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SUMMARY

This paper extends the capabilities of previous BST and EBST rotation-free thin shell elements to the
analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in
terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary
large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements
is introduced to consider non-homogeneous surfaces. This idea is latter generalized to deal with branching
shells. Several linear and non-linear examples are presented showing that the formulation leads to the
correct results. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The development of numerical techniques for thin (Kirchhoff–Love) shell analysis including only
translational degrees of freedom (the so called rotation-free elements) has been mainly associated
to the finite-difference method (see for example References [1–3]). Nevertheless the idea of
developing finite elements for beams and shells without rotational degrees of freedom is not new
and many attempts have been reported [4–11]. Despite these attempts it is just in the last few
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1522 F. G. FLORES AND E. OÑATE

years that reliable rotation-free shell elements for industrial applications have been developed (see
References [12–17] for a state of the art).

There are also finite elements based on transverse shear deformable shell theories that do not
include rotational degrees of freedom. But the approximation used is completely different as the
rotations are eliminated at the expense of new degrees of freedom, namely the displacements of
the top and bottom surfaces (or the difference between them). On one hand, this maintains the
number of DOFs and on the other it requires similar techniques to avoid locking phenomena as
those used for the elements including rotational degrees of freedom. This type of finite elements
are based on the so called ‘degenerated solid approach’ (a detailed discussion of this approach can
be found in Reference [18]); they avoid rotations to facilitate the connection with solid elements
and they typically make use of a general three-dimensional (3D) elasticity theory (thereby skipping
the usual plane-stress assumptions of shell theory) which allows then to implement 3D constitutive
relations [19].

The finite element models using rotation-free thin shell elements present several advantages and
some limitations depending on the type of application. The main advantages are:

• For a required precision, the number of total DOFs in the model, compared with a widely
used element as the DKT [20] may be less than a half. This means important savings in both
storage and CPU time.

• Rotation vectors or local triads, that are in general costly and difficult to parameterize and
update, are not needed. Non-symmetric matrices do not appear.

• For very thin shells (thin film membranes) no special strategy is necessary to deal with the
transverse shear strains. This may be particularly important for inflatable structures, solar
sails and also for general space shell/membrane structures.

• For explicit integrators in time, the critical time step is independent of the shell thickness.
• It is not necessary to distinguish between ‘hard’ and ‘soft’ boundary conditions.
• Rotation-free shell elements show an optimal behaviour for sheet metal forming processes
including springback effects, specially in analysis with coarse meshes.

The (present) limitations stem mainly from the shell theory used (Kirchhoff–Love) and from
the absence of rotational DOFs. We can mention:

• A direct combination with other finite elements, like beam or solid elements, is not straight-
forward. Special purpose multipoint constraints are necessary.

• Coding may be more involved.
• Transverse shear strains are disregarded. This may be an important limitation for the analysis
of composite laminates.

• Plane-stress assumption precludes the use of general 3D constitutive models.

All the approximations made for rotation-free classical shell elements share in common the
definition of a patch (neighbourhood) of elements to interpolate the geometry and compute the
curvatures. The main difference between the different approaches is how the geometry is interpo-
lated and the theoretical basis used to compute the membrane and bending strains. One of the main
aspects that remains unsolved satisfactorily is the treatment of non-smooth surfaces and specially
branching shells. An adequate handling of multiple surfaces, i.e. when more than two elements
share a side or edge, is mandatory if the element is to be used for the analysis of aeronautic, civil
or naval structures among others. Branching surfaces, i.e. when more than two surfaces share a
side, represents the main challenge.
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In this paper 3D shell problems are tackled with special focus on non-smooth and branching
shells. This work is an extension to branching shells of previous developments [13, 15] of rotation-
free 3D shell elements. And is also an extension to 3D shells of a 2D rotation-free shell element
adequate to deal with kinked and branching surfaces [21].

An outline of this paper is as follows. In Section 2, a brief summary of the main parameters
defining the shell deformation is presented. In the following section the computation of the curvature
for the BST element [13] is revisited and it is shown how to modify it to allow the treatment of
large angle changes and non-smooth surfaces. These developments are extended to branching shells
in Section 4. Section 5 considers the same developments but for the EBST element [15] using an
explicitly defined quadratic interpolation of the geometry. In Section 6 the formulation is completed
including the membrane part and the main aspects associated to the stiffness matrix evaluation. In
the last part (Section 7) the numerical assessment of the proposed element is performed via the
solution of linear, non-linear elastic and large-strain elastic–plastic problems. Some conclusions
are gathered at the end of the paper.

2. KINEMATICS OF A THIN SHELL

In this section a brief summary of the principal hypothesis regarding the kinematic behaviour
of thin shells are presented. More details can be found in the wide literature dedicated to this
field [1].

Let us consider a thin shell whose undeformed middle surface occupies the domain o� in the
Euclidean space R3 with boundary o�. At each point of this middle surface a thickness ot is
defined as the distance (measured along the normal ot3) between the upper and lower surfaces of
the shell. The thickness may not be constant but should have a smooth variation. The classical
thin shell Kirchhoff–Love hypothesis that fibres originally orthogonal to the middle surface remain
normal to the deformed middle surface is adopted here. We denote as ox and x the original and
deformed positions, respectively, of a generic point of the shell. These positions are expressed as
a function of the co-ordinates of the associated point on the middle surface u and its normal at
that point t3 as

ox(�1, �2, �3) = ou(�1, �2) + �3
ot3(�1, �2) (1)

x(�1, �2, �3) =u(�1, �2) + �3�t3(�1, �2) (2)

where �1, �2 are local curvilinear co-ordinates defined over the undeformed middle surface and �3
is the (original) distance of the generic point to the middle surface (�3 ∈ [−ot/2, ot/2]). We will
assume that the local in-plane co-ordinates (�1, �2) define orthogonal lines (not necessarily lines
of curvature) and that the associated Lamé parameters are the unity, i.e.:

ou′i · ou′ j = �i j

with �i j the Kronecker delta. The motivation for such special system is directly associated to the
numerical implementation where a local Cartesian system with the same properties is defined at
each integration point. The product �3� is the distance from the point to the middle surface in the
deformed configuration. This implies a constant transversal stretch associated to the parameter �
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1524 F. G. FLORES AND E. OÑATE

relating the thickness at the deformed configuration and the original thickness, i.e.

� = t
ot

(3)

The deformation gradient, defined as the derivative of (2) with respect to the local co-ordinates
�i , can be expressed as

F=[u′1 + �3(�t3)′1 u′2 + �3(�t3)′2 �t3] (4)

The product FTF=U2 =C (where U is the right stretch tensor and C the right Cauchy–Green
tensor) results in

U2 =

⎡
⎢⎢⎢⎣
uT′1 + �3(�t3)

T′1

uT′2 + �3(�t3)
T′2

�tT3

⎤
⎥⎥⎥⎦ [u′1 + �3(�t3)′1 u′2 + �3(�t3)′2 �t3]

=

⎡
⎢⎢⎢⎣
u′1 · u′1 u′1 · u′2 0

u′1 · u′2 u′2 · u′2 0

0 0 �2

⎤
⎥⎥⎥⎦

+ �3�

⎡
⎢⎢⎢⎣

2u′1 · t3′1 u′1 · t3′2 + u′2 · t3′1 0

u′1 · t3′2 + u′2 · t3′1 u′2 · t3′2 0

0 0 0

⎤
⎥⎥⎥⎦

+ �23�
2

⎡
⎢⎢⎢⎣
t3′1 · t3′1 t3′1 · t3′2 0

t3′1 · t3′2 t3′2 · t3′2 0

0 0 0

⎤
⎥⎥⎥⎦ (5)

where the influence of the derivatives of the thickness ratio �′a have been neglected. Disregarding
also the terms associated with �23 and introducing the following definitions of the first and second
fundamental forms of the surface (with �, � = 1, 2):

