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Abstract Nowadays, the use of energy dissipating devices
to improve the seismic response of RC structures consti-
tutes a mature branch of the innovative procedures in earth-
quake engineering. However, even though the benefits de-
rived from this technique are well known and widely ac-
cepted, the numerical methods for the simulation of the non-
linear seismic response of RC structures with passive con-
trol devices is a field in which new developments are con-
tinuously preformed both in computational mechanics and
earthquake engineering. In this work, a state of the art of
the advanced models for the numerical simulation of the
nonlinear dynamic response of RC structures with passive
energy dissipating devices subjected to seismic loading is
made. The most commonly used passive energy dissipating
devices are described, together with their dissipative mecha-
nisms as well as with the numerical procedures used in mod-
eling RC structures provided with such devices. The most
important approaches for the formulation of beam models
for RC structures are reviewed, with emphasis on the theory
and numerics of formulations that consider both geometric
and constitutive sources on nonlinearity. In the same man-
ner, a more complete treatment is given to the constitutive
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nonlinearity in the context of fiber-like approaches includ-
ing the corresponding cross sectional analysis. Special at-
tention is paid to the use of damage indices able of estimat-
ing the remaining load carrying capacity of structures after a
seismic action. Finally, nonlinear constitutive and geometric
formulations for RC beam elements are examined, together
with energy dissipating devices formulated as simpler beams
with adequate constitutive laws. Numerical examples allow
to illustrate the capacities of the presented formulations.

1 Introduction

Conventional seismic design practice permits designing re-
inforced concrete (RC) structures for forces lower than those
expected from the elastic response on the premise that the
structural design assures significant energy dissipation po-
tential and, therefore, the survival of the building when sub-
jected to severe earthquakes [96]. Normally, energy dissi-
pation during seismic actions occurs in critical zones of the
structure specially designed to admit large ductility demands
[23]. Frequently, the dissipative zones are located near the
beam-column joints and, due to cyclic inelastic incursions
during earthquakes, several structural members can suffer a
great amount of damage with irreversible degradation of the
mechanical properties of the materials, cracking and yield-
ing of the steel reinforcements etc. For a complete survey
about reinforced concrete structures subjected to seismic ac-
tions, see Fardis [78].

Even if a limited level of structural damage dissipates
part of the energy induced by the earthquake and uncou-
ples the dynamic response from resonance offering a certain
level of protection against seismic actions [164], the large
displacements required for developing hysteretic cycles in
dissipative zones can cause severe damage to non structural
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components. Moreover, these deformations can produce ir-
reparable damage in those members; this situation is gen-
erally considered economically acceptable if life safety and
collapse prevention are achieved.

In the last decades, new concepts for the design of build-
ings, based on the manipulation of the energy dissipation,
have improved the seismic behavior of the structures provid-
ing higher levels of safety for the occupants, the buildings
and the nonstructural components. The new techniques con-
sist of adding devices to the buildings with the main objec-
tive of dissipating the energy demand imposed by the earth-
quake alleviating the ductility demand on primary structural
elements, such as beams, columns or walls and decreasing
the acceleration response [96, 223]. The devices can be in-
stalled in new or in existing structures and can be used in
seismic design or rehabilitation. The purpose is to control
the seismic response of the buildings by means of a set of
dissipating devices which constitutes the control system, ad-
equately located in the structure.

In general, control systems can be classified in four major
groups:

(i) Active control systems. These systems work measur-
ing, by means of sensors, the external excitation and/or
the structural response. Based on these data and using
algorithms, the control forces needed to improve the
seismic response of the building are calculated. Con-
trol forces are applied to the structure by means of ac-
tuators, which take the energy from an external supply
(see [9, 27, 28, 135, 226] among others). The simula-
tion of the linear and nonlinear response of the con-
trolled structures is usually performed by discretizing
the equations of motion starting from their state space
formulation [140].

(ii) Passive control systems. The passive control systems
mostly used in reducing the seismic response of build-
ings are base isolation and energy dissipating devices
(EDD). In this case, the EDDs localize and concentrate
the nonlinear phenomena of the structure and thus the
damage in the devices without the need of an external
energy supply [97, 223, 232].

(iii) Semi active systems. In this case the control algorithm
changes some of the properties of the control devices
in order to obtain a better seismic performance of the
structure. In this category of control systems control
actuators do not add energy directly to the structure and
the devices can be seen as controllable passive devices
[153, 224, 228, 244].

(iv) Hybrid systems. This systems are typically defined as a
combination of different active and/or passive systems.
A comparative study of the response of structures for
different control systems can be reviewed in [30, 190].
A rather brief state of the art review about theory and
practice using control techniques in civil engineering
structures can be found in Ref. [224].

Today, the passive control of structures is a well understood
technique and its use is widely accepted by the engineering
community even in the case when passive systems are not
able to adapt their behavior to the seismic response of the
building [226].

Base isolation uncouples the structure from the soil in-
troducing flexible supports between foundations and the
rest of the structure [204]. The isolation system transforms
the building into a rigid body moving over flexible sup-
ports, shifting thus the fundamental period of the struc-
ture and enhancing the energy dissipating characteristics of
the isolation-superstructure system [2, 203]. A detailed pre-
sentation of theory, numerical analysis and of the practical
applications of base isolation systems can be reviewed in
[121]. More specific aspects of this technique, such as an-
alytical models for bearings, linear equivalent models for
practical design of structures, etc. can be consulted in [3,
46, 122, 123].

EDDs, also called supplemental dampers, are devices lo-
cated throughout the structure to absorb and dissipate an im-
portant part of the energy input induced in the structure by
earthquakes. They are applicable to a wider range of struc-
tures than base isolation but the benefits obtained in reduc-
ing the seismic response of the structure are usually less sig-
nificant. Many practical application of EDDs to real struc-
tures are summarized by Aiken in Ref. [2].

The effectiveness of the implementation of EDDs in RC
structures can be analyzed starting from the energy balance
equation as [6]:

EI = EK + ES + ED + Eπ, (1)

where EI is the absolute earthquake energy input, EK is the
absolute kinetic energy, ES is the elastic strain energy, ED is
the energy dissipation due to inelastic behavior in the struc-
ture (including viscous effects) and Eπ is the contribution
of energy dissipation due to the addition of EDDs. Using
the assumption that the term Eπ has no influence on EI , it
is possible to see from (1) that increments of the contribution
of ED + Eπ implies reductions of EK + ES and, therefore,
lower displacements and velocities are obtained when extra
energy dissipation is provided [2, 223]. The main objective
of designers when applying passive control in improving the
seismic behavior of RC structures is defining appropriately
the properties of the EDDs in such a way that the inelastic
demand on primary structural members ED be transferred
to the term Eπ . After a sever earthquake, EDDs can be re-
placed by new ones if necessary.

EDDs can be classified according to the nature of their
dissipative mechanism into displacement dependent, e.g.
friction, metallic and extrusion devices, velocity dependent
e.g. viscous, mixed e.g. viscoelastic and others such as tuned
liquid and tuned mass dampers; each of these types is de-
scribed in Sect. 2 of this article. A great amount of works
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comparing the ability of different passive EDDs in control-
ling the seismic response of structures is available in the
literature; for example, the responses of frame structures
equipped with viscoelastic and viscous devices are com-
pared in [85]; in Ref. [120] an approximated method is used
to carry out a comparative study considering metallic and
viscous devices. Guidelines and methods for testing and
characterizing different types of EDDs can be consulted in
[97, 98, 195].

Other points of view are admissible for considering the
incorporation of passive control in RC structures; for exam-
ple, Aiken presents in Ref. [2] the contribution of the extra
energy dissipation due to EDDs as an equivalent damping
added to the linear bare structure and displacement reduc-
tion factors are given as a function of the damping ratio
added to buildings by means of the EDDs. A critical re-
view of the reduction factors and design force levels can
be consulted in [136]. Connor et al. [60] propose a method
for a preliminary design of passively controlled buildings
under the hypothesis that the structure is composed of two
systems, the bare frame and the dissipative one, that work
together to satisfy a design criterium. In Ref. [87] the op-
timal control theory is used to design supplemental vis-
cous and viscoelastic passive damping systems in seismic
control. In Refs. [137, 138] Lin and Copra study the ac-
curacy in estimating the dynamic response of asymmetric
one-story buildings equipped with EDDs, when the dissipat-
ing devices are replaced by their energetic equivalent linear
viscous dampers; a correction factor is provided estimating
the maximum forces in the EDDs. Other procedures for the
analysis and design of structures with EDDs can be con-
sulted in [57].

Today, only a few countries have codes to design RC
buildings with EDDs; one of them is United States, where
there are several codes that provide procedures and require-
ments for design of passive energy dissipating devices. Par-
ticularly, the US Federal Emergency Management Agency
(FEMA) proposes code provisions and standards along with
other references pertaining to the design of EDDs devices
for use in buildings. The document includes Prestandard
and Commentary for the Seismic Rehabilitation of Buildings
(FEMA 356) [80] and NEHRP Recommended Provisions for
Seismic Regulations for New Buildings and Other Structures
(FEMA 368) [79], which covers the detailed design of EDDs
in an Appendix to Chap. 13.

As mentioned in Ref. [167], in the case of Europe ef-
forts have been focused in developing codes for base iso-
lation in some countries such as Italy or the Russian Fed-
eration. In the case of EDDs, the developments have been
limited to guidelines rather than codes or official standards.
The (draft) version of Eurocode 8 of the year 2003 (Ref. No:
prEN 1998-1:2003 E) [75] contains the Chapter 10 devoted
to Base isolation systems, but no guidelines or recommen-
dations are made for other kind of passive control.

In the case of Japan a fully review of the state of the art in
passive control of structures is given in [239], however, no
mentions are made in this work to available codes, standards
or guidelines for practitioners.

As it can be concluded from the existing codes, guide-
lines and technical literature, a great part of the design meth-
ods proposed for RC (or steel) structures are based on sup-
posing that the behavior of the bare structure remains in the
elastic range, concentrating the energy dissipation demands
on the control system. However, even though this assump-
tion can be useful for a preliminary design, experimental
and theoretical evidence show that inelastic behavior will
occur in the main structural elements during severe strong
motion as noted by Shen and Soong in Ref. [209]. There-
fore, these authors recommend to eliminate the assumption
of a linear structural response and propose a design method
based on the damage control. However, it is widely recog-
nized that nowadays it is possible to carry out nonlinear
time-history analysis, which can provide a most precise and
complete evaluation of the responde of structural systems
incorporating EDDs (see [26, 165, 235]), but it also requires
relatively large amounts of analysis expertise and computa-
tional time. It is also recognized that equivalent linear sta-
tic or dynamic procedures require the least amount of time
and computational effort, but they are not able to represent
the complexity of the nonlinear dynamic behavior of RC
structures. Regarding the most adequate kind of analysis for
simulating the response of RC building with dissipators, the
FEMA code recommends the use of a combination of ra-
tionality and admissible computational cost. The code de-
scribes four different types of analysis procedures: (1) linear
static; (2) linear dynamic; (3) nonlinear static; and (4) non-
linear dynamic analysis. Linear methods are based on force
reduction factors and can be applied subjected to limitations
specified in the code [232]; in other cases, nonlinear analysis
have to be carried out.

Independently of the type of analysis chosen, it is clear
that the nonlinear time history analysis has gained space
in the passive control of RC structures subjected to earth-
quakes; therefore, sophisticated numerical tools became
more necessary for both academics and practitioners. For
example, Lu presents in Ref. [142] a comparative study be-
tween numerical simulations and experimental tests carried
out on scaled RC structures. During the last decades, great
efforts have been done in developing numerical formulations
and their implementation in computer codes for simulating
the nonlinear dynamic response of RC structures; a recent
state of the art review for the case of concrete structures can
be found in Ref. [225]. The engineering community agrees
with the fact that the use of general fully three-dimensional
numerical technics, such as finite elements (FE) with suit-
able constitutive laws, constitute the most precise tools for
the simulation of the behavior of RC buildings subjected to
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earthquakes [110, 223, 227] or to other kind of loads [126].
However, usually the computing time required when using
full models of real structures make their application un-
practical. Several approaches have been developed to over-
come this difficulty; some authors propose the use of the
so called macro–elements, which provide simplified solu-
tions for the analysis of large scale problems [68, 70, 76].
Considering that most of the elements in RC buildings are
columns or beams, one dimensional formulations for struc-
tural elements, obtained throughout the reduction of spatial
dimensions by means of kinematic assumptions [7], appear
as a solution combining both numerical precision and rea-
sonable computational costs [163]. Experimental evidence
[38] shows that nonlinearity in beam elements can be for-
mulated in terms of cross sectional forces and/or moments
and displacements and/or curvatures, which is frequently
quoted in literature as plastic hinges models [59, 77]. Some
formulations of this type have been extended to take into
account geometric nonlinearities [222, 236, 237] allowing
to simulate the P–Δ effect, which occurs due to the changes
of configuration of the structure during the earthquake [49,
93, 242]. Several limitations have been reported to this kind
of models, specially for the modeling of RC structures with
softening behavior in the dynamic range [230]. A discussion
about topics such as step by step methods, path bifurcation,
overall stability, limit and deformation analysis in the con-
text of the plastic-hinges formulation for beam structures
can be consulted in Ref. [58]. An additional refinement is
obtained considering inhomogeneous distributions of mate-
rials on arbitrarily shaped beam cross sections [235]. Spe-
cific numerical models based on a secondary discretization
of the beam cross sections have been developed allowing
to include multiple materials. In this case, the constitutive
force-displacement and/or moment–curvature relationship
at cross sectional level is deduced by integrating the stress
field over selected points on the cross section. Therefore,
using this approach, the mechanical behavior of beams con-
stituted by complex combinations of materials, such as RC
beams, can be simulated [33, 94]. In general, the engineer-
ing community agrees with the fact that, although this mod-
els are more expensive in terms of computational cost than
the plastic-hinges ones, they allow to estimate more pre-
cisely the response nonlinear response of RC and other kind
of structures [69, 230]. Formulations of this kind consider-
ing both constitutive and geometric nonlinearity are rather
scarce [72]; moreover, most of the geometrically nonlinear
models for beams are limited to the elastic range of materi-
als, as it can be consulted, for example, in Refs. [104, 159,
212] and the treatment of constitutive nonlinear behavior
has been mainly restricted to plasticity [43, 92]. A theory
for the stress analysis of composite beams is presented in
Ref. [83], however, the formulation is only valid for mod-
erated rotations and the behavior of the materials remain in

the elastic range. Recently, Mata et al. [163, 164] have ex-
tended the geometrically exact formulation for beams due
to Reissner and Simo [192, 193, 212, 219, 220] but consid-
ering an arbitrary distribution of composite materials on the
cross sections for the static and dynamic cases.

From the numerical point of view, the nonlinear behav-
ior of EDDs has been usually described in a global sense
by means of force–displacement or moment-curvature re-
lationships [223] which intend to capture appropriately the
force/moment level and the energy dissipating capacity ex-
isting in the devices. That is, a rather simplified description
appears to be enough for the mechanical characterization of
EDDs, independently on the micro-mechanisms involved in
the energy dissipation or in the stress distribution of each of
their components [162].

The inclusion of EDDs in a software package for the seis-
mic analysis of RC structures is frequently done by means
of link elements equipped with the mentioned nonlinear re-
lationships [223]. In this way, the link elements connect the
different points of the structural model which represent the
anchorage points of the EDDs in the real buildings. During
the seismic event, the relative displacement and/or rotation
between the anchorage points activates the dissipative mech-
anisms of the devices [239].

Nowadays, there are several numerical codes available
for the study of the nonlinear seismic response of RC struc-
tures with EDDs. For example, a detailed presentation of
a computer program able to simulate the static and dynamic
(seismic) behavior of different types of buildings with EDDs
is presented in Ref. [235]. Other softwares such as those
described in Refs. [66, 67, 82] have incorporated differ-
ent kinds of inelastic analysis including beam element with
plastic–hinges and specific link elements for EDDs. A com-
parative study of the performance of different commercial
software packages for simulation the P–Δ effect in struc-
tures can be consulted in Ref. [205].

In this work, a state of the art review of the current non-
linear methods for the determination of the seismic response
of RC buildings equipped with EDDs is performed. The lay-
out of the article is as follows:

In Sect. 2 the most commonly used types of EDDs are de-
scribed, explaining their work mechanism, advantages, limi-
tations and the numerical models available for their incorpo-
ration in computational simulations. Section 3 is devoted to
the revision of the different approaches followed for simu-
lating the dynamic inelastic response of structures composed
by beam elements. Special attention is paid to the most ad-
vanced formulations, which can take into account both geo-
metric and constitutive sources of nonlinearity. A special
element for EDDs is described considering as beam ele-
ment without rotational degrees of freedom. Aspects such
as kinematics, strain and stress measures and consistent lin-
earization are also covered. Section 4 regards to the treat-
ment of constitutive laws for composite materials. A detailed
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Fig. 1 EDD’s location in buildings. (a): Diagonal elements. (b): Base
level elements. (c): Connecting elements

description of cross sectional analysis is presented. A brief
presentation of damage indices capable of estimate the re-
maining load carrying capacity of buildings is also given.
Section 6 is devoted to time stepping schemes including the
updating procedures for the kinematic variables. The dis-
cretization by means of the FE method and the numerical
implementation is explained in 7. Finally, in Sect. 8 some
numerical examples showing the ability of the described for-
mulations in simulating the dynamic inelastic response of
RC buildings with and without EDDs are provided.

2 EDD’s in RC Building Structures

EDDs are located in the structure to absorb and dissipate an
important part of the energy input induced in the structure by
earthquakes or other dynamic actions (e.g. hurricanes or ma-
chinery induced vibrations). Figures 1a–c, 2a–b show the lo-
cation of several types of energy dissipating devices. There
are a great number of available EDDs, a tentative classifica-
tion can be seen in Soong and Dargush [223]. In following,
five types are identified according to their working mecha-
nism:

2.1 Metallic Devices

In the case of metallic devices, energy dissipation depends
upon plastic deformation of metallic materials, such as mild
steel or aluminium [223]. A large set of possible geometries
have been used, which includes torsional beams, U-strips,

Fig. 2 EDD’s location in a bridge. (a): Longitudinal direction.
(b): Transversal direction

Fig. 3 Plastic devices. (a, b): ADAS devices, front and lateral views.
(c): Torsional beam

braced systems etc. As an example, Figs. 3a–b show the geo-
metric characteristics of X-shaped (ADAS) devices and 3c a
torsional beam.

A large set of mathematical models have been developed
for describing the force-displacement relationship of metal-
lic devices [241]. In any case, classical plasticity models can
provide good results [145, 215]. Specific design methods for
incorporating metallic dissipators in structures can be con-
sulted in [169]. An example of the effects of several types of
devices, including metallic ones, is presented in [154].
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Fig. 4 VED. (a): Device. (b): Location in a building

2.2 Visco Elastic Devices

Visco elastic dampers (VED) use polymeric materials which
dissipate energy when subjected to shear deformations.
Originally, applications for controlling vibration were fo-
cused on the aircraft and aerospace industry and more re-
cently on earthquake engineering. The main effects and ben-
efits are due to the fact that VDEs increases the global damp-
ing of the structures [122].

A typical VED is depicted in Fig. 4a; it consists of visco
elastic layers bounded with steel plates and its typical loca-
tion in a building is shown in 4b. Dissipation in the VED
layers reduces the relative motion between elements of the
structure.

In general, the shear stress-strain relationship is fre-
quency and temperature dependent as it can be consulted in
[162, 223]. A detailed study about the modeling of the dy-
namic properties of filled rubber is presented in [1]. Asano
et al. [18] carry out the experimental study of visco elas-
tic dampers and formulate an analytical model. Kojima and
Yoshihide [125] study the performance and durability of
high damping rubber bearings for earthquake protection.
Other analytical models for visco elastic materials can be
consulted in [102, 161]. Design recommendations for build-
ings incorporating VED can be consulted in [121, 223].

2.3 Friction Devices

Friction dampers (FD) dissipate energy throughout the fric-
tion that develops between two solid bodies sliding relative
each to the another. The force developed in the devices de-
pends on the friction coefficient between the materials and
on the normal force, according to the well known Coulomb’s

Fig. 5 FD. (a): Device. (b): Location on a typical building

law [223]. Several geometric choices have been proposed;
for example, in Fig. 5a a FD based on the relative motion of
two diagonal element enclosed by two steel plates is shown;
Fig. 5b shows the location of the devices in a typical frame.

The numerical modeling of their behavior is commonly
based on the use of bilinear hysteretic rules; however, more
complications can appear in the numerical study of the seis-
mic response of buildings with FDs. Aiken et al. [5] study
the seismic response of a nine-story steel frame with FDs
located in the cross-bracing system. Ryan and Chopra [202]
estimate the seismic displacement of friction pendulum iso-
lators based on time history responses obtained from nonlin-
ear analysis. Additional references can be consulted in the
same works.

2.4 Fluid Based Devices

Fluids can also be used as basic material in order to con-
trol the seismic response of flexible structures. The origi-
nal efforts have been oriented toward converting the appli-
cations developed for the military and heavy industry to the
civil engineering field. Several application of this kind of de-
vices have been focused on the control of vibrations derived
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Fig. 6 Typical VFD.
(a): Device based on a highly
compressible fluid. (b): Device
based on the flow of fluid
throughout orifices

from shock and ambient excitations. For example, the fluid
damper technology is described in a wide context in [130].

Viscous fluid dampers (VFD) dissipate energy when sub-
jected to a velocity input. Usually, dissipation occurs due to
the conversion of the mechanical work of a piston moving
in a highly viscous fluid, such as silicon gel, into heat. In
general, VFDs act forcing the fluid to pass throughout small
orifices by mean of a piston [223]. Larger viscosity values
imply a greater energy dissipation. Materials which exhibits
both frequency and temperature dependency are currently
used.

Several kinds of devices have been proposed as VFD; for
example, the behavior and effectiveness of viscous–damping
walls [169] in controlling wind-induced vibrations in multi-
story buildings is investigated in [245]. Other applications
combine base isolation systems with VFD for controlling
the lateral displacement of base isolated building. In this
case, the VFDs increase the damping of the isolation sys-
tem. Figure 1b shows several VFDs working in parallel with
the base isolation system.

Figure 6 show two typical longitudinal sections of VFDs.
Both consist of a stainless steel piston with an orifice head
and are filled with viscous liquid, such as silicon oil. One of
them has an accumulator while the other has a run-through
rod instead. The difference of pressure between each side of
the piston head results in the damping force, and the damp-
ing constant of the damper can be determined by adjusting
the configuration of the orifice of the piston head. The device
of Fig. 6a contains compressible silicone oil.

Practical applications of this kind of EDD can be re-
viewed in [234, 246]. Analytical and experimental studies to
evaluate a strategy for structural health monitoring of non-
linear viscous dampers are presented in [243]. An extensive

overview of the testing program for the viscous dampers
used in the retrofit of the Golden Gate Bridge is provided
in [4].

2.5 Extrusion Dissipators

A particular case of metallic devices are the extrusion dissi-
pators. The energy dissipation is produced by the rearrange-
ment of the crystalline red of special metals (such as lead)
due to the imposition of a deformation (extrusion) but main-
taining confined the dissipative nucleus of the device.

Figure 8a shows a typical extrusion device while in 8b the
experimental force-displacement hysteretic curve is given
[186, 197].

Additional types of devices can be added to the present
list. For example, Tuned Mass dampers are devices are
added to the structures with the objective of receive and dis-
sipate a part of the vibrational energy. In the simplest case
they can be modeled as a spring–dashpot system attached to
the main structure. Usually, tuned mass dampers contribute
to reduce the structural response in the fundamental mode
of vibration and, therefore, for environmental actions with a
wide frequency content, they are used in combination with
other types of devices [223, 224].

