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Abstract: This research introduces an inverse transient-based optimization approach to automatically
detect potential faults, such as leaks, partial blockages, and distributed deteriorations, within pipelines
or a water distribution network (WDN). The optimization approach is named the Pipeline Examination
Ordinal Symbiotic Organism Search (PEOS). A modified steady hydraulic model considering the
effects of pipe aging within a system is used to determine the steady nodal heads and piping flow
rates. After applying a transient excitation, the transient behaviors in the system are analyzed using
the method of characteristics (MOC). A preliminary screening mechanism is adopted to sift the
initial organisms (solutions) to perform better to reduce most of the unnecessary calculations caused
by incorrect solutions within the PEOS framework. Further, a symbiotic organism search (SOS)
imitates symbiotic relationship strategies to move organisms toward the current optimal organism
and eliminate the worst ones. Two experiments on leak and blockage detection in a single pipeline that
have been presented in the literature were used to verify the applicability of the proposed approach.
Two hypothetical WDNs, including a small-scale and large-scale system, were considered to validate
the efficiency, accuracy, and robustness of the proposed approach. The simulation results indicated
that the proposed approach obtained more reliable and efficient optimal results than other algorithms
did. We believe the proposed fault detection approach is a promising technique in detecting faults in
field applications.

Keywords: fault identification; hydraulic transient; inverse transient analysis (ITA); water distribution
network; optimization approach

1. Introduction

1.1. Background and Problem Statement

Water distribution networks (WDNs) in modern cities are usually large-scale, with complex
systems and limited instrumentation. Water may be lost due to system aging, poor maintenance,
and improper operations. The effective management of a water supply may be a serious engineering
problem faced by cities, and rapid urbanization and infrastructure aging are expected to intensify in the
future [1]. Faults in the pipeline system may not only cause problems in water resource management,
but may also induce economic problems such as lost revenue or extensive repair times [2]. The faults
in a pipeline or a WDN may be divided into three types: Leak, blockage, and deterioration, which
may induce various problems. Leaks in pipelines and WDNs may cause large economic losses. Water
supply networks leak an average of 20% of their water supply and lose an estimated U.S. $9.6 billion
each year [3]. This may also affect environmental health and safety [4–6] and create water quality
problems, such as equipment failure, problematic operations management, and errors in pipeline
design [4,7–9]. If a pipeline has blockages, this will reduce the pipe carrying capacity of the system
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and there will be severe safety problems [10]. Pipeline deterioration may not impose imminent threats
to the operation of pipeline systems, but it may reduce water transmission efficiency [11] and create
water quality problems [12]. Hence, fault detection in WDNs is an important task in the community of
water supply engineers.

1.2. Literature Review

Due to different data collection methods, the fault identification problem may be classified into
the following two categories: Steady-state methods and transient analysis. Steady-state methods, such
as vibration analysis, pulse-echo analysis, and acoustic reflectometry, were developed in previous
studies for leak isolation [13–16], blockage detection [17–20], and deterioration determination [21–23].
These methods deliver a large number of results with high precision. However, they are usually
developed based on some indispensable customized hardware with a long-term operation, which
may lead to high costs [24]. In contrast, the application of the transient-based approach is simple and
efficient [25,26]. In transient analysis, a pressure wave with appropriate bandwidth and amplitude is
intentionally injected into the system [27]. The faults in the system, such as leakage, blockage, and
deterioration can easily affect the head changes in the system when they are compared to those in
a steady-state condition. The system responses can be freely obtained through a simple operation.
However, this has a big drawback because the pressures created by a transient event may be too high
to damage pipelines or even cause catastrophic failure in pipelines.

The heuristic algorithm is capable of searching for global optimal solutions [28]. It is therefore
commonly used for detecting leaks in WDNs. Vítkovský et al. [29] combined a genetic algorithm
(GA) with inverse transient analysis (ITA) to detect leaks and to calibrate friction factors in water
pipelines. A GA was utilized to replace the Levenberg–Marquardt (LM) method used in Reference [30]
to minimize the difference between calculated and measured heads. Vítkovský et al. [31] considered
the shuffled complex evolution (SCE) algorithm to be an optimization tool in ITA for detecting single
and multiple leaks in a pipeline system using laboratory observations with various errors (i.e., data
errors, model input errors, and model structure errors). They indicated that a model structure error
was the most possible limiting factor in field tests of ITA application. Jung and Karney [32] contrasted
the performance of a GA and particle swarm optimization (PSO) in leak detection and friction factor
calibration in a developed WDN model. They found that PSO provided faster convergence and
produced better results than the GA. Haghighi and Ramos [33] exploited a central force optimization
(CFO)-based approach as an inverse problem solver for leak detection in a benchmark leaking pipe
network (reported in References [30,31]). The CFO-based approach exhibited excellent accuracy in
identifying the friction factor and detecting the leaking node. Covelli et al. [34] highlighted the
susceptibility of aged and high-pressure zones in leakage occurrences in WDNs and applied a GA
to determine the optimal number, positioning, and setting of pressure reduction valves for reducing
background leakages within the network.

Blockage detection is a crucial issue in aged pipelines and pipe networks in energy, chemical, and
water industries. A blockage consists of chemical or physical depositions [26] or a valve that has only
been partially reopened. It may cause system failures and an increase in water leakage due to the
high-pressure redistribution within the system [35]. On the issue of blockage detection development,
Wang et al. [10] detected discrete blockages in pipes by analytically using the transient damping of
different frequency harmonics. However, detection of the blockage location was not mentioned in
their study. Mohapatra et al. [36] developed a technique for detecting partial blockages in a single
pipeline using the frequency response method. The patterns and numbers of peaks were used in the
pressure frequency response of the system to detect blockage locations and estimate the effective size
of two partial blockages. Lee et al. [37] numerically determined the properties of blockage-induced
oscillations using the Fourier transform of the inverted peak magnitude in the frequency response
diagram. Meniconi et al. [35] investigated two transient-based methods, pressure signal analysis and
frequency response analysis, to detect a partial blockage in experimental pipes. The results showed



Water 2019, 11, 1154 3 of 25

that the former was more accurate in detecting the location of the blockage, while the latter was
more reliable in predicting the severity of the blockage. Duan et al. [38] examined wave–blockage
interactions under unsteady flow in pressurized pipelines. They revealed that an extensive blockage
might change resonant frequencies and amplitudes, but a partial blockage might only affect resonant
amplitudes. Lee et al. [27] used analytical, numerical, and experimental methods to investigate the
importance of signal bandwidth in fault detection. They suggested that both low and high bandwidth
signals should be considered in a transient-state system. A low bandwidth signal was used to identify
the regions of suspected damage, while the fault’s location and properties were pinpointed by the high
bandwidth signal.

The condition of the pipe wall in pressurized pipelines changes with their age or operating
condition. Pipe wall deterioration may be due to corrosion, material erosion, and external pressures
with system aging. At present, the transient-based approach is recognized as a potential tool for
the noninvasive detection of discrete and distributed deterioration in pressurized pipelines [39].
Many previous studies have investigated deterioration detection technologies for water transmission
pipelines. Stephens et al. [40,41] applied fluid transients and ITA to detect changes in the thickness of
a pipe wall in a field test. They mentioned that the loss of cement mortar lining could lead to wall
corrosion and significant changes in wave speed. Hachem and Schleiss [42] presented a transient-based
approach to determine the stiffness of a pipe segment and identify the location of a structurally
weak segment of a single pipeline. The location and length of the weak segment were identified
using two mean wave speed values and the travel time of the reflections from a weak segment.
Gong et al. [43] applied time-domain reflectometry (TDR) analysis to detect distributed deterioration
in an experimental water transmission pipeline in a laboratory. They found that the size of the pressure
wave reflection from a deteriorated section could be affected by any change in the pipeline impedance of
the deteriorated section. Recently, Gong et al. [44] developed a new transient pressure wave generator
using controlled electrical sparks. They provided high-frequency waves and improved the incident
signal bandwidth. The location and length of thinner wall sections in an experimental pipeline system
were then determined through a TDR technique.