(a) the covariant metric tensor or first fundamental form of the middle surface:

a�� =u′� · u′� (6)

(b) the curvature tensor or second fundamental form of the middle surface:

��� = 1
2 (u′� · t3′� + u′� · t3′�) (7)
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the right stretch tensor can be written as

U2 =
⎡
⎢⎣
a11 + 2�11�3� a12 + 2�12�3� 0

a12 + 2�12�3� a22 + 2�22�3� 0

0 0 �2

⎤
⎥⎦ (8)

Note that for the special local co-ordinate system used, the metric tensor at the original config-
uration oa�� is the unit tensor. But for initially curved surfaces oF and oU2 are not unit tensors
for points outside the middle surface, also the Jacobian (determinant of oF) is not constant across
the thickness.

Introducing the change of curvature tensor

��� = ��� − o��� (9)

The right Cauchy–Green tensor in Equation (8) can be approximated by the following expression,
that is computationally more convenient because it is the unit tensor everywhere at the original
configuration:

U2 =
⎡
⎢⎣
a11 + 2�11�3� a12 + 2�12�3� 0

a12 + 2�12�3� a22 + 2�22�3� 0

0 0 �2

⎤
⎥⎦ (10)

Also, as usual in thin shell theories where terms of order ot/R (with R the minimum curvature
radius) can be disregarded, the Jacobian will be assumed constant across the thickness. This
assumption is not essential but leads to important savings in storage space and CPU time.

The resultant stresses (forces and moments) can be obtained by integration across the original
thickness of the second Piola–Kirchhoff stress tensor S:

N=
∫ ot/2

−ot/2
S d�3 (11a)

M=
∫ ot/2

−ot/2
S��3 d�3 (11b)

where ��3 is the actual distance of the point to the shell middle surface and a constant Jacobian
is assumed across the thickness.

The weak form of the equilibrium equations can be written as

�� =
∫
o�

[�E : N + �K : M] do� + ��ext = 0 (12)

where �K is the variation of the curvature tensor and �E is the variation of the Green–Lagrange
strain tensor at the middle surface

E= 1
2 (U

2 − 1) (13)

E�� = 1
2 (a�� − ���) (14)

and ��� is the Kronecker delta.
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1526 F. G. FLORES AND E. OÑATE

3. BST ELEMENT FOR NON-SMOOTH SURFACES

One of the main features of the rotation-free shell finite elements is that they are non-conforming as
the continuity of the normal t3 is not assured across the element boundary. To restore the continuity
of the rotations between elements at discrete points and for the evaluation of the curvatures a patch
of elements is used. This patch (shown in Figure 1(a)) includes the element under consideration
and the adjacent ones. The figure shows the local numbering for the nodes and the sides. The
same patch is shown in Figure 1(b) over a normalized domain (master element). Note the numbers
assigned to nodes and sides:

• nodes in the main element are numbered from 1 to 3; node 4 is opposite to node 1, node 5
is opposite to node 2 and node 6 to node 3;

• side i is the side opposite to node i in the main element; and the element i is the element
adjacent to that side;

• the connectivity at each adjacent element i begin with the extra node (i + 3).

3.1. Computation of curvatures for element BST

The computation of the curvatures (7) for the BST element [13], where it is assumed that the four
elements in the patch belong to a smooth surface, stems from the average integral (15a) and its
corresponding integration by parts using the divergence theorem, i.e.⎡

⎢⎢⎣
�11

�22

2�12

⎤
⎥⎥⎦= −1

o A

∫
o A

⎡
⎢⎢⎣
u′11 · t
u′22 · t
2u′12 · t

⎤
⎥⎥⎦do A (15a)

= −1
o A

∫
o�

⎡
⎢⎢⎣
n1 0

0 n2

n2 n1

⎤
⎥⎥⎦
⎡
⎣u′1 · t(M)

u′2 · t(M)

⎤
⎦do� (15b)

1

2
3

4

5
6

1

2 3
M

1

2 3

1 2

3 45

6

η2

η1

GG

G

12

(a) (b)

3

Figure 1. Patch of three-noded triangular elements including the main
triangle (M) and the three adjacent ones (1, 2 y 3).
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where o A is the original area of the main element and o� its boundary with normal on= (on1, on2)T.
The directions 1 and 2 used to express the components of the curvature tensor �i j and the outward
normal oni define an arbitrary local orthogonal Cartesian system over the original surface. Unit
vector t(M) is the (present) normal to the element (defined by its three nodes).

With an upper-index between round brackets we will denote, when necessary, the element in
the patch of the associated geometrical parameter. For example t(M) is the normal to the main
element, and t(i) is the normal to the adjacent element opposite to node i of the main triangle.
The geometry of the middle surface u is interpolated independently at each element from its
three nodes uI using standard linear functions L I in terms of area co-ordinates (�1, �2) [22] (see
Figure 1):

u=
3∑

I=1
L I (�1, �2)u

I (16)

If the boundary integral (15b) is evaluated at the mid-side points, we have⎡
⎢⎢⎣

�11

�22

2�12

⎤
⎥⎥⎦= −1

o A

3∑
i=1

oli

⎡
⎢⎢⎣
n1 0

0 n2

n2 n1

⎤
⎥⎥⎦
i

⎡
⎣u′1 · t(M)

u′2 · t(M)

⎤
⎦
i

(17)

where oli is the original length of each side and a lower index i denotes values associated to the
side.

In the original BST element, the gradient at each mid-side is computed as the average of the
gradients of the two elements adjacent to the side [11, 13], i.e.[

u′1

u′2

]
i

= 1

2

⎧⎨
⎩
⎡
⎣u(i)

′1

u(i)
′2

⎤
⎦+

⎡
⎣u(M)

′1

u(M)
′2

⎤
⎦
⎫⎬
⎭ (18)

It must be also noted that

• on the main element

[
u(M)

′1 ·t(M)

u(M)
′2 ·t(M)

]
=
[
0
0

]
• resolving the gradient on the adjacent element over a local system at the common side (on, os):

[u(i)
′1 ,u(i)

′2 ] = [u(i)
′n ,u(i)

′s ]
[−on1

on2
−on2−on1

]
i
we have u(i)

′s · t(M) = 0

Then ⎡
⎢⎢⎣

�11

�22

2�12

⎤
⎥⎥⎦= 1

2o A

3∑
i=1

oli

⎡
⎢⎢⎣

on1 0

0 on2

on2
on1

⎤
⎥⎥⎦
i

[on1

on2

]
i

(u(i)
′n · t(M)) (19)

Introducing the derivatives of the linear triangle shape functions Li [22] as[
Li′1

Li′2

]
=−

oli
2o A

[on1

on2

]
i

= − 1
ohi

[on1

on2

]
i

(20)
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where ohi is the distance from node i to the its opposite side. Equation (19) can be rewrited as

⎡
⎢⎢⎣

�11

�22

2�12

⎤
⎥⎥⎦= 2o A

3∑
i=1

1
oli

⎡
⎢⎢⎢⎣

(Li′1)
2

(Li′2)
2

−2Li′1L
i′2

⎤
⎥⎥⎥⎦ (u(i)

′n · t(M)) (21)

Expression (21) or the equivalent one in terms of the gradient components (17) are used in
the BST element to compute the curvatures in the analysis of smooth surfaces. Note that the
projection u(i)

′n · t(M) is approximately equal to the sine of the angle between the normals. In fact
this approximation is valid for small angles between element normals but for arbitrary large angles
as normally occurs in kinked and branching surfaces the angle itself must be used [16, 21] instead
of the sine of the angle in the curvature definition (21).