3 Nonlinear Models

The numerical simulation of the seismic nonlinear response
of RC beam structures has constituted a very active field
in structural analysis, computational mechanics and earth-
quake engineering. The sophistication of the numerical
models has been increased as the capacity of the comput-
ers has grown and, today, it is possible to find beam models
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Fig. 7 Hydraulic dampers. (a): Cylinder. (b): Revolving disc device.
(c): Force-displacement characteristic curve

able to consider both geometric and constitutive nonlinear-
ity with a solid thermodynamical basis [163, 164]. There-
fore, it is a hard, if not an impossible, task to make an
exhaustive presentation of all possible alternatives for the
numerical simulation of the dynamic behavior of RC struc-
tures with EDDs. For example, a brief summary of the dif-
ferent methodologies used for the seismic analysis of RC
structures is given in Ref. [78]. In this section the main
approaches are described highlighting their advantages and
limitations.

Fig. 8 Lead extrusion dampers. (a): Device. (b): Force-displacement
characteristic curve

3.1 RC Beam Structures

The inclusion of constitutive nonlinearity in beam models
has been carried out based on two different approaches:
the lumped and distributed models [184]. Experimental ev-
idence shows that inelasticity in beam elements can be for-
mulated in terms of cross sectional quantities and, there-
fore, their behavior can be described by means of concen-
trated (lumped) models, some times called plastic hinges,
which focalize all the inelastic behavior at the ends of lin-
ear elastic structural elements by means of ad-hoc force-
displacement or moment-curvature relationships (see e.g.
Bayrak and Sheikh [38] or Lubliner [145], among many oth-
ers). It is important to note that, in this case, the constitu-
tive laws are valid only for specific geometries of the cross
section and, in many cases, the mechanical behavior of the
cross sections in their two perpendicular directions is com-
pletely uncoupled. For example in the work of Kwank and
Kim [127] a moment-curvature relationship is defined for
the study of reinforced concrete (RC) beams subjected to
cyclic loading. This method is recommended by certain au-
thors due to its numerical efficiency when compared with the
full three-dimensional formulation of the nonlinear problem.
It is important to stand out that the computational efficiency
becomes a determining factor when the numerical models
are used in the study of a great number of real structures
subjected to several seismic actions.
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On the other hand, in the distributed models, a set of cross
sections along the beam axis is selected and the nonlinear
constitutive behavior has to be calculated in a number of
control points located on them. Each control point corre-
sponds to a fiber directed along the beam axis and due to
this reason, this approach is frequently quoted in the liter-
ature as fiber approach [208]. In this way, as the loading
level is increased (and then the strain level on points of the
selected cross sections) the inelasticity can be distributed
along the structural element. It is widely accepted that the
employment of fibers allows to obtain more realistic esti-
mations of the evolution of the strain-stress state at cross
sectional level, but it requires the definition of constitutive
laws for each fiber, increasing significatively the computa-
tional cost during calculations. A common limitation of the
distributed formulations is given by the fact that, the consti-
tutive nonlinearity is limited to the component of the stress
vector in direction normal to the cross section and the shear-
ing components of the stress are treated elastically. This as-
sumption does not considers the nonlinear coupling existing
with the other stress components, resulting in models where
cross sectional shear forces and torsion moments are trans-
mitted elastically across the elements [69, 171]. An example
is given by Mazars et al. [166] where a refined fiber model
is used for the analysis of concrete elements including tor-
sion. Monti and Spacone [170] use a fiber beam element for
considering the bond-slip effect in reinforced concrete struc-
tural elements. In most of the cases, both types of models,
the concentrated and the distributed ones, have been formu-
lated under the hypothesis of infinitesimal deformation.

As consequence of the uncoupling between normal and
tangential components of the cross sectional stress field, the
mode of failure of the elements is predefined1, limiting the
participation of shear forces only to the obtention of the
equilibrium [69]. Some examples of numerical works using
this type of models for the study of the seismic behavior and
the (static) collapse loads of RC buildings can be found in
Refs. [71, 124], respectively.

Two versions of the distributed plasticity models can be
found in literature: the stiffness (displacement based) [148]
and flexibility (force based) methods [29, 172, 184]. The first
one is based on the interpolation of the strain field along the
elements. A precise representation of forces and moments
requires a refined FE mesh for each structural element in
which inelastic behavior is expected to appear. In the sec-
ond method, the sectional forces and moments are obtained
interpolating the nodal values and satisfying the equilibrium
equations even in the nonlinear range [207].

As it will be explained in more detail in Sect. 4, real-
istic simulations of the dynamic behavior of RC structures
require taking into account constitutive laws for materials

1Classically, it corresponds to the formation of a plastic hinge.

which exhibits softening behavior [164, 175]. This situation
inevitably leads to the localization of the strains in the vol-
ume associated to a specific cross section undergoing soft-
ening behavior. An extensive review of the strain localiza-
tion in force-based frame elements is presented by Coleman
and Spacone in [59]. Then, the structural response becomes
mesh dependent if no appropriate corrections are consid-
ered for ensuring the objectivity2 of the response. Differ-
ent approaches has been developed for obtaining a mesh-
independent response, for example in Ref. [207] a new inte-
gration method for force based elements is proposed; in Ref.
[25] the energy dissipated at material point level is regular-
ized according to the specific fracture energy of the material
[175] ensuring that the global structural response remains
objective, but the length of the softening zone keeps being
mesh dependent. Other recent approaches applies strong dis-
continuities in the study of beam structures with softening
behavior but in this case the fractured length is reduced to
zero [14]. Theoretical works about this topic are given in
[13, 73] for a plastic hinge model incorporated into a infini-
tesimal formulation for Euler-Bernoulli beams.

As it has been detailed in Refs. [163, 164] in the most of
the cases, both concentrated and distributed models, are for-
mulated under the small strain and small displacement kine-
matic hypothesis, neglecting geometric nonlinearity. These
assumptions does not allows to consider the fact that nor-
mally, second order effects are coupled with constitutive
nonlinearity in RC structures subjected to earthquake load-
ing. On the other hand, geometrically nonlinear beam mod-
els have been mainly focused on the elastic case with sim-
plified linear constitutive relations in terms of cross sectional
quanties [173].

Geometric nonlinearity in rod elements has been devel-
oped by two different approaches: (i) The so called inex-
act or co-rotational formulations which consider arbitrarily
large displacements and rotations but infinitesimal strains
and (ii) the geometrically exact formulations obtained from
the full three dimensional problem by means of a reduction
of the dimensions obtained imposing adequate restrictions
on the kinematics of the displacement field.3

A complete survey about the co-rotational techniques for
rod elements is carried out in the textbooks of Crisfield [62]
in Chaps. 7 and 17 for static problems and Chap. 24 for
the dynamic case; which also includes in Chap. 16 a com-
plete review of the mathematical treatment for large rota-
tions from an engineering point of view. The classical text-

2Note that in this case, the term objectivity is used for referring to a
mesh independent response of the structure in stead of the usual sense
in continuous mechanics where it refers to an invariant response under
rigid body motions.
3Other approaches such as the core-congruential formulation for beam
finite elements can also be consulted e.g. in [81].
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books of Bathe [31] and Hughes [101] consider the for-
mulation of beam elements with different degrees of detail.
Specific research papers are also available e.g. in Ref. [63]
where the dynamics of the co-rotated beam models is inves-
tigated. Hsiao et al. [100] develop a consistent co-rotational
finite element formulation for geometrically nonlinear dy-
namic analysis of 3D beams. Battini and Pacoste [34] de-
velop co-rotational beam elements with warping effects for
the study of instabilities problems.

Considering the many works devoted to the topic and
the wide range of applications, probably the more success-
ful formulations are the geometrically exact ones [159]. The
theoretical basis for the process that makes the dimensional
reduction for obtaining rod models can be consulted in the
book of Antman [7]. An additional work of the same author
covering invariant dissipative mechanism for the motion of
artificially damped rods can be reviewed in Ref. [8]. A the-
oretical discussion about the dimensional reduction using
nonconvex energy is given in [51]. A complete work about
the exact theory of stress and strain in rods and shells can be
consulted in the text of Ericksen and Truesdell [74].

Zupan and Saje [250] develop a FE formulation of geo-
metrically exact rods based on interpolation of strain mea-
sures; in Ref. [253] the linearized theory is considered and
in [251] a rod formulation based on curvature is presented.
In Ref. [206] a rod element based on the interpolation of
the curvature is developed. Hjelmstad and Taciroglu [99] de-
velop a mixed variational methods for finite element analy-
sis of geometrically nonlinear Bernoulli-Euler beams. Com-
plementarily, theoretical works are also available (see e.g.
Refs. [111, 128, 139] among others). The nonlinear equa-
tions for thin and slender rods are developed in [188, 191],
respectively. Rosen et al. [200] develop a general nonlinear
structural model of a multirod systems. A theoretical work
about constitutive relations for elastic rods is developed by
O’Reilly in Ref. [182]. Simmonds [211] discusses the pos-
sibility of developing a nonlinear thermodynamic theory of
arbitrary elastic beams.

The most invoked geometrically exact formulation is that
originally proposed by Simo [212] which generalize to the
three dimensional dynamic case the formulation originally
developed by Reissner [192, 193] for the plane static prob-
lem. This formulation should be regarded as a specific para-
metrization of a three-dimensional extension of the classi-
cal Kirchhoff–Love [141] model employing a director type
approach for describing the time varying configuration of
the beam cross sections (see also Antman [7]). Posteriorly,
Simo and Vu-Quoc [219, 220] implemented the correspond-
ing numerical integration of the equations of motion, using
the FE, for the static and dynamic cases. They have consid-
ered a straight and unstressed rod as reference configuration
and the hypothesis of planar sections.

Posteriorly, Ibrahimbegović extends the formulation given
in Ref. [212] to the case of an initially curved and twisted

reference configuration of the beam [104] and proposes an
alternative parametrization of rotations [105]. Li [134] and
Kapania and Li [117, 118] develop a careful presentation of
the initially curved and twisted rod theory based on the prin-
ciples of the continuum mechanics. Jelenić and Saje [112,
114] develop a formulation eliminating the rotational vari-
ables of the model and avoiding thus the shear locking phe-
nomenon. The usual FE procedures violate the objectivity
condition of the strain measures; In Refs. [64, 113] several
solutions are proposed for this problem. Additional numeri-
cal work to obtain frame indifference of the strain measure-
ments are presented by Betsch and Steinmann [41].

A formulation equivalent to that proposed by Simo has
been employed by Cardona and Gerardin [53]. In Ref. [54]
this formulation is used for evaluating the bifurcation points
of flexible mechanisms. Ibrahimbegović et al. [106] employ
their own formulation for studying the buckling and post
buckling behavior of framed structures. Vu-Quoc and Li in
[238] use the Reissner–Simo formulation for studying the
some complex dynamic problems observed in the behavior
of sliding beams.

Simo et al. extend [221] the formulation of rod ele-
ments with warping of arbitrary cross sections considering
a small strain formulation for elastic visco plastic consti-
tutive materials. An outstanding work studying the warp-
ing of cross sections made of elastic plastic materials is
due to Gruttmann et al. [90, 92]. The FE analysis of the
Saint Venant torsion problem considering the exact inte-
gration of the elastic plastic constitutive equations is de-
veloped in Ref. [240]. Nukala and White [173] develop a
mixed finite element for studying the stability behavior of
structures. Isotropic hardening is included in the model pre-
sented by Park and Lee [185]. Shi and Atluri [210] employ
a plastic hinge formulation for the elastic plastic analysis
of space–frames considering large deformations. Recently,
Mata et al. [163, 164] have extended the geometrically ex-
act formulation for rods due to Reissner and Simo to in-
clude an arbitrary distribution of composite materials with
inelastic constitutive laws on the cross sections for the static
and dynamic cases; thermodynamically consistent constitu-
tive laws of visco damage and plasticity are developed in
terms of the material form of the first Piola Kirchhoff stress
vector in the framework of the mixing theory for compos-
ites. Other kind of beam theories can be formulated starting
from the variational asymptotic method (VAM) (see e.g. [56,
189, 247]). Some of these techniques has been successfully
adapted for the analysis of the deformation field in beam
cross sections [248].

In following, the geometrically exact Reissner-Simo for-
mulation for beams is described for the case when plane
cross sections remain plane during the motion and consid-
ering an intermediate initially curved and twisted reference
configuration. This formulation has been selected for due to
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its versatility for simulating very large changes of configura-
tion and its relative simplicity. The formulation is extended,
considering constitutive nonlinearity at material point level
according to the results given in [163, 164].

3.1.1 Kinematics

One of the main conceptual difficulties arising in the
Reissner–Simo formulation is due to the fact that the re-
sulting configuration space for the rod in no longer a lin-
ear space but a infinite-dimensional nonlinear differentiable
manifold. Concretely, the mentioned manifold is obtained
by the pairing R

3 × SO(3), where SO(3) is the rotation
group [11]. Therefore, the application of the standard tech-
niques of continuum mechanics and numerical methods
has to be carried out taking into account the intrinsic non-
additive nature of a part of the kinematics of the rods. Other
earlier works on finite deformation of rod elements can be
found in the works of Atluri and Vasudevan [20], Bathe and
Bolourchi [32], Iaura and Atluri [103] and Meek and Lo-
ganathan [168] among others.

As it will be explained in next sections, the configura-
tion manifold of the rod model involves large rotations and
literature about the parametrization of the rotational motion
can be found in the papers of Bauchau and Trainelli [37],
Trainelli [233], Bauchau and Choi [35], Argyris [10], Ar-
gyris and Poterasu [11] and Grassia [89], among many oth-
ers; about the coupling between large displacements and ro-
tations of displacement fields in solid mechanics in [19]; and
on the Lie group methods for rigid body dynamics in [55].4

Let {Êi} and {êi} (i = 1 . . .3) be the material and spatial
frames respectively, corresponding to spatially fixed coordi-
nate systems. Lets introduce the following three configura-
tions:

(1) The straight reference beam is defined by the curve
ϕ̂00 = SÊ1, with S ∈ [0,L] being the arch-length co-
ordinate on the curve. Cross sections are described by
means of the coordinates ξβ directed along the axis
{Êβ=2,3} and the position vector of any material point
on the cross section is X̂ = ξiÊi (ξ1 ≡ S).

4Additionally, a survey about integration of differential equations on
manifolds can be reviewed in [50]. About the parametrization of finite
rotations in computational mechanics in [40, 152]. Ibrahimbegović in
[105] presents a discussion about the choice of finite rotation parame-
ters. Gerardin and Cardona [86] employ a Quaternion algebra for pa-
rameterizing the kinematics and dynamics of rigid and flexible mech-
anisms. Ritto-Corrëa and Camotin in [196] develop a complete survey
about the differentiation of the Rodrigues’s formula and its significance
for the vector-like parametrization of Reissner–Simo theory. An analy-
sis about the interpolation of rotations in rod theories is given in [198].
A classical work about the parametrization of the rotation group is pro-
vided by Stuelpnagel in Ref. [229].

(2) The initially curved reference beam is defined by a
fixed curve with its position vector given by ϕ̂0(S) =
ϕ0i (S)êi , where S is defined as before and the total
length of the curve coincide with L. Each point on this
curve has rigidly attached an orthogonal triad t̂0i (S) =
�0Êi , where �0 ∈ SO(3) is the orientation of the plane
of the cross section.5 The beam cross section is de-
scribed by ξβ but directed along {t̂0β} and initially, one
has the condition6: ϕ̂0,S = t̂01. Then, the position vector
of any material point on the curved reference beam is

x̂0 = ϕ̂0 + T̂0 = ϕ̂0 + �0Ê , (2)

where Ê ≡ ξβÊβ is the position vector of a material
point referred to ϕ̂.

(3) Current beam. Due to the motion, the curved reference
beam is moved from ϕ̂0(S) to ϕ̂(S, t) = ϕ̂0(S)+ û(S, t)

at time t ; where û(S) is the translational displacement.
At the same time �0(S) is rotated together with the
cross-section to �(S, t) = �n�0 by means of the incre-
mental rotation tensor �n ≡ t̂i ⊗ Êi which determines
the new orientation of the cross section at time t . In gen-
eral, the normal vector t̂1 does no coincides with ϕ̂,S be-
cause of the shearing [103]. The current position vector
of any material point is

x̂(S, ξβ, t) = ϕ̂(S, t) + T̂ (S, ξβ, t) = ϕ̂ + �Ê . (3)

Figure 9 shows a description of the beam configurations in-
volved in the formulation. Therefore, the current beam con-
figuration is completely determined by pairs with the fol-
lowing form: Φ̂ ≡ (ϕ̂,�) [152, 219]. The spatial placement

Fig. 9 Configurational description of the beam

5It is worth to note that �0 is an element of SO(3) and therefore, the
configuration of the curved reference beam is described in R

3 ×SO(3);
[212, 219].
6(•),x denotes partial differentiation with respect to x.
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of the beam, Bt , is the set composed by all the spatial points
x̂ defined according to (2), such that (S, ξβ) ∈ [0,L] × A.
The tangent space to Bt at x̂ is given by Tx Bt := {ζ̂ ∈ R

3 |
x̂ ∈ Bt }, i.e. the set formed by three-dimensional vectors em-
anating from x̂.

3.1.2 Strain and Strain Rate Measures

Starting from the determination of the deformation gradient
of the current beam configuration relative to the curved ref-
erence beam, Fn, it is possible to calculate the spatial form
of strain vector acting on the plane of the beam cross section
as [117, 118, 163, 219]

ε̂n = f0(γ̂n + ω̃nT̂ ), (4a)

γ̂n = ϕ̂,S −t̂1, (4b)

ω̃n = �n,S �T
n , ω̂n = axial[ω̃n], (4c)

where f0 = |F0|−1 is the inverse of the determinant of F0

(relative to the curved reference configuration), γ̂n is the
spatial form of the reduced translational strains and ω̃n is
the spatial form of the curvature (skew-symmetric) tensor of
the current beam configuration relative to the curved refer-
ence beam with its associated axial vector given by ω̂n. The
corresponding material forms are calculated employing the
pullback by �, and they are given by

Ên = �T ε̂n = f0(Γ̂n + ˜ΩnÊ), (4d)

Γ̂n = �T γ̂n = �T ϕ̂,S −Ê1, (4e)

˜Ωn = �T ω̃n� = �T
n �n,S , Ω̂n = �T ω̂n. (4f)

The rotation tensor � is the responsible for the rigid body
motion. A schematic representation of the strain vectors act-
ing on the face of the current beam configuration is shown in
Fig. 10a. Taking the time derivative of � = �n�0, it is pos-
sible to obtain the spatial and material forms of the angular
velocity as

ṽn = �̇n�
T
n = �̇�T = ṽ, (5a)

˜V n = �T
n �̇n, (5b)

˜V = �T �̇ = �T
0
˜V n�0 = �T [̃vn]�, (5c)

where ṽn = ṽ is the spin, relative to the curved reference
configuration. In the same manner, ˜V and ˜Vn are the ma-
terial forms of the spin tensor relative to the straight and
curved reference configurations, respectively. Taking the
time derivative of (5a) to (5c), it is possible to calculate the
acceleration tensors as [150, 163, 219]

α̃n = ˙̃vn = �̈n�
T
n − ṽ2

n = ˙̃v = α̃, (6a)

˜An = ˙̃V n = �T
n �̈n − ˜V

2
n, (6b)

˜A = ˙̃V = �T �̈ + �̇
T
�̇ = �T α̃�, (6c)

where α̃n = α̃ is the spatial acceleration tensor of the current
beam cross section relative to the curved reference beam and
˜An and ˜A are the corresponding material forms. Their cor-
responding axial vectors are denoted by v̂n = v̂ = �V̂ and
α̂n = α̂ = �Â, respectively [104, 219]. Using (4a) to (6c)
and the Lie’s derivative operator [212], it is possible to cal-
culate the time and derivatives of the translational and rota-
tional parts of the strain vectors as [164]

˙̂γ n = ˙̂ϕ,S −ṽnt̂1,
˙̂
Γ n = �T

[ ˙̂ϕ,S −ṽnϕ̂,S
]

, (7a)

˙̃ωn = ṽn,S +ṽnω̃n − ω̃nṽn,
˙̃Ωn = �T ṽn,S �, (7b)

which can be identified as translational and rotational strain
rate vectors. In the same way, the co-rotated strain rate mea-
sures are

�
[γ̂n] = �

˙̂
Γ n = ˙̂ϕ,S −ṽnϕ̂,S , (8a)

�[ω̃n] = � ˙̃Ωn�
T = ṽn,S . (8b)

The corresponding associated rotational strain rate vectors
are

˙̂ωn = v̂n,S −ω̃nv̂n = v̂n,S +ṽnω̂n, (9a)

˙̂
Ωn = �T v̂n,S , (9b)

�
[ω̂n] = �

˙̂
Ωn = v̂n,S = ˙̂ωn + ω̃nv̂n. (9c)

Using (7a) to (9c), it is possible to construct an objective
measure of the strain rate vector ŝn acting on the current
cross section [164] as

ŝn =
�

[ε̂n]=
�

[γ̂n] +
�

[ω̃n] T̂ = ˙̂ϕ,S −ṽnϕ̂,S +ṽn,S T̂ , (10a)

Ŝn = Ėn = �T ŝn = �T ˙̂ϕ,S −˜V n�
T ϕ̂,S + ˙̃ΩnÊ . (10b)

Equation (10a) corresponds to the objective strain rate mea-
sured by an observer located on {t̂i} and (10b) is the cor-
responding material form obtained by using the pull-back
relation between spatial and material descriptions [152].

3.1.3 Stresses, Stress Resultants and Stress Couples

The Cauchy stress tensor σ at any material point (S, ξβ) re-
ferred to a differential volume of the current rod cross sec-
tion is given by σ ≡ σ̂j ⊗ t̂j with material form given by
Σ = �T σ�. The term σ̂j is the stress vector acting on the
current face and referred to the real area of the same face of
the current rod with t̂j as unit normal vector.

The first Piola Kirchhoff (FPK) stress tensor can be writ-
ten as a linear combination of stress vectors P = P̂i ⊗ Êi ,
where P̂1 is the FPK stress vector acting on a material point
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Fig. 10 Geometric
representation of (a): Strain
vectors on the current
configuration. (b): Stress
resultants. (c): Stress couples

on the current cross section referred to a differential element
in the undeformed cross section. In general, one has

P̂k = Pm
ki t̂i = gnσ̂k − Ênk1

g0
σ̂1, P̂1 = σ̂1,

where the material form of P̂1 is given by P̂m
1 = �T P̂1.

For the purpose of presenting a reduced one-dimensional
rod model, it is convenient to define the stress resultant
which is the internal force vector acting on the current cross
section and the stress couple i.e. the internal moment vec-
tor acting on the same cross section. The material form of
the stress resultant n̂m(S, t) and stress couple m̂m(S, t) are
defined as [150]:

n̂m �
∫

A
�T P̂1dA =

∫

A
P̂m

1 dA, (11a)

m̂m � �T

∫

A
˜T P̂1dA =

∫

A
˜E P̂m

1 dA, (11b)

where ˜E is the skew-symmetric tensor obtained from Ê and
P̂m

1 is the FPK stress vector acting in the face of the cross
sectional area with normal Ê1. The corresponding spatial
forms are given by

n̂ = �n̂m =
∫

A
σ̂1dA =

∫

A
P̂1dA, (12a)

m̂ = �m̂m =
∫

A
(x̂ − ϕ̂) × σ̂1dA =

∫

A
˜T σ̂1dA, (12b)

where ˜T is the skew-symmetric tensor from T̂ .