1.3. Objective

Multiple fault detection in pipeline systems or WDNs using ITA is considered to be a troublesome
issue because a large amount of input data and computation time is required. Moreover, the computation
time and searching space in the optimization process may be enormous, especially for a complicated
WDN with multiple faults. This paper presents a novel and efficient transient-based approach for
multiple fault detection, including leak detection, partial blockage identification, and distributed
deterioration determination, in a single pipeline or a WDN. An ITA-based hybrid heuristic approach
called the Pipeline Examination Ordinal Symbiotic Organism Search (PEOS) was developed based
on a combination of an ordinal optimization algorithm (OOA) and a symbiotic organism search
(SOS). The proposed approach can simultaneously determine information on various faults via inverse
calculation. Two experimental single pipeline cases and two numerical tests with different pipe
network configurations were considered to examine the performance and capability of the proposed
approach. The performance of PEOS was further compared to different optimization algorithms to
demonstrate its accuracy and efficiency in predicting fault information. The reliability and robustness
of the proposed approach for fault detection in a complicated WDN (considering data collection issues)
was further validated.

2. Methodology

2.1. Pipe Network Simulation

EPANET is a widely used public software package for modeling hydraulic and water quality
behavior in pressurized pipe systems. However, it needs an external functionality to model water
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leakage in a system in simulations [45]. Moreover, it is not easy to simulate the hydraulic behavior of
a pressurized pipe system with blockages or deterioration. In order to simulate steady-state water
head distribution in a network with various faults, we therefore developed a heuristic optimization
algorithm called a pipe network symbiotic organism search (PNSOS) based on the algorithm for
pipe network simulated annealing (SA) introduced by Yeh and Lin [46]. The SOS was adopted here
to replace the SA in order to deal with a complex network for the sake of computational efficiency.
The PNSOS is an efficient tool in estimating the steady-state nodal head and flow rate for a given pipe
network system with faults before a transient operation. The Hazen–Williams (H–W) equation is then
used to express the relationship between the flow rate and head loss for each pipe [47,48]. The modified
loss coefficient (Kij(t)) in the H–W equation for a pipe at used year t is defined as

Ki j(t) =
10.66667 · Li j

CHW
ij (t)1.851852

·D4.870370
i j

, (1)

where ij is defined from node i to node j for the variable, Lij is the length (m) of the pipe, and Dij is
the internal pipe diameter (m). The modified H–W coefficient CHW

ij (t) (for modeling the effect of pipe
aging) is defined as [49]

CHW
ij (t) = 18− 37.2 log

( e0i j(t) + t× ai j(t)
Di j

)
, (2)

where t is the used year of the pipe, e0ij(t) is the initial roughness (mm) of the pipe, and aij(t) is the
roughness growth rate (unique per year) in the pipe at year t. The following equations are used in the
proposed approach to calculate the values of e0ij and aij [49]:

log
(
e0i j(t)

)
=

CHW
ij (t− 1) − 18

−37.2
+ log

(
Di j

)
, (3)

ai j(t) =
10(

0.5CHW
ij (t−1)−18

−37.2 )
×Di j − e0i j(t)

50
. (4)

For a new installed pipe (i.e., t = 0), the value of CHW
ij (t− 1) in Equation (3) is considered to be the

initial value of the H–W coefficient at the time of pipe installation (i.e., CHW
ij (0)). Thus, the modified

H–W coefficient for each pipe could be iteratively obtained. On the basis of Equations (1)–(4), the flow
rate Qij(t) (m3/s) in each pipe at year t could be expressed as

Qi j(t) =
[

∆Hi j

Ki j(t)

]0.54

, (5)

where ∆Hij is the frictional head loss in a pipe. The equation of mass conservation at node i could be
written as

MCi(t) =
∑nn

j=1
Qi j(t) + QIi(t), (6)

where nn is the number of total neighbor nodes to node i, and QIi(t) is the demand or the source at
node i. The flow rate is positive for flow out of node i and negative for flow into node i, while QIi is
positive for inflow and negative for outflow. The objective function used in the PNSOS is defined as

Minimize
∑nd

i
(MCi(t))

2, (7)

where nd is the total number of nodes needed to estimate the nodal heads and flows in a network
system.
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2.2. Hydraulic Transient Model and Faults in the Pipeline

The unsteady pressurized flow in a pipe network with a known steady-state nodal head and flow
rate can be described by a pair of partial differential equations, written as [50]

gA
∂H
∂x

+
∂Q
∂t

+
f

2DA
Q|Q| = 0, (8)

∂H
∂t

+
a2

gA
∂Q
∂x

= 0, (9)

where g is the acceleration of gravity, A is the pipe cross-sectional area, H is the piezometric head,
x is the distance along the pipe, Q is the volume flow rate, t is the time, D is the diameter of the pipe,
a is the wave speed, and f is the friction factor, which can be described in steady-, quasi-steady-,
or unsteady-state conditions. The friction factor was considered to be steady with a value of 0.02, since
this study was numerical verification-oriented. Readers can refer to related studies regarding unsteady
friction [51,52]. Equations (8) and (9) are respectively the momentum and continuity equations.
By means of the method of characteristics (MOC) and the finite difference method, both equations can
be solved with appropriate initial and boundary conditions. Then the hydraulic transient heads and
flow rates along the pipelines are solved.

Three kinds of faults (i.e., leaks, partial blockages, and distributed deterioration) are considered
and discussed. Both leaks and blockages could be described by the simple orifice equation and
implemented as an internal boundary condition in the MOC analysis as [53]

QO = CdOAO
√

2g∆HO, (10)

where QO is the volumetric flow rate through the orifice, CdO is the discharge coefficient of the orifice,
AO is the orifice area, and ∆HO is the head loss across the orifice. The leaks represent the flow loss
through the offline orifice with no head loss, while the blockages represent the head loss through the
inline orifice with no flow loss.

The volumetric flow rate QL through leakage is denoted as [53]

QL = QU
−QD = CdLAL

√
2g(HP −HOut − z) with HP = HU

P = HD
P , (11)

where QU and QD are the volumetric flow rates upstream and downstream of the leakage, respectively;
CdLAL is the discharge coefficient of leakage times the leak area of the orifice; HP and Hout are respectively
the heads at the leak and outside the leak; z is the pipe elevation at the leak; and HU

P and HD
P are

respectively the heads upstream and downstream of the leak. The outside head is generally considered
to be the atmospheric pressure head and is hence set to zero [53]. The initial value of CdL is set to unity,
and the elevation z is assumed to be zero.

Similarly, a discrete (partial) blockage is treated as an inline valve with a constant opening area.
The upstream and downstream of the blockage satisfy the continuity conditions of the head and flux.
The volumetric flow rate QB through the blockage is expressed as [53,54]

QB|QB| = 2g(CdBAB)
2(HU

P −HD
P ) with QB = QU

B = QD
B , (12)

where QU
B and QD

B are respectively the flow rates upstream and downstream of the blockage; and
CdBAB is the discharge coefficient times the orifice area of the blockage. Note that Equation (12) is a
simple model to approximate a blockage of any shape and length [53].

Deterioration (e.g., pipe wall damage or pipeline corrosion) often introduces a decrease in pipe
wall thickness, which in turn introduces a change in the pipeline impedance and wave speed, defined
as [39,43]

Bim
i = ai/(gAi), (13)
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where Bim
i , ai, and Ai are respectively the impedance, wave speed, and pipe cross-sectional area of ith

reach. Their values are known in the MOC analysis.

2.3. Ordinal Optimization Approach (OOA)

Ho et al. [55] introduced the key cogitation of the OOA to reduce the process of searching for
global optimal solutions blindly. Ordinal comparison and goal softening procedures are the major
processes employed in the OOA. The approach looks for reliable and satisfactory solutions by searching
through the relative rankings of each solution instead of directly evaluating the optimal solution in a
complex optimization model. Thus, relatively better solutions are selected and used in the optimization
process, and the best solution can be obtained without meaningless calculations and iterations of the
worst solutions.

2.4. Symbiotic Organism Search (SOS)

The SOS algorithm [56] is an evolutionary metaheuristic algorithm inspired by actual biological
interactions in nature, such as mutualism, commensalism, and parasitism. Like other population-based
algorithms (e.g., a GA and PSO), the SOS shares the following similar features: (1) Control parameters
should be properly settled before operation; (2) it has operators to enhance or improve candidate
solutions via the interaction of each solution; (3) it has a selection mechanism to determine the
current optimal solution in the solution domain and preserve the current best solution during the
process [56,57]. Furthermore, the SOS algorithm requires no algorithm-specific parameters. Only the
initial ecosystem (population) size and the maximum number of iterations are needed.