With this target in mind, if 2	i is the angle between the normal at the main element and the
normal at the adjacent element i , the projection u(i)

′n · t(M) can be alternatively interpreted as (see
Appendix A)

u(i)
′n · t(M) = �(i)

n sin(n(i), t(M)) = �(i)
n sin 2	i

∼= �(i)
n 2	i ≡ �(M)

ni 2	i (22)

where n(i) is the normal to side i on the plane of the adjacent element (i) in the deformed
configuration and �(i)

n is the mid-surface stretch in that direction. Replacing (22) in (21) a new
expression (computationally more expensive than 21) for computing the element curvatures is
obtained as

⎡
⎢⎢⎣

�11

�22

2�12

⎤
⎥⎥⎦= 2o A

3∑
i=1

1
oli

⎡
⎢⎢⎢⎣

(Li′1)
2

(Li′2)
2

−2Li′1L
i′2

⎤
⎥⎥⎥⎦ �(M)

ni 2	i (23)

This redefinition of the element curvatures will be used below to deal with non-smooth shells. The
variation of the curvature tensor components, necessary for the computation of weak form of the
momentum equations (12), is

�

⎡
⎢⎢⎣

�11

�22

2�12

⎤
⎥⎥⎦= 2o A

3∑
i=1

1
oli

⎡
⎢⎢⎢⎣

(Li′1)
2

(Li′2)
2

−2Li′1L
i′2

⎤
⎥⎥⎥⎦ �(�(M)

ni 2	i ) (24)

In the next two sections we will see how to compute (23) and (24) for shells with kinks and
branches. It is of particular interest the approximation and computation of �(M)

ni 2	i and its variation
over each side i of the main element of the patch.
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3.2. Non-smooth surfaces

Based on previous developments of a rotation-free one-dimensional shell element [21], this section
is devoted to extend the BST element capabilities to shells with discontinuities in the normal
direction (non-smooth surfaces).

Let us suppose that in the original configuration a non-zero angle o
i exists between the normals
of two adjacent elements. Over each element, on the common side, it is possible to define a local
triad with: the element normal ot, a unit vector along the common side os and the normal to the
side in the element plane on= os× ot, so that

cos o
i = ot(M) · ot(i) =−on(M)
i · on(i) (25a)

sin o
i = ot(M) · on(i) = on(M)
i · ot(i) (25b)

Recall that the upper index indicates the element and the lower index the side. However, for the
parameters computed at the element i the lower index i is suppressed to alleviate the notation. For
example on(i) is the normal to side i over the tangent plane at element i . Note that: (a) os(M)

i ≡ osi
and os(i) are along the same line but have opposite directions; (b) with the previous notation the
angle o
i is measured around the common side osi counter-clockwise from ot(M) to ot(i); (c) the
initial angle o
i (25) between the normal vectors to the two elements is also the angle between
the normal vectors to the common side over the tangent planes at each element (between on(M)

i
and −on(i)) (Figure 2).

Using the linear mapping over each triangle (16), the gradients in the deformed configuration
(i.e. the tangent planes at each element) respect to any arbitrary local system (x1, x2) can be
computed for each element:

[u(M)
′1 ,u(M)

′2 ] and [u(i)
′1 ,u(i)

′2 ] (26)

and the normals at each plane

t(M) = �(M)u(M)
′1 ×u(M)

′2 , t(i) = �(i)u(i)
′1 ×u(i)

′2 (27)

The common side written in terms of the present unit vector along the side si and the stretch of
the fibre �s

u′s = �ssi =u(M)
′s = −u(i)

′s (28)

s(i)=-si

si
(M)=sini

(M)

n(i)

οφι

t(M)

t(i)h(i)

hi
(M)

M

i

i

j
k

Figure 2. Angle between two elements.
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allows to compute the normal vectors to the side over each element plane

n(M)
i = 1

�s
u(M)

′s × t(M) = si × t(M) (29a)

n(i) = 1

�s
u(i)

′s × t(i) = −si × t(i) (29b)

Note also that in the original configuration the in-plane normal to the side is equivalent to the
gradient in that direction, but not in the deformed configuration.

The normal vectors t(M) and t(i) (and also n(M)
i and n(i)) in the deformed configuration will

now form an angle 
i

cos
i = t(M) · t(i) =−n(M)
i · n(i) (30a)

sin
i = t(M) · n(i) =n(M)
i · t(i) (30b)

this represents a change of angle respect to the original configuration:

�
i = 
i − o
i (31)

Figure 3 shows these changes. The point of view chosen is for clarity direction si in both the
original and the deformed configurations. Note that the element normals t(i) are associated to
each element centre so that �
i measures the angle change between them. Contrary to this, the
angle between the normals to the side itself (denoted by n̄(M) and n̄(i) in the figure) must be
constant along all the deformation process due to the continuity of the shell, in accordance with
the assumption that the normal sections (of each triangle) at a side rotate with the side. To measure
deformations, a third configuration is introduced that is undeformed but rotated with respect to
the original one an angle �̄i which is defined as the rotation of the side si around itself.

οφ

φ
β (Μ)

β(i)

οφ

⊗
s i

β

β

γ (Μ)

γ

t
(i)

ot(M) t(M)

o
t
(i)

n
(M)

’n

n
(i)

’n
n

(M)

’n

(i)

n
(i)

’n

Rotated

Original

Deform.

i

i

i

i

i

i
i

Figure 3. Configurations used for the definition of the relative rotations 	(i).
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To maintain the original angle o
i between the normals to the side n̄(M) and n̄(i) it is possible
to associate to each element a relative rotation 	( ) of its normal t( ) respect to the rotation of the
side �̄i , with the condition that

�
i = 	(M)
i + 	(i) (32)

For a smooth homogeneous shells of uniform thickness [13, 15, 16] the angles 	(M)
i and 	(i)

are assigned values proportional to the distance from the side to the opposite node in each
element.

	(M)
i

h(M)
i

= 	(i)

h(i)
(33)

in the case of 2D beams this can be shown to be equivalent to equate the normal curvature on both
sides or use bending equilibrium [21]. Following this idea, to obtain the values of 	( ) Equation (32)
will be supplemented with an approximate elastic bending equilibrium equation around the side
(an approximate equilibrium as it does not include the curvature along the side and the relation
	/h is not strictly the normal curvature)

(
Et3

(1 − �2)

1

h

)(M)

	(M)
i =

(
Et3

(1 − �2)

1

h

)(i)
	(i) (34)

R(M)
i 	(M)

i = R(i)	(i) (35)

where E is the modulus of elasticity, � is the Poisson ratio, t the shell thickness and h the height
of the triangle (measured from the common side) of each adjacent element. That leads to

	(M)
i = R(i)

R(M)
i + R(i)

�
i = r (M)
i �
i (36a)

	(i) = R(M)

R(M)
i + R(i)

�
i = r (i)�
i (36b)

Equation (34) is the main assumption introduced to extend the rotation-free shell elements
to non-smooth non-homogeneous shells, and this assumption will be later extended to multiple
surface intersection. The approximation may look rather strong but the numerical results obtained
are remarkably good.