In (12a) and (12b) n1 is the normal force component in
the cross section with normal direction t̂1 while n2 and n3

are the shear force components in the directions t̂2 and t̂3,
respectively; m1 is the torque component around the normal
t̂1 while m2 and m3 are the bending moment components
around t̂2 and t̂3, respectively (see Fig. 10b–c).

3.1.4 Elastic Constitutive Relations

In most of the cases, in the finite deformation theories for
rods, hyper-elastic, isotropic and homogeneous materials
have been assumed (see e.g. [81, 107, 219]) and, therefore,
the reduced constitutive equations become very simple. In
this section only a brief overview of elastic constitutive re-
lations for stress resultant and stress couples is discussed.

An elastic material is said to be a hyperelastic or a Green–
elastic material if a strain energy function per unit volume
W exist and the FPK stress tensor P can also be defined as
P := ∂FW , where a strain energy function invariant under
rigid–body rotations has been assumed. Employing the Lie
variation, pullback and push–forward operators, it is possi-
ble to write [152]

δ
�[W ]= (�T P) : δ(�T F − I).

Therefore, the material strain and stress tensors are defined
by

� := �T P, H = �T F − I.

The material stress tensor � can be identified with the ma-
terial form FPK stress tensor and its work conjugated H
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with the material form of the strain measure E . Let us to
consider the constitutive relation between the components
of the stress tensor � and the components of H given by
� = Cme : H, where the elasticity tensor Cme is a fourth or-
der tensor. Then, for the case of the present rod theory, we
introduce the following simple linear constitutive relations
in component form:

Σ11 = EH11, Σ21 = GH21, Σ31 = GH31,

where E denotes the elastic modulus and G the shear mod-
ulus. We note that the vector Ĥi1Êi corresponds to Ên and
Σ̂i1Êi to P̂m

1 = �T P̂1.
Substituting the above formulas into (11a), after integrat-

ing over the cross section, yields to the following result:

n̂m =
∫

A
�i1ÊidA = (EAÊ1 ⊗ Ê1 + GAÊβ ⊗ Êβ)Ê . (13)

Similarly, the material stress couple vector m̂m is obtained
as

m̂m =
∫

A
˜E [EÊ1 ⊗ Ê1 + GÊβ ⊗ Êβ ](Γ̂n + ˜	nÊ)dA

=
[(

G(−1)β
∫

A
ξβdA

)

Ê1 ⊗ Êα

+
(

E(−1)α
∫

A
ξαdA

)

Êβ ⊗ Ê1

]

Γ̂n

+
[

GIρ011Ê1 ⊗ Ê1 + EI0αβÊα ⊗ Êβ

]

Ω̂n. (14)

In (14) the formula for the material form second (elastic)
moment of inertia I0 has been used (see [212]).

A more general expression for the linear elastic (hypere-
lastic but not necessarily isotropic nor homogeneous) rela-
tion between P̂m

1 and Ên, at any material point on the current
rod cross section, is given by

P̂m
1 = Cme Ên, P̂1 = Cseε̂n, (15)

where Cme = C me
ij Êi ⊗ Êj and Cse = C se

ij t̂i ⊗ t̂j are the ma-
terial and spatial forms of the elastic constitutive tensors,
respectively.

Substituting (15) into the formulae for the stress resultant
n̂ and stress couple m̂ vectors in (12a) and (12b) and using
the formulae for the components ε̂n, it is possible to obtain,
following analogous procedures as those given in (13) and
(14), the reduced linear constitutive relations as

n̂ = Cse
nnγ̂n + Cse

nmω̂n, m̂ = Cse
mnγ̂n + Cse

mmω̂n, (16a)

for the spatial description, and

n̂m = Cme
nn �̂n + Cme

nmΩ̂n, m̂m = Cme
mn�̂n + Cme

mmΩ̂n

(16b)

for the material description, where Cse
pq = [Cme

pq ]ij t̂i ⊗ t̂j ,

Cme
pq = [Cme

pq ]ij Êi ⊗ Êj , Cse
pq = �Cme

pq�
T and the subscripts

p,q ∈ {m,n}. Explicit expressions for that tensors can be
found in [117, 118, 134].

If the rods are further assumed to be built of isotropic,
homogeneous and linear elastic material, we may take the
rod cross section geometry centroid line as the rod reference
curve and align t̂2 and t̂3 to coincide with the cross section
principal axes. Then, Cnn and Cmm become diagonal, and
Cnm and Cmn vanish. This last simple constitutive form has
been used in most of the reviewed works (see e.g. [103, 134,
212]) postulating the existence of a strain energy function of
the form Wstr ≡ Wstr(Γ̂n, Ω̂n) and, therefore,

n̂m ≡ ∂
Γ̂n

WstrΓ̂n, m̂m ≡ ∂
Ω̂n

WstrΩ̂n, (17)

where ∂
Γ̂n

Wstr = Cme
nn and ∂

Ω̂n
Wstr = Cme

mm.

3.2 Consistent Linearization

In this section the calculus of some admissible variations
needed in the development of numerical methods for the
simulation of the mechanical behavior of rod structures is
presented.

3.2.1 Admissible Variations

The current configuration manifolds at time t is specified
by Ct := {(ϕ̂,�) : [0,L] → R

3 × SO(3)} which is a nonlin-
ear differentiable manifold. It is possible to construct a per-
turbed configuration onto Ct as Ctβ � {(ϕ̂β,�β) : [0,L] →
R

3 × SO(3)} obtained by setting

ϕ̂β = ϕ̂ + βδϕ̂, �β = exp
[

βδ˜θ
]

�,

where δϕ̂ ∈ R
3, β ∈ R and δ˜θ ∈ TISO(3) ≈ so(3) with the

corresponding axial vectors δθ̂ . It should be noted that the
perturbed configuration also constitutes a possible current
configuration of the rod. Alternatively, it is possible to work
with the field η̂ � (δϕ̂, δθ̂) ∈ T Ct which defined the field of
kinematically admissible variations as [150]

ηs = {η̂s = η̂ ∈ R
3 × R

3 | η̂s|∂�ϕ̂ = 0} ⊂ T Ct ,

where ∂�ϕ̂ is the part of the boundary where displacements
and/or rotations are prescribed. Employing a slight abuse in
the notation: η̂s(S) ∈ T�Ct i.e. a kinematically admissible
variation belongs to the tangent space to Ct at Φ̂ ∈ Ct .

Then, given Ct , Ctβ and η̂s ∈ T�Ct the systematic lin-
earization process [104, 156, 215, 219] is performed using
of the notion of Gâteaux derivative as

δϕ̂ � d

dβ
ϕ̂β

∣

∣

∣

β=0
, δ� � d

dβ
�β

∣

∣

∣

β=0
= δ˜θ�. (18)
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Therefore, the position vector and its linearized increment
belong to the same vector space and the additive rule for
vectors applies. Repeating the procedures followed in (18)
for the case of the rotation tensor from the curved reference
rod to the current rod configuration, we obtain δ�n = δ˜θ�n.

3.2.2 Linearization of the Strain Measures

In this section the admissible variations of strain measures
are calculated using the chain rule for partial derivatives.

Considering the fact that t̂1 = �nt̂01, one has the follow-
ing derivation for the linearized form of γ̂n:

δγ̂n ≡ δ(ϕ̂,S −t̂1) = δϕ̂,S +˜t1δθ̂ , (19a)

where˜t1 is the skew-symmetric tensor obtained from t̂1. In
the case of the material form, Γ̂n = �T γ̂n, and noticing the
fact that δ�T = −�T δ˜θ , one obtains that

δΓ̂n ≡ δ(�T γ̂n) = �T (δϕ̂,S +ϕ̃,S δθ̂), (19b)

where7 ϕ̃,S = Π[ϕ̂,S ] ∈ so(3). Employing (19a) and (19b),
it is possible to show that the co-rotated variation of the
translational strain vector is given by

δ
�

[γ̂n]= �δΓ̂n = δϕ̂,S +ϕ̃,S δθ̂ .

Similarly, considering the spatial form of the incremental
curvature strain tensor one obtains that

δω̃n = δ(�n,S �T
n ) = δ˜θ ,S +δ˜θω̃n − ω̃nδ˜θ . (20a)

For the case of the material form of the incremental curva-
ture tensor, one obtains

δ˜	n ≡ �T
0 δ(�T

n �n,S )�0 = �T δ˜θ ,S �.

Then, the co-rotated variation is given by

δ
�[ω̃n]= �δ˜	n�

T = δ˜θ ,S . (20b)

Equations (20a) to (20b) can be rewritten in terms of axial
vectors as [219]:

δω̂n ≡ δθ̂ ,S +δ˜θ ω̂n = δθ̂ ,S −ω̃nδθ̂ ,

δΩ̂n ≡ δ(�T ω̂n) = �T δθ̂ ,S = �T (δω̂n + ω̃nδθ̂), (21)

δ
�

[ω̂n] = �δΩ̂n = δθ̂ ,S = δω̂n + ω̃nδθ̂ .

7In following the notation •̃ ≡ Π[•] will be used for the skew-
symmetric tensor obtained from certain ‘large’ arguments.

Summarizing the above results in matrix form, we can
rewrite (19a) to (22) as

[

δγ̂n
δω̂n

]

=
[ d

dS I ˜t1

0
( d

dS I − ω̃n

)

][

δϕ̂

δθ̂

]

= Bsη̂s, (22a)

[

δΓ̂n

δΩ̂n

]

=
[

�T d
dS I �T ϕ̃,S

0 �T d
dS I

][

δϕ̂

δθ̂

]

= B̄
s
η̂s, (22b)

[

δ
�

[γ̂n]
δ

�
[ω̂n]

]

=
[ d

dS I ϕ̃,S

0 d
dS I

][

δϕ̂

δθ̂

]

= Bη̂s, (22c)

where the operator d
dS I(•) = I(•),S .

3.2.3 Linearization of the Spin Variables

Considering the spatial form of the angular velocity tensor
ṽn ∈ T

spa
� SO(3) of the current rod relative to the curved ref-

erence rod, one obtains the following linearized form

δ̃vn ≡ δ
(

�̇n�
T
n

) = δ ˙̃θ + δ˜θṽn − ṽnδ˜θ . (23a)

Analogously, considering the spatial form of the angular ac-
celeration tensor referred to the curved reference rod ˙̃vn =
�̇n�̇

T

n + �̈n�
T
n , after several algebraic manipulations, we

obtain that

δα̃n = δ ¨̃θ + δ ˙̃θṽn − ṽnδ
˙̃θ + δ˜θα̃n − α̃nδ˜θ . (23b)

The corresponding axial vectors are given by

δv̂n = δ
˙̂
θ − ṽnδθ̂ , δα̂n = δ

¨̂
θ − ṽnδ

˙̂
θ − α̃nδθ̂ , (24)

respectively. Employing analogous procedures as those fol-
lowed in (23a) to (24), the admissible variations of the ma-
terial forms of the angular velocity and acceleration tensors
are

δ˜V = �T
0 δ˜V n�0 = �T δ ˙̃θ�,

δ˜A = �T [δ ¨̃θ + δ ˙̃θṽ − ṽδ ˙̃θ ]�,

respectively. with axial vectors given by

δV̂n = �T δ
˙̂
θ, δÂn = �T (δ

¨̂
θ − ṽnδ

˙̂
θ). (26)

3.2.4 Linearization of the Strain Rates

On one hand, we have that the linearized form of the spa-
tial description of the translational strain rate vector can be
obtained in the following way:

δ ˙̂γ n = δ
[ ˙̂ϕ,S −ṽnt̂1

] = δ ˙̂ϕ,S −˜t1δ
˙̂
θ − ṽn˜t1δθ̂ ,
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and the linearized form of the material translational strain
rate vector can be obtained as

δ
˙̂
Γ n = δ

[

�T ( ˙̂ϕ,S −ṽnϕ̂,S )
]

= �T
(

( ˙̃ϕ,S −ṽnϕ̃,S )δθ̂ + ϕ̃,S δ
˙̂
θ + δ ˙̂ϕ,S

− ṽn�ϕ̂,S
)

. (27)

On the other hand, the linearized form of the spatial and
material descriptions of the rotational strain rate vectors can
be obtained as

δ ˙̂ωn = δ
[

v̂n,S +ṽnω̂n

] = δ
˙̂
θ,S −ω̃nδ

˙̂
θ − ˙̂ωnδθ̂, (28a)

δ
˙̂
Ωn = δ

[

�T v̂n,S
] = �T

[

δ
˙̂
θ,S −ṽnδθ̂ ,S

]

. (28b)

Then, the co-rotated variation of the translational and rota-
tional strain rates are given by

δ

�
[ ˙̂γ n] = ( ˙̃ϕ,S −ṽnϕ̃,S )δθ̂ + ϕ̃,S δ

˙̂
θ + δ ˙̂ϕ,S −ṽnδϕ̂,S ,

(28c)

δ

�
[ ˙̂ωn] = δ

˙̂
θ,S −ṽnδθ̂ ,S . (28d)

It is possible to show that the linearized forms of the co-
rotated rotational strain rate tensors can be expressed as

δ ˙̃ωn = δ ˙̃θ ,S +δ ˙̃θω̃n − ω̃nδ
˙̃θ + δ˜θ ˙̃ωn − ˙̃ωnδ˜θ ,

δ ˙̃	n = �T (δ ˙̃θ ,S +δ˜θ ,S ṽn − ṽnδ˜θ ,S )�,

δ
�

[ ˙̃ωn] = �(δ ˙̃	n)�
T = δ ˙̃θ ,S +δ˜θ ,S ṽn − ṽnδ˜θ ,S .

Finally, the material and co-rotated descriptions of the lin-
earized increment of the strain rate at material point level
are

δŜn = δ
˙̂
Γ n + δ

˙̂
Ωn × Ê , (29a)

δŝn = �δŜn = δ
�

[γ̂n] +δ
�

[ω̂n] ×T̂ . (29b)

The terms δ ˙̂ϕ, δ ˙̂ϕ,S , δ
˙̂
θ and δ

˙̂
θ,S of (28c) and (28d) do

not allow to express directly the co-rotated variations of the
strain rate vectors in terms of η̂s. To this end, the specific
time-stepping scheme are used providing the needed rela-
tions [220] as it will be explained in next sections.

For the present developments, lets suppose that there ex-
ist two linear operators Ha ∈ L(R3,R3∗) and Hb(θ̂) ∈
L(T

spa
� , T

spa
�

∗) such that

δ ˙̂ϕ = Haδϕ̂, δ ˙̂ϕ,S = Haδϕ̂,S +Ha,S δϕ̂, (30a)

δ
˙̂
θ = Hbδθ̂ , δ

˙̂
θ,S = Hbδθ̂ ,S +Hb,S δθ̂ . (30b)

Therefore, (28c) and (28d) can be rearranged as

⎡

⎢

⎣

δ

�
[ ˙̂γ n]

δ

�
[ ˙̂ωn]

⎤

⎥

⎦
=

⎡

⎢

⎢

⎢

⎣

Ha[ d
dS I]+

Ha,S −ṽn[ d
dS I]

˙̃ϕ,S +ϕ̃,S Hb

−ṽnϕ̃,S

0
(Hb − ṽn)[ d

dS I]
+Hb,S

⎤

⎥

⎥

⎥

⎦

η̂s = V η̂s.

(31)

It is worth to note that the tensor V is configuration depen-
dent and couples the rotational and translational parts of the
motion.

3.2.5 Linearization of the Stress Resultants and Stress
Couples: Inviscid and Elastic Case

Considering the variation of strains (22a) to (22c) one ob-
tains that

δn̂m = Cme
nn�T (δϕ̂,S +ϕ̃,S δθ̂) + Cme

nm�T δθ̂ ,S , (32a)

where Cme
ij , (i, j ∈ {n,m}) are the material forms of the

cross sectional elastic constitutive tensors. Hence, the co-
rotated variations are

δ
�
[n̂]= �δn̂m = Cse

nn(δϕ̂,S +ϕ̃,S δθ̂) + Cse
nmδθ̂,S , (32b)

where Cse
ij = �Cme

ij �T , (i, j ∈ {n,m}) are the spatial forms
of the cross sectional elastic constitutive tensors.
Similarly, one obtains for the case of the stress couples

δm̂m = Cme
mn�

T (δϕ̂,S +ϕ̃,S δθ̂) + Cme
mm�T δθ̂,S , (33a)

δ
�

[m̂] = Cse
mn(δϕ̂,S +ϕ̃,S δθ̂) + Cse

mmδθ̂,S . (33b)

The linear form of the spatial stress resultant is calculated
noticing the following relation for the co-rotated variation:

δ
�
[n̂]= δn̂ − δ˜θ n̂ = δn̂ + ñδθ̂ as

δn̂ = Cse
nnδϕ̂,S +(Cse

n ϕ̃,S −ñ)δθ̂ + Cse
nmδθ̂,S , (34a)

and analogously for the variation of the spatial form of the
stress couple

δm̂ = Cse
mnδϕ̂,S +(Cse

mnϕ̃,S −m̃)δθ̂ + Cse
mδθ̂,S . (34b)

The results obtained for the admissible variation of the stress
resultant and couples given in (32a) to (34b) can be summa-
rized and written in matrix form as

δΨ̂ m
� =

[

Cme
nn Cme

nm

Cme
mn Cme

mm

]

B̄
s
η̂s = CmeB̄

s
η̂s, (35)

where δΨ̂ m
� = [δn̂m, δm̂m] and the material form of the con-

stitutive tensor Cme has been given in (16a) to (16b).
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The co-rotated admissible variation of the stress resultant
and couples as

δ

�
[Ψ̂ ]�=

[

Cse
nn Cse

nm

Cse
mn Cse

mm

]

Bη̂s = CseBη̂s, (36)

where δ

�
[Ψ̂ ]�= [δ

�
[n̂], δ

�
[m̂]].

Finally, the spatial form of the admissible variation of the
stress resultant and couples can be expressed in matrix form
as

δΨ̂� =
(

C̄seB +
[

0 −ñ

0 −m̃

]

)

η̂s = (CseB + N )η̂s, (37)

where δΨ̂ m
� = [δn̂m, δm̂m] and the tensor N takes into ac-

count for the stress state existing in the current rod configu-
ration.

The (nonlinear) operators B̄
s

and B are easily con-
structed from (32a), (32b), (33a) and (33b).

3.3 External Loads

This section describes the types of loads more relevant
to earthquake engineering. It is worth to note that other
types (more complex) are also available, as described in
Ref. [134].

Concentrated Loads A point load applied in a globally
fixed direction is given P̂f = Pf i êi and a applied point mo-
ment (about fixed axes) by M̂f = Mf i êi . In both cases, con-
ventional procedures apply [62].8

Distributed Loads An applied load density is given per
unit of unstressed arch–length of the curved configuration
referred to the spatially fixed frame {êi}. One manner to
define the self–weight of the structure is by employing this
kind of loads, but it is difficult to define it for cross sections
composed with different materials.

In general can be assumed that the differential force df̂g

and moment dm̂g applied on the differential element dS are
calculated as:

df̂g = N̂g(S)dS, (38a)

dm̂g = M̂g(S)dS, (38b)

respectively; where N̂g(S) and M̂g(S) are the correspond-
ing densities. This type of loading is deformation invariant
and usually conservative [62, 134].

8It is worth noting that point moments are in general non-conservative
i.e. the work done by a mechanical system due to the application of a
concentrated moment is path–dependent.

Body Loads Lets consider the external loading due to body
forces per unit of volume denoted by the vector (density)
b̂(S, ξβ) which contributes to the terms N̂ and M̂. The eval-
uation of these contributions (at element level) requires the
numerical integration of the following integrals

N̂b =
∫ L

0

∫

A0

g0ρ0b̂dV0, (39a)

M̂b =
∫ L

0

∫

A0

g0ρ0˜T b̂dV0. (39b)

If the mass centroid of the cross section is chosen as the
reference curve for the rod, M̂b in (39b) vanish.

3.4 Equilibrium Equations

In this section the equilibrium equations of motion for rods
are deduced working on the Lagrangian side of the me-
chanics9 which can be based on the variational principles
behind Newton’s fundamental laws of force balance. The
development presented consist into obtaining the necessary
conditions for the minimization of the action integral of the
mechanical system. The development presented are base on
considering that both the forces and internal forces are con-
servative; however, the equations of motions can be easily
extended to the nonconservative case.

Firstly, one chooses a configuration space manifold Ct

where generic coordinates denoted by q̂Φ = (ϕ̂,�). The
velocity phase space T Ct corresponds to the tangent bun-
dle of Ct . Coordinates on T Ct are denoted by (q̂Φ, ˙̂qΦ) ≡
(ϕ̂,�, ˙̂ϕ, �̇). The Lagrangian is regarded as a function Lg :
T Ct → R, (q̂Φ, ˙̂qΦ) 	→ Lg(ϕ̂,�, ϕ̂, �̇, t). Usually, Lg is the
kinetic minus the potential energy of the system and the fol-
lowing relations hold ˙̂qΦ = dq̂Φ/dt . The Hamilton’s prin-
ciple states that the variation of the action is stationary at a
solution:

δS = δ

∫ b

a

Lg(q̂Φ, ˙̂qΦ, t)dt = 0. (40)

Accordingly, the action has a critical point at a solution
in the space of curves, which is equivalent to the Euler-
Lagrange equations (the equilibrium equations). If external
forces are applied on the system, they have to be added to
the right side of (40).

On one hand, the kinetic energy of the rod model is cal-
culated as

K = 1

2

∫

B0

ρ0〈 ˙̂x, ˙̂x〉dV = 1

2

∫ L

0
(Aρ0 | ˙̂ϕ|2 + v̂n · Iρ0 v̂n)dS

= 1

2

∫ L

0
(Aρ0 | ˙̂ϕ|2 + V̂n · Iρ0 V̂n)dS. (41)

9For a theoretical treatment see Refs. [156–158].
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The remaining term is the potential energy V . The following
developments consider conservative external loading which
implies the existence of a potential function We : Ct → R

such that the potential energy of the system is obtained as

V (ϕ̂,�) = Vint(ϕ̂,�) + Vext(ϕ̂,�)

=
∫ L

0
Wstr(Γ̂n, Ω̂n)dS +

∫ L

0
We(ϕ̂,�)dS, (42)

where Wstr is the strain energy function per unit of volume,
which can be consulted in [212] for linear elastic materials
and in the case of inelastic materials its explicit form is given
in [163, 164]. For conservative loads then, Vext = Vext(�

T ϕ̂)

(see [217]).
In this manner, the Lagrangian for a rod subjected to a

conservative system of loads is Lg = K − Vint − Vext and
Hamilton’s principle reads

δS = δ

∫ b

a

Lgdt =
∫ b

a

(δK − δVint − δVext)dt = 0. (43)

The linearization of the kinetic energy is obtained as

δK =
∫ L

0
(Aρ0

˙̂ϕ · δ ˙̂ϕ + δV̂n · Iρ0 V̂n)dS

=
∫ L

0
(Aρ0

˙̂ϕ · δ ˙̂ϕ + Iρ0 v̂n · δ ˙̂
θ)dS

= Gine(q̂Φ, ˙̂qΦ, η̂s), (44)

where it has been used δV̂n = �T ˙̂
θ , Aρ0 = ∫

A ρ0dA and
Iρ0 = �Iρ0� = − ∫

A ρ0˜T ˜T dA.
The linearization of the internal part of the potential en-

ergy is obtained as

δVint =
∫ L

0
(∂

Γ̂n
Wstr · δΓ̂n + ∂

Ω̂n
Wstr · Ω̂n)dS

=
∫ L

0
(n̂m · δΓ̂n + m̂m · δΩ̂n)dS

=
∫ L

0
(Ψ̂ · Bη̂s)dS = Gint(q̂Φ, η̂s), (45)

where ∂
Γ̂n

Wstr = n̂m and ∂
Ω̂n

Wstr = m̂m, Ψ̂ = [n̂, m̂], η̂s =
(δϕ̂, δθ̂) and B is

B =
[ d

dS I ϕ̃,S

0 d
dS I

]

. (46)

A detailed deduction of (46) can be found in [104, 219]. De-
noting �T ϕ̂ ≡ ϕ̂m, considering δϕ̂m = �T (δϕ̂ + ϕ̃δθ̂) one
obtains that δVext is given by

δVext =
∫ L

0
δWe(ϕ̂

m)dS =
∫ L

0
(∂ϕ̂mWe · [�T (δϕ̂ + ϕ̃δθ̂)]dS

=
∫ L

0
(�∂ϕ̂mWe · δϕ̂ − ϕ̃�∂ϕ̂mWe · δθ̂)dS

=
∫ L

0
(N̂ · δϕ̂ + M̂ · δθ̂)dS = Gext, (47)

where N̂ and M̂ are the applied (conservative) load densi-
ties for unit of arch-length [217].