In short, the organisms (solutions) in the ecosystem are guided toward the current best organism
in mutualism and commensalism states, while the parasitism state is used to prevent the organisms
trapping in a local optimal solution. These three states are repeated until the stopping criterion is
achieved. Details about the SOS algorithm are given in the Supplementary Materials.

2.5. Inverse Transient Analysis (ITA)

The ITA introduced by Pudar and Liggett [58] was developed by minimizing the errors between
the measured and calculated system state variables (i.e., pressure or flow rates). Various potential
faults with unknown parameters (fault information) are tested in a numerical simulator until the
measured state variable traces match the calculated ones [4]. A heuristic algorithm is a useful tool for
the numerical simulators of ITA because it can explore global or near-global optimum solutions in
the search space in an affordable time [28]. However, the ITA method relies on an accurate transient
model of the system. A model consisting of transient and boundary conditions with correct system
parameters is needed in ITA for obtaining a reliable transient response in the system [5]. The pressure
measurements are theoretically more suitable than the volume measurements (i.e., flow rate) because
the response of the pressure is more sensitive than that of the flow rate in the ITA [59]. Transient flow
is not easy to precisely measure in practice with a very high sampling rate, when only the pressure can
be measured. The objective function F in the proposed approach for fault detection is defined as

F = Min
∑m

j=1

∑n

i=1

(
Ho

i j −Hs
i j

)2
, (14)

where m is the total number of observation points in the network; n is the total amount of data at an
observation point; and Ho

i j and Hs
i j represent the ith observed and simulated heads at observation point

j, respectively. Thus, an ITA model was set up for a pipe network, in which head specifications were
computed as a function of unknown variables (fault information), e.g., Lp, LL, CdLAL, Bp, BL, CdBAB, Dp,
DL, LD, aD, and AD (listed and defined in Table 1).
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2.6. Development of PEOS

The PEOS is a hybrid heuristic algorithm combining the screening procedure of OOA and the
heuristic algorithm SOS to automatically determine fault information in WDNs. The overall operational
architecture and steps of PEOS are briefly given below (also in Figure 1):

1. Import the network configurations;
2. Randomly generate candidate solutions (CASes) with different fault information consisting of the

unknown variables listed in Table 1;
3. Rearrange the network configurations, since the new fault points (leaks and blockages) and/or

new fault pipe reaches (deterioration parts) are added;
4. Use PNSOS to calculate the optimal steady-state nodal heads and piping flow rates within a given

WDN for each CAS;
5. Generate hydraulic transient events and apply the MOC to obtain the transient head distribution

of each CAS;
6. Utilize Equation (14) to calculate the CASes’ objective function values (OFVs) and rank them.

The top 5% of CASes with smaller OFVs are selected for the next step;
7. Consider the selected CASes to be initial organisms for the ecosystem of the SOS used in the

pipe examination;
8. Execute the fault detection procedure, in which the organisms containing fault information

continually move forward to the current best solution (Xbest), with optimal fault information due
to the three states of the SOS;

9. Check whether the optimization process satisfies the stopping criterion. If so, the fault detection
procedure is then terminated and moves to the next step. Otherwise, the searching process
goes on.

The first stopping criterion is defined as the absolute difference between two successive optimal
OFVs (in Equation (14)), which is always less than 10−4 within four iterations. The second criterion for
fault detection is the iteration reaching the specified maximum limit.

Table 1. Fault information to be determined.

Variable Description

Leak
Lp Leak pipe number
LL Leak location

CdLAL Discharge coefficient times the leak area of the orifice
Blockage

Bp Blockage pipe number
BL Blockage location

CdBAB Discharge coefficient times the open orifice area of the blockage
Deterioration

Dp Deterioration pipe number
DL Deterioration location
LDi Length of ith distributed deterioration reach
aDi Wave speed of ith distributed deterioration reach
ADi Pipe cross-sectional area of ith distributed deterioration reach
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Figure 1. Flowchart of the Pipe Examination Ordinal Symbiotic Organism Search (PEOS).

2.7. Benchmark Evolutionary Algorithms

To validate the ability of the proposed approach in obtaining global optimal fault information, the
performance of PEOS will be further compared in a later section to other evolutionary algorithm-based
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approaches, including a pipe examination genetic algorithm (PEGA), pipe examination particle swarm
optimization (PEPSO), and a pipe examination symbiotic organism search (PESOS).

PEGA and PEPSO are benchmark pipe examination techniques that were developed based on
the evolutionary algorithms of GA and PSO. A GA and PSO are employed as optimization tools to
substitute the algorithm SOS uses in PESOS. PEGA uses a process involving selection, crossover, and
mutation to evolve a population of potential solutions toward improved solutions. In PEPSO, the
potential solutions, called particles, fly through the problem space by following the current optimum
particle. Each particle’s movement is influenced by its local best-known position and is also guided
toward the global best-known positions in the search space. The readers may refer to References [29,60]
for detailed discussions on the use of GAs. In addition, more detail about the application of PSO can
be obtained in References [32,61]. The other benchmark approach is PESOS, which is a simplified fault
detection approach similar to PEOS but without the preliminary elimination procedure (i.e., the OOA)
for the initial organisms. The initial solutions of PEGA, PEPSO, and PESOS are randomly generated
from feasible solution domains with corresponding upper and lower bounds. The control and specific
parameter settings for each algorithm are listed in Table 2.

Table 2. Specific parameters for each algorithm, with NP = 10, 20, or 50, and Miter = 10,000 or 20,000.

PEGA PEPSO PESOS and PEOS

m = 0.01 w = 0.9~0.7 No specific
parameters requiredc = 0.8 v = Xmin/10~Xmax/10

g = 0.9 -

Note: NP = population size/ecosystem size; Miter = maximum iteration; m = mutation rate; c = crossover rate;
g = generation gap; w = inertia weight; v = limit of velocity.

3. Laboratory Experiments and PEOS Simulations

3.1. Experiment Configurations

Two cases of experimental reservoir pipe valve (RPV) systems with leaks or blockages that have
been reported in the literature were adopted to verify the applicability of PEOS. The first case was
carried out in a specially constructed RPV system at Imperial College (IC), London [62]. The system had
a pump and tank upstream and a valve at the downstream end. The valve was a transient generation
point, and pressure signals were also measured there at the same time. The IC pipe was made of
high-density polyethylene (HDPE) with an inner diameter of 50.6 mm and a length of 272 m. Two
leaks with different orifice sizes of 1.21 × 10−5 m2 and 1.50 × 10−5 m2 occurred at the locations of
65.95 m and 146.32 m, respectively: This was measured from upstream. These two leak orifices were
very small, and the discharge coefficient was considered to be one. Thus, the CdLALs for the two leaks
was respectively 1.21 × 10−5 m2 and 1.50 × 10−5 m2. The initial flow rate downstream was 1 L/s.

The second case was carried out at the Water Engineering Laboratory (WEL) at the University of
Perugia, Italy [63]. A pressurized tank upstream of the system supplied the pipe, and a valve was
located at the downstream end for data measurement and transient generation. The WEL pipe was also
made of HDPE, with an inner diameter of 93.3 mm and a length of 164.93 m. A partial blockage was
located at 88.96 m, measured from upstream. The partial blockage was simulated by an inline valve
with a diameter of 38.8 m, and thus the CdBAB was 1.18 × 10−3 m2. The initial flow rate downstream
was 2.57 L/s.

3.2. PEOS Simulation

In the PEOS application, the IC pipeline system was divided into six series segments with seven
nodes. Each segment was assigned a pipe number from 1 to 6 from upstream to downstream. The first
five segments had the same length, 50 m, and the last segment had a length 22 m. Two leaks, L1 and L2,
which occurred 65.95 m and 146.32 m from the upstream end, were respectively placed in segments
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2 and 3. The WEL pipeline system was partitioned into four series segments with five nodes. From
upstream to downstream, the segments were given a pipe number from 1 to 4. Segments 1 to 3 had
the same length, 50 m, and the last one was 14.93 m. A blockage named B1 was located at segment 2
and was 88.96 m from upstream. A valve was set at the last downstream node for measurement and
transient generation for both pipeline systems. The distance interval (∆x) was considered to be 2 m
to divide each segment for PEOS to search for leaks. The simulation durations for the IC and WEL
pipeline systems were selected to be 15 and 5 s, respectively.