Assuming for an instant side direction si fixed in the space and denoting by:

• �(M)
i the angle rotated by element (M) expressed as the angle between t(M) and ot(M)

(measured from ot(M) to ot(M) counter-clockwise around si )
• �(i) the angle rotated by the adjacent element i , expressed as the angle between t(i) and ot(i)

(measured from ot(i) to t(i) clockwise around s(i), equivalent to measure it counter-clockwise
around si )
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(note that both angles are measured around the same axis) from expressions (36) the angle �
i
can be also seen as the difference between the angles rotated by each element around the side
(using direction si as reference), i.e.

�
i = �(i) − �(M)
i (37)

Finally it is possible to define the angle rotated by the side as the weighted average of the angles
rotated by each element

�̄i = r (M)
i �(M)

i + r (i)�(i) (38)

With the above definitions, the side rotates an angle �̄i , the main element rotates −	(M)
i relative

to the side (	(M)
i = �̄i − �(M)

i ) and the adjacent element rotates +	(i) relative to the side. These

definitions of the angles �(M)
i and �(i) are ‘conceptual’ as the direction si is not fixed in the space

and it is not possible to measure �(M)
i and �(i) separately. In fact (30) is used and with it 	(M)

i

and 	(i) are computed. However the variations of �(M)
i and �(i) can be indeed computed without

problems.
Introducing now the definition of the relative rotation angles 	(M)

i at the redefined curvature
(23) it yields ⎡

⎢⎢⎣
�11

�22

2�12

⎤
⎥⎥⎦= 4A

3∑
i=1

1

li

⎡
⎢⎢⎢⎣

(Li′1)
2

(Li′2)
2

−2Li′1L
i′2

⎤
⎥⎥⎥⎦ 	(M)

i (39)

Note that these are in fact changes of curvature. This is so because in this definition relative
rotations are used and they are null in the original configuration. This is not a disadvantage or
limitation as in the implementation the strains are computed using the changes of curvature (see
Equation (9)). Also note that the definition of the curvature in (39) depends strictly on the co-
ordinates (relative positions) of the nodes in the patch. This leads to an objective definition that
allows to satisfy exactly the rigid body motions.

Let us now compute the variations of the components of the change of curvature tensor. We
need to compute:

�(�(M)
ni 	(M)

i ) = �(M)
ni �	(M)

i + 	(M)
i ��(M)

ni (40)

Two contributions can be distinguished in the r.h.s. of Equation (40), the first term associated to
the variation of relative angle is the most important, while the second term associated to a variation
in the in-plane stretch may be disregarded (for linear problems it is effectively null).

The variation of the relative angle 	(M)
i results in

�	(M)
i = r (M)

i �(�
i ) = r (M)
i (��(i) − ��(M)

i ) (41)

�	(M)
i = r (M)

i

(
1

�(i)
n

t(i) · �u(i)
′n + 1

�(M)
ni

t(M) · �u(M)
′n

)
(42)
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where the variation of the gradient normal to the side u′n , computed over the tangent plane to
each triangle can be derived from the linear interpolation using the standard relations

L I (M)
′n = c(M)

I

2o A(M)
(43)

where c(M)
l are the projections of the sides (original configuration) of the main triangle over the

unit vector along the side osi

c(M)
1 = (ou3 − ou2) · osi
c(M)
2 = (ou1 − ou3) · osi
c(M)
3 = (ou2 − ou1) · osi

(44)

so that

�u(M)
′n = 1

2o A(M)
[c(M)

1 , c(M)
2 , c(M)

3 ]

⎡
⎢⎢⎣

�u1

�u2

�u3

⎤
⎥⎥⎦ (45)

In the same way for the adjacent triangle i

�u(i)
′n = 1

2o A(i)
[c(i)

1 , c(i)
2 , c(i)

3 ]

⎡
⎢⎢⎣

�u(i)1

�u(i)2

�u(i)3

⎤
⎥⎥⎦ (46)

with c(i)
l the projections of the sides of the adjacent triangle over the unit vector along the side −osi

and �u(i) j the variation of the nodal displacement of node j (local numeration over the element
i). For instance, for the triangle adjacent to side 1 (see Figure 1(a))

c(1)
1 = −(ou2 − ou3) · os1
c(1)
2 = −(ou4 − ou2) · os1
c(1)
3 = −(ou3 − ou4) · os1

(47)

With these definitions the variation of the change of angle �
i results

�(�
i ) = 1

2o A(M)�(M)
ni

[c(M)
1 , c(M)

2 , c(M)
3 ]

⎡
⎢⎢⎣
t(M) · �u1

t(M) · �u2

t(M) · �u3

⎤
⎥⎥⎦

+ 1

2o A(i)�(i)
n

[c(i)
1 , c(i)

2 , c(i)
3 ]

⎡
⎢⎢⎣
t(i) · �u(i)1

t(i) · �u(i)2

t(i) · �u(i)3

⎤
⎥⎥⎦ (48)
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then Equation (40) can be written as

�(�(M)
ni 	(M)

i ) = r (M)
i [t(M) · �u(M)

′n + t(i) · �u(i)
′n ] + 	(M)

i ��(M)
ni (49)

where the influence of the second term will be disregarded for the computation of the variation.
For linear problems above expression is exactly:

�(�(M)
ni 	(M)

i ) = r (M)
i [t(M) · �u(M)

′n + t(i) · �u(i)
′n ] (50)

Substituting Equation (50) into (24) allows to compute the variation of the change of curvature
for the element.

4. BRANCHING SHELLS

The case considered in the previous section can be seen as a particular case (the simplest one)
of a multi-surface intersection (branching). In a general case there will be n surfaces (elements)
sharing a side (s). To simplify the notation, let us assume the common side to be the first side
(opposite to first node) of each element neighbour to this branching. Also let us assume a common
orientation of the side for all the elements (see Figure 4). Let us denote by J and K (fixed) the
nodes defining the side (in that order) and by i the remaining node of each (generic) element i at
the branching.

In the original configuration the tangent plane to each triangle i is defined by the unit vector
along the side os (identically oriented in all the triangles) and the (outward) normal to the side

oni = os× ot(i) (51)

written in terms of the side direction and the element normal ot(i). The n normal vectors ot(i) allow
to define a set of (n − 1) independent angles between the different elements (i = 1, . . . , n − 1)

cos o
i = ot(i) · ot(i+1) = on(i) · on(i+1) (52a)

sin o
i = on(i) · ot(i+1) = −ot(i) · on(i+1) (52b)

⊗⊗
s

s

t(3)
t(2)

n(1)

n(3)

n(3)

t(3)

n(2)

n(1) t(2)

t(1)

n(2)

t(1)

J

K

i=1

i=2

i=3 i=3

i=1

i=2

οφ2

οφ3

οφ1

Figure 4. Surface branching.
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that can be completed with the angle between the last and the first elements (unnecessary due to
its dependence with the others)


n = 2� − mod

[
n−1∑
i=1


i , 2�

]
(53)

In the deformed configuration the actual common unit vector s will be:

s= uK − uJ

‖uK − uJ‖ = u
K − uJ

ls
= u

K − uJ

ols�s
(54)