Then, considering (44), (45) and (47) Hamilton’s princi-
ple (43) can be rewritten as

δS =
∫ b

a

(Gine − Gint − Gext)dt =
∫ b

a

Gdt = 0. (48)

Moreover,
∫ b

a

∫ L

0
Aρ0

˙̂ϕ · δ ˙̂ϕdSdt

=
∫ L

0
[Aρ0

˙̂ϕ · δϕ̂]
∣

∣

∣

b

a
dS −

∫ b

a

∫ L

0
Aρ0

¨̂ϕ · δϕ̂dSdt, (49a)

∫ b

a

∫ L

0
Iρ0 v̂n · δ ˙̂

θdSdt

=
∫ L

0
[Iρ0 v̂n · δθ̂ ]

∣

∣

∣

b

a
dS −

∫ b

a

∫ L

0

·
(Iρ0 v̂n) ·δθ̂dSdt,

(49b)

and, therefore, δK becomes

δK =
∫ b

a

∫ L

0

[

Aρ0
¨̂ϕ · δϕ̂+

·
(Iρ0 v̂n) ·δθ̂]dSdt, (50)

where it has been used the fact that the admissible variations
of the configuration variables are zero at the initial and final
times i.e. η̂s|a,b = 0.

Additionally,

δVint =
∫ b

a

∫ L

0
(n̂ · δϕ̂,S −ϕ̃,S n̂ · δθ̂ + m̂ · δθ̂ ,S )dSdt

=
∫ b

a

(n̂ · δϕ̂ + m̂ · δθ̂)
∣

∣

∣

L

0
dt

−
∫ b

a

∫ L

0
(n̂,S ·δϕ̂ + ϕ̂,S ×n̂ · δθ̂ + m̂,S ·δθ̂)dSdt,

=
∫ b

a

(Φ̂ · δq̂Φ)

∣

∣

∣

∂�ϕ̂
dt

−
∫ b

a

∫ L

0
(n̂,S ·δϕ̂ + (m̂,S +ϕ̂,S ×n̂) · δθ̂)dSdt.

(51)

Considering Neumann conditions on the subset of the
boundary ∂Φϕ̂ = ∅; ∀t , and defining P̂ = Aρ0

˙̂ϕ and Ĵ =
Iρ0 v̂n, one obtains

δS =
∫ b

a

∫ L

0

[ ˙̂P − (n̂,S +N̂ )
] · δϕ̂dSdt
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+
∫ b

a

∫ L

0

[ ˙̂J − (m̂,S +ϕ̂,S ×n̂ + M̂)
] · δθ̂dSdt = 0.

(52)

Taking into account that η̂s is arbitrary, the reduced equilib-
rium equations (the Euler-Lagrange ones) are obtained as

˙̂P = n̂,S +N̂ , (53a)

˙̂J = m̂,S +ϕ̂,S ×n̂ + M̂. (53b)

The system of nonlinear differential equations (53a) and
(53b) have to be supplemented with the following boundary
conditions:

(ϕ̂Φ,�Φ) ∈ ∂Φϕ̂ × [0, T ], (54a)

(n̂Σ, m̂Σ) ∈ ∂Σϕ̂ × [0, T ], (54b)

with the standard conditions ∂Φϕ̂0 ∪ ∂Σϕ̂0 = ∂ϕ̂0 and
∂Φϕ̂0 ∩ ∂Σϕ̂0 = ∅ assumed to hold. The additional initial
data are

ϕ̂(S,0) = ϕ̂0(S) and �(S,0) = �0(S), (54c)

˙̂ϕ(S,0) = ˙̂ϕ0(S) and �̇(S,0) = �0(S)˜V 0n(S), (54d)

where ( ˙̂ϕ0, V̂0n) : [0,L] → R
3 × R

3 is a prescribed velocity
field. The static version can be obtained ignoring the terms
of (54d) and the corresponding inertial terms in the equilib-
rium equations.

It is worth to note that the term G in (48) corresponds
to the weak form of the momentum balance equations (53a)
and (53b) and is frequently quoted as the principle of virtual
work.

If the structure is subjected to the base acceleration corre-
sponding to a seismic input, the acceleration of each material
point can be written as the sum of the acceleration referred
to the inertial frame and the acceleration of the frame itself.
The resulting expression for the acceleration of the material
point is given by ¨̂x = ¨̂ϕ + ¨̂a + (̃α + ṽṽ)T̂ , where ¨̂a corre-
sponds to the translational acceleration of the inertial frame.
Then, the translational part of the equilibrium equations has
to be rewritten as

n̂,S +N̂ = Aρ0(
¨̂ϕ + ¨̂a). (55)

The seismic acceleration vector ¨̂a is independent of the ma-
terial point and can be treated as an additional body force
adding it to b̂ in (39a).

4 Constitutive Nonlinearity

Normally, in engineering problems we are interested in
knowing the behavior of the structures beyond the linear

Fig. 11 Each material point on the rod has associated a composite
composed by a finite amount of simple materials

elastic case. Therefore, this section is focused on the treat-
ment of constitutive nonlinearity.

To this end, material points on the cross sections are con-
sidered as formed by a composite material corresponding
to a homogeneous mixture of different components, each of
them with its own constitutive law. The composite behav-
ior is obtained by means of the mixing theory for composite
materials (see Fig. 11). Two types of nonlinear constitutive
models for simple materials are used: the damage and the
plasticity models, both of then formulated in a manner that
is consistent with the laws of the thermodynamics for adia-
batic processes [143, 144].

The constitutive models are formulated in terms of the
material form of the FPK stress vector, P̂m

1 , and the strain

and strain rate measures Ên and Ŝn, respectively.

4.1 Softening Materials and Strain Localization

Failure of framed structures is frequently determined by the
localization of the degradation of the mechanical properties
of the materials in critical cross sections. This process usu-
ally occurs when materials presenting softening are associ-
ated to points on the cross section. Therefore, softening be-
havior of points on the cross section implies the induction of
a softer response at cross sectional level leading to the clas-
sical concept of the formation of plastic hinges [58, 65, 71,
124, 176]. The inelastic analysis of rod structures in soft-
ening regime has been developed considering concentrated
and distributed models.

Cross sectional degradation with softening can be mod-
eled considering that a specific length of the rod concen-
trates the large localized strains and the force-displacement
and/or moment-curvature relations are estimated throughout
cross sectional integration of the stress field. A similar ap-
proach has been followed by several authors e.g. Bratina et
al. [47] or Coleman and Spacone [59]. Among the main ad-
vantages of this approach, it is possible to mention:
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(i) The definition of a finite length associated to the soften-
ing zone allows to simulate the distributed damage ob-
served in some composite structures such as reinforced
concrete [59].

(ii) The cross sectional force-displacement and/or moment-
curvature relations are deduced a posteriori depend-
ing on the material distribution and their corresponding
constitutive laws.

The mesh independent response of the structure can be ob-
tained regularizating the constitutive equations according to
the energy dissipated in the corresponding softening vol-
ume, limiting this value to the specific fracture energy of
the material [163, 177, 181].

Some criticisms can be made to this approach in what re-
gards to the treatment given to the softening response of rod
structures, e.g. the fact that even in the case that the charac-
teristic length of the materials exists (intrinsically, as a ma-
terial property), this length should be largely smaller that the
scales considered in the meshes [14]. Other alternative pro-
cedures based on considering the strong discontinuity ap-
proach10 on the generalized displacement field of the beam
can be also consulted in Refs. [13–15].

4.2 Degrading Materials: Damage Model

The behavior of the degrading materials is presented attend-
ing to the fact that micro-fissuration occurs due to the lack
of cohesion between particles, among other processes. Dif-
ferent micro-fissures connect each to other generating a dis-
tributed damage zone in the material. After a certain loading
level is reached a fractured zone is clearly defined [24, 95].

A damage model consistent with the kinematic assump-
tion of the rod theory and based on the 3D formulation has
been developed by Mata et al. [163]. The model has only one
internal variable (isotropic) employed for simulating the me-
chanical degradation of the material. It shows a good equi-
librium between complexity and versatility allowing it use
in large numerical simulations.

4.2.1 Secant Constitutive Equation and Dissipation

In the case of thermally stable problems, the free energy
density Ψ in terms of the material form of the elastic free
energy density Ψ0 and the damage internal variable d [155]
is given by

Ψ (Ên, d) = (1 − d)Ψ0 = (1 − d)

(

1

2ρ0
Ên · (Cme Ên)

)

, (56)

where Ên is the material form of the strain vector, ρ0 is
the mass density in the reference configuration and Cme =

10For a detailed treatment of this topics, consult [12, 174, 176] and
references therein.

Diag[E,G,G] is the material form of the elastic constitutive
tensor, with E and G the Young and shear undamaged elastic
modulus.

The local form of the Clausius Planck inequality for the
mechanical dissipation is valid [144, 155] and can be written
as

Ξ̇m =
(

1

ρ0
P̂m

1 − ∂Ψ

∂Ên

)

· ˙̂E n − ∂Ψ

∂d
ḋ ≥ 0, (57)

where Ξ̇m is the dissipation rate. Considering the fulfillment
of the Clausius Planck inequality and the Coleman’s prin-

ciple, we have that the arbitrary variation ˙̂E n must be null
[144]. Then, the following constitutive relation is obtained:

P̂m
1 = (1 − d)Cme Ên = Cms Ên = (1 − d)P̂m

01, (58)

where Cms = (1 − d)Cme and P̂m
01 = Cme Ên are the material

form of the secant constitutive tensor and the elastic FPK
stress vector, respectively.

Inserting the result of (58) into (57) the following expres-
sion is obtained for the dissipation rate

Ξ̇m = −∂Ψ

∂d
ḋ = Ψ0ḋ ≥ 0. (59)

The internal state variable d ∈ [0,1] measures the lack of
secant stiffness of the material as it can be seen in Fig. 12.
Moreover, (59) shows that the temporal evolution of d is
always positive due to the fact that Ψ0 ≥ 0.

4.2.2 Damage Yield Criterion

By analogy with the developments presented in Refs. [25,
95, 178], the damage yield criterion denoted by the scalar
value F is defined as a function of the undamaged elastic

Fig. 12 Differentiated traction/compression behavior and evolution of
the internal variable
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free energy density and written in terms of the components
of the material form of the undamaged principal stresses,
P̂m
p0, as

F = P −fc = [1+r(n−1)]
[

3
∑

i=1

(Pm
p0i )

2

]1/2

−fc ≤ 0,(60a)

where P is the equivalent (scalar) stress and the parame-
ters r and n = fc/ft are given in function of the tension
and compression strengths fc = √

(2ρΨ 0
c E0)L and ft =

√

(2ρΨ 0
t E0)L, respectively; (Ψ 0

t )L and (Ψ 0
c )L are the parts

of the free energy density developed when the tension or
compression limits are reached, respectively. These quanti-
ties are defined as

(Ψ 0
t,c)L =

3
∑

i=1

〈±Pm
p0i〉Eni

2ρ0
, r =

∑3
i=1〈Pm

p0i〉
∑3

i=1 |Pm
p0i |

, (60b)

with Ψ 0
L = (Ψ 0

t )L + (Ψ 0
c )L and |u| is the absolute value

function and 〈±u〉 is the McAuley’s function. As it has
been shown by Oliver et al. in [175], other kind of damage
yield criteria can be used in substitution of P , e.g. Mohr–
Coulomb, Drucker–Prager, Von Mises etc. [95].

A more general expression equivalent to that given in
(60a) [25] was originally proposed by Simo and Ju [216]:
F̄ = G(P) − G(fc), where G(•) is a scalar monotonic func-
tion to be defined ensuring that the energy dissipated by the
material on an specific integration point is limited to the spe-
cific energy fracture of the material [175].

4.2.3 Evolution of the Damage Variable

The evolution law for d is given by

ḋ = μ̇
∂F̄
∂P = μ̇

∂G
∂P , (61)

where μ̇ ≥ 0 is the damage consistency parameter. Addi-
tionally, the damage yield condition F̄ = 0 and consistency

condition ˙̄F = 0 are defined analogously as in plasticity the-
ory [215]. The yield condition implies that

P = fc,
dG(P)

dP = dG(fc)

dfc

, (62)

and the consistency condition, along with a suitable defi-
nition of the damage variable expressed in terms of G i.e.
d = G(fc), allows to obtain the following expression for the
damage consistency parameter:

μ̇ = Ṗ = ḟc = ∂P
∂P̂m

01

· ˙̂
P

m

01 = ∂P
∂P̂m

01

· Cme ˙̂E n. (63)

These results allow to rewrite (59) and (61) [25, 95] as

ḋ = dG
dP Ṗ, Ξ̇m = Ψ0

[

dG
dP

∂P
∂P̂m

01

]

· Cme ˙̂E n. (64)

Finally, the Kuhn-Thucker relations: (a) μ̇ ≥ 0, (b) F̄ ≤ 0,
(c) μ̇F̄ = 0 have to be employed to derive the unloading–
reloading conditions i.e. if F̄ < 0 the condition (c) imposes
μ̇ = 0, on the contrary, if μ̇ > 0 then F = 0. The following
expression is used for G [25, 175]:

G(χ) = 1 − Ḡ(χ)/χ = 1 − χ∗/χeκ(1−χ/χ∗), (65)

where Ḡ(χ) gives the initial yield stress for certain value of
χ = χ∗ and χ → ∞ the final strength is zero.

The parameter κ of (65) is calibrated to obtain an amount
of dissipated energy equal to the specific fracture energy of
the material when all the deformation path is followed.

Integrating (57) for an uniaxial tension process with
a monotonically increasing load, and considering Ψ0 =
P 2/(2n2E0) [25], it is possible to obtain that the total en-
ergy dissipated is Ξmax

t = (P ∗2/2ρ0E
0)[1/2 − 1/κ] [175].

Therefore, the expression for κ is

κ = 1
Ξmax

t n2ρ0E
0

f 2
c

− 1
2

≥ 0, (66)

where it has been assumed that the equivalent stress tension
P ∗ is equal to the initial damage stress fc. The value of
Ξmax

t corresponds to the fracture energy density gf , which
is derived from the fracture mechanics as gd

f = Gd
f /lc ,

where Gd
f the tensile fracture energy and lc is the charac-

teristic length of the fractured domain employed in the reg-
ularization process [146].

An identical procedure gives the fracture energy density
gd
c for a compression process. Due to the fact that the value

of κ have to be the same for a compression or tension test,
we have that Ξmax

c = n2Ξmax
t .

4.2.4 Tangential Constitutive Tensor

Starting from (58) and after several algebraic manipulations
which can be reviewed in [25, 95], we obtain that the mater-
ial form of the tangent constitutive tensor Cmt can be calcu-
lated as

δP̂m
1 = CmsδÊn + δCms Ên = CmtδÊn

=
[

(1 − d)I − dG
dP P̂m

01 ⊗ ∂P
∂P̂m

01

]

CmeδÊn, (67)

where I is the identity tensor. It is worth noting that Cmt is
nonsymmetric and depends on the elastic FPK stress vector.
A backward Euler scheme used for the numerical integra-
tion of the constitutive damage model, can be consulted in
Ref. [163].
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4.3 Rate Dependent Effects

In this section, the rate independent damage model previ-
ously presented is extended to consider viscosity; the same
formulation can be applied to visco elasticity neglecting the
damage variable. For the case of materials with a visco plas-
tic constitutive behavior, Ref. [214] can be consulted.

Viscosity is considered by means of Maxwell’s model
[95, 177]; then, the FPK stress vector is obtained as the sum
of a rate independent part P̂m

1 (see (58)) and a viscous part
P̂mv

1 as

P̂mt
1 = P̂m

1 + P̂mv
1 = (1 − d)Cme

(

Ên + η

E
Ŝn

)

, (68)

where P̂mt
1 is the material form of the total FPK stress vec-

tor, Ŝn is the material strain rate vector and ηsm is the ma-
terial description of the secant viscous constitutive tensor
defined as ηsm = η/ECms, where the scalar parameter η is
the viscosity. It is worth to note that in (68) for Cms = Cme

the pure visco elastic behavior is recovered.
The dissipative power is given by

Ξ̇m =
[

Ψ0 + τ

ρ0

˙̂E n · Cme Ê
]

dG
dP m

∂P m

∂P̂m
1

· Cms ˙̂E n. (69)

The linearized increment of the material form of the FPK
stress vector is calculated as

δP̂mt
1 = δP̂m

1 + δP̂mv
1 = CmvδÊn + ηsmδŜn, (70)

where P̂mv
01 is the material form of the FPK visco elas-

tic stress vector, δŜn is the linearized increment of the
strain rate vector and the material tangent constitutive ten-
sor which considers the viscous effects is

Cmv =
[

I −
(

dI + dG

dP m (P̂m
01 + P̂mv

01 ) ⊗ ∂P
∂P̂m

01

)]

Cme. (71)

The co-rotated form of the linearized increment of the total
FPK stress vector is then obtained according to

δ

�
[P̂ t

1]= �δP̂mt
1 = Csvδ

�
[ε̂n] +ηssδ

�
[ŝn], (72)

where Csv = �Cmv�T and ηss = �ηsm�T are the spatial
descriptions of the rate dependent tangent and secant vis-
cous constitutive tensors, respectively.

4.4 Plastic Materials

For materials undergoing non-reversible deformations, the
plasticity model formulated in the material configuration is
used for predicting the corresponding mechanical response
[181]. Assuming a thermally stable process, small elastic

and finite plastic deformations, the free energy density Ψ

is given by [146]

Ψ = Ψ e + ΨP = 1

2ρ0
(Ê e

n · Cme Ê e
n) + ΨP (kp), (73)

where the Ê e
n is the elastic strain vector calculated subtract-

ing the plastic strain vector Ê P
n from Ên, Ψ e and ΨP are the

elastic and plastic parts of the free energy density, ρ0 is the
density in the material configuration and kp is the plastic
damage internal variable.

4.4.1 Secant Constitutive Equation and Dissipation

Employing the Clausius Planck inequality and Coleman’s
principle [144, 155], the secant constitutive equation and the
mechanical dissipation take the following form

P̂m
1 = ρ0

∂Ψ (Ê e
n, kp)

∂Ê e
n

= Cms(Ên − Ê P
n

) = Cme Ê e
n. (74a)

Ξ̇m = P̂m
1 · ˙̂E

P

n

ρ0
− ∂Ψ P

∂kp
k̇p ≥ 0, (74b)

where the material description of the secant constitutive ten-
sor Cms coincides with the elastic one Cme.

4.4.2 Plastic Yielding and Potential Functions

Both, the yield function, Fp , Gp , for the plasticity model,
are formulated in terms of the material FPK stress vector
P̂m

1 and the plastic damage internal variable kp as

Fp(P̂
m
1 , kp) = Pp(P̂

m
1 ) − fp(P̂

m
1 , kp) = 0, (75a)

Gp(P̂
m
1 , kp) = K, (75b)

where Pp(P̂
m
1 ) is the (scalar) equivalent stress, which is

compared with the hardening function fp(P̂
m
1 , kp) depend-

ing on the damage plastic internal variable kp and on the
current stress state, and K is a constant value [147, 181].

According to the evolution of the plastic damage vari-
able, kp , it is possible to treat materials considering isotropic
hardening as in Refs. [92, 185, 217]. It constitutes a mea-
sure of the energy dissipated during the plastic process and,
therefore, is well suited for materials with softening [146,
180]; it can be defined by

0 ≤
[

kp = 1

gP
f

∫ t

0
P̂m

1 · Ė P
n dt

]

≤ 1, (76)

where gP
f = ∫ ∞

0 P̂m
1 · Ė P

n dt = GP
f /lc, GP

f is the specific
plastic fracture energy of the material in tension and lc is the
length of the fractured domain defined in analogous manner
as for the damage model. Similarly, the normalized plastic
damage variable for the case of a compressive test depends
on gP

c .
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4.4.3 Evolution Laws for the Internal Variables

The flow rules for Ê P
n and kp are defined as usual for plastic

models in the material configuration [143, 146] i.e.

˙̂E
P

n = λ̇
∂Gp

∂P̂m
1

, k̇p = λ̇"̂ · ∂Gp

∂P̂m
1

= "̂ · ˙̂E
P

n , (77)

where λ̇ is the plastic consistency parameter and "̂ is the
following hardening vector [146, 181]

k̇p =
[

r

gP
f

+ 1 − r

gP
c

]

P̂m
1 · ˙̂E

P

n = "̂ · ˙̂E
P

n , (78)

where P̂m
1 · ˙̂E

P

n is the plastic dissipation and r is given in
(60b). It is interesting to note that the proposed evolution
rule allows to differentiate between tensile and compressive
properties of the material.

In what regards the hardening function of (75a), the fol-
lowing evolution equation has been proposed [147]:

fp(P̂
m
1 , kp) = rσt (kp) + (1 − r)σc(kp), (79)

where the (scalar) functions σt (kp) and σc(kp) represent the
evolution of the yielding threshold in uniaxial tension and
compression tests, respectively.

The loading/unloading conditions are derived in the
standard form from the Kuhn-Tucker relations formulated
for problems with unilateral restrictions, i.e., (a) λ̇ ≥ 0,
(b) Fp ≤ 0 and (c) λ̇Fp = 0.

Starting from the plastic consistency condition Ḟp = 0
and considering the flow rules of (77), it is possible to de-
duce λ̇ as [180, 181]

λ̇ = −
∂Fp

∂P̂m
1

· (Cme ˙̂E n)

{ ∂Fp

∂P̂m
1

· (Cme ∂Gp

∂P̂m
1
) − ∂fp

∂kp
"̂ · ∂Gp

∂P̂m
1

}

. (80)

4.4.4 Tangent Constitutive Tensor

The material form of the tangent constitutive tensor is cal-
culated taking the time derivative of (74a), considering the
flow rules, replacing the plastic consistency parameter of
(80) and, after several algebraic manipulations [180, 181]
one obtains that δP̂m

1 = CmtδÊn with Cmt given by

Cmt =
[

Cme −
(

Cme ∂Gp

∂P̂m
1

)⊗ (

Cme ∂Fp

∂P̂m
1

)

∂Fp

∂P̂m
1

· (Cme ∂Gp

∂P̂m
1

)− Φp

]

, (81)

where Φp is the so called hardening parameter.

