and mechanical tests within WP07 framework

Analysis and production of junction specimens

- Composite and multi-material junctions (rivets, adhesive and FAUSST)
- Integration of Structural Health Monitoring (SHM)

Test on junction specimens

- Monotonous loading
- Fatigue evaluation

Production of large panels for demonstrator case and fire tests

- Single Burning Intems (SBI)
- Fire Resisting division Tests (FRD)

June 2019

- Demonstrator scale tests
- Intermediate level tests
- Material coupons tests

June 2020

- Demonstrator case finalized
- Single Burning Intems (SBI)
- Fire Resisting division Tests (FRD)
Thank you for your attention

Any question?

Contact: emilien.billaudeau@naval-group.com
RAMSSES receives funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement n° 723246.

The information contained herein reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained herein.