The temporal head distributions predicted by the PEOS for the IC and WEL pipeline systems
were respectively displayed in Figure 2a,b. Both predicted temporal head distributions exhibited
oscillatory patterns almost identical to the experimental data, indicating that the transient events
in the IC and WEL pipeline systems could be precisely simulated by PEOS. Fault information was
successfully identified, with the initial values listed in Table 3. In the IC pipeline system, L1 and
L2 were respectively detected at 66 m in segment 2, with CdAs = 1.23 × 10−5 m2, and at 146 m in
segment 3, with CdAs = 1.52 × 10−5 m2. Blockage B1 in the WEL pipeline system was identified at 88 m
in segment 2, with CdBAB = 1.20 × 10−3 m2. The leak and blockage locations in both systems were
accurately determined by the proposed approach. The largest relative difference (E) between the actual
CdLALs/CdBAB and the predicted one was 1.69% for detecting blockage B1 in the WEL pipeline system.
The relative differences were insignificant in both systems. The success of PEOS in fault detection
indicated that PEOS performs excellently in a pipeline system.Water 2019, 11, 1154 11 of 28 
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(b) the Water Engineering Laboratory (WEL) pipeline.

Table 3. The predicted and actual fault information for the two pipeline systems.

IC pipeline L1 L2

Lp LL (m) CdLAL (m2) E (%) Lp LL (m) CdLAL (m2) E (%)
Actual 2 15.95 1.21 × 10−5 - 3 46.32 1.50 × 10−5 -
PEOS 2 16 1.23 × 10−5 1.65 3 46 1.52 × 10−5 1.33

WEL pipeline B1

Bp BL (m) CdBAB (m2) E (%)
Actual 2 38.96 1.18 × 10−3 -
PEOS 2 38 1.20 × 10−3 1.69

Note: E = relative difference between the predicted CdLAL/CdBAB and the actual one.
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4. Fault Detection in a Synthetic Pipe Network

4.1. Simulation Setup and Pipe Network Configuration

A synthetic benchmark WDN (pipe network A) was adopted from Reference [46] to test the
applicability of PEOS in fault detection. The associated simulation followed the concept of district
metering areas (DMAs), implying that the inflow and outflow of the pipe network system were steady
and completely understood. User demands in the pipe network were considered to be constant and
could be separated through continuous observation of mass conservations of flow measurements.
Pipe network A, shown in Figure 3, is composed of 11 pipes, 9 nodes (with 7 in continuous outflow),
1 potential leak, 1 partial blockage, and 1 distributed deterioration reach. Notice that the characters
“N”, “P”, “L”, “B”, and “D” represent the node, pipe, leak point, blockage point, and distributed
deterioration reach, respectively. The properties of the pipes and nodes of pipe network A are listed in
Table 4. The pipe material was considered to be cast iron with an aging effect on the material. Thus,
the initial H–W coefficient CHW(0) for each pipe was 130. The H–W coefficient considering the effect of
pipe aging (CHW(t)) for each pipe was calculated through Equations (2)–(4) and is given in the last
column of Table 4. The initial wave speed a0 of all pipes was postulated as 1000 m/s [25], except for
the faulty parts. The impedance of each pipe was calculated by Equation (13) and is given in Table 4.
Node N1 was the water supply node, with a constant inflow rate of 400 L/s and a constant head of
120 m. In addition, continuous discharges at N2, N3, N4, N5, N6, N8, and N9 had rates of 80, 40,
35, 35, 40, 80, and 80 L/s, respectively. The leak L1 was located at P11, 300 m away from N3, with
CdLAL = 2.50 × 10−4 m2 and QL = 3.0 L/s. A partial blockage B1 was placed at P10, 200 m away from
N9. It blocked about 20% of the cross-sectional area of P10, and thus the CdBAB was 5.6 × 10−2 m2.
In addition, a distributed deterioration reach, D1, occurred at a segment of P1 and was 200 m away
from N2. The length and cross-sectional area of D1 were respectively designed to be 80 m and 0.071 m.
Its wave speed was assumed to be 800 m/s, and thus the impedance was calculated as 1148.98 s/m2 from
Equation (13). In the simulation, N8 was treated as the transient generation and data measurement
point for the simulation of a sudden closure of the valve. The total transient simulation time was
considered to be 30 s, with a simulation time interval (∆t) selected as 0.01 s. Thus, the initial ∆x was
10 m for the nondeterioration reach and further changed with the wave speed of the deterioration
reach. The transient operation was fixed to 5 s for a simulation of the complete closure of the valve.

Table 4. The characteristics of the synthetic water distribution network (WDN) (pipe network A).

Pipe
Node

Diameter (mm) Length (m) Impedance (s/m2) Year Used (year) CHW(t)
From To

P1 N1 N2 300.0 1000.0 1442.60 10 108.2
P2 N2 N3 300.0 1000.0 1442.60 15 90.2
P3 N3 N4 250.0 1100.0 2077.35 10 105.7
P4 N1 N4 400.0 1250.0 811.47 15 92.2
P5 N4 N5 200.0 500.0 3245.86 5 112.1
P6 N5 N6 400.0 400.0 811.47 5 114.2
P7 N7 N6 200.0 500.0 3245.86 5 112.1
P8 N4 N7 350.0 400.0 1059.87 5 113.6
P9 N7 N8 350.0 600.0 1059.87 5 113.6
P10 N8 N9 300.0 1100.0 1442.60 10 108.2
P11 N3 N9 300.0 1250.0 1442.60 15 90.2

In the following section, the performance of the proposed approach is validated and compared to
the other evolutionary algorithm-based approaches mentioned in Section 2.7. The maximum iteration
(Miter) was 10,000. Notice that all of the results presented in the following sections were performed on
a personal computer with an Intel 2.8 G i5-8400 CPU and 32 GB of RAM.
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4.2. Validation and Application of PEOS

The steady-state nodal heads and piping flow rates of pipe network A were solved by PNSOS
in 52 s. The transient head distributions were further predicted by three benchmark algorithms and
the proposed approach. Temporal transient perturbations were observed at N8 by applying different
approaches with the various NP displayed in Figure 4a–d, and the predicted results are given in
Table 5. The figures show that the transient perturbations fluctuated between 20 and 140 m with
similar oscillatory patterns over 30 s. Figure 4a,b shows that PEGA and PEPSO overestimated the
transient perturbations for the case NP = 10 due to an overestimation of the leakage area size by both
algorithms. Such results reflect that the WDN contained a larger total flow rate at the beginning of
transient perturbations. Moreover, the blockage at P10 was not detected by either PEGA or PEPSO.
Thus, the transmission of water and pressure may not have been affected by the blockage, resulting in
the accumulated volumes of water at N8 being higher than other cases when the transient operation
point was closed. The predicted head was also overestimated in the case of PEGA for NP = 20.
The calculations in both PEGA and PEPSO were forced to stop because they reached the maximum
iteration, Miter = 10,000, in the cases of NP = 10 and 20. In contrast, the temporal transient perturbations
displayed in Figure 4c,d were precisely reconstructed by two SOS-based approaches for all cases of
ecosystem size. Deterioration, a blockage, and a leak were detected at P1, P10, and P11, respectively.
Table 5 shows that the deterioration, blockage, and leak information was also accurately predicted by
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two SOS-based approaches. The results prove that those two SOS-based approaches are capable of
obtaining optimal fault information even after using fewer initial organisms, reflecting that PESOS and
PEOS had great abilities in obtaining the best solution even when using less input data and guessing
values. This may have greatly reduced the searching process and computation times. Moreover,
Figure 5a,b displays the predicted results of PEOS for impedance and wave speed along P1 and P10,
respectively. Both a partial blockage and a deteriorated section can also be identified from the plots of
the predicted distributions of the impedance and wave speed in Figure 5. The successful numerical
simulation validated the proposed approach to detecting various faults in WDNs.Water 2019, 11, 1154 16 of 28 
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Table 5. Determined fault information of pipe network A.