4.5 Mixing Theory for Composite Materials

Each material point on the beam cross section is treated as
a composite material according to the mixing theory [160,
163, 181], considering the following assumptions: (i) Each
composite has a finite number of simple materials (see
Fig. 11). (ii) Each component influence the mechanical be-
havior according to its volumetric participation factor de-
fined as kq = Vq/V , (

∑

q kq = 1) i.e. according to its pro-
portional part Vq (in terms of volume) with respect to the
total volume V associated to the material point. (iii) All the
components are subjected to the same strain field.

Supposing that a generic material point, where coexist
Nc < ∞ different components (hypothesis i), is subjected
to a strain field described by the material strain vector Ên,
according to hypothesis (iii) we have the following closing
equation:

Ên ≡ (Ên)
1 = · · · = (Ên)

j = · · · = (Ên)
Nc , (82)

which imposes the strain compatibility between compo-
nents.

The free energy density of the composite is written for
the adiabatic case as the weighted sum of the free energy
of the components [181] Ψc ≡ ∑Nc

q=1 kqΨq(Ên,αpq ), where

Ψq(Ên,αpq ) is the free energy of the q th compounding sub-
stance with an associated constitutive model depending on
p internal variables, αpq , and kq is the volumetric fraction
of the component.

4.5.1 Secant Constitutive Relation and Dissipation

For a composite material, it is possible to obtain the material
form of the secant constitutive equation, the secant constitu-
tive tensor, C̄ms

and the mechanical dissipation ˙̄Ξm for the
composite in analogous way as for simple materials i.e.

P̂m
1 ≡

Nc
∑

q

kq(P̂
m
1 )q, Ξ̇m ≡ −

Nc
∑

q=1

kq(Ξ̇m)q, (83a)

where (P̂m
1 )q and (Ξ̇m)q , are the material form of the FPK

stress vector and the mechanical dissipation of the qth com-
ponent, respectively. From the above results it is possible to
conclude that P̂m

1 = C̄ms
(Ên − Ê P

n ) with

C̄ms ≡
Nc
∑

q=1

kq(Cms)q, Ê P
n =

Nc
∑

q=1

kq(Ê P
n )q, (83b)

where (Cms)q and (Ê P
n )q are the material form of the secant

constitutive tensor and the (fictitious) plastic strain vector,
corresponding to the average value of the plastic strain vec-
tor of the composite obtained using the mixing theory.
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Then, the material form of the tangent constitutive tensor
of the composite is estimated as

δP̂m
1 = C̄mt

δÊn =
Nc
∑

i=1

kq(Cmt)qδÊn, (84)

where (Cmt)q is the material form of the tangent constitutive
tensor of the qth component.

4.5.2 Rate Dependent Effects

Using the same reasonings, the participation of rate depen-
dent effects in the composite can be considered in the fol-
lowing way:

P̂mt
1 ≡

Nc
∑

q

kq(P̂
m
1 + P̂mv

1 )q

=
Nc
∑

q

kqCms
q Ên + kqη

sm
q Ŝn = C̄ms Ên + η̄sm Ŝn, (85)

where η̄sm corresponds tho the viscous secant tensor of the
composite.

By analogy with (70), the linearized relation between ma-
terial forms of strain and stress vectors is given by δP̂mt

1 =
C̄mv

δÊn + η̄smδŜn, where

C̄mv =
Nc
∑

q

kq(Cmv)q, η̄sm =
Nc
∑

q

kq(η
sm)q . (86)

Again, the co-rotated form of the linearized relation between
strains and stresses for the composite material is based on
the weighted sum of the spatial form of the tangent constitu-
tive tensors (C mv)i plus the rate dependent tensors (ηss)i of
(71) for each one of the components and it is given by

δ

�
[P̂ t

1]= C̄sv
δ

�
[ε̂n] +η̄ssδ

�
[ŝn] .

4.5.3 Stress Resultant, Couples and Related Reduced
Tensors

The distribution of materials on the beam cross sections can
be arbitrary (see Fig. 11). Considering (83a) and (84), the
material form of the cross sectional stress resultant and cou-
ples can be written as

n̂m =
∫

A0

C̄ms ÊndA0 +
∫

A0

η̄sm ˙̂E ndA0 Ŝn, (87a)

m̂m =
∫

A0

˜E C̄ms ÊndA0 +
∫

A0

˜E η̄sm ˙̂E ndA0. (87b)

The numerical computation of n̂m and m̂m is explained in
detail in Sect. 7.

4.5.4 Fiber Reinforcements and Structural Damping

The mixing rule provides an adequate framework for sim-
ulating the mechanical behavior of some advanced com-
posed materials such as reinforced concrete [181]. In this
case, the concrete is simulated as a matrix component which
is reinforced with oriented fibres corresponding to the steel
bars which are usually simulated by means of suitable one–
dimensional constitutive laws (plasticity).

Due to the limitations imposed by the assumption that
plane cross sections remain plane during the motion, the in-
corporation of stirrups or other kind of transversal reinforce-
ments is not possible in the present formulation. However,
the simulation of the effect of this kind of reinforcement is
carried out by means of modifying the fracture energy and
the limit stress of the matrix material for increasing the cross
sectional ductility, deformability, resistance and so on [163–
165].

The global structural damping is included in the terms
corresponding to the stress resultant and stress couples
throughout the cross sectional integration of inelastic stress
fields, according to (87a) and (87b). Some branches of en-
gineering are focused on the dynamic response of damped
system but considering that the material behavior remains
within the linear elastic range. Therefore, with this objec-
tive, several ad hoc approximations have been developed,
most of them based on adding a damping term to the equi-
librium equations, which is considered to be a function of
the strain rates [108].

4.6 Linearization of the Stress Resultants and Stress
Couples: Inelastic Case

The linearized form of δP̂mt
1 can be expressed as

δP̂mt
1 = δP̂m

1 + δP̂mv
1 = C̄mv

δÊn + η̄msδŜn, (88)

where C̄mv
and η̄ms are the material form of the rate depen-

dent and viscous tangent constitutive tensors. The term δŜn

is given in (29a). The co-rotated form of (88) is obtained as

δ

�
[P̂ t

1]= �δP̂mt
1 = C̄sv

δ
�

[ε̂n] +η̄ssδ
�

[ŝn],

where C̄sv = �C̄mv
�T and η̄ss = �η̄sv�T are the spatial

form of the corresponding constitutive tensors.
On the other hand, the components of the spatial version

of the total FPK stress vector can be expressed in the local
(time varying) frame {t̂i} as P̂ t

1 = P t
1i t̂i and in the case of its

material form P̂mt
1 = Pmt

1i Êi ; taking an admissible variation
in both cases, one obtains

δP̂mt
1 = δPmt

1i Êi , δP̂ t
1 = δP t

1i t̂i + δ˜θ P̂ t
1. (89)
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Then, the co-rotated version of the linearized increment

of the FPK stress vector is obtained according to δ

�
[P̂ t

1]=
�δP̂mt

1 = δP t
1i t̂i and, therefore, it is possible to deduce that

δP̂ t
1 = δ

�
[P̂ t

1] +δ˜θ P̂ t
1 = Csvδ

�
[ε̂n] +ηssδ

�
[ŝn] +δ˜θ P̂ t

1. (90)

As it has been previously explained, explicit expressions for
the linearized forms of n̂m and m̂m can be estimated starting
from the results provided in (86) and (90) and integrating
over the cross sectional area as

δn̂m =
∫

A0

C̄mv
δÊndA0 +

∫

A0

η̄smδŜndA0

=
[

∫

A0

C̄mv
dA0

]

δΓ̂n −
[

∫

A0

C̄mv
˜EdA0

]

δΩ̂n

+
[

∫

A0

η̄smdA0

]

δ
˙̂
Γ n −

[

∫

A0

η̄sm
˜EdA0

]

δ
˙̂
Ωn

= C̄mv
nn δΓ̂n + C̄mv

nmδΩ̂n + Ῡ
sm
nnδ

˙̂
Γ n + Ῡ

sm
nmδ

˙̂
Ωn, (91a)

δm̂m =
[

∫

A0

˜E C̄mv
dA0

]

δÊn +
[

∫

A0

˜E η̄smdA0

]

δŜn

=
[

∫

A0

˜E C̄mv
dA0

]

δΓ̂n −
[

∫

A0

˜E C̄mv
˜EdA0

]

δΩ̂n

+
[

∫

A0

˜E η̄smdA0

]

δ
˙̂
Γ n −

[

∫

A0

˜E η̄sm
˜EdA0

]

δ
˙̂
Ωn

= C̄mv
mnδΓ̂n + C̄mv

mmδΩ̂n + Ῡ
sm
mnδ

˙̂
Γ n + Ῡ

sm
mmδ

˙̂
Ωn,(91b)

where the material and viscous cross sectional tangential
tensors C̄mv

ij and Ῡ
sm
ij (i, j ∈ {n,m}) are calculated in an

completely analogous manner as for the elastic case but re-
placing the components of the elastic constitutive tensor by
their tangent and viscous tangent counterparts.

The co-rotated variation of the stress resultant and cou-
ples are obtained as

δ
�
[n̂]= �δn̂m = C̄sv

nnδ
�

[γ̂n] +C̄sv
nmδ

�
[ω̂n]

+ Ῡ
ss
nnδ

�
[ ˙̂γ n] +Ῡ

ss
nmδ

�
[ ˙̂ωn], (91c)

δ
�

[m̂]= �δm̂m = C̄sv
mnδ

�
[γ̂n] +C̄sv

mmδ
�

[ω̂n]

+ Ῡ
ss
mnδ

�
[ ˙̂γ n] +Ῡ

ss
mmδ

�
[ ˙̂ωn], (91d)

where the spatial form of the cross sectional tangential ten-
sors C̄sv

ij and Ῡ
ss
ij i, j ∈ {n,m} are obtained applying the

push–forward by � on their material counterparts i.e. C̄sv
ij =

�C̄mv
ij �T and Ῡ

ss
ij = �Ῡ

sm
ij �T , respectively.

Taking into account (90) and repeating the procedures for
(91a) to (91d), one obtains

δΨ̂� = C̄sv

[

δ
�

[γ̂n]
δ

�
[ω̂n]

]

+ ϒ̄
ss

⎡

⎣

δ

�
[ ˙̂γ n]

δ

�
[ ˙̂ωn]

⎤

⎦+ N η̂s. (92)

The above results can be rewritten, along with expressions
for the linearized form of the material and co-rotated ver-
sions of the stress resultant and couples, as

δ

�
[Ψ̂ ] = (C̄svB + ϒ̄

ssV)η̂s, (93a)

δΨ̂ m = (C̄mvB̄
s + ϒ̄

msV̄s
)η̂s, (93b)

δΨ̂ = (C̄svB + ϒ̄
ssV + N )η̂s. (93c)

In the deduction of (93a) to (93c) it also has been used the
results of (22a) to (22c) and (31).

4.7 Damage Indices

Several criteria have been defined for estimating the damage
level of structures [95, 119, 179]; some of them are defined
for the global behavior of the structure, others can be applied
to individual members or subparts of the structure [61]. The
damage index here described is based on an analogy with
the problem at the micro-scale, i.e. at the constitutive level.

A measure of the damage level of a material point can
be obtained as the ratio of the real stress level, obtained ap-
plying the mixing rule, to its undamaged elastic counter part.
Following this idea, it is possible to define the fictitious dam-
age variable Ď as follows:

Ďp = 1 −
∑3

i=1 |Pmt
1i |

∑3
i=1 |Pmt

1i0|
, (94)

where |Pmt
1i | and |Pmt

1i0| are the absolute values of the compo-
nents of the existing and visco elastic stress vectors in ma-
terial form, respectively. It is worth to note that Ď considers
any kind inelasticity (damage, plasticity, etc.) by means of
the mixing rule. Initially, for low loading levels, the mater-
ial remains elastic and Ďp = 0, but when the entire fracture
energy of the material has been dissipated |Pm

1i | → 0 and,

therefore, Ďp → 1.
Equation (94) can be extended to consider particular el-

ements or even the whole structure by means of integrating
the stresses over a finite volume of the structure. It allows
defining the local and global damage indices as follows:

Ďv = 1 −
∫

Vp

(∑

i |Pm
1i |

)

dVp
∫

Vp

(∑

i |Pm
1i0|

)

dVp

, (95)

where Vp is the volume of the part of the structure in con-
sideration. The local/global damage index defined in (95) is
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a force-based criterium as it has been explained in Ref. [95].
Considering (95) a cross sectional damage index, ĎA(S),
can be expressed restricting the integrations to the cross sec-
tional area as

ĎA(S) = 1 −
∫

A
(∑

i |Pm
1i |

)

dA
∫

A
(∑

i |Pm
1i0|

)

dA
∀S ∈ [0,L]. (96)

Then, (95) can be rewritten as Ď = ∫ L

0 ĎA(S)dS. The cross
sectional damage index has the virtue of being a dimen-
sionally reduced quantity that capture in a scalar value the
degradation level of the rod at the arch-length coordinate
S ∈ [0,L].

4.8 Numerical Model for EDDs

An EDD can be seen as a dissipative nucleus connecting
two degree of freedom of the structure. A suitable numeri-
cal model can be obtained from the beam model releasing
the rotational degrees of freedom and concentrating the me-
chanical behavior of the device in a unique material point
in the middle of the resulting bar. Then, the position of a
point in the EDD is obtained from (3) as ϕ̂(S, t) (consider-
ing that ξβ = 0). The current orientation of the EDD bar of
initial length L∗ is �∗(t) and the position of the dissipative
nucleus is obtained as ϕ̂(L∗/2, t) where L∗/2 is the arch-
length coordinate of the middle point in the bar element and
the axial strain and strain rate in the dissipative point is

Ed1(t) = {

(�∗T ϕ̂,S ) · Ê1
}

∣

∣

∣

(L∗/2,t)
− 1, (97a)

Ėd1(t) = {

(�∗T ( ˙̂ϕ,S −ṽnϕ̂,S )) · Ê1
}∣

∣

(L∗/2,t). (97b)

4.8.1 Constitutive Relations for EDDs

A versatile strain-stress relationship for EDDs has been pro-
posed in Ref. [162]. It has the following general form:

Pm
d (Ed1 , Ėd1 , t) = Pm

d1
(Ed1 , t) + Pm

d2
(Ėd1 , t), (98)

where Pm
d is the average stress in the EDD, Ed1 the strain

level, t the time, Ėd1 the strain rate, Pm
d1

and Pm
d2

are the
strain dependent and rate dependent parts of the stress, re-
spectively. From the experimental results carried out on dif-
ferent types of devices, it is possible to state that Pm

d1
should

include the following characteristics: hysteretic behavior,
hardening and variable elastic modulus among others.

4.8.2 Rate Dependent Part

The following general form can be used for Pm
d2

:

Pm
d2
(Ėd1 , t) = cd(Ėd1)Ėd1 , (99)

where cd is the (nonlinear) viscous coefficient of the device
which is obtained fitting a polynomial to experimental data
[162] using, for example, cyclic sinusoidal tests on a EDD
at different maximum displacements and frequencies.

Let ΔE be the dissipated energy increment, correspond-
ing to two cyclic tests carried out at the same maximum dis-
placement, u, but for different consecutive frequencies #i+1

and #i , (i is the frequency index). The following expression
for the viscous component of the force in the device can be
used:

AtP
m
d2

= htcd(#)Ėd1 = htcd(Ėd1)Ėd1 , (100)

where At and ht are the average area and the average thick-
ness of the test specimen. If the values of the two loading
frequencies are close (numbered as i and j , respectively), it
is possible to suppose that the coefficients cdij of the viscous
coefficient are

cdij = ΔE

u2
j

[

# 2
i+1λi+1 − # 2

i λi

] , (101)

where λi = ∫ Ti

0 cos2(#it)dt . Then, it is possible to fit a poly-
nomial to the values of all the obtained coefficients cdij
[162] in function of the frequency. For example, for the case
of elastomeric devices, it is possible to consider that (99) is
approximately equivalent to

Pm
d = Pm

d1
+ htA

−1
t cd Ėd1 , (102)

where cd ∈ R is experimental.

4.8.3 Rate Independent Part

Hardening can be simulated by means of an appropriated
nonlinear elastic curve added to the non viscous hysteretic
cycles which is defined numerically by means of a polyno-
mial, whose coefficients are fitted to experimental data ob-
tained from the specific device to be modeled.

Rate independent hysteretic behavior is obtained solving
the following system of equations [162]:

Pm
d1
(Ed1 , t) = Ky(ς

%)Ed1 + [Ke(ς
%) − Ky(ς

%)]e (103a)

if Ėd1e � 0 → ė =
[

1 −
∣

∣

∣

e

dy(ς%)

∣

∣

∣

n(ς%)]

Ėd1 , (103b)

else → ė = Ėd1 ,

where Ke , Ky are the elastic and post yielding stiffness, dy
is the yielding strain level and e ∈ [−dy, dy] represents an
internal variable of plastic strain. The parameter n in the as-
sociated flow rule of (103b) describes the degree of smooth-
ness exhibited by the transition zone between the pre and the
post yielding branches.
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The model solves the system of equations (103a) and
(103b) taking into account that Ke, Ky , dy , and n are func-

tion of ς% = (E %
d1
,P

m%
d ) the point in the Ed1 − Pm

d1
space

where the last change of sign of Ėd1 has occurred. The algo-
rithm updates the parameters of the model for each change
of sign of the strain rate; on the contrary, the parameters are
maintained constants.

Explicit expressions for Ke = ℘1(ς
%), Ky = ℘2(ς

%),
dy = ℘3(ς

%), n = ℘4(ς
%) are determined from experimental

data. With this model it is possible to simulate the mechani-
cal behavior of a wide variety of devices e.g.

1. Linear elastic spring, cd = 0, ℘1 = ℘2 = constant, ℘3 ∼
∞ and ℘4 = 1.

2. Viscous dashpot, cd = constant, ℘1 = ℘2 = 0, ℘3 ∼ ∞
and ℘4 = 1.

3. Maxwell’s model, cd = constant, ℘1 = ℘2 = constant,
℘3 ∼ ∞ and ℘4 = 1.

4. Visco-plastic device, cd = constant, ℘1 � ℘2 > 0, n ∈
[1,100] and Ey > 0. Particularly, if cd = ℘2 = 0 and n =
1 a bilinear model is obtained.

5. Nonlinear viscous dashpot, cd = (Ėd1)
Kc (0 < Kc < 1),

℘1 = ℘2 = 0, ℘3 ∼ ∞ and ℘4 = 1 (see e.g. [223]).

A particular calibration of the parameters for the case of
elastomeric materials can be found in [162]).

4.9 Integration Algorithm

The flow chart of the algorithm that integrates the system of
(103b) is shown in Fig. 13. The algorithm starts by assigning
initial values to the parameters of the model. For each strain
level E i

d1
the algorithm verifies if the strain rate, changes of

sign. If this is the case, an updating procedure for the para-
meters ℘k (k = 1, . . . ,4) is carried out. On the contrary, the
parameters are maintained. Then plastic strain and stress are
then estimated. The same algorithm is used for calculating
the tangential stiffness as it will be explained in following.

Tangent Stiffness The tangent relation for the EDDs is ob-
tained numerically using the perturbation method described
in Ref. [52]. It consists in applying a small increment11 to
the strain Ed1 , denoted by δEd1 ; after solving the system of
(103b) for the total strain (Ed1 + δEd1), the new stress level
Pm
d1

is determined. Further, the hardening and viscous con-
tributions have to be added to obtain the new total stress
Pm
d (Ed1 + δEd1). The tangential stiffness of the device, Kt ,

is then calculated as

Kt = δPm
d

δEd1

= Pm
d (Ed1 + δEd1) − Pm

d (Ed1)

δEd1

. (104)

11Here the notion of smallness corresponds to the precision of the ma-
chine used in the numerical simulations.

Fig. 13 Flowchart of the constitutive relation for EDDs

It is important to note that the sign of the perturbation has
to be the same as Ėd1 to obtain a tangential stiffness consis-
tent with the sign of the loading process in the device when
cyclic actions are considered.

5 Linearization of the Virtual Work Principle

As stated by Marsden (see Chap. 5 of [159]), nonlinear prob-
lems in continuum mechanics are invariably solved by lin-
earizing a suitable form of nonlinear equilibrium equations
and iteratively solving the resulting linear systems until a
solution to the nonlinear problem is found. The Newton-
Raphson method is the most popular example of such a tech-
nique [31]. Correct linearization of the nonlinear equations
is fundamental for the success of such techniques. This sec-
tion is concerned with the linearization of the virtual work
principle to obtain the linearized equilibrium equation, in a
manner consistent with the geometry of the configurational
manifold where the involved kinetic and kinematical quan-
tities belong.

Considering η̂s ∈ T Ct and denoting by L[G] the linear
part of the functional G(Φ̂, η̂s) at the configuration defined
by Φ̂∗ ≡ (ϕ̂∗,�∗) ∈ Ct ; by definition we have

L[G(Φ̂∗, η̂s)] � G(ϕ̂∗, η̂s) + DG(Φ̂∗, η̂s) · p̂s, (105)
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where the Frêchet differential DG(Φ̂∗, η̂s) · p̂s is obtained
throughout the directional derivative formula

DG(Φ̂∗, η̂s) · p̂s = d

dβ

∣

∣

∣

β=0
G(Φ̂∗, η̂s, βp̂s),

and p̂s ≡ (Δϕ̂,Δθ̂) ∈ T�Ct is an admissible variation as de-
scribed in Sect. 3.2. The physical interpretation of (105) is
standard [219]. The term G(Φ̂∗, η̂s) supplies the unbalanced
force at the configuration Φ̂∗ and the term DG(Φ̂∗η̂s) ·
p̂s, linear in p̂s, yields the so called tangential stiffness.
If Φ̂∗ is an equilibrium configuration, we must have that
G(Φ̂∗, η̂s) = 0 for any η̂s.

5.1 Linearization of Gint

Before to develop the linearization of the internal force term,
(45), it is necessary to obtain the linear part of the co–rotated

variations of the reduced strain vectors, δ
�

[Ê]∗, given in ma-
trix form in (22c), i.e.

Δδ

�
[Ê]∗= Δ(B∗η̂s) =

[

0 Δϕ̃,S
0 0

]

η̂s = E
T η̂s, (106)

where δ

�
[Ê]∗= [δ

�
[γ̂ ]n, δ

�
[ω̂]n]T and it has been neglected

the terms of order Δδ(•) ≈ 0. Moreover, considering the
previous result, employing (93a) to (93c) for the linearized
increment of the internal cross sectional force and moment
vectors and (22c) for the co-rotated variations of the reduced
strain vectors, it is possible to express the linearization of
Gint∗ as

ΔGint∗ =
∫ L

0
Δ(δ

�
[Ê]∗ ·Ψ̂∗)dS,

=
∫ L

0

(

Δδ

�
[Ê]∗ ·Ψ̂∗ + δ

�
[Ê]∗ ·ΔΨ̂∗)

)

dS,

=
∫ L

0
η̂sT (

EΨ̂∗

+ BT∗ (C̄sv∗ B∗ + ϒ̄
ss
∗ V∗ + N ∗)p̂s)dS.

(107)

It is necessary to note that

EΨ̂∗ =
[

0 0
ñ∗[ d

dS I] 0

]

p̂s = F ∗p̂s, (108)

which allows to rewrite (107) as

ΔGint∗ =
∫ L

0
η̂sT (F ∗ + BT∗ N ∗

)

p̂sdS
︸ ︷︷ ︸

KG∗

+
∫ L

0
η̂sT (BT∗ C̄sv∗ B∗

)

p̂sdS
︸ ︷︷ ︸

KM∗

+
∫ L

0
η̂sT (BT∗ ϒ̄

ss
∗ V∗

)

p̂sdS
︸ ︷︷ ︸

KV ∗

,

= KM∗ + KG∗ + KV ∗, (109)

where the scalars KM∗ KG∗ and KV ∗ correspond to the ma-
terial (constitutive), geometric (stress dependant) and vis-
cous tangential stiffness.