(this fibre stretches �s respect to the original configuration) that together with the new normal at
each element t(i) allows to compute the new outward normal at each element

n(i) = s× t(i) (55)

and with t(i)’s and n(i)’s the new set of n − 1 angles will be

cos
i = t(i) · t(i+1) = n(i) · n(i+1)

sin
i = n(i) · t(i+1) = −t(i) · n(i+1)
(56)

that have changed with respect to the original ones by

�
i = 
i − o
i , i = 1, n − 1 (57)

As the direction s rotates in space, there is not a fixed reference to measure the angle �i rotated
by each element. It can be therefore assumed that the first element does not rotate (�(1) = 0) and
compute the rest of the rotations using the first element as the reference. This leads to

�(i) =
i−1∑
m=1

�
m (58)

In a similar way the rotation of the side, expression (38), is evaluated as the weighted average

�̄= 1∑n
l=1R

(l)

n∑
i=1

R(i)�(i) =
n∑

i=1
r (i)�(i) (59)

where similarly to (36) a relative stiffness has been introduced

r (i) = R(i)∑n
l=1R

(l)
(60)

We denote now with 	i the difference between the (average) angle rotated by the side �̄ and the
angle rotated by the element �(i)

	i = �̄ − �(i) (61)

The above expression (61) can be explicitly written for the case n = 2:[
	1

	2

]
=
[

�̄

�̄ − �
1

]
=
⎡
⎣1 − r (1)

−r (1)

⎤
⎦�
1
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for the case n = 3⎡
⎢⎣

	1

	2

	3

⎤
⎥⎦=

⎡
⎢⎢⎣

�̄

�̄ − �
1

�̄ − �
1 − �
2

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
1 − r (1) 1 − r (1) − r (2)

−r (1) 1 − r (1) − r (2)

−r (1) −r (1) − r (2)

⎤
⎥⎥⎦
[

�
1

�
2

]

For a general case it can also be expressed as:

� =Cn×(n−1)D/n−1 (62)

	i =Cim�
m (63)

From the definition of 	i (see Figure 3 and Equation (61)), the gradient in the outward normal
to the side direction ū(i)

′n at each one of the concurrent elements, can be resolved in its components
over a local triad as

ū(i)
′n = (ū(i)

′n · n(i))n(i) + (ū(i)
′n · s)s + (ū(i)

′n · t(i))t(i) (64)

= �(i)
n cos 	in

(i) + anss + �(i)
n sin 	i t

(i) (65)

The component along the direction normal to the element plane is

ū(i)
′n · t(i) = �(i)

n sin 	i � �(i)
n 	i (66)

Replacing (66) into (23) allows to complete the evaluation of the curvature at each of the elements
neighbours to the side.

To evaluate the curvature variation (24) it is necessary to compute the variation of the normal
to the side component of the gradient. This is composed of two parts:

�(ū(i)
′n · t(i)) = �(�(i)

n 	i ) (67)

= �(i)
n �	i + 	i��(i)

n (68)

where again the important term is the first.
The variation of the angle 	i results from observing Equations (63) and (56)

�	i =Cim�
 j , i = 1, n, m = 1, n − 1

=Cim

[
1

�(m)
n

t(m) · �u(m)
′n + 1

�(m+1)
n

t(m+1) · �u(m+1)
′n

]
(69)

where �u(m)
′n are the variations of the normal gradients computed over the tangent plane of each

triangle. In a standard way:

�u(m)
′n = 1

2A(m)o
[c(m)

m , c(m)
J , c(m)

K ]

⎡
⎢⎢⎣

�um

�uJ

�uK

⎤
⎥⎥⎦ (70)
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with c(m)
l the projections of each element side over the unit vector along the side os

c(m)
m = (ouK − ouJ ) · os= ols (equal for all elements)

c(m)
J = (oum − ouK ) · os

c(m)
K = (ouJ − oum) · os

(71)

With this information, the variation of the angle 	i results

�	i =
n−1∑
m=1

Cim

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2o A(m)�(m)
n

[c(m)
m , c(m)

J , c(m)
K ]

⎡
⎢⎢⎢⎣
t(m) · �um

t(m) · �uJ

t(m) · �uK

⎤
⎥⎥⎥⎦

+ 1

2o A(m+1)�(m+1)
n

[c(m+1)
m+1 , c(m+1)

J , c(m+1)
K ]

⎡
⎢⎢⎢⎣
t(m+1) · �um+1

t(m+1) · �uJ

t(m+1) · �uK

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(72)

Recalling (61), the above expression can be simplified to

�	i = ��̄ − ��(i)

=
[

1

�(i)
n

t(i) · �u(i)
′n −

n∑
m=1

r (m) 1

�(m)
n

t(m) · �u(m)
′n

]
(73)

with this result Equation (40) is

�(�(i)
n 	i ) =

[
t(i) · �u(i)

′n − �(i)
n

n∑
m=1

r (m) 1

�(m)
n

t(m) · �u(m)
′n

]
+ 	i��(i)

n (74)

Note that because s is chosen as the reference direction, the variation of the rotation of each
element is:

��(i) =−t(i) · �u(i)
′n (75)

For linear problems, the above expression simplifies to:

�(�(i)
n 	i ) =

[
t(i) · �u(i)

′n −
n∑

m=1
r (m)t(m) · �u(m)

′n

]
(76)

Expression (74) allows to compute the curvature variations at any element using Equation (24),
where the form of �(�(i)

n 	i ) over each side of an element can be: (a) Equation (50) if the side is
part of a unique surface (smooth or not) or (b) Equation (76) if it is a branching line. In the usual
notation of the finite element method, the curvature variation can be expressed as

�j=Bb�up (77)
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It must be noted that this variation depends on the nodes of all the elements that share a side with
the element where such variation is computed. Then, the vector �up includes, in an element without
branching, the six nodes indicated in the patch of Figure 1. When an element has a branching
side, the number of nodes included in �up is four plus the number of elements that share the side.
Naturally the size of the elemental stiffness matrix depends on the number of unknowns included
in vector �up.

5. COMPUTATION OF THE ANGLE VARIATION FOR THE EBST ELEMENT

In Reference [15] a similar element to the BST element was developed under the framework of
an assumed strain method. The main advantage of this new rotation-free shell element (termed
EBST) is that its membrane performance is similar to the linear strain triangle, in contrast with the
BST that has a constant strain membrane behaviour. To apply the developments of the previous
sections to the EBST element, let us first recall how the curvatures are computed for this element.

The numerical definition of the curvatures follows the same expression used above (17)⎡
⎢⎢⎣

�11

�22

2�12

⎤
⎥⎥⎦= −1

o A

3∑
i=1

oli

⎡
⎢⎢⎣

on1 0

0 on2

on2
on1

⎤
⎥⎥⎦
i

⎡
⎣u′1 · t(M)

u′2 · t(M)

⎤
⎦
i

(78)

The difference is how the gradient at the mid-side points is computed. In the EBST element a
quadratic interpolation of the geometry is used based on the six nodes belonging to the standard
patch (see Figure 1(b))

u=
6∑

I=1
N I (�1, �2)u

I (79)

with (�3 = 1 − �1 − �2)

N 1 = �3 + �1�2, N 4 = �3
2

(�3 − 1)

N 2 = �1 + �2�3, N 5 = �1
2

(�1 − 1)

N 3 = �2 + �3�1, N 6 = �2
2

(�2 − 1)

(80)

As it is shown in Reference [15], at each mid-side point the gradient depends exclusively on the
co-ordinates of the four nodes associated to the two elements adjacent to the side i (the upper-index
surrounded by round brackets indicates now evaluated at the mid-point of side i), i.e.