NP Method
L1 B1 D1

Lp LL (m) CdLAL (m2) BP BL (m) CdBAB (m2) DP DL (m) LD (m) aD (m/s) Bim
D1 (s/m2)

Actual 11 300 2.50 × 10−4 10 200 5.60 × 10−2 1 200 80 800 1148.98

10

PEGA 2 650 3.27 × 10−4 Not detected Not detected
PEPSO 11 830 3.19 × 10−4 Not detected 3 510 100 805 1156.16
PESOS 11 300 2.49 × 10−4 10 200 5.58 × 10−2 1 200 80 800 1148.98
PEOS 11 300 2.51 × 10−4 10 200 5.61 × 10−2 1 200 80 800 1148.98

20

PEGA 11 510 3.34 × 10−4 Not detected 3 490 70 805 1156.16
PEPSO 11 300 2.49 × 10−4 10 200 5.61 × 10−2 3 700 70 805 1156.16
PESOS 11 300 2.50 × 10−4 10 200 5.59 × 10−2 1 200 80 800 1148.98
PEOS 11 300 2.50 × 10−4 10 200 5.60 × 10−2 1 200 80 800 1148.98

50

PEGA 11 300 2.49 × 10−4 10 200 5.60 × 10−2 1 200 80 800 1148.98
PEPSO 11 300 2.49 × 10−4 10 200 5.60 × 10−2 1 200 80 800 1148.98
PESOS 11 300 2.50 × 10−4 10 200 5.59 × 10−2 1 200 80 800 1148.98
PEOS 11 300 2.50 × 10−4 10 200 5.60 × 10−2 1 200 80 800 1148.98
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The present techniques were further executed five times to guarantee the reproducibility of
the predicted result and to test its efficiency, accuracy, and robustness for obtaining the optimal
solution. The NP was fixed at 50 for all algorithms, and thus all approaches were ensured to deliver
accurate predictions, as the results demonstrate above. Table 6 delineates the performance of PEOS
and other approaches (five times) in obtaining the optimal fault information of pipe network A.
PEGA, PEPSO, and PESOS took about 331.2, 302.2, and 105.4 min and 8072, 7604, and 3882 iterations,
respectively, to obtain optimal results over a five-time average. In contrast, PEOS took about 50.6
min and 1382 iterations to complete the searching process and obtain the optimal result. Apparently,
PEOS outperformed PEGA and PEPSO, not only in computation time but also in convergence speed.
The computational efficiency of PEOS was approximately 84.7% and 83.2% better than PEGA and
PEPSO. The computational efficiency of PEOS in fault detection in the WDN significantly improved as
a result of using the OOA and SOS. In addition, PEOS saved about 52.8% in computing time and 64%
in iterations compared to PESOS, indicating that the OOA could significantly speed up optimization
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computation by reasonably avoiding blind searches and unnecessary objective function evaluations in
the optimization process. PEOS had superiority over the other methods in its fast convergence and
effective computation. It also gave more accurate results than the other evolutionary-based algorithms.

Table 6. The performances of the four algorithms.

Method Round CPU Time
(min)

Average Time
(min) Iterations Average

Iterations

PEGA

1 325

331.2

8021

8072
2 346 8216
3 322 8124
4 324 7983
5 339 8016

PEPSO

1 310

302.2

7502

7604
2 308 7551
3 312 7669
4 294 7606
5 287 7710

PESOS

1 101

105.4

3789

3882
2 107 4012
3 108 3883
4 110 3810
5 101 3915

PEOS

1 56

50.6

1415

1382
2 49 1371
3 46 1337
4 52 1396
5 50 1391

Note: CPU time is the computation time.

5. Faults Detection in Large-scale WDN

5.1. Simulation Setup and Large-Scale WDN

PEOS further demonstrated its accuracy and robustness in fault detection on a large-scale drinking
WDN by considering different data collection issues. Figure 6 displays the structure of pipe network
B with various faults. Pipe network B was modified from Reference [64] with the data of the pipe
characteristics listed in Table 7. The pipe network consisted of 74 pipes and 48 nodes, including
11 continual consumption nodes, 2 water supply nodes, and 2 constant-head reservoirs. All pipes were
considered to be long-term used cast iron pipes. Hence, the initial H–W coefficient CHW(0) and wave
speed a0 for all pipes in pipe network B were 130 and 1000 m/s, respectively. The CHW(t) for various
pipes was also calculated by Equations (2)–(4) and is listed in the last column of Table 7.

Table 7. The characteristics of the large-scale WDN (pipe network B).

Pipe
Node

Diameter (mm) Length (m) Impedance (s/m2) Year Used (year) CHW(t)
From To

P1 N48 N1 950.0 240.0 143.86 5 120.5
P2 N34 N33 900.0 60.0 160.29 10 113.5
P3 N2 N46 1450.0 1830.0 61.75 0 130.0
P4 N43 N2 1150.0 3550.0 98.17 0 130.0
P5 N41 N45 1450.0 1220.0 61.75 0 130.0
P6 N45 N46 1450.0 640.0 61.75 0 130.0
P7 N42 N43 900.0 60.0 160.29 10 113.5
P8 N41 N43 900.0 60.0 160.29 10 113.5
P9 N44 N43 1000.0 50.0 129.83 10 114.6
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Table 7. Cont.

Pipe
Node

Diameter (mm) Length (m) Impedance (s/m2) Year Used (year) CHW(t)
From To

P10 N42 N2 900.0 3660.0 160.29 10 113.5
P11 N41 N42 900.0 60.0 160.29 10 113.5
P12 N42 N44 1000.0 60.0 129.83 10 114.6
P13 N40 N42 900.0 800.0 160.29 10 113.5
P14 N37 N41 1450.0 3140.0 61.75 0 130.0
P15 N38 N43 1150.0 3140.0 98.17 0 130.0
P16 N39 N44 1650.0 3140.0 47.69 0 130.0
P17 N38 N36 900.0 60.0 160.29 10 113.5
P18 N38 N39 1000.0 60.0 129.83 10 114.6
P19 N36 N40 800.0 2300.0 202.87 10 112.8
P20 N38 N37 900.0 60.0 160.29 10 113.5
P21 N35 N38 1150.0 4050.0 98.17 0 130.0
P22 N36 N37 900.0 60.0 160.29 10 113.5
P23 N33 N36 800.0 4050.0 202.87 10 112.8
P24 N34 N37 1150.0 4050.0 98.17 0 130.0
P25 N33 N35 900.0 60.0 160.29 10 113.5
P26 N34 N35 900.0 60.0 160.29 10 113.5
P27 N25 N32 800.0 2150.0 202.87 10 112.8
P28 N32 N33 800.0 180.0 202.87 10 112.8
P29 N23 N34 1450.0 2980.0 61.75 0 130.0
P30 N25 N35 1450.0 2980.0 61.75 0 130.0
P31 N31 N30 1650.0 12,000.0 47.69 0 130.0
P32 N22 N24 950.0 670.0 143.86 10 114.0
P33 N29 N28 1000.0 60.0 129.83 10 114.6
P34 N30 N29 1650.0 13400.0 47.69 0 130.0
P35 N13 N11 900.0 80.0 160.29 10 113.5
P36 N11 N15 950.0 4290.0 143.86 5 120.5
P37 N12 N14 900.0 4290.0 160.29 5 115.7
P38 N13 N12 50.0 60.0 51,933.76 10 102.6
P39 N10 N11 970.0 2590.0 137.99 5 120.5
P40 N11 N12 50.0 60.0 51,933.76 10 102.6
P41 N6 N12 900.0 2960.0 160.29 5 115.7
P42 N7 N13 1150.0 2960.0 98.17 0 130.0
P43 N9 N8 1150.0 2280.0 98.17 0 130.0
P44 N8 N10 950.0 370.0 143.86 5 120.5
P45 N8 N7 1000.0 90.0 129.83 0 130.0
P46 N6 N7 50.0 60.0 51,933.76 10 102.6
P47 N5 N6 900.0 1610.0 160.29 5 115.7
P48 N6 N8 50.0 60.0 51,933.76 10 102.6
P49 N3 N5 950.0 1350.0 143.86 5 120.5
P50 N4 N8 50.0 2960.0 51,933.76 10 102.6
P51 N47 N3 950.0 6530.0 143.86 5 120.5
P52 N3 N4 900.0 60.0 160.29 10 113.5
P53 N48 N47 950.0 230.0 143.86 5 120.5
P54 N48 N4 950.0 7200.0 143.86 5 120.5
P55 N27 N26 1000.0 60.0 129.83 10 114.6
P56 N29 N27 1150.0 3200.0 98.17 0 130.0
P57 N26 N25 1450.0 4300.0 61.75 0 130.0
P58 N28 N26 1150.0 3200.0 98.17 0 130.0
P59 N22 N23 800.0 80.0 202.87 10 112.8
P60 N23 N25 750.0 90.0 230.82 0 130.0
P61 N18 N23 950.0 2050.0 143.86 5 120.5
P62 N21 N22 800.0 2380.0 202.87 10 112.8
P63 N20 N23 1150.0 3050.0 98.17 0 130.0
P64 N19 N21 50.0 670.0 51,933.76 5 105.8
P65 N18 N19 50.0 60.0 51,933.76 10 102.6
P66 N19 N20 50.0 60.0 51,933.76 10 102.6
P67 N17 N19 800.0 1830.0 202.87 10 112.8
P68 N18 N20 900.0 60.0 160.29 10 113.5
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Table 7. Cont.