Two observations can be made about (109):

(i) The linear part �Gint(Φ̂∗, η̂s) constitutes a bilinear op-
erator on T Ct∗ .

(ii) The matrix [BT C̄svB]∗ of KM∗ is always symmetric
although configuration dependent; in contrast with the
matrices [F + BT N ]∗ and [BT ϒ̄

ssV]∗ of KG∗ KV ∗
respectively, which are always nonsymmetric away
from equilibrium.

5.2 Linearization of Gine

Considering the results of (49a) and (49b), the inertial term
of the virtual work functional, (44), can be expressed as

Gine =
∫ L

0
η̂sT

[

Aρ0
¨̂ϕ∗

�(Iρ0Ân∗ + ˜V n∗Iρ0 V̂n∗)

]

dS, (110)

where the spatial form of the rotational terms is phrased in
terms of the material angular acceleration and velocity by
convenience. Employing the same procedure as for the in-
ternal virtual work, the linearized increment of Gine is

ΔGine =
∫ L

0
η̂sT

[

Δ(Aρ0
¨̂ϕ∗)

Δ(�∗{Iρ0Ân∗ + ˜V n∗Iρ0 V̂n∗})
]

dS,

=
∫ L

0
η̂sT

[

Aρ0Δ
¨̂ϕ∗

Ξ̂θ1 + Ξ̂θ2

]

dS (111)

with Ξ̂θ1 and Ξ̂θ2 given by

Ξ̂θ1 = −Π[Iρ0∗α̂n∗ + ṽn∗Iρ0∗v̂n∗]Δθ̂,

Ξ̂θ2 = Iρ0∗Δ
¨̂
θ

+ (̃vn∗Iρ0∗ − Iρ0∗ṽn∗ − Π[Iρ0∗v̂n∗])� ˙̂
θ.

(112)

This last results allow to rewrite ΔGine as

ΔGine =
∫ L

0
η̂sT [M∗ ¨̂ηs + Cgyr∗ ˙̂ηs + Kcent∗η̂s]dS,

= M∗ + Kgyr∗ + Kcent∗, (113)
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where the mass, gyroscopic and centrifugal stiffness matri-
ces are [53]

[

M
] =

[

Aρ0 I 0
0 Iρ0

]

, (114a)

[

Cgyr
] =

[

0 0
0

{

ṽnIρ0 − Iρ0 ṽn − Π[Iρ0 v̂n]
}

]

, (114b)

[

Kcent
] =

[

0 0
0 −Π[Iρ0 α̂n + ṽn(Iρ0 v̂n)]

]

, (114c)

and M∗, Kgyr∗ and Kcent∗ are the corresponding transla-
tional, gyroscopic and centrifugal terms of the tangential
stiffness, respectively.

From the previous equations it is possible to appreciate
the mass matrix M is always symmetric; the gyroscopic ma-
trix depends linearly on the angular velocity and the cen-
trifugal stiffness matrix depends linearly on the angular ac-
celeration and quadratically on the angular velocity.

5.3 Linearization of Gext

Following the same procedure as before, the external contri-
bution to G can be written as

Gext =
∫ L

0
η̂sT

[

df̂g

dm̂g

]

+
∫ L

0
η̂sT

[

N̂b

M̂b

]

dS

+
Np
∑

k=1

η̂sT
k

[

P̂ k
f

M̂k
f

]

, (115)

where Np is the number of points where external loads are
applied. In the case of earthquake loading, the external body
moment contribution can be neglected remaining only the
force body loads due to the base acceleration ¨̂a which is
configuration independent and it vanish in the linearization
process for obtaining the tangential stiffness tensor. The cor-
responding linearization simply produces DGext · p̂s = 0.

Finally, (115) can be rewritten as

L[G] = G∗ + [KM + KV + KG + M + Kgyr + Kcent]∗.
(116)

The discretization of (116) by using the FE method will be
explained in detail in Sect. 7.

5.4 Contribution of the EDDs

The contribution of a EDD to the functional of (48) is given
by

GD =
∫

L∗
Pm
d δEd1dS + (δϕ̂T Md

¨̂ϕ)
∣

∣

∣

(L∗/2,t)
, (117)

where Pm
d = Pm

1dÊ1; it was also assumed that Iρ0 ≈ 0, i.e.
the contribution of the EDDs to the rotational mass of the

system is negligible and Md is the EDD’s translational in-
ertia matrix, i.e. the mass of the control system is supposed
to be concentrated on the middle point of the bar. The term
δEd1 is given by

δEd1 = (�∗T (δϕ̂,S −δ˜θ ϕ̂,S )) · Ê1, (118)

which corresponds to the linearized form (variation) of the
material form of the axial strain in the EDD.

The spatial form of (118) is simply

δεd1 = (δϕ̂,S −δ˜θ ϕ̂,S ) · ê1. (119)

Consistently, one has that the spatial form of the linear in-
crement in the axial stress of the EDD is δP s

d = Ktsδεd1 .
Additionally, the linear part of δεd1 is obtained as

Δδεd1 = Π[Δϕ̂,S ]δθ̂ · ê1. (120)

Then, the linearization of the contribution of the EDDs to
the total virtual work is obtained as

δGD =
∫ L∗

0
(Ktsδε2

d1
+ P s

dΔδEd1)dS + δϕ̂T Mdδ ¨̂ϕ. (121)

6 Time-Stepping Scheme

An important effort has been devoted to develop time-
stepping schemes for the integration of the nonlinear dy-
namic equations of motion involving finite rotations. As in
the static case, the basic difficulty arises in the noncommu-
tative nature of the group SO(3) [220]. Simo and Vu-Quoc
in [220] develop an implicit transient algorithm that extends
the classical Newmark formulae, stated in R

3, to SO(3), ob-
taining a formulation similar to that of the linear case.12 Al-
ternatively, Rubin [201] provides a simplified implicit New-
mark integration scheme for finite rotations. A comparison
among implicit time-stepping schemes according to differ-
ent choices of rotational parameters can be reviewed in [107,
108]. Recently, Mata et al. [164] have included the viscous
and rate independent dissipation in the Reissner–Simo rod
model providing updating rules for the kinetic and kinemat-
ical variables according to Newmark’s scheme.

On the other hand, Newmark’s family of implicit schemes
fails to preserve certain conservation laws of the motion,
such as the total energy and momentum of nonlinear Hamil-
tonian systems, producing numerical dissipation [48]. Algo-
rithms which inherit the conservation properties are attrac-
tive due to the fact that conserved quantities often capture

12Mäkinen states in [149, 150] that it only constitutes an approximated
version of the corrected formulae, which are given in his work for the
spatial and material descriptions.
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important qualitative characteristics of the long-term dy-
namics and numerically, conservation the total energy lead
to convenient notions of algorithmic stability [88]. Simo et
al. [217, 218] provide a detailed formulation and the numer-
ical implementation of a time-stepping algorithm designed
to conserve exactly the total energy, the linear and the angu-
lar momentum for 3D rods.

Some additional enhancements can be found: for ex-
ample, Armero and Romero develop an energy-dissipating
momentum-conserving time-stepping algorithms for non-
linear rods in Ref. [17]. Second order methods for high-
frequency dissipative algorithms are given by the same au-
thors in [16]. In [36] an energy-decaying scheme for beams
is developed. In [199] an objective FE approach for the
energy-momentum conserving dynamics of rods is devel-
oped and in Ref. [42] the same objective is achieved regard-
ing nonlinear beams from the outset as constrained mechan-
ical systems. An energy-decaying scheme based on [217] is
presented in [107].

Bottasso et al. [44, 45] develop conserving/dissipating
numerical schemes for the integration of elastic multi-body
systems including rods. In [131] energy preserving implicit
and explicit integrators for constrained multi-body systems
are developed. A survey about non-linear dynamics of flex-
ible multi-body systems is given in [109].

Recently, attention has been turned towards variational
integrators i.e. algorithms formed from a discrete version
of Hamilton’s variational principle [132]. For conserva-
tive systems, usual variational principles of mechanics are
used while for dissipative or forced systems, the Lagrange-
d’Alembert principle is preferred.13 A complete survey
about variational integrators can be reviewed in [133, 157,
158]. Additionally, Kane et al. [116] discus about variational
integrators and the Newmark algorithm for conservative and
dissipative mechanical systems. An application to the design
of variational integrators on the Lie group for the full body
problem is given in Ref. [129]. At the author’s knowledge,
this type of methods have not been formally applied to the
Reissner–Simo’s rod theory.

The time-stepping scheme chosen herein for the updat-
ing procedure corresponds to the classical Newmark algo-
rithm for the translational part of the motion and can be
consulted in [31, 101]. To this end, time is considered as a
set of discrete instants. The problem consists in determining

Φ̂ ∈ C and ˙̂
Φ , ¨̂

Φ ∈ T
Φ̂

C at these instants, which fulfills the
equilibrium equations. As usual, at each time step the lin-
earized problem is solved by means of an iterative scheme
until convergency is achieved. Therefore, consistent updat-
ing procedures for strains, strain rates, stresses, etc. have

13The main properties that make these algorithms attractive are: for
the conservative case variational integrators are, symplectic [157] and
momentum conserving. They also permit the systematic construction
of higher order integrators with remarkably good energy behavior.

to be developed. The approach here presented corresponds
to an Eulerian updating procedure. Other works prefer to
carry out the updating, as well as the consistent lineariza-
tion, on the last converged configuration [108] yielding to
an updated Lagrangian procedure or work directly on the
initial configuration yielding to a total Lagrangian formu-
lation [53, 151]. Even when both, the updated Lagrangian
and the total one, can present some advantages, the alge-
braic processes required for obtaining consistent updating
procedures as well as tangential stiffness tensors are much
more involved.

6.1 Formulation of the Problem

The method described herein employs the discrete counter-
parts of the exponential map and the parallel transport in
SO(3) as it will be explained in the next sections.

Let the subscript n to denote the temporal discrete ap-
proximation of a given time–varying quantity at time tn ∈
R

+. Thus, for the field corresponding to the translational
part of the motion one has ϕ̂n(S) � ϕ̂(S, tn) and the same
rule applies for ˙̂ϕn and ¨̂ϕn(S). For the rotational field one has
�n(S) � �(S, tn) and analogously for the corresponding ki-
netic variables v̂n(S), α̂n(S), V̂n(S) and Ân(S). The corre-
sponding angular velocity and angular acceleration tensors
can be obtained as usual using the Π[•] = •̃ operator.

The basic problem consists in: Given a configuration
Φ̂n ∈ Ctn , its associated linear and angular velocity and ac-
celeration vectors, ( ˙̂ϕn, v̂n) and ( ¨̂ϕn, α̂n), respectively, ob-
tain the updated configuration Φ̂n+1 ∈ Ctn+1 and the corre-
sponding linear and angular velocity and acceleration vec-
tors ( ˙̂ϕn+1, v̂n+1) and ( ¨̂ϕn+1, α̂n+1), in a manner that is con-
sistent with the virtual work principle.

The corresponding relations in spatial and material form
have been summarized in Table 1.

The classical Newmark [31, 62, 101] algorithm for non-
linear elastodynamics [220] is employed to update the trans-
lational part of the configuration and its associated dynamic
variables. In the case of the rotational part, Simo and Vu-
Quoc [220] purpose to use a modified form of Newmark’s
time-stepping algorithm formulated in material form which
is given in Table 2, where β ∈ [0, 1

2 ], γ ∈ [0,1] are the clas-
sical (scalar) parameters of the algorithm and �t is the time
step.

A geometric interpretation of the algorithm can be con-
sulted in Ref. [219]. For the rotational part the procedure

Table 1 Discrete relations between angular velocity and acceleration
vectors at times tn and tn+1

Material Spatial

tn tn+1

V̂n V̂n+1

Ân Ân+1

tn tn+1

v̂n = �nV̂n v̂n+1 = �n+1V̂n+1

α̂n = �nÂn α̂n+1 = �n+1Ân+1
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Table 2 Newmark algorithm on R
3 × SO(3)

Translation

ϕ̂n+1 = ϕ̂n + ûn

ûn = Δt ˙̂ϕn + (Δt)2
[

( 1
2 − β) ¨̂ϕn + β ¨̂ϕn+1

]

˙̂ϕn+1 = ˙̂ϕn + Δt
[

(1 − γ ) ¨̂ϕn + γ ¨̂ϕn+1
]

Rotation

�n+1 = exp[˜θn]�n

Θ̂n = ΔtV̂n + (Δt)2
[

( 1
2 − β)Ân + βÂn+1

]

V̂n+1 = V̂n + �t
[

(1 − γ )Ân + γ Ân+1
]

takes place in SO(3). Given �n, it is updated by means of
exponentiating the incremental rotation θ̂n ∈ R

3 to obtain
�n+1 = exp[˜θn]�n. This procedure ensures �n+1 remains
in SO(3). The spatial angular velocity and acceleration ten-
sors can be obtained as

ṽn+1 = �n+1˜V n+1�
T
n+1 and α̃n+1 = �n+1˜An+1�

T
n+1.

If material the form of the angular velocity and accelera-
tion vectors are considered as independent variables using
the Newmark scheme of Table 2, the obtained solution pro-
cedure yields to the case where the rotational and transla-
tional parts are integrated in similar way. This appears as
a contradiction with the fact that the rotational part devel-
ops on SO(3), however, more precise Newmark algorithms
can be developed following the procedure of Ref. [149] and
employing a tangential transformation to obtain an additive
approximation between two consecutive rotation vectors. In
this work only the approximated version of the Newmark
algorithm on rotational manifold (as originally proposed in
Ref. [220]) will be explained, due to the fact that it concerns
with structures which dissipate most of the energy through-
out inelastic mechanisms and therefore, no great advantages
are obtained by means of using more sophisticated formula-
tions for time-stepping algorithms.

6.2 Iterative Configuration Update

The linearized form of (105) is solved in a Newton–Raphson
scheme for each time step tn+1. Usually, each time step
require several iterations to converge; lets denote generi-
cally by (i) to the ith iteration. Assuming that the config-
uration Φ̂

(i)
n+1 ∈ Ctn+1 is known, by solving the linearized

system it is possible to obtain an incremental field p̂s
n+1 =

(Δϕ̂
(i)
n+1,Δθ̂

(i)
n+1) such as

L[G(i)
n+1] = G

(i)
n+1 + DG

(i)
n+1 · p̂s(i)

n+1 ≈ 0, (122)

which is approximately zero for a new family of configu-
ration variables in equilibrium. Then, the basic setup [220]
is: Given Φ̂

(i)
n+1 ∈ Ctn+1 and the incremental field p̂

(i)
n+1 ∈

Fig. 14 Iterative configuration updating in spatial form. (a): Transla-
tional part in R

3. (b): Rotational part in SO(3)

T Ctn+1 . Update Φ̂
(i)
n+1 to Φ̂

(i+1)
n+1 in a manner consistent with

the time-stepping algorithm given in Table 2.
The translational part is updated as usual in R

3. In this
case, the exponential map reduces to the identity and parallel
transport reduces to shift the base point (see Fig. 14a). The
central issue concerns the update of incremental rotation.

On one hand, one has

�
(i)
n+1 = exp[˜θ (i)

n ]�n and �
(i+1)
n+1 = exp[˜θ (i+1)

n ]�n, (123)

where ˜θ
(i)

n and ˜θ
(i+1)
n are the skew-symmetric tensors asso-

ciated to the spatial form of the vectors which parameterize
the rotation from �n to �

(i)
n+1 and �

(i+1)
n+1 corresponding to

the iterations (i) and (i + 1), respectively. Note that the in-
cremental rotation �θ̂

(i)
n+1 is non-additive to θ̂

(i)
n+1 but

�
(i+1)
n+1 = exp[Δ˜θ (i)

n+1]�(i)
n+1. (124)

On the other hand, it is interesting to note the fact that both
˜θ
(i)

n �n and˜θ
(i+1)
n �n are elements of the same tangent space

∈ T
spa
�n

SO(3) and Δ˜θ
(i)

n+1�
(i)
n ∈ T

spa
�n+1

SO(3), therefore, the
updating procedure described in (124) makes perfect sense
(see Fig. 14b).

The second formula in (123) requires the estimation of
θ̂
(i+1)
n from θ̂

(i)
n and Δθ̂

(i)
n+1; which is obtained as

θ̂ (i+1)
n = θ̂ (i)

n + T(θ̂ (i)
n )Δθ̂

(i)
n+1, (125)

where T(θ̂
(i)
n ) = T(i)

n is a linearizing operator and it can be
consulted in [220]. Other authors [104, 107] prefer to use
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(1232) and (125) i.e. the total incremental rotation vector is
the main independent variable selected for describing rota-
tions. This last choice of parametrization for rotations pro-
duce symmetric tangential stiffness matrices but the deduc-
tion and implementation of the resulting numerical problem
become much more complicated and time consuming during
calculations.

6.3 Updating Procedure for the Angular Velocity
and Acceleration

Translational velocities ˙̂ϕ(i)

n+1 and accelerations ¨̂ϕ(i+1)
n+1 can

be obtained by means the formulas of Table 2. The itera-
tive version of the time–stepping algorithm is presented in
Table 3. The updated angular velocity V̂

(i+1)
n+1 and accelera-

tion Â
(i+1)
n+1 vectors in material form are obtained assuming

the following approximation for the time-step tn+1 iterations
(i) and (i + 1):

Θ̂(i+1)
n = ΔtV̂n + (Δt)2

[(

1

2
− β

)

Ân + βÂ
(i+1)
n+1

]

,

Θ̂(i)
n = ΔtV̂n + (Δt)2

[(

1

2
− β

)

Ân + βÂ
(i)
n+1

]

,

(126)

where Θ̂
(i)
n = �T

n θ̂
(i)
n and Θ̂

(i+1)
n = �T

n θ̂
(i+1)
n . Subtracting

the two expressions of (126) one obtains

Â
(i+1)
n+1 = Â

(i)
n+1 + 1

(Δt)2β

[

Θ̂(i+1)
n − Θ̂(i)

n

]

. (127)

Similarly, in the case of the material angular velocities, one
has

V̂ (i+1)
n = V̂n + Δt

[

(1 − γ )Ân + γ Â
(i+1)
n+1

]

,

V̂ (i)
n = V̂n + Δt

[

(1 − γ )Ân + γ Â
(i)
n+1

]

,

(128)

subtracting the two expressions of (128) and employing
(127) one obtains

V̂
(i+1)
n+1 = V̂

(i)
n+1 + γ

Δtβ

[

Θ̂(i+1)
n − Θ̂(i)

n

]

. (129)

Their spatial counterparts are obtained throughout the push-
forward relations:

v̂
(i+1)
n+1 = �

(i+1)
n+1 V̂

(i+1)
n+1 ; and α̂

(i+1)
n+1 = �

(i+1)
n+1 Â

(i+1)
n+1 .

A geometric interpretation (in spatial description) of the pro-
cedure summarized in Table 3 can be formulated taking into
account that

v̂
(i+1)
n+1 = �

(i+1)
n+1 �

(i)T
n+1v̂

(i)
n+1

+ γ

(Δt)2β
�

(i+1)
n+1 �T

n

[

θ̂ (i+1)
n − θ̂ (i)

n

]

. (130)

Table 3 Discrete Newmark algorithm

Translation

ϕ̂
(i+1)
n+1 = ϕ̂

(i)
n+1 + û

(i)
n+1

˙̂ϕ(i+1)
n+1 = ˙̂ϕ(i)

n+1 + γ
Δtβ

Δϕ̂
(i)
n+1

¨̂ϕ(i+1)
n+1 = ¨̂ϕ(i)

n+1 + 1
(Δt)2β

Δϕ̂
(i)
n+1

Rotation

�
(i+1)
n+1 = exp

[

Δ˜θ
(i)

n+1

]

�
(i)
n+1

exp
[

˜θ
(i+1)
n

] = exp
[

Δ˜θ
(i)

n+1

]

exp
[

˜θ
(i)

n

]

V̂
(i+1)
n+1 = V̂

(i)
n+1 + γ

Δtβ

[

Θ̂
(i+1)
n − Θ̂

(i)
n

]

Â
(i+1)
n+1 = Â

(i)
n+1 + 1

(Δt)2β

[

Θ̂
(i+1)
n − Θ̂

(i)
n

]

Since �
(i+1)
n+1 �

(i)T
n+1 : T

spa

�
(i)
n+1

SO(3) → T
spa

�
(i+1)
n+1

SO(3) and

�
(i+1)
n+1 �T

n : T
spa
�n

SO(3) → T
spa

�
(i+1)
n+1

SO(3), the first term

in (130) may be interpreted as the parallel transport of v̂(i)
n+1

from T
spa

�
(i)
n+1

SO(3) to T
spa

�
(i+1)
n+1

SO(3); whereas the second term

is the parallel transport of [θ̂ (i+1)
n − θ̂

(i)
n ] from T

spa
�n

SO(3)

to T
spa

�
(i+1)
n+1

SO(3).

The update procedure summarized in Table 3 applies for
i ≥ 1. For i = 0, the initial guess in the Newton process, is

ϕ̂
(0)
n+1 = ϕ̂n, �

(0)
n+1 = �n. (131)

With this assumption ( ˙̂ϕ(0)
n+1, v̂

(0)
n+1) and ( ¨̂ϕ(0)

n+1, α̂
(0)
n+1) are

computed using the Newmark formulae of Table 2.

6.4 Iterative Strain and Strain Rate Updating Procedure

The discrete form, about the configuration Φ̂
(i)
n+1 ∈ Ctn+1 of

the spatial form of the translational and rotational strains (for
each S ∈ [0,L]) can be written as

γ̂
(i)
n(n+1) = ϕ̂,

(i)
S(n+1) −t̂

(i)
1(n+1), (132a)

ω̂
(i)
n(n+1) = axial

[

(�n,S )
(i)
n+1(�

T
n )

(i)
n+1

]

(132b)

and the corresponding material descriptions are

Γ̂
(i)
n(n+1) = [�T γ̂n](i)(n+1), Ω̂

(i)
n(n+1) = [�T ω̂n](i)(n+1). (133)

Then, displacements are updated as described in Table 3,
the vector normal to the cross section t̂1 is updated by
means of the application of exp[Δθ̂

(i)
n+1] on the previous iter-

ative rotation tensor, to obtain the updated orientation triad
{t̂j }(i)n+1. Therefore, the spatial form of the updated transla-
tional strains vector is calculated as

γ̂
(i+1)
n(n+1) = ϕ̂,

(i+1)
S(n+1) −t̂

(i+1)
1(n+1), (134)

and Γ̂
(i+1)
n(n+1) = �

(i+1)T
n+1 γ̂

(i+1)
n(n+1) for the material description.
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An additive updating rule for the spatial form of the cur-
vature tensor can be constructed as follows

ω̃
(i+1)
n(n+1) = Δω̃

(i)
n(n+1)

+ exp[Δ˜θ (i)

n+1]ω̃(i)
n(n+1)exp[Δ˜θ (i)

n+1]T , (135)

Δω̃
(i)
n(n+1) = d(exp[Δ˜θ (i)

n+1])
dS

exp[−Δ˜θ
(i)

n+1],

and for the material description one obtains ˜Ω
(i+1)
n(n+1) =

�
(i+1)T
n+1 ω̃

(i+1)
n(n+1). Finally, the updated rotational strain vec-

tors can be obtained with the aid of the operator Π−1. In
(135) it is necessary to calculate the term (d(exp[Δ˜θ ])/
dS)exp[−Δ˜θ ] which can be done according to the methods
described in Ref. [219] or [113].