[
u′1

u′2

](i)

=
⎡
⎣N 1′1 N 2′1 N 3′1 Ni+3

′1

N 1′2 N 2′2 N 3′2 Ni+3
′2

⎤
⎦

(i)

⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

ui+3

⎤
⎥⎥⎥⎥⎥⎥⎦

(81)
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The EBST element is also non-conforming, but a stronger continuity of the normal is imposed
than in the BST element.

Similarly to the BST when the gradient is projected on the two local directions (on, os) at the
side, the product

u(i)
′s · t(M) = 0

is null because

u(i)
′s = 1

ols
(uK − uJ )

Using Equation (20) an expression almost identical to Equation (21) is obtained (see Reference
[15] for details)

⎡
⎢⎢⎣

�11

�22

2�12

⎤
⎥⎥⎦=−4o A

3∑
i=1

1
oli

⎡
⎢⎢⎢⎣

(Li′1)
2

(Li′2)
2

−2Li′1L
i′2

⎤
⎥⎥⎥⎦ (u(i)

′n · t(M)) (82)

Note that now u(i)
′n is not the gradient computed at the adjacent element in the outward normal

direction at its boundary, but the gradient computed at the mid-side point in the outward normal
direction of the main element boundary. This leads to two differences with expression (21): the
1
2 of the averaging disappears and the sign is not changed. Using consistently the angle between
normals instead of the angle sine, the projection of the gradient normal to the boundary can be
rewritten as

u(i)
′n · t(M) = −�(i)

n sin(n(i) · t(M)) = �(i)
n sin 	i

∼= −�(i)
n 	i ≡−�(M)

ni 	i (83)

that allows to re-obtain Equation (23). In this last expression the angle 	i can be interpreted as
the angle formed by u(i)

′n with the tangent plane at the main triangle. When the surfaces are
initially curved 	i is not null and in contrast with the BST element there exists initial curva-
tures (see Equation (39)). It is also possible to reinterpret 	i as the change of angle between the
original and deformed configurations and disregard the influence of the initial curvatures in the
computation of the deformation gradient at points outside the middle surface, similarly to
the BST element. Finally, it is possible to consider the different bending stiffness of the adjacent
elements and to apply the factor r (M)

i (see Equation (36a)) to the angles 	i when the curvature is
computed.

The second aspect is the computation of the curvature variation for the weak form of the
momentum equations. To obtain Equation (24) the variation of the component of the normal
gradient over the element normal is needed

�(�(M)
ni 	i ) = �(M)

ni �	i + 	i��(M)
ni (84)
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The variation of the angle 	i results (with t(i) being the normal to the tangent plane at the
side i)

�	i =
1

�(M)
ni

t(i) · �u(i)
′n (85)

where the variation of the gradient normal to the side u(i)
′n computed at the mid-side point is:

�u(i)
′n =[N 1′n N 2′n N 3′n N i+3

′n ](i)

⎡
⎢⎢⎢⎢⎢⎢⎣

�u1

�u2

�u3

�ui+3

⎤
⎥⎥⎥⎥⎥⎥⎦

(86)

where N J′n are the derivatives of the shape functions (80) in the direction normal to the
boundary.

With the above definitions the variation of the angle 	i is

�(	i ) = 1

�(M)
ni

[N 1′n N 2′n N 3′n N i+3
′n ](i)

⎡
⎢⎢⎢⎢⎢⎢⎣

t(i) · �u1

t(i) · �u2

t(i) · �u3

t(i) · �uI+3

⎤
⎥⎥⎥⎥⎥⎥⎦

(87)

The quadratic interpolation used in the EBST element assumes (as for the BST case) that the
surface is smooth and that an adequate discretization is chosen which is capable of adequately
model the curvatures (the initial ones or those produced during the deformation). Elements with
a side part of a kink or a branching may be treated as for the BST element in the previous
sections.

6. MEMBRANE BEHAVIOUR AND STIFFNESS MATRIX

With the aim to make this work self-contained, the membrane formulation and the computation
of the stiffness matrix are described next.

The membrane deformation may be expressed in terms of the Green–Lagrange (14) strain tensor
or in terms of the metric tensor over the middle surface (6). The former may be written in the
usual notation of the FEM as⎡

⎢⎢⎣
E11

E22

2E12

⎤
⎥⎥⎦= 1

2

⎡
⎢⎢⎣
a11 − 1

a22 − 1

2a12

⎤
⎥⎥⎦= 1

2

⎡
⎢⎢⎣
u′1 · u′1 − 1

u′2 · u′2 − 1

2u′1 · u′2

⎤
⎥⎥⎦ (88)
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while the virtual strains can be directly obtained as

�

⎡
⎢⎣

E11

E22

2E12

⎤
⎥⎦= 1

2

⎡
⎢⎣

�a11

�a22

2�a12

⎤
⎥⎦=

⎡
⎢⎣

u′1 · �u′1

u′2 · �u′2

u′1 · �u′2 + �u′1 · u′2

⎤
⎥⎦ (89)

In the BST element, the membrane strains are computed using a linear interpolation of the middle
surface from the three nodes of the main element (16), leading to the well-known constant strain
triangle. The matrix membrane strain Bm relating the strain variations with the displacement
variations can be expressed as

�

⎡
⎢⎣

E11

E22

2E12

⎤
⎥⎦=

⎡
⎢⎢⎣
uT′1 0T3×1

0T3×1 uT′2

uT′2 uT′1

⎤
⎥⎥⎦
[
L1′1 L2′1 L3′1

L1′2 L2′2 L3′2

]⎡⎢⎢⎣
�u1

�u2

�u3

⎤
⎥⎥⎦

=Bm�u (90)

where Li′ j are the shape function given in Equation (20). In this case the array �u include only
the displacement of the three nodes of the main triangle (M).

For the EBST element the geometry of the middle surface is defined by the quadratic approxi-
mation (79). The deformation gradient computed at each mid-side point (81), used above for the
evaluation of the curvatures (82), is now also used to compute the metric tensor a(i)

�� at the same
points. These metric tensors are averaged at the element centre

ā�� = 1

3

3∑
i=1

a(i)
�� (91)

and with this average ā�� the Green–Lagrange strain tensor (14) is computed. The variation of
this tensor results from the average of:

�

⎡
⎢⎣

a11

a22

2a12

⎤
⎥⎦

(i)

= �

⎡
⎢⎣

E11

E22

2E12

⎤
⎥⎦

(i)

=

⎡
⎢⎢⎣
uT′1 0T3×1

0T3×1 uT′2

uT′2 uT′1

⎤
⎥⎥⎦

(i) [
N 1′1 N 2′1 N 3′1 Ni+3

′1

N 1′2 N 2′2 N 3′2 Ni+3
′2

]
⎡
⎢⎢⎢⎢⎢⎣

�u1

�u2

�u3

�ui+3

⎤
⎥⎥⎥⎥⎥⎦

=B(i)
m �u(i) (92)

In this quadratic approximation there are, of course, contributions from the six nodes of the four
triangles in the patch.

The quadratic interpolation is sensitive to the position of the six nodes of the patch. Because of
this, for the computation of the membrane strain, it is necessary to limit the allowable angle between
the main element and the adjacent ones. This is of relevant importance in problems with very low or
null bending stiffness (membranes or quasi-membranes) where wrinkles and very marked folds may
occur. A possible solution is to perform at each side a gradual change from the quadratic approach
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(81) to the linear approach (20) as a function of the angle between the normals at the adjacent
elements. Besides that, for elements where the adjacent element does not exist (shell boundary),
or with a side over a kink or a branching region, good results have been obtained considering
directly the metric tensor obtained from Equation (20) as the side contribution to the average (91).