Pipe
Node

Diameter (mm) Length (m) Impedance (s/m2) Year Used (year) CHW(t)
From To

P69 N14 N17 800.0 1950.0 202.87 10 112.8
P70 N15 N18 950.0 3780.0 143.86 5 120.5
P71 N16 N14 50.0 60.0 51,933.76 5 105.8
P72 N16 N15 900.0 60.0 160.29 10 113.5
P73 N13 N16 1150.0 4290.0 98.17 0 130.0
P74 N14 N15 50.0 60.0 51,933.76 5 105.8Water 2019, 11, 1154 21 of 28 
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N1 was the first reservoir with a constant-head of 138.9 m, and the second reservoir N2 had a
constant-head of 91.4 m. The inflow rates at nodes N9 and N31 were both 1620.33 L/s. The consumption
rates at nodes N10, N14, N17, N21, N25, N30, N32, N37, N45, N46, and N47 were respectively 23.15,
17.36, 162.04, 74.07, 104.17, 12.73, 92.59, 138.88, 254.63, 196.76, and 16.2 L/s. Three leaks were separately
located at different pipes. Leak L1 was at the middle of P19 and was 1150 m away from N36. Leak L2
was located at P32, 0 m away from N22, implying that leak L2 occurred exactly at N22. Leak L3 was
960 m away from N12 and was located at P41. The CdLAL values for L1, L2, and L3 were respectively
2.00 × 10−4, 1.00 × 10−4, and 1.20 × 10−4 m2. In addition, QLs was 2.0, 1.0, and 1.5 L/s for L1, L2, and
L3, respectively. Two partial blockages, B1 and B2, were respectively situated at P23 and P39. B1 was
200 m away from N33 and blocked 20% of the cross-sectional area of P23, while B2 was 600 m away
from N10 and blocked 15% of the cross-sectional area of P39. Hence, the CdBAB values of B1 and B2
were 4.0 × 10−1 m2 and 6.0 × 10−1 m2, respectively. Moreover, two distributed deterioration reaches,
D1 and D2, occurred at P62 and P67, respectively. D1 was located at P62, 400 m away from N22, while
D2 was located at P67, 600 m away from N19. The length, wave speed, impedance, and cross-sectional
area of D1 were respectively 40 m, 800 m/s, 163.2 s/m2, and 0.50 m2, while those of D2 were 30 m,
600 m/s, 122.4 s/m2, and 0.50 m2. The properties of the two deterioration reaches are shown in Figure 6
as well. The outflow node N17 was considered to be the transient operation and data collection point
for pipe network B. The ∆t was also selected to be 0.01 s. Thus, the initial ∆x was also considered to be
10 m for the intact pipe reach and was further altered with different wave speeds in the deterioration
reach. Because the WDN scale was large and complicated, the transient wave may have taken more
time to arrive at the fault points/parts. The total simulation time increased to 60 s. A total of 6001 data
points should be collected and used in a complete simulation. Two different cases with different data
collection issues were considered to test the reliability of the proposed approach for fault detection in
a large-scale WDN. NP was chosen to be 50, and Miter was updated to 20,000 for possible enormous
iterations. The transient excitation period was chosen as 5 or 10 s for the simulation of the complete
closure of the valve.

5.2. Case Description and Error Criteria

Three cases were selected to test the capability of PEOS in fault detection in a complex pipe
network such as pipe network B, considering the effects of limited observations, measurement errors,
and inappropriate transient operation. Case 1 used less data, with a low frequency of 0.1 s (i.e., 10%
of the original sampling frequency) to represent instrument limitations in the field survey, and thus
601 data points were collected and used in the simulation of case 1. In case 2, measurement errors
were added to the 601 low-frequency data points to depict the uncertainty in data collection. Notice
that the white noise ε was normally distributed, with a zero mean and a standard deviation of 0.01
m, which was generated as a random measurement error that was added to each data point in case 2.
The observation heads with errors were defined as

Ho
εi j = Ho

i j + ε. (15)

Case 3 was designed under the same sampling frequency as case 1, but the transient operation
time was extended to 10 s to address the effects of an inappropriate transient operation. There were
601 data points collected after 10 s of transient operation that were used in the simulations of case 3.

In order to evaluate the effects of limited observations and measurement errors on the results
predicted by the proposed approach, two error criteria, the standard error of the estimate (SEE) and
mean error (ME), were considered. The SEE is a measure of the accuracy of predictions, defined
as the square root of the sum of squared errors between the observed and predicted heads divided
by the number of degrees of freedom, which equals the number of observed data points minus the
number of unknowns. The criterion ME is the average of the sum of errors between the observed and
simulated heads.
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5.3. Results and Error Analysis

The steady-state hydraulics of pipe network B were predicted by PNSOS in 309 s, and the transient
event was then generated by closing the valve at N17. The transient head distributions for cases 1–3
were therefore measured at N17. Table 8 shows the results of fault detection for cases 1–3. In case 1, the
information about deterioration reaches D1 and D2 was accurately determined with its corresponding
parameters. The locations of three leaks and two blockages were also precisely detected by PEOS. It is
noteworthy that leak L2 at node N22 was isolated by the proposed approach, indicating that PEOS was
capable of handling the case of pipe junction leakage. In case 1, the E between the actual CdLALs/CdBAB
values and the predicted ones was insignificant. Table 9 shows the values of the ME and SEE, which for
case 1 were 3.41 × 10−6 m and 1.27 × 10−4 m, respectively. The results denote that the predicted heads
were not affected by the use of limited observations. The results for case 1 and the small ME and SEE
values indicate that PEOS had the potential to deliver moderately good results in a field survey even
when only a few observations were available. The success of using fewer measurements indicates that
PEOS may not be restricted by instrument limitations. In addition, the data measurement period can
therefore be reduced, and the system impact due to a transient event may be slight while using PEOS.

Table 8 shows that PEOS provided relatively good results for deterioration detection in case 2.
The locations of the deterioration segments, determined at 390 m for P62 and 610 m for P67, deviated
slightly from the actual ones, which were instead located at 400 m for P62 and 600 m for P67. The lengths
of D1 and D2 were accurately determined. The impedances for D1 and D2 were respectively estimated
as 162.0 and 121.5 s/m2, with corresponding wave speeds of 794.3 and 595.8 m/s. For leak and blockage
detection in case 2, the predicted locations of three leaks and two blockages were close to the real
locations, implying that the measurement errors may not have affected location detection. There were
errors in the predictions of CdLAL and CdBAB in case 2. The relative differences between the predicted
CdLAL values and the actual ones were about 6%, 2%, and 5.83% for L1, L2, and L3, respectively.
The relative differences between the determined CdBAB values and the real ones were about 5.25% for
B1 and 4.17% for B2. The results showed that the predicted CdLAL values and CdBAB may have been
more sensitive than location to measurement errors. This was due to the fact that the OFVs used in
PEOS for fault detection were directly related to the head difference (i.e., Equation (14)), which may
have been directly influenced by the change in leak area and blockage area. The MEs and SEEs for
case 2 are listed in Table 9 and were respectively 1.73 × 10−4 m and 6.35 × 10−2 m, which were both two
orders larger than those of case 1. Such a result indicates that measurement errors may have affected
accuracy in determining the leak area and blockage area. Thus, data uncertainty should be of concern
as an important issue in fault detection in a large-scale pipe network or in future field applications.