The spatial and material forms of the iterative strain vec-
tor at a given material point on the current cross section are
obtained with the aid of the results of (134) and (135) as

ε̂
(i+1)
n(n+1) = f0[γ̂ (i+1)

n(n+1) + ω̃
(i+1)
n(n+1)T̂

(i+1)
n+1 ], (136a)

Ê (i+1)
n(n+1) = f0[Γ (i+1)

n(n+1) + ˜	
(i+1)
n(n+1)Ê ]. (136b)

The vector Ê (i+1)
n(n+1) = �

(i+1)T
n+1 ε̂

(i+1)
n(n+1) is used for the numer-

ical integration of the constitutive equations.

Having estimated ϕ̂
(i+1)
n+1 , ˙̂ϕ(i+1)

n+1 and v̂
(i+1)
n+1 from New-

mark’s algorithm, it is possible to construct the discrete form
of the co-rotated strain rate vector as

ŝ
(i+1)
n(n+1) = ˙̂ϕ,(i+1)

S(n+1) −ṽ
(i+1)
n(n+1)ϕ̂,

(i+1)
S(n+1)

+ ṽn,
(i+1)
S(n+1) Ê

(i+1)
n+1 , (137)

with the material form given by Ŝ(i+1)
n+1 = �

(i+1)T
n+1 ŝ

(i+1)
n(n+1).

It has been supposed in (137) that the angular velocity
tensor is interpolated at the integration point bye means of
using the following approximation:

ṽ
(i+1)
n(n+1)(S) =

Nd
∑

I

NI (S)̃v
I
n,

Nd
∑

I

NI (S),S ṽI
n,

where Nd is the number of nodal points on a beam element
and the functions N(s) are the standard isoparametric shape
functions.

6.5 Discrete Form of the Linearized Functional

In order to give an explicit expression of the term DG
(i)
n+1,

entering in the iterative Newton–Raphson scheme one has
to write the discrete version of the linear forms of Sect. 5 in
terms of the incremental (iterative) field p̂

(i)
n+1 ∈ T Ctn+1 .

First, it is necessary to calculate the discrete counterpart
of a curve onto the perturbed configurations in Ctn+1 by set-
ting

ϕ̂
(i)
ε(n+1) � ϕ̂

(i)
n+1 + εΔϕ̂

(i)
n+1, (138a)

�
(i)
ε(n+1) � exp[εΔ˜θ (i)

n+1]exp[˜θ (i)

n+1]�n, (138b)

which provides the following expressions for the linearized
increments:

Δϕ̂
(i)
n+1 � d

dε

∣

∣

∣

ε=0
ϕ̂
(i)
ε(n+1) = Δϕ̂

(i)
n+1, (139a)

Δ�
(i)
n+1 � d

dε

∣

∣

∣

ε=0
�

(i)
ε(n+1) = Δ˜θ

(i)

n+1�
(i)
n . (139b)

To proceed further with the linearization of the incremental
rotational vector, we make use of representations of �

(i)
ε(n+1)

and �
(i)
n+1 in terms of exponential maps with base point at

�n. One has that �
(i)
ε(n+1) = exp[˜θ (i)

ε(n)]�n and, hence,

exp
[

˜θ
(i)

ε(n)

] = exp
[

ε�˜θ
(i)

n+1

]

exp
[

˜θ
(i)

n

]

. (140)

With this relation in mind, we obtain the linearization of the
discrete incremental rotation θ̂

(i)
ε(n), which is the axial vector

of˜θ
(i)

ε(n) in (140), as

δθ̂ (i)
n = d

dε

∣

∣

∣

ε=0
θ̂
(i)
ε(n) = T(i)

n δθ̂
(i)
n+1, (141)

where T(i)
n : T spa

�
(i)
n+1

SO(3) → T
spa
�n

SO(3) is the linear tangen-

tial map of (125). From the time-stepping algorithm of Ta-
ble 3 it is possible to write the linearized forms of the mate-
rial angular velocity and acceleration as

δV̂
(i)
n+1 = γ

Δtβ
�T

n T(i)
n Δθ̂

(i)
n+1, (142a)

δÂ
(i)
n+1 = 1

(Δt)2β
�T

n T(i)
n Δθ̂

(i)
n+1. (142b)

The discrete form of the out-of-balance force term of (122),
G

(i)
n+1, is obtained from the contribution of the internal, ex-

ternal and inertial terms as follows:

Internal Component The discrete contribution of the inter-
nal component to the residual force vector is obtained as

G
int(i)
(n+1) =

∫ L

0
η̂sT B

(i)T
n+1Ψ̂

(i)
n+1dS, (143)

where the discrete forms of the operators B
(i)
n+1 is obtained

evaluating the expressions of (22c) at the configuration
Φ̂

(i)
n+1. Observe that the internal force and moment vector

Ψ̂
(i)
n+1 is evaluated at tn+1 iteration (i).
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Inertial Component The discrete contribution of the iner-
tial forces to G

(i)
n+1 is obtained as

G
ine(i)
(n+1) =

∫ L

0
η̂sT

[

Aρ0
¨̂ϕ(i)

n+1

{Iρ0 α̂n + ṽnIρ0 v̂n}(i)n+1

]

dS, (144)

where the time-discrete form of Iρ0 is obtained from its ma-

terial counterpart as I(i)
ρ0(n+1) = �

(i)
n+1Iρ0�

T (i)
n+1.

External Component The discrete contribution of the ex-
ternal loading to the out of balance force vector is obtained
as

G
ext(i)
(n+1) =

∫ L

0
η̂sT

[

N̂g

M̂g

]

dS +
Np
∑

k=1

η̂s
k
T

[

P̂ k
g

M̂k
g

]

, (145)

which is obtained evaluating at Φ̂(i)
n+1 the configuration de-

pendent terms.

6.6 Discrete Tangential Stiffness

If the configuration Φ̂
(i)
n+1 ∈ Ctn+1 is an equilibrium configu-

ration, it follows that G(i)
n+1 ≈ 0 ∀η̂s ∈ T Cn+1. On the con-

trary, a next iteration has to be performed using the dis-
crete form of the tangential stiffness DG

(i)
n+1 · p̂s(i)

n+1 of (122),
which is obtained as

DG
(i)
n+1 · p̂s(i)

n+1

= ΔG
int(i)
(n+1) + ΔG

ine(i)
(n+1) + ΔG

ext(i)
(n+1)

= [

KM + KV + KG + KP + M + Kgyr + Kcent
](i)

n+1.

(146)

Therefore, according to (109) we have that the discrete ver-
sion of [KM + KG + KV ](i)n+1 is obtained as

K
(i)
M(n+1) =

∫ L

0
η̂sT B

(i)T
n+1C̄sv(i)

n+1 B
(i)
n+1p̂

s(i)
n+1dS, (147a)

where C̄sv
ij = �

(i)
n+1C̄mv

ij �
(i)T
n+1 i, j ∈ {n,m} and B

(i)
n+1 is ob-

tained from (22c) evaluating at ϕ̂,(i)S(n+1). On the other hand,
the geometric part given by

K
(i)
G(n+1) =

∫ L

0
η̂sT [B

(i)T
n+1N

(i)
n+1 + F (i)

n+1

]

p̂
s(i)
n+1dS, (147b)

where the stress dependent tensors N and F are calcu-
lated according to (92) and (108) but the associated values
of the stress resultant and couples are those corresponding
to Ψ̂

(i)
n+1 ∈ T ∗Cn+1.

The viscous dependent part is obtained as

K
(i)
G(n+1) =

∫ L

0
η̂s[B

(i)T
n+1Ῡ

ss(i)
n+1V (i)

n+1

]

p̂
s(i)
n+1dS, (147c)

where Ῡ
ss(i)
ij (n+1) = �

(i)
n+1Ῡ

ss
ij�

T (i)
n+1 i, j ∈ {n,m} are calcu-

lated according to (91a) and (91b). The strain rate dependent
tensor V(i)

n+1 can be calculated considering (142a), along
with the discrete form of the result of (26), which allow to
establish the following equivalences:

� ˙̂ϕ(i)

n+1 = [γ /(Δtβ)]IΔϕ̂
(i)
n+1,

ΔV̂
(i)
n+1 = [γ /(Δtβ)]�T

n T(i)
n Δθ̂

(i)
n+1 = �T

n Δ
˙̂
θ
(i)

n ,

identifying the tensors [γ /(Δtβ)]I and [γ /(Δtβ)]T(i)
n with

Ha and Hb of (30a) and (30b), respectively; Therefore, the
following expressions are obtained:

Δ
˙̂
θ
(i)

n = γ

Δtβ
T(i)

n Δθ̂
(i)
n+1, (148a)

Δ
˙̂
θ,

(i)
S(n) = γ

Δtβ

[

T(i)
n Δθ̂,

(i)
S(n+1) +T(i)

n ,S Δθ̂
(i)
n+1

]

, (148b)

and δ ˙̂ϕ(i)

n+1 = [γ /(Δtβ)]IΔϕ̂,
(i)
S(n+1). The explicit expression

for T,S appearing in (148a) and (148b) can be consulted in
Ref. [53]. Finally, the discrete form of (28c) and (28d) can
be rearranged as

δ

�
[Φ̂]=

[

Vϕ(i)
n+1 Vϕθ(i)

n+1

0 Vθ(i)
n+1

]

p̂
s(i)
n+1 = V (i)

n+1p̂
s(i)
n+1, (149)

where

Vϕ(i)
n+1 = γtβI

d

dS
I − ṽ

(i)
n+1

d

dS
I,

Vϕθ(i)
n+1 = ˙̃ϕ,

(i)
S(n+1) +ϕ̃,

(i)
S(n+1) γtβT(i)

n − ṽ
(i)
n+1ϕ̃,

(i)
S(n+1) ,

Vθ(i)
n+1 = (γtβT(i)

n − ṽn)
d

dS
I + γtβ

[

T(i)
n

d

dS
I + T(i)

n ,S

]

,

and γtβ = γ
�tβ

.
Considering the iterative Newmark time-stepping scheme

of Table 3, it is possible to rewrite the discrete form of the
term Aρ0

¨̂ϕ in (111) as

Aρ0Δ
¨̂ϕ(i)

n+1 = 1

h2β
Aρ0 IΔϕ̂

(i)
n+1 = ΞϕΔϕ̂

(i)
n+1, (150)

where it is possible to see that Ξϕ is a configuration inde-
pendent tensor.

Employing the results of (142a) and (142b), it is possible
to rewrite the terms Ξ̂θ1 and Ξ̂θ2 of (111) in discrete form
as

Ξ̂θ1 = −Π
[

�
(i)
n+1(Iρ0Ân + ˜V nIρ0 V̂n)

(i)
n+1

]

Δθ̂
(i)
n+1, (151a)

Ξ̂θ2 = 1

(Δt)2β
�

(i)
n+1

[

Iρ0 + Δtγ (˜V nIρ0

− Π[Iρ0 V̂n])
](i)

n+1�
T
n T(i)

n Δθ̂
(i)
n+1, (151b)
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then, the following result is obtained: (Ξ̂θ1 + Ξ̂θ2)
(i)
n+1 =

Ξ
(i)
θ(n+1)Δθ̂

(i)
n+1 where the Ξ

(i)
θ(n+1) is a nonsymmetric and

configuration dependent tensor. This last result allows to ob-
tain the discrete form of the inertial contribution to the tan-
gential stiffness as

ΔGine(i)
(n+1) = [M + Kgyr + Kcent](i)n+1 = K

(i)
ine(n+1)

=
∫ L

0
η̂sT

[

Ξϕ 0

0 Ξ
(i)
θ(n+1)

]

p̂
s(i)
n+1dS

=
∫ L

0
η̂sT M(i)

ϕθ(n+1)p̂
s(i)
n+1dS. (152)

The discrete form of the contribution to the tangential stiff-
ness due to external loading KL is obtained directly from
(145) as

ΔGext(i)
(n+1) =

∫ L

0
η̂sT

[

˜N (i)

p(n+1)

˜M(i)

p(n+1)

]

p̂
s(i)
n+1dS

+
Np
∑

k=1

η̂sT
k

[

˜P
k(i)
p(n+1)

0

]

p̂
s(i)
k(n+1), (153)

where the involved loading quantities have to be evaluated
at the configuration Φ̂

(i)
n+1.

7 Finite Element Implementation

A Galerkin discretization [101] of the linearized form of the
virtual work functional, consistent with the time discretiza-
tion previously discussed, is presented in this section. As
usual in the FE method, the applied procedure yields to a
system of nonlinear algebraic equations well suited for the
application of the Newton iterative method.

Numerical procedures based on the spatial form of the
iterative incremental rotation vector are preferred to others
due to the fact that it makes the expressions for the inter-
nal, external and inertial vectors and the tangential matrices
concise and explicit, as opposed to the case when using the
incremental rotation vector. This choice seems to be more
efficient and robust for computations and more convenient
for programming. See e.g. Ibrahimbegović Ref. [104] for the
employment of an updated additive rotation vector or Car-
dona et al. Ref. [53] for the total Lagrangian formulation.

Consider a FE discretization of the one–dimensional do-
main [0,L]:

[0,L] =
Ne
⋃

e=1
Ihe ; (Ihi ∩ Ihj = ∅,∀i, j ∈ {1 · · ·Ne}), (154)

where Ihe denotes a typical element with length h > 0, and
Ne is the total number of elements. The space of admissi-
ble variations T Ct is approximated by a finite dimensional
subspace V h ⊂ T Ct .

Accordingly, let η̂sh be the restriction to a typical element
Ihe of the incremental displacement field/rotation field η̂sh ≡
(Δϕ̂h,Δθ̂h) ∈ V h superposed onto the configuration Φ̂∗ (at
t = t∗).

The conventional Lagrangian interpolation [31] is used
for describing the reference rod curve ϕ̂0(e), the current rod
position vector ϕ̂(e), the displacement vector, û(e) and the
linearized increments Δϕ̂(e) and Δθ̂(e), i.e.

s ∈ [−1,1] 	→

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϕ̂0(e)(s) = ∑Nd

I=1 NI (s)ϕ̂0I (e),

ϕ̂(e)(s) = ∑Nd

I=1 NI (s)ϕ̂I (e),

Δθ̂(e)(s) = ∑Nd

I=1 NI (s)Δθ̂I (e),

Δϕ̂(e)(s) = ∑Nd

I=1 NI (s)δϕ̂I (e);

(155)

where Nd is the number of nodes on a given element and
NI (s), I = 1 · · ·Nd are the local (elemental) shape func-
tions. Therefore, the value at s ∈ [−1,1] of any vectorial
quantity, denoted generically by Ĥ(s)(e), is obtained from
the values at the nodes as

Ĥ(e)(s) =
⎡

⎣

N11 · · · 0
...

. . .
...

0 · · · N16

∣

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

∣

NNd1 · · · 0
...

. . .
...

0 · · · NNd6

⎤

⎦

×
⎡

⎣

Ĥ1
...

ĤNd1

⎤

⎦

(e)

,

= [ N1| · · · |NNd1 ] Ĥ(e) = [N]Ĥ(e), (156)

where Ĥ(e)I is the value of the vectorial quantity Ĥ(e) at the
node I ; [N(s)I ] = Diag[N(s)I i], (i = 1, . . . ,6) is the diago-
nal matrix with the values of the shape function correspond-
ing to the node I evaluated at s.

A possibility for calculating the interpolated values of
the skew-symmetric tensor ˜θ(s)(e) is given by calculating
θ̂ (s)(e) using (156) and then applying the operator Π[•].
Other possibility is the direct interpolation using the matrix
N of the values of the skew-symmetric tensors ˜Θ(s)(e)I at
the nodes, taking advantages of the linearity of so(3). By
contrast, if the rotation tensor �(S) has to be determined,
we have

�(s)(e) = exp[˜θ(s)(e)] �= [N](4−6)•exp[˜θ I (e)] = �, (157)

where [N](4−6)• is the matrix corresponding to the rows 4 to

6 of the matrix N. In general, ��
T �= I due to the fact that

SO(3) is not a linear space.
The derivative with respect to S ∈ [0,L] of the quantities

defined by in (155) can be calculated starting from (156) as

Ĥ(S)(e),S = [

N1,S | · · · |NNd ,S

]

Ĥ(e) = [N,S ]Ĥ(e), (158)
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where it has been used the generic notation Ĥ(S)(e) and
[NI,S] = Diag[N(S)Ii,S], (i = 1, . . . ,6) corresponds to the
diagonal matrix constructed from the derivatives with re-
spect to S of the shape functions NI corresponding to the
node I of the element.

As usual in FE implementations, shape functions nor-
malized with respect to a curvilinear coordinate s ∈ [−1,1]
are used; and, in this case, (158) is rewritten as Ĥ(s)(e),S =
J−1
s [N ,s ]Ĥ(e), with Js = ‖ϕ̂0,S ‖ being the Jacobian of the

transformation between S and s.

7.1 FE Approximation of the Out of Balance Force Vector

The FE approximation of the internal component of the vir-
tual work principle, Gint(h)

(e) , with

η̂sh = [(δϕ̂1, δθ̂1) · · · (δϕ̂Nd
, δθ̂Nd

)]T ∈ V h

being the vector containing nodal values of the admissible
variation of Φ̂(e) is

G
int(h)
(e) =

∫ Le

0
[η̂s

1 · · · η̂s
Nd

][N1 · · ·NNd
]T [B]T Ψ̂ dS, (159)

where (22c) has been considered and the following expres-
sion is obtained for the generic term NT

I BT :

NT
I BT =

[

NI ,S I 0
−NI ϕ̃,S NI ,S I

]

, (160)

with ϕ̃,S = J−1
s Π

[[N (1−3)•,s ]ϕ̂(e)

]

according to (158). In
this way , it is possible to rewrite (159) as

G
int(h)
(e) =

Nd
∑

I=1

[

δϕ̂I

δθ̂I

]

×
∫ L(e)

0

(

J−1
s

[

NI ,s n̂

NI ,s m̂ − NI ϕ̃,s n̂

]

)

dS,

= η̂shT
Nd
∑

I=1

q̂h
int(e)I . (161)

Here, q̂h
int(e)I denotes the internal force vector related to the

node I in a typical element Ih
e . The integral appearing in

this equation can be calculated using a standard numerical
procedure selecting a set of Nip integration points on the
element and using the corresponding weighting factors WJ

(J = 1, . . . ,Nip) [101]. Therefore, q̂h
int(e)I is

q̂h
int(e)I =

Nip
∑

J=1

[

J−1
s NI ,s n̂

J−1
s (NI ,s m̂ − NI ϕ̃,s n̂)

]∣

∣

∣

∣

J

JsWJ , (162)

where (•)|J denotes the evaluation of the given quantity at
the integration point number J . The evaluation of the spatial

form of the cross sectional forces and moments, n̂ and m̂,
at the integration points is carried out by means of suitable
cross sectional analysis as it will be explained in following.

In the same way, the FE approximation of the external
component of the virtual work principle, Gext(h)

(e) is

Gh
ext(e) = η̂shT

Nip
∑

J=1

NI

[

N̂
M̂

]∣

∣

∣

∣

∣

J

JsWJ

= η̂shT
Nd
∑

I=1

q̂h
ext(e)I , (163)

where q̂h
ext(e)I is the external load vector at the node I .

The inertial contribution, Gine(h)
(e) , can be calculated as

G
int(h)
(e) =

Nd
∑

I=1

η̂shT
I ·

Nip
∑

J=1

[

NIAρ0
¨̂ϕ

NI [Iρ0 α̂n + ṽnIρ0 v̂n]
]∣

∣

∣

∣

J

JsWJ ,

= η̂shT
Nd
∑

I=1

q̂h
ine(e)I , (164)

where q̂h
ext(e)I is the inertial force load vector at the node I .

Finally, considering the results of (162), (163) and (164),
the unbalanced force term is written as

Gh
(e) = η̂shT

Nd
∑

I=1

(q̂h
int(e)I + q̂h

ine(e)I − q̂h
ext(e)I ). (165)

7.1.1 FE Approximation of the Tangential Stiffness

The FE discretization of the tangent stiffness matrix is ob-
tained from the linearized form of the virtual work prin-
ciple [104, 117, 134, 219]. Considering η̂sh = Nη̂sh

(e) and

p̂sh = Np̂sh
(e), it is possible to consider the FE approxima-

tion of the linearized form of the internal contribution to the
virtual work principle, (109), relative to the element Ih

e at a
given configuration, as

ΔGh
int(e) = η̂shT

[

∫ Le

0
(NT BT C̄svBN)dS

]

︸ ︷︷ ︸

KM(e)

p̂sh

+ η̂shT
[

∫ Le

0
(NT (F + BT N )N)dS

]

︸ ︷︷ ︸

KG(e)

p̂sh

+ η̂shT
[

∫ Le

0
(NT (BT ϒ̄

ssV)N)dS
]

︸ ︷︷ ︸

KV (e)

p̂sh, (166)

where KM(e), KG(e) and KV (e) are the material, geometric
and viscous components of the element stiffness matrix at
the current configuration.
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Then, we have that the material stiffness matrix can be
written as

KM(e) =
Nd
∑

I,J

∫ L

0
NT

I BT C̄svBNJ dS =
Nd
∑

I,J

KM(e)IJ , (167)

where [KM(e)]IJ denote the sub-matrix coupling the nodes
I and J of the finite element with explicit expression, after
the numerical integration procedure, given by

KM(e)IJ =
Nip
∑

K

J−1
s

[

Knn
M(e)IJ Knm

M(e)IJ

Kmn
M(e)IJ Kmm

M(e)IJ

]∣

∣

∣

∣

∣

K

WK, (168)

where

Knn
M(e)IJ = NI ,s NJ ,s Csv

nn,

Knm
M(e)IJ = NI ,s (Csv

nnϕ̃,s +Csv
nmNJ ,s ),

Kmn
M(e)IJ = Csv

mnNI ,s NJ ,s −NINJ ,s Csv
nnϕ̃,s ,

Kmm
M(e)IJ = NI ,s (Csv

mnϕ̃,s NJ + Csv
mmNJ ,s ),

− NI ϕ̃,s (Csv
nnϕ̃,s NJ + Csv

nmNJ ,s ),

which is always symmetric.
In an analogous manner, for the term KG(e)IJ , taking into

account (160), one has

KG(e)IJ =
Nip
∑

K

(NIF NJ + NT
I BT N NJ )

∣

∣

∣

∣

∣

K

WK,

=
Nip
∑

K

[

0 Knm
G(e)IJ

Kmn
G(e)IJ

Kmm
G(e)IJ

]∣

∣

∣

∣

∣

K

WK, (169)

Knm
G(e)IJ = −NI ,s ñNJ ,

Kmn
G(e)IJ = NI ñNJ ,s ,

Kmm
G(e)IJ = (NI (n̂ ⊗ ϕ̂,s −n̂ · ϕ̂,s I) + NI ,s m̃)NJ ,

which is not necessarily symmetric. A deep analysis about
this and other aspects was provided by Simo in Ref. [213].