The computation of the element stiffness matrix is standard. The material part is

KM =
∫
A(M)

BTCB dA (93)

where the matrix B=Bm + Bb includes the corresponding B matrices according to the approx-
imation chosen for the membrane and bending parts and the mesh topology. Matrix C depends
on the constitutive material model and can be obtained integrating (numerically or analytically
if possible) through the thickness. All the B matrices are constant and one integration point per
element is enough for a correct numerical integration.

The disadvantage of the present formulation when compared with a standard 6 parameter theory
is that the computer implementation is more involved as the element stiffness matrix depends on
the mesh topology, not only for the elements adjacent to a branching but also for elements adjacent
to the boundary. Note however that most of the elements will be part of four-element standard
patches.

With respect to the geometric stiffness matrix, numerical experiments have shown that the con-
tributions due to bending KG

b , that are rather complex to be computed exactly, can be disregarded.
The contributions due to membrane forces KG

m can be computed as follows:

�uTKG
m�u=

∫
A(M)

�
�u

(�eTN)�u dA (94)

for the element BST they are standard

�uTKG
m�u= A(M)

3∑
I=1

3∑
J=1

L I′1L
J′1N11 + L I′2L

J′2N22 + (L I′1L
J′2 + L I′2L

J′1)N12�uJ · �uI

= A(M)
3∑

I=1

3∑
J=1

{
�uI [L I′1 L I′2]

[
N11 N12

N21 N22

][
L J′1

L J′2

]
�uJ

}
(95)

where N�� are the second Piola–Kirchhoff stress Cartesian components (11a) integrated through
the thickness.

For the element EBST, the membrane geometric stiffness can be expressed as the sum of the
contributions from the three element sides, i.e. [15]

�uTKG
m�u= A(M)

3

3∑
K=1

4∑
I=1

4∑
J=1

[N (K )I
′1 N (K )J

′1 N11 + N (K )I
′2 N (K )J

′2 N22

+ (N (K )I
′1 N (K )J

′2 + N (K )I
′2 N (K )J

′1 )N12]�u(K )J · �u(K )I

= A(M)

3

3∑
K=1

4∑
I=1

4∑
J=1

{
�uI [N I′1 N I′2]

[
N11 N12

N21 N22

][
N J′1

N J′2

]
�uJ

}(K )

(96)
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where the sum in K = 1, . . . , 3 is over the mid-side points and the sums in I, J = 1, . . . , 4 are
over the four nodes that have contributions to the gradient at those points.

As mentioned above (see Equation (3)) the thickness stretch is constant across the thickness.
A usual approach for large strain analysis, also adopted here, is to assume an isochoric behaviour, so
that the thickness update is performed on a geometrical basis only. This has negligible consequences
no only when elastic strains are small, as is the case for metals where plastic strain are normally
assumed isochoric, but also for rubbers where large elastic strains are present but the whole
behaviour is normally assumed isochoric.

7. NUMERICAL EXAMPLES

In this section several examples are presented to assess the performance of the rotation-free shell
element presented for non-smooth and branching surfaces. The element used in the simulations,
denoted as branching basic shell triangle (BBST), uses for the membrane and bending parts those
corresponding to the EBST element where the surface is smooth. In all cases the residual forces
and stiffness matrices are computed using one integration point over the element area and four
points through the thickness. All the results shown have been obtained with an implicit program for
static elastic problems developed by the first author. An exception is the last example that includes
contact and elastic–plastic behaviour, that was solved using a code with explicit integration in time
of the momentum equations [23].

7.1. Twisted beam

This first example is a widely used benchmark in linear analysis to assess the sensitivity of shell
elements to initial warping. The fixed geometrical (non-dimensional) parameters of this cantilever
beam (see Figure 5) are: length L = 12, width b= 1.1, angle of twist 90◦, Poisson’s ratio � = 0.3
and Young Modulus E = 2.9× 107. Two values were considered for the thickness, a thick case
h = 0.32 and a thin case h = 0.032. In the first case the Jacobian has an important variation across
the thickness. A distributed load is applied at the free end (1 for the thick case and 0.001 for
the thin case), Figure 5 shows the load applied in the out-of-plane direction. The in-plane load
case was also considered here. Two structured meshes were used, a coarse one with 48 elements
(2× 12 divisions as shown in the figure) and a fine mesh with 768 elements (8× 48 divisions).

Table I presents the linear results obtained with BBST/EBST element showing the very
good performance obtained with the coarse mesh. The exact values and the results reported in
Reference [18] using the ‘degenerated solid approach’ on the coarse mesh are also included for
comparison.

YX

Z

P

Figure 5. Twisted beam.
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Table I. Twisted beam.

Thick, in-plane Thick, out-of-plane Thin, out-of plane

Coarse mesh 0.005449 0.001892 0.001261
Fine mesh 0.005373 0.001747 0.001293
Reference [18], coarse 0.001887 0.001281
Exact 0.005424 0.001754 0.001294

Displacement of the central point of the loaded edge in the direction of the in-plane
and out-of-plane loads.

60 60 60

A

P

30

Figure 6. Z-shaped cantilever. Geometry.
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Figure 7. Z-shaped cantilever: (a) load vs displacement; and (b) bending moment at A vs load.

7.2. Z-shaped cantilever

This example was extracted from a set of benchmarks for geometric non-linear behaviour of
structures [24]. This benchmark is intended to assess membrane and bending actions, tension
stiffening and change in sign of bending moments under large rotations and large displacements.
Figure 6 shows the cross section properties, the material parameters and the initial geometry of a
Z-shaped cantilever under a conservative load at the free end.

In the discretization 12 divisions along each part have been chosen. In Figure 7(a) the vertical
displacement of the point where the load is applied is plotted against the load factor while
Figure 7(b) shows the bending moment at point A (see Figure 6) in terms of the load. The
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results obtained are compared with target results obtained with the commercial finite element code
ABAQUS [25] and with a quadratic transverse shear deformable shell element (SHELQ) [26].
Also, for reference, the results obtained with the BST [13] and EBST elements [15] are included.
The bending moment at point A is computed as the average of the bending moments computed at
integration points in the neighbourhood of A. The results show an excellent agreement with the
expected results for the mesh used.

7.3. Z-section cantilever

This is a benchmark also recommended by NAFEMS [27]. A Z-section cantilever under a
1.2 MN m torque at its free end. The torque is applied by two shear forces of 0.6 MN uni-
formly distributed over each flange (Figure 8). A linear elastic material with Young’s modulus
E = 210GPa and Poisson’s ratio � = 0.3 is considered. The shell thickness is t = 0.1m. The target
solution is the axial stress 
xx =−108 MPa at the mid-surface of point A.

Two meshes were considered. A relatively coarse mesh of 96 elements (eight divisions in
the length and two at each plane part across the section) and a fine mesh with 960 elements
(32 divisions in the length and 5 at each part across the section). The results obtained are

xx =−95.3MPa (−11.8%) and 
xx =−106.3MPa (−1.6%) for the coarse and the fine meshes,
respectively. These values are obtained by extrapolations from the four nearest Gauss points.
The same problem appears in ABAQUS user’s manual [25] solved using the fine mesh with
the three variants of a quadrilateral element (S4R, S4RS and S4RSW). They report a value of

xx =−100.3 MPa (−7.1%) and a slow convergence as the mesh is refined. We note that the
analysis with ABAQUS required twice the number of DOFs used with the BBST element. Note
also that the 90◦ folds in the geometry preclude a reliable use of the BST and EBST elements
developed under the assumption of smooth surfaces.