In case 3, leaks, blockages, and deterioration segments were also accurately determined by PEOS,
with its associated parameters listed in Table 8. The locations of various faults were precisely detected
by PEOS. The sizes of leaks and blockages were slightly overestimated compared to case 1, with the
largest relative difference, 2.5%, for L3. The values for the ME and SEE for case 3 were respectively
3.29 × 10−6 m and 1.12 × 10−4 m, as shown in Table 9. The results indicate that the predicted heads
were not affected, while the transient operation was inadequate. Note that the concept of ITA is to
minimize errors between the measured and calculated system state variables. Measurements with an
unsuitable transient operation still work well based on the objective function of ITA. The results of case
3 reveal that PEOS can provide good predictions when using different transient operation durations.
However, a rapid transient operation is recommended, because it produces large system response data,
thus improving the performance of the ITA [31].
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Table 8. The optimal fault information of pipe network B predicted by PEOS for three cases.

Case
Leak Blockage Deterioration

No. Lp LL (m) CdLAL (m2) E (%) No. BP BL (m) CdBAB (m2) E (%) No. DP DL (m) LD (m) aD (m/s) Bim
D (s/m2)

Actual
L1 19 1150 2.00 × 10−4 - B1 23 200 4.00 × 10−1 - D1 62 400 40 800 163.2
L2 32 0 1.00 × 10−4 - B2 39 600 6.00 × 10−1 - D2 67 600 30 600 122.4
L3 41 960 1.20 × 10−4 - - - -

Case 1
L1 19 1150 1.98 × 10−4 1.00 B1 23 190 3.98 × 10−1 0.50 D1 62 400 40 799.2 163.0
L2 32 0 1.01 × 10−4 1.00 B2 39 600 6.04 × 10−1 0.67 D2 67 600 30 603.1 123.0
L3 41 950 1.18 × 10−4 1.67 - - -

case 2
L1 19 1160 1.88 × 10−4 6.00 B1 23 200 3.79 × 10−1 5.25 D1 62 390 40 794.3 162.0
L2 32 0 0.98 × 10−4 2.00 B2 39 610 5.75 × 10−1 4.17 D2 67 610 30 595.8 121.5
L3 41 950 1.11 × 10−4 5.83 - -

Case 3
L1 19 1150 1.96 × 10−4 2.00 B1 23 190 3.94 × 10−4 1.50 D1 62 400 40 798.5 162.9
L2 32 0 0.99 × 10−4 1.00 B2 39 600 6.07 × 10−4 1.16 D2 67 600 30 598.2 122.1
L3 41 950 1.17 × 10−4 2.50 - - -

Note: E = relative difference between the predicted CdLAL/CdBAB and the actual one.

Table 9. The prediction errors for three cases. ME: mean error; SEE: standard error of the estimate.

Case
Prediction Errors

ME (m) SEE (m)

1 3.41 × 10−6 1.27 × 10−4

2 1.73 × 10−4 6.35 × 10−2

3 3.29 × 10−6 1.12 × 10−4
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6. Conclusions

This paper demonstrates an inverse transient-based heuristic optimization approach called PEOS
for pipe examination in a pipeline or pipe network system. The application of PEOS was verified
by two experimental RPV systems in the literature, and PEOS was further applied to identify fault
information in synthetic pipe networks. PEOS was used to detect faults in an experimental pipeline
(carried out at Imperial College London) and in a pipeline at the Water Engineering Laboratory at
the University of Perugia. The head distributions predicted by PEOS agreed well with those from
the experiments reported in the literature. The leak and blockage information in both systems was
accurately determined by the proposed approach. The results indicated that PEOS provided good
predictions in fault detection in a real pipeline system.

The proposed approach was further compared to three evolutionary-based algorithms in fault
detection in a synthetic benchmark pipe network. Temporal head distribution and fault information
were accurately predicted by PEOS and agreed well with the actual ones, even when using only 10
initial input organisms. PEOS on average took about 50.6 min and 1382 iterations to obtain the optimal
results, which is significantly faster than other algorithms. The results indicated that the OOA made the
proposed approach avoid most unnecessary calculations of incorrect solutions and quickly converge to
the optimal result via three states of SOS. In other words, PEOS not only provided predictions with
better accuracy and robustness, but also performed better at computational efficiency. The proposed
approach with these two advantages obviously outperformed other algorithms.

To illustrate the applicability of PEOS in fault detection in real-world problems, a large-scale
WDN with three data collection statuses was considered as a field study to represent practical issues.
The results indicated that PEOS performed well in solving the fault detection problem, considering
the effects of limited observations and measurement errors in a complicated WDN. The effect of
limited observations on the estimated result was not significant, but the measurement errors induced
some inaccuracy. When the observations contained measurement errors, the predicted CdLAL and
CdBAB had slight deviations compared to the actual ones, indicating that PEOS could achieve good
results if the measurements were well collected. Moreover, the results revealed that inappropriate
transient operation may not have affected the performance of PEOS in predicting head distribution
and fault information.

In summary, we demonstrated via the simulations that PEOS has the ability to simultaneously
detect various faults in a pipeline and pipe networks and can outperform other existing
evolutionary-based algorithms. Another superiority of PEOS over competing algorithms is the
small number of parameters that must be tuned. Fault information can be precisely predicted even
when observations are collected with issues. The cases presented in this study were for relatively
simple pipe system configurations and operations. Extending the current work from numerical
simulations to solving the problems of real-world complicated WDNs would be an interesting direction
for further research.

Supplementary Materials: The details of the SOS algorithm are available online at http://www.mdpi.com/2073-
4441/11/6/1154/s1.
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5. Puust, R.; Kapelan, Z.; Savić, D.A.; Koppel, T. A review of methods for leakage management in pipe networks.
Urban Water J. 2010, 7, 25–45. [CrossRef]

6. Xin, K.; Li, F.; Tao, T.; Xiang, N.; Yin, Z. Water losses investigation and evaluation in water distribution
system—The case of sa city in china. Urban Water J. 2015, 12, 430–439. [CrossRef]

7. Al-Khomairi, A. Leak detection in long pipelines using the least squares method. J. Hydraul. Res. 2008, 46,
392–401. [CrossRef]

8. Shamloo, H.; Haghighi, A. Optimum leak detection and calibration of pipe networks by inverse transient
analysis. J. Hydraul. Res. 2010, 48, 371–376. [CrossRef]

9. Huang, Y.C.; Lin, C.C.; Yeh, H.D. An optimization approach to leak detection in pipe networks using
simulated annealing. Water Resour. Manag. 2015, 29, 4185–4201. [CrossRef]

10. Wang, X.J.; Lambert, M.F.; Simpson, A.R. Detection and location of a partial blockage in a pipeline using
damping of fluid transients. J. Water Resour. Plan. Manag. ASCE 2005, 131, 244–249. [CrossRef]

11. Tran, D.H.; Perera, B.J.C.; Ng, A.W.M. Hydraulic deterioration models for storm-water drainage pipes:
Ordered probit versus probabilistic neural network. J. Comput. Civil Eng. 2010, 24, 140–150. [CrossRef]

12. Vreeburg, J.H.G.; Boxall, J.B. Discolouration in potable water distribution systems: A review. Water Res. 2007,
41, 519–529. [CrossRef] [PubMed]

13. Juliano, T.M.; Meegoda, J.N.; Watts, D.J. Acoustic emission leak detection on a metal pipeline buried in sandy
soil. J. Pipeline Syst. Eng. Pract. 2013, 4, 149–155. [CrossRef]

14. Martini, A.; Troncossi, M.; Rivola, A. Vibroacoustic measurements for detecting water leaks in buried
small-diameter plastic pipes. J. Pipeline Syst. Eng. Pract. 2017, 8, 04017022. [CrossRef]

15. Martini, A.; Rivola, A.; Troncossi, M. Autocorrelation Analysis of Vibro-Acoustic Signals Measured in a Test
Field for Water Leak Detection. Appl. Sci. 2018, 8, 2450. [CrossRef]

16. Yazdekhasti, S.; Piratla, K.R.; Atamturktur, S.; Khan, A. Experimental evaluation of a vibration-based leak
detection technique for water pipelines. Struct. Infrastruct. Eng. 2017, 14, 46–55. [CrossRef]

17. Wang, X.; Lennox, B.; Turner, J.; Lewis, K.; Ding, Z.; Short, G.; Dawson, K. Blockage detection in long lengths
of pipeline using a new acoustic method. In Proceedings of the 16th International Congress on Sound and
Vibration, Krakow, Poland, 5–9 July 2009.