Analogously, the FE discretization of the viscous compo-
nent off the tangential stiffness is computed as

KV (e) =
Nd
∑

IJ

∫ Le

0
NT

I (B
T ϒ̄

ssV)NJ dS,

=
Nd
∑

IJ

KV (e)IJ , (170)

where the sub-matrix I–J of the viscous component of the
tangential stiffness matrix is given by

KV (e)IJ = J−1
s

Nip
∑

K

[

Knn
V (e)IJ Knn

V (e)IJ

Knn
V (e)IJ Knn

V (e)IJ

]∣

∣

∣

∣

∣

K

WK, (171)

with

Knn
V (e)IJ = NI ,s Ῡ

ss
nnNJ ,s (γtβI − ṽ),

Knm
V (e)IJ = NI ,s

{

Ῡ
ss
nnNJ ( ˙̃ϕ,s +ϕ̃,s γtβT − ṽϕ̃,s )

+ Ῡ
ss
nm((2γtβT − ṽn)NJ ,s +γtβT,s NJ )

}

,

Kmn
V (e)IJ = NJ ,s (γtβI − ṽ)(NI ,s Ῡ

ss
mn − NI ϕ̃,s Ῡ

ss
nn),

Kmm
V (e)IJ = (NI ,s Ῡ

ss
mm − NI ϕ̃,s Ῡ

ss
nn)NJ ( ˙̃ϕ,s

+ ϕ̃,s γtβT − ṽϕ̃,s ) + (NI ,s Ῡ
ss
nm

− NI ϕ̃,s Ῡ
ss
nn)((γtβ2T − ṽn)NJ ,s +γtβT,s NJ ).

The FE discretization of the inertial contribution to the ele-
mental tangent stiffness Kine(e), (152), is obtained as

Kine(e) = η̂shT
[

∫ Le

0
NT MϕθNdS

]

p̂sh,

= η̂shT
Nd
∑

IJ

Kine(e)IJ p̂
sh, (172)

where Kine(e)IJ , coupling the degree of freedom of node I

and of node J , is given by

Kine(e)IJ =
∫ Le

0
NT

I

[

Ξϕ 0
0 Ξ θ

]

NJ dS,

=
Nip
∑

k

[

Kϕ

ine(e)IJ 0

0 Kθ
ine(e)IJ

]∣

∣

∣

∣

∣

K

JsWK, (173)

with

Kϕ

ine(e)IJ = 1

(Δt)2β
Aρ0NINJ ,

Kθ
ine(e)IJ =

[

− �Π[Iρ0Ân + V̂n × Iρ0 V̂n]

+ 1

(Δt)2β
�(Iρ0 + Δtγ (˜V nIρ0 − Π[Iρ0 V̂n])

]

× �∗T TNINJ ,

where �∗T corresponds to the last converged configuration
and the remaining �’s are the iterative ones as described in
Sect. 6.5. The tangent inertia matrix is nonsymmetric and
configuration dependent. This property concerns only the
rotational degrees of freedom.

As it has been explained in Sect. 5.3, the linear part of the
external contribution to the virtual work principle is zero.

Finally, the tangent stiffness matrix relating the nodes I

and J is given by

[Kh
(e)]IJ =

[

KM + KG + KV + Kine

]

(e)IJ
. (174)
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7.2 Iterative Newton–Raphson Scheme

An iterative form of the Newton–Raphson scheme (122), is
used for solving the discrete version of the linearized form
of the virtual work functional (for more details see classical
textbooks [62, 101]). The global unbalanced force vector,
the global stiffness matrix and the incremental configuration
field are obtained as

q̂ =
Ne × Nd

A
e, I

q̂h
(e)I

; K =
Ne × Nd

A
e, I, J

KhIJ
(e)

;

p̂ =
Ne × Nd

A
e, I

p̂h
(e)I ;

(175)

respectively; where A denotes the usual assembly procedure
which runs over the number of elements Ne and their corre-
sponding nodal points Nd . Then, solving the following lin-
ear systems of equations it is possible to obtain the iterative
increments of the configuration variables

η̂s · [q̂s + Kp̂s](i)
n+1 ≈ 0 → p̂

s(i)
n+1 = −[

K−1q̂s](i)
n+1, (176)

where the super and sub-scripts (i) and n + 1 corresponds
to the iteration and time, respectively. Note that (176) is
valid for both the static or dynamic cases. Having obtained
an iterative field p̂

(i)
n+1, the previously described updating

procedures are used for determining Φ̂ ∈ T Ct , the related
linear and angular velocity and acceleration and the strain
and strain rate fields existing on each integration point (see
Fig. 15).

This formulation makes use of uniformly reduced inte-
gration on the pure displacement and rotation weak form to
avoid shear locking [104, 219], however, the inertial terms
are integrated in exact manner. It remains to determine the
stress field existing on each material point in the cross sec-
tions associated to integration points; this is done by means
of an adequate cross sectional analysis that will be explained
in following.

7.2.1 Cross Sectional Analysis

In distributed models for the nonlinear analysis of rod–like
structures, the cross sectional analysis (CSA) became a cru-
cial step. The CSA in a strain driven numerical method can
be defined as the set of procedures used for determining:

(i) The stress distribution in a cross section for a given
strain field.

(ii) The stress resultant and stress couples.
(iii) The reduced (cross sectional) tangential stiffness if in-

elastic materials are considered.

Fig. 15 Iterative Newton–Raphson scheme (spatial form)

All these procedures are usually dependent on the shape of
the cross section and the distribution and the constitutive re-
lation of the involved materials.

A large amount of research has been concentrated on
this topic. The significance of the techniques developed for
the precise CSA arises on the accuracy of the stress field
assigned to point on the rod. Special attention has been
directed to the determination of the shear stress and the
shear strain distribution on arbitrarily shaped cross sections.
Gruttmann et al. [91] develop a refined method based on the
FE method for shear stresses in prismatic beams. Jiang and
Henshall [115] present a FE model coupled with the CRA
for the torsion problem in prismatic bars. Similarly, in Ref.
[187] a 3D beam element based on the Saint Venant’s rod
theory is developed.

Specific efforts have been oriented to the case of thin
walled (closed or not) cross sections (see e.g. [84]) and to
beams made of composite materials. For example, Reznikov
[194] develops a method for the analysis of the nonlinear
deformation of composites including finite rotations. Ovesy
et al. [183] perform the nonlinear CSA of channel sections
using the so called finite strip method. An innovative pro-



Constitutive and Geometric Nonlinear Models for the Seismic Analysis of RC Structures with Energy 527

cedure for the precise CSA of stresses is given by the as-
ymptotic variational methods which take advantage of cer-
tain small parameters inherent to beam-like structures [248].
Several works can be quoted in this line of research, e.g. [56,
189, 247].

Most of the previous mentioned references are restricted
to the infinitesimal deformation or to the elastic case. In sev-
eral areas of engineering, the inelastic response of the struc-
tures is required. Complex phenomena such as the effect of
confinement in shear dominated failures of civil engineer-
ing structures have received increasing research effort. For
example, Thanoon et al. [231] propose a method for esti-
mating the inelastic response of composite sections. Ayoub
and Filippou [21] employ a mixed formulation for structures
with composite steel and concrete cross sections. An attempt
to develop a method for the cross sectional analysis is pre-
sented by Bentz [39]. Recently, Bairan and Mari [22] present
a coupled model for the nonlinear analysis of anisotropic
sections.

The CSA procedure here presented combines simplicity
and the sophistication required by composite materials. The
analysis is carried out expanding each integration point on
the beam axis in a set of integration points located on each
fiber on cross section. In order to perform this operation,
the beam cross section is meshed into a grid of quadrilater-
als, each of them corresponding to a fiber oriented along the
beam axis (see Fig. 16).

The estimation of the average stress level existing on each
quadrilateral is carried out by integrating the constitutive
equations of the compounding materials of the composite
associated to the corresponding quadrilateral and applying
the mixing rule as explained in Sect. 4.5. The geometry of
each quadrilateral is described by means of normalized bi-
dimensional shapes functions and several integration points
can be specified according to a selected integration rule. In
the case of the average value of the material form of the FPK
stress vector, one has

P̂m
1 = 1

Ac

∫

Ac

P̂m
1 dAc

Fig. 16 Discrete fiber like model of the beam element

= 1

Ac

Np
∑

p=1

Nq
∑

q=1

P̂m
1 (yp, zq)JpqWpq, (177)

where Ac is the area of the quadrilateral, Np and Nq are
the number of integration points in the two directions of the
normalized geometry of the quadrilateral, P̂m

1 (yp, zq) is the
value of the FPK stress vector on a integration point with
coordinates (yp, zq) with respect to the reference beam axis,
Jpq is the Jacobian of the transformation between (yp, zq)

and (ξ1, ξ2) and Wpq are the weighting factors.
Analogously, the coefficients of the tangent constitutive

tensors, C̄mt
(yp, zq), can be obtained as

C̄mt = 1

Ac

Np
∑

p=1

Nq
∑

q=1

C̄mt
(yp, zq)JpqWpq. (178)

Finally, the cross sectional forces and moments are obtained
by means of the discrete form of (11a) and (11b) as

n̂m =
Nfiber
∑

k=1

Ac(k)P̂
m
1(k), m̂m =

Nfiber
∑

k=1

Ac(k)+̂k × P̂m
1(k),(179)

were Nfiber is the number of quadrilaterals of the beam cross
section, Ac(k) is the area of the k quadrilateral, P̂m

1(k) is the

average value of the material FPK stress vector and +̂k =
(0, yk, zk) are the coordinates of the gravity center of the
kth quadrilateral.

Applying the same procedure, the material form of the re-
duced tangential tensors of (91a) and (91b) are numerically
estimated as

C̄mt
nn =

Nfiber
∑

k=1

AckC̄
mt
k , C̄mt

nm = −
Nfiber
∑

k=1

AckC̄
mt
k
˜E�k,

(180a)

C̄mt
mn =

Nfiber
∑

k=1

Ack
˜�kC̄

mt
k , C̄mt

mm = −
Nfiber
∑

k=1

Ack
˜�kC̄

mt
k
˜E�k,

(180b)

where ˜E�k = (yk˜E2 + zk˜E3),˜�k is the skew-symmetric ten-
sor obtained from +̂k and (C̄mt

)k is the material form of the
tangent constitutive tensor for the composite material of the
kth quadrilateral.

Analogously, the reduced constitutive tensor ϒ̄
ss

is ob-
tained as [163]

ϒ̄
ss
nn =

Nf iber
∑

k=1

Ack η̄
ss
k , ϒ̄

ss
nm = −

Nf iber
∑

k=1

Ack η̄
ss
k
˜E�k,

(181a)
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ϒ̄
ss
mn =

Nf iber
∑

k=1

Ack
˜�k η̄

ss
k , ϒ̄

ss
mm = −

Nf iber
∑

k=1

Ack
˜�k η̄

ss
k
˜E�k.

(181b)

From the point of view of the numerical implementations,
in a given loading step and iteration of the global Newton–
Raphson scheme, three additional integration loops are re-
quired:

(i) The first one is a loop over the quadrilaterals; where,

having obtained Γ̂n, Ω̂n and their time derivatives ˙̂
Γ n

and ˙̂
Ωn, the strain measure Ên and the strain rate mea-

sure Ŝn are calculated according to the updating pro-
cedure of Sect. 6.4. Then, they are imposed for each
simple material associated to the composite of a given
fiber.

(ii) The second loop runs over each simple material as-
sociated to the composite of the quadrilateral. In this
case, the FPK stress vector, P̂m

1 , and the tangent con-

stitutive relations, C̄mt
and η̄ms, are determine for each

component. The behavior of the composite is recov-
ered with the help of the mixing theory as explained
in Sect. 4.5.

(iii) The integration procedure carried out over the fibers al-
lows to obtain the cross sectional forces and moments
and the reduced tangential tensors.

Figure 17 shows the flow chart of the CSA procedure
for a cross section with Nfiber fibers and k simple compo-
nents associated to each fiber [163, 164]. As it has been
previously explained, the sectional behavior is obtained as
the weighted sum of the contribution of the fibers, con-
versely to other works which develop global sectional in-
tegration methods [249, 252]. Material nonlinearity, such
as degradation or plasticity, is captured by means of the
constitutive laws of the simple materials at each quadrilat-
eral.

It is worth to note that large deformations out of the cross
sectional plane can not be reproduced due to the assumed
planarity of the cross sections, therefore, the mechanical
equilibrium at element level does not implies mechanical
equilibrium among fibers.

If materials presenting softening are associated to the
fibers, the strain localization phenomenon can occur on spe-
cific integration points [13, 15, 175, 176]. Softening be-
havior of fibers imply the induction of a softer response at
cross sectional level and, in this manner, the strain local-
ization induced at material point level is translated to the
cross sectional force-displacement relationships. The struc-
tural response can became dependent on the mesh size. A
the mesh independent response can be obtained regularizat-
ing the energy dissipated on each fiber and limiting this
value to the specific fracture energy of the involved mate-
rials. However, other alternative procedures based on con-

Fig. 17 Flow chart of the cross
sectional integration
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Fig. 18 RC cantilever beam

sidering strong discontinuities in beams can be consulted
[13–15].

8 Numerical Examples

8.1 Mesh Independent Response of a RC Beam

The objective of this example consists into show how the
regularization of the energy at constitutive level allows to
obtain a mesh objective structural response at global level
when including softening materials. The RC cantilever beam
shown in Fig. 18 is subjected to forty increments of imposed
displacements in the Y direction to obtain the capacity curve
[163]. Four meshes of 10, 20, 40 and 80 quadratic elements
with the Gauss integration rule where used.

The beam cross section was meshed into 20 equally
spaced layers. The steel bars were included as a part of the
composite material with a volumetric fraction correspond-
ing to their contributing area to the total area of the layer.
The mechanical properties of the concrete and steel are:

(i) Concrete: E =21000 MPa, ν = 0.20, fc = 25 MPa,
n = 8 and Gf = 1 Nmm−2.

(ii) Steel: E = 200000 MPa, ν = 0.15, fc = 500 MPa,
n = 1 and Gf = 500 Nmm−2,

where E and ν are the elastic modulus and Poisson coeffi-
cient, respectively; Gf is the fracture energy, fc is the ulti-
mate compression limit and n is the ratio of the compression
to the tension yielding limits.

Figure 19 shows the capacity curve relating the verti-
cal reaction and displacement of the free end. It is possible
to see that the numerical responses converge to that corre-
sponding to the model with the greater number of elements.
Figure 20 shows the evolution of the global damage index
which allows to appreciate the mesh independent response
of the structure.

The previous results allow to affirm that the technique
based on regularizating the dissipation according to the spe-
cific fracture energy of the material and the characteristic

Fig. 19 Capacity curves (Mata et al. [163])

Fig. 20 Global damage index (Mata et al. [163])

length of the FE mesh permits to obtain a objective struc-
tural response.

8.2 Seismic Response of a Precast RC Building with EDDs

The nonlinear seismic response of a typical precast RC
building with EDD studied in Ref. [165] is described in this
example. The geometry of the building is shown in Fig. 21
along with the location of the devices. The mechanical prop-
erties of the materials are: (i) Concrete H-35 (fc = 35 MPa),
E = 290.000 MPa, ν = 0.2, n = 10 and gf = 1 N/mm−2.
(ii) Steel with a yielding level of fc = 510 MPa, E =
200000 MPa, ν = 0.15, n = 1 and gf = 500 N/mm−2. This
figure also shows some details of the steel reinforcement
of the cross sections. In the same figure the cross sectional
meshes are depicted. The beam has an initial hight of 40 cm
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Fig. 21 Description of the
structure

on the supports and of 140 cm in the middle of the span. The
permanent loads considered are 1000 N/m2 and the weight
of the upper half of the closing walls of 225.000 N. The in-
put acceleration is the N-S component of the El Centro 1940
earthquake with a peak acceleration of 0.3g.

The two columns and the beam are meshed using 8
quadratic elements with two Gauss integration points per el-
ement. A purely plastic EDD was used with cd = 0, ℘1 =
167000 N/mm, ℘2 = 0, dy = 1.2 mm and ℘4 = 1. The
length of the devices is 3.1 m. First, a set of four numer-
ical pushover analysis are performed considering: (1) The
bare frame under small displacements assumption. (2) The
bare frame in finite deformation. (3) The frame with EDDs
and small deformation. (4) Idem as (3) but with finite defor-
mation. The purpose is to establish clearly the importance of

considering geometric nonlinearity coupled with inelasticity
in the response of the structure.

The corresponding capacity curves are shown in Fig. 22a.
It is possible to see that for both cases, with and without
EDDs, the small strain assumption overestimates the real
capacity of the structure, due to the fact that the vertical
loads compress the columns controlling the cracking due to
the lateral loading. In the case of finite deformation, the so
called P –Δ [242] effect produces an anticipated strength
degradation clearly observed for displacements >60 mm.
Softening behavior observed in the finite deformation mod-
els is not captured in the cases (1) and (3). EDDs also con-
tributes to increases the stiffness and yielding point of the
structure.

Figure 22b shows the evolution of the global damage in-
dex for the four cases. This index grows quickly for the cases
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Fig. 22 (a): Capacity curves. (b): Evolution of the global damage in-
dex (Mata et al. [165])

Fig. 23 Evolution of the global damage index (Mata et al. [165])

when finite deformation is considered and the benefits of
adding EDDs are not clear due to the fact that the pushover
analysis does not take into account energy dissipation crite-
ria [165].

Fig. 24 Time history responses of the top beam–column joint.
(a): Horizontal displacement. (b): Acceleration (Mata et al. [165])

The results of the numerical simulations in the dynamic
range confirm that the incorporation of plastic EDDs con-
tributes to improve the seismic behavior of the structure.
Figure 23 shows the evolution of the global damage index.
The curve corresponding to the structure with EDDs has
been estimated without considering the damage in the de-
vices; therefore, it constitutes a measure of degradation in
the RC building. On the contrary to the static case, here the
benefits of including EDDs are clearly evidenced from the
fact that the global level of degradation is higher for the case
of the bare structure.

Figure 24 shows the time history response of the horizon-
tal displacement and acceleration of the upper beam–column
joint for the uncontrolled and the controlled case. A reduc-
tion of approximately 65.5% is obtained for the maximum
lateral displacement when compared with the bare frame.
Acceleration is controlled in the same way, but only 26.9%
of reduction is obtained. A possible explanation for the lim-
ited effectiveness of the EDD is that the devices only con-
tribute to increase the ductility of the beam–column joint
without alleviating the base shear demand on the columns
due to the dimensions of the device and its location in the
structure.

8.3 Seismic Response of a 3D Building with EDDs

This example corresponds to the study of the seismic re-
sponse a 3-storey building designed according to the Eu-
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Fig. 25 (a): 3-storey urban
building with EDDs. (b): RC
detailing (Mata et al. [165])

rocode 8 [75] for a medium ductility class, a soil profile A
and a peak ground acceleration of 0.2g, see Fig. 25a. It high-
lights the geometric and constitutive nonlinear behavior of
a 3D structure with and without EDDs, including complex
phenomena like the torsional response coupled with P –Δ
effects [165]. The mechanical properties for steel and con-
crete as well as the applied acceleration record are the same
as in the previous example. The loading is applied according
to the axis A–B of Fig. 25a.

The inertial forces are derived from the contribution of
the mass corresponding to a concrete floor of 130 mm
thickness along with the sum of dead and live loads of
2500 N/mm2. Structural torsion is induced adding two point
masses in nodes A and B corresponding to the 10% of the
total mass of a floor.

Three cases are considered: (1) Bare building. (2) Elastic
bare equipped with viscous EDDs. The location of the vis-
cous devices is shown in Fig. 25a and their mechanical prop-
erties are: cd = 10.000 Ns−1 with an exponent of n = 0.5
and ℘j = 0 (j = 1, . . . ,4). (3) Full nonlinear model of the
building equipped with viscous EDDs. Case (2) is used to
investigate the influence on the structural response of the
a priori assumption that considers the building’s structure
remaining elastic when using EDDs.

The displacement time history responses of the nodes B

and C of the building in the direction of the applied record
are shown in Fig. 26a and 26b, respectively. The difference
observed between these figures is due to the fact that the
torsional effect induces a rotational motion about the iner-
tial center of the floors. It is possible to appreciate that the
use of the viscous EDDs contributes to alleviate the max-
imum displacement demand about a 25% with respect to

the bare frame. Clearly, the a priori consideration that the
main structure remains elastic underestimates the displace-
ment and ductility demand of the structural elements.

Figures 26c and 26d shows the displacement time history
response (torsionally induced) of the nodes C and D in the
direction perpendicular to A–B . It is possible to see that the
inclusion of EDDs alleviates significatively the torsional re-
sponse in the nonlinear range.

The evolution of the global damage index is shown
for the full nonlinear controlled and uncontrolled cases in
Fig. 27. In the same manner as before, the benefits obtained
from the application of EDDs are clearly evidenced.

9 Conclusions

In summary, the review of a large amount of works devoted
to the modern numerical approach to the structural analysis
of RC structures with EDDs allows to affirm that the fol-
lowing aspects constitute current and active branches of re-
search:

(i) Geometric nonlinearity. Changes in the configuration
of RC beam in structures due to the action of sta-
tic and/or dynamic actions produces additional stress
fields which should be considered.

(ii) Constitutive nonlinearity. RC structures invariantly
present inhomogeneous distributions of inelastic (prob-
ably rate dependent) materials. The success in deter-
mining the energy dissipation for softening structures
constitutes an excellent point of departure for the ap-
plication of



Constitutive and Geometric Nonlinear Models for the Seismic Analysis of RC Structures with Energy 533

Fig. 26 Displacement time
history response in the direction
of the applied record. (a): Node
B . (b): Node C. (c): Node C

(perpendicular). (d): Node D

(perpendicular) (Mata et al.
[165])

(iii) Control techniques, based on the incorporation of
EDDs which allows to improve the dynamic response
of structures contributing to the control of displace-
ments and alleviating the ductility demand on structural
elements.

In most of the cases, finite deformation models for beam
structures have been restricted to the elastic case. By the
contrary, most of the formulations considering inelasticity
are developed under the small strain assumption and the
thermodynamical basis of the constitutive laws are violated,
limiting the possibility of obtaining good characterizations
of the mechanical properties of the structures. Several nu-
merical codes have included special elements for EDDs,
however, the obtained formulations commonly are subjected
to the mentioned limitations.

A more detailed exposition has been done for the case of
beam elements able to consider in a coupled manner geo-
metric and constitutive sources of nonlinearity in both the
static and the dynamic ranges and including passive energy
dissipating elements as an special element. The described
formulation is based on the 3D formulation for rods due to
Reissner and Simo but extended to include arbitrary distri-
bution of composite materials in the cross sections. Consti-
tutive laws for the simple materials are based on thermody-
namically consistent formulations allowing to obtain more
realistic estimations of the energy dissipation. The simple
mixing rule for composites is used for modeling complex
behaviors at material point level. A detailed cross sectional
analysis, consistent with the kinematic hypothesis is also
presented. Local and global damage indices have been de-

Fig. 27 Time history response of the global damage index (Mata et al.
[165])

veloped based on the ratio between the visco elastic and non-
linear stresses. An specific element for EDDs is described,
based on the rod model but releasing the rotational degrees
of freedom. Constitutive relations are given for a wide vari-
ety of possible dissipative mechanisms including the corre-
sponding integration algorithms.

The linearization of the virtual work functional is con-
sistent with the kinematical hypothesis of the rod’s theory
and rate dependent inelasticity. The formulation leads to the
consistent deduction of the mass and viscous tangent com-
ponents of the stiffness which are added to the material, geo-
metric terms. A suitable version of Newmark’s scheme is
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used and details about the numerical implementation of the
iterative updating procedure of the involved variables are
also addressed. The space discretization of the linearized
problem is performed using the standard Galerkin FE ap-
proach. A Newton–Raphson type of iterative scheme is used
for the step-by-step solution of the discrete problem.

Several numerical examples are provided, which include
the verification of the mesh independency of the response
for structures presenting softening behavior. The study of a
realistic flexible RC framed structures subjected to static and
seismic actions is also included.
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108. Ibrahimbegović A, Mazen AM (1998) Finite rotations in dynam-
ics of beams and implicit time-stepping schemes. Int J Numer
Methods Eng 41:781–814
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