7.4. Branching shell of revolution

A branching shell is considered to assess the element behaviour when more than two elements
share a side. Figure 9(a) shows the geometry of the shell. The thickness is different for the three
shells that compose the structure. The material is isotropic with E = 107 and � = 0.3. The spherical
dome and the lower cylinder are subjected to internal pressure P = 1000, that is equilibrated by
equal forces applied at the ends of the cylinder.

1m

2m

S

S

2.5m

10m

x

z

1mA

Figure 8. Z-section cantilever. Geometry.
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Figure 9. Krauss’s ramified shell: (a) geometry R = 20, L1 = 20, L2 = 10, h1 = 0.3, h2 = 0.4, and h3 = 0.5;
and (b) normal displacement along the cylinder.

Only one quarter of the geometry was discretized due to symmetry using two different meshes.
In both cases the spherical dome was modelled with 648 elements (36 elements along the joint, i.e.
one element every 2.5◦). The finest mesh included 864 elements for the upper cylinder and 1728
for the lower cylinder, uniformly spaced along the meridian (12 elements in the upper cylinder
and 24 in the lower part). The coarser mesh has exactly half the elements and is also uniformly
spaced along the meridian (6 elements in the upper part and 12 in the lower part). Figure 9(b)
shows the displacement normal to the cylinder wall. Present results are compared with a converged
finite element solution [28] (an analytical solution is also possible). It can be seen that even for the
coarser mesh (18 elements along the cylinder, BBST-18) the numerical results are in very good
agreement with the converged solution.

7.5. Straight cellular bridge

This example studies a box-girder straight bridge analysed in Reference [29]. Figure 10 shows the
bridge cross section and the material properties. The bridge spans a length of 40 m and the ends
have the cross section in-plane displacements restrained while the axial displacements are free.

A concentrated force P = 1000 kN is alternatively applied at points C (centre) and B (box
edge). Due to symmetry only half the span was modelled using 20 elements in that direction and
30 elements in the cross section leading to a total of 1200 elements and 630 nodes. The same
problem was analysed with the code ABAQUS with the same node positions but using the shell
element S4 (four-node quadrilateral). For comparative purposes the bridge was also modelled using
eight-noded solid elements. In this case the cross section was discretized using 64 elements (two
elements across the thickness) and the total mesh includes 1280 elements and 4109 nodes.

The vertical displacements at the central cross section (upper and lower surfaces) have been
plotted in Figure 11. As expected the modellization using brick elements is stiffer than using shell
elements, but it can be seen that the displacement pattern is identical. The comparison of the
present element with the ABAQUS element S4 shows also identical displacement patterns but the
present element is slightly more flexible.
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Figure 10. Box-girder bridge under a concentrated load. Cross
section geometry. E = 25 GPa, � = 15, L = 40 m.
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Figure 11. Box girder straight bridge under a point load. Vertical displacements at the central cross section:
(a) load at point C; and (b) load at point B.

7.6. Curved bridge with cellular cross section

This example corresponds to the analysis of a curved bridge with a cellular cross section sim-
ple supported at the ends (cross section in-plane displacements are constrained). This structure
has been previously analysed in References [29, 30] using the finite strip method in both cases.
Figure 12(a) shows the details of the cross section and the material properties. The bridges spans
an angle of one radian, the radius at the centre of the bridge is 30.1 m.

A point load of P = 1000 kN is applied at the centre. Half the bridge span has been discretized
with 10 divisions in that direction, whilst 34 elements were included in the cross section, leading
to 363 nodes and 680 elements. Results with the present formulation are compared with those
obtained with the program ABAQUS using the quadrilateral element S4 and the same distribution
of nodes. Figure 12(b) plots the deformed configurations at the bridge centre. Almost identical
results are obtained.

7.7. Buckling of a column with self-contact

This last example illustrates the buckling of a column compressed between two rigid platens. The
column has an X-shaped section. The top platen is pushed and rotated in 7ms to buckle the column.
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Figure 12. Curved bridge under point load: (a) cross section geometry. E = 25GPa, � = 0.15, R = 30.1m,
angle= 1 rad; and (b) deformed configuration at the centre.

Initial configuration(a) (b) (c)Deformed shape at 3.5 msec Deformed shape at 7.0 msec

Figure 13. Buckling of X-shaped column: (a) initial configuration; (b) deformed shape
at 3.5 ms; and (c) deformed shape at 7.0 ms.

The material is steel, with a Young’s modulus of 200 GPa, a Poisson’s ratio 0.3 and a density
of 7850 kg/m3. J2 plasticity is considered with initial yield 
o = 250 MPa and linear isotropic
hardening 
′

y = 450 MPa. The top platen moves vertically with a constant velocity of 50 m/s and
rotates around the y axis with a velocity of 78.54 rad/s (final angle 31.5◦). Figure 13(a) shows the
initial configuration. The mesh has 441 nodes and 800 elements. Figures 13(b) and (c) show the
deformed configurations at the middle and at the end of the process.

This problems was taken from the ABAQUS example manual. One of the main aspects to be
considered is contact with the platens and self-contact of the shell. This problem was analysed
with the program STAMPACK [23] using an explicit dynamic scheme to integrate the momen-
tum equations. The deformed configurations shown and those obtained with the element S4R of
ABAQUS are very similar.

8. CONCLUSIONS

A triangular finite element formulation for non-linear, large strain analysis of tridimensional shells
has been presented. Smooth, kinked and branching situations have been considered. The main
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characteristic of the triangular element formulation is that it does not include rotational degrees
of freedom (rotation-free triangular shell element). The element curvature is computed resorting
to the nodal positions of the neighbour elements. The numerical examples show that the element
converges to the correct solution in all cases, and that the formulation can handle non-smooth
surfaces and branching situations. The new rotation-free shell triangle has given excellent results
for linear and non-linear problems, including plasticity with large strains, contact with friction,
different boundary conditions and loads.

APPENDIX A

The following development justifies expression (22):

u(i)
′n = (u(i)

′n · n(i))n(i) + (u(i)
′n · s(i))s(i)

u(i)
′n · t(M) = (u(i)

′n · n(i))n(i) · t(M) + (u(i)
′n · s(i))s(i) · t(M)

where n(i) is the outward normal to the side in the plane of the adjacent element and s(i) is the
side direction. As s(i) is orthogonal to t(M) and because they are unit vectors ‖t(M)‖ = ‖n(i)‖= 1,

u(i)
′n · t(M) = (u(i)

′n · n(i))n(i) · t(M)

= (u(i)
′n · n(i)) sin(2	i )

Besides that

t(i) = �(i)[u(i)
′n ×u(i)

′s ] = �(i)�si [u(i)
′n × s(i)]

t(i) · t(i) = 1= 1

�(i)
n

[u(i)
′n × si ] · t(i) = 1

�(i)
n

u(i)
′n · [si × t(i)]

being si and t(i) orthogonals and n(i) = s(i) × t(i), it finally yields for moderate membrane distor-
sions

u(i)
′n · n(i) � �(i)

n

u(i)
′n · t(M) = �(i)

n sin(2	i )
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