18. Lile, N.L.T.; Jaafar, M.H.M.; Roslan, M.R.; Azmi Muhamad, M.S. Blockage detection in circular pipe using
vibration analysis. Int. J. Adv. Sci. Eng. Inf. Technol. 2012, 2, 54–57. [CrossRef]

19. Lile, N.L.T.; Hadi, H.; Roslan, M.R. Vibration Analysis of Blocked Circular Pipe Flow. Appl. Mech. Mater.
2012, 165, 197–201. [CrossRef]

20. Duan, W.; Kirby, R.; Prisutov, J.; Horoshenkov, K.V. On the use of power reflection ratio and phase change to
determine the geometry of a blockage in a pipe. Appl. Acoust. 2015, 87, 190–197. [CrossRef]

21. Holley, M.; Diaz, R.; Giovanniello, M. Acoustic Monitoring of Prestressed Concrete Cylinder Pipe: A Case
History. In Proceedings of the Pipeline Division Specialty conference 2001, San Diego, CA, USA, 15–18 July
2001.

22. Delgadillo, H.H.; Loendersloot, R.; Akkerman, R.; Yntema, D. Development of an inline water mains
inspection technology. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Tours, France,
18–21 September 2016.

23. Wang, X.H.; Jiao, Y.L.; Yang, J.; Niu, Y.C. The acoustic emission detection and localisation technology of the
pipeline crack. Int. J. Sen. Net. 2016, 20, 111–118. [CrossRef]

24. Li, R.; Huang, H.; Xin, K.; Tao, T. A review of methods for burst/leakage detection and location in water
distribution systems. Water Sci. Technol. Water Supply 2015, 15, 429–441. [CrossRef]

25. Chaudhry, M.H. Applied Hydraulic Transients, 3th ed.; Springer: New York, NY, USA, 2014.
26. Datta, S.; Sarkar, S. A review on different pipeline fault detection methods. J. Loss Prev. Process Ind. 2016, 41,

97–106. [CrossRef]

http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001222
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000729
http://dx.doi.org/10.1016/j.jher.2009.02.003
http://dx.doi.org/10.1080/15730621003610878
http://dx.doi.org/10.1080/1573062X.2014.916313
http://dx.doi.org/10.3826/jhr.2008.3191
http://dx.doi.org/10.1080/00221681003726304
http://dx.doi.org/10.1007/s11269-015-1053-4
http://dx.doi.org/10.1061/(ASCE)0733-9496(2005)131:3(244)
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000020
http://dx.doi.org/10.1016/j.watres.2006.09.028
http://www.ncbi.nlm.nih.gov/pubmed/17174377
http://dx.doi.org/10.1061/(ASCE)PS.1949-1204.0000134
http://dx.doi.org/10.1061/(ASCE)PS.1949-1204.0000287
http://dx.doi.org/10.3390/app8122450
http://dx.doi.org/10.1080/15732479.2017.1327544
http://dx.doi.org/10.18517/ijaseit.2.3.197
http://dx.doi.org/10.4028/www.scientific.net/AMM.165.197
http://dx.doi.org/10.1016/j.apacoust.2014.07.002
http://dx.doi.org/10.1504/IJSNET.2016.074700
http://dx.doi.org/10.2166/ws.2014.131
http://dx.doi.org/10.1016/j.jlp.2016.03.010


Water 2019, 11, 1154 24 of 25

27. Lee, P.J.; Duan, H.F.; Tuck, J.; Ghidaoui, M. Numerical and experimental study on the effect of signal
bandwidth on pipe assessment using fluid transients. J. Hydraul. Eng. ASCE 2015, 141, 04014074. [CrossRef]

28. Sheikholeslami, R.; Talatahari, S. Developed swarm optimizer: A new method for sizing optimization of
water distribution systems. J. Comput. Civil Eng. 2016, 30, 04016005. [CrossRef]

29. Vítkovský, J.P.; Simpson, A.R.; Lambert, M.F. Leak detection and calibration using transients and genetic
algorithms. J. Water Resour. Plan. Manag. ASCE 2000, 126, 262–265. [CrossRef]

30. Liggett, J.A.; Chen, L.C. Inverse transient analysis in pipe networks. J. Hydraul. Eng. ASCE 1994, 120, 934–955.
[CrossRef]

31. Vítkovský, J.P.; Lambert, M.F.; Simpson, A.R.; Liggett, J.A. Experimental observation and analysis of inverse
transients for pipeline leak detection. J. Water Resour. Plan. Manag. ASCE 2007, 133, 519–530. [CrossRef]

32. Jung, B.S.; Karney, B.W. Systematic exploration of pipeline network calibration using transients. J. Hydraul.
Res. 2008, 46, 129–137. [CrossRef]

33. Haghighi, A.; Ramos, H.M. Detection of leakage freshwater and friction factor calibration in drinking
networks using central force optimization. Water Resour. Manag. 2012, 26, 2347–2363. [CrossRef]

34. Covelli, C.; Cozzolino, L.; Cimorelli, L.; Della Morte, R.; Pianese, D. Optimal location and setting of prvs in
wds for leakage minimization. Water Resour. Manag. 2016, 30, 1803–1817. [CrossRef]

35. Meniconi, S.; Duan, H.F.; Lee, P.J.; Brunone, B.; Ghidaoui, M.S.; Ferrante, M. Experimental investigation
of coupled frequency and time-domain transient test-based techniques for partial blockage detection in
pipelines. J. Hydraul. Eng. ASCE 2013, 139, 1033–1040. [CrossRef]

36. Mohapatra, P.K.; Chaudhry, M.H.; Kassem, A.A.; Moloo, J. Detection of partial blockage in single pipelines.
J. Hydraul. Eng. ASCE 2006, 132, 200–206. [CrossRef]

37. Lee, P.J.; Vítkovský, J.P.; Lambert, M.F.; Simpson, A.R.; Liggett, J.A. Discrete blockage detection in pipelines
using the frequency response diagram: Numerical study. J. Hydraul. Eng. ASCE 2008, 134, 658–663.
[CrossRef]

38. Duan, H.F.; Lee, P.J.; Ghidaoui, M. Transient wave-blockage interaction in pressurized water pipelines.
Procedia Eng. 2014, 70, 573–582. [CrossRef]

39. Gong, J.; Lambert, M.F.; Simpson, A.R.; Zecchin, A.C. Detection of localized deterioration distributed along
single pipelines by reconstructive moc analysis. J. Hydraul. Eng. ASCE 2014, 140, 190–198. [CrossRef]

40. Stephens, M.L.; Simpson, A.R.; Lambert, M.F. Internal wall condition assessment for water pipelines using
inverse transient analysis. In Proceedings of the 10th Annual Symposium on Water Distribution Systems
Analysis, American Society of Civil Engineers, Kruger National Park, South Africa, 17–20 August 2008.

41. Stephens, M.L.; Lambert, M.F.; Simpson, A.R. Determining the internal wall condition of a water pipeline in
the field using an inverse transient. J. Hydraul. Eng. ASCE 2013, 139, 310–324. [CrossRef]

42. Hachem, F.E.; Schleiss, A.J. Detection of local wall stiffness drop in steel-lined pressure tunnels and shafts of
hydroelectric power plants using steep pressure wave excitation and wavelet decomposition. J. Hydraul.
Eng. ASCE 2012, 138, 35–45. [CrossRef]

43. Gong, J.; Simpson, A.R.; Lambert, M.F.; Zecchin, A.C.; Kim, Y.i.; Tijsseling, A.S. Detection of distributed
deterioration in single pipes using transient reflections. J. Pipeline Syst. Eng. Pract. 2013, 4, 32–40. [CrossRef]

44. Gong, J.; Lambert, M.F.; Nguyen, S.T.N.; Zecchin, A.C.; Simpson, A.R. Detecting thinner-walled pipe sections
using a spark transient pressure wave generator. J. Hydraul. Eng. ASCE 2018, 144, 06017027. [CrossRef]

45. Cobacho, R.; Arregui, F.; Soriano, J.; Cabrera, E. Including leakage in network models: An application to
calibrate leak valves in EPANET. J. Water Supply Res. Technol. Aqua 2015, 64, 130–138. [CrossRef]

46. Yeh, H.D.; Lin, Y.C. Pipe network system analysis using simulated annealing. J. Water Supply Res. Technol.
Aqua 2008, 57, 317–327. [CrossRef]

47. Mays, L.W. Water Supply Systems Security; McGraw-Hill: New York, NY, USA, 2004.
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