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Abstract

The paper introduces a methodology to compute upper and lower bounds for linear-
functional outputs of the exact solutions of parabolic problems. In this second part, the
bounds account for the error both in space and time. The assumption stating that the error
introduced by the time marching scheme is negligible, used in the first part, is removed
here. The bounds are computed starting from an approximation of the exact solution,
associated with a spatial mesh and a time grid. Nevertheless, the bounds are guaranteed
with respect to the exact solution, with no reference to any mesh or time discretization.

1 Introduction
Goal-oriented adaptive strategies and the related error assessment techniques have been exten-
sively studied for steady elliptic problems [13, 12, 2, 4, 9]. The error in the quantity of interest
is assessed combining upper and lower bounds for the energy norm of the original problem (pri-
mal) and of an auxiliary problem (adjoint) associated with the selected output. The bounds of
the quantity of interest are readily obtained operating with the energy estimates. Most of these
tools provide asymptotic bounds that is with respect to a much finer reference discretization.
Other approaches focus on guarantying exact bounds, that is bounds guaranteed with respect
to the exact solution, independently of any underlying reference mesh. The motivation to de-
velop these numerical tools is to certify the accuracy of the solutions of boundary value and/or
evolution problems, see [17, 18, 14, 22].

This paper and its associated first part [15] provide a methodology to obtain computable
strict bounds for quantities of interest in the context of parabolic problems. In this context, the
list of previous references is much shorter [1, 3, 19, 10, 5]. The strategy presented here uses
ideas from [10, 18, 7] and produces exact bounds for linear-functional outputs accounting both
for the error arising from the space and time discretization. Note that in the first part [15] the
effect of the time discretization is neglected. The error information and the bounds are used in
an adaptive procedure where both h and ∆t (space mesh size and time step) are adapted.

†Submitted to Computer Methods in Applied Mechanics and Engineering
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The methodology presented here takes as input two continuous (both in space and time)
approximate solutions of both the direct advection-reaction-diffusion problem and the adjoint
problem associated with the selected output. In the application examples, these approximations
are obtained post-processing the approximations given by the discontinuous Galerkin method
in time, that is smoothing out the time discontinuities. Actually, any other method providing a
piecewise continuous polynomial function both in space and time may be used. The methodol-
ogy presented here works out the space-time residual error equations and reduces the problem
of finding bounds of the output of interest to properly combine the solutions of a number of
steady (time-independent) problems where the standard methods are applicable. Thus, com-
putable bounds are derived using a strategy based on the ideas given in [18], which allows
producing bounds for steady problems, to a series of steady reaction-diffusion problems.

2 Problem statement

2.1 Model problem
The transient convection-reaction-diffusion equation is considered in Ω ⊂ Rnsd , where nsd is
the number of spatial dimensions and Ω is polygonal for nsd = 2 and polyhedric for nsd = 3.
The time interval of interest is I =]0, T ]. For the sake of a simple presentation, it is assumed that
all the boundary conditions are of Dirichlet type and homogeneous. Thus, the weak solution u
is such that for each t ∈ I , u(t) ∈ H1

0(Ω) := V , where H1
0(Ω) denotes the standard Sobolev

space of functions vanishing on ∂Ω. More specifically, the weak solution u belongs to the space

W := {v ∈ L2(I;V) such that v̇ ∈ L2(I;V ′)},

whereL2(I;V) (resp. L2(I;V ′)) denotes the Bochner space associated to V of square-integrable
functions from I into V (resp. V ′)

L2(I;V) := {v : I → V , v(t) is V-measurable and
∫ T

0

‖v(t)‖2
V dt < +∞},

‖·‖V being the norm associated with V , ‖·‖V = ‖·‖1.
The weak (both in space and time) variational form of the problem is: find u ∈ W such that

A(u, v) = L(v) ∀v ∈ L2(I;V), (1)

for

A(w, v) :=

∫ T

0

[
〈ẇ, v〉+ a(t; w, v)

]
dt + (w(0), v(0)),

and

L(v) :=

∫ T

0

`(t; v) dt + (u0, v(0)),

where 〈·, ·〉 denotes the duality pairing between V ′ and V , (·, ·) denotes the L2(Ω) inner product
and u0 is the initial condition weakly imposed.

Here, u0 ∈ V and the forms a(t; ·, ·) and `(t; ·) are

a(t; w, v) :=

∫

Ω

[
ν(t)∇w ·∇v + α(t) ·∇w v + σ(t)w v

]
dΩ,
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and
`(t; v) := 〈f(t), v〉 =

∫

Ω

f(t) v dΩ,

where f ∈ L2(I;V ′) and for each t ∈ I , ν(t) ∈ L∞(Ω) is a strictly positive real coefficient,
σ(t) ∈ L∞(Ω) is a nonnegative real coefficient and α(t) ∈ H(div; Ω) is a prescribed vector
field which is assumed for simplicity to be divergence-free, ∇ ·α(t) = 0, that is α is a velocity
field of an incompressible flow. Moreover ν, σ and α are assumed to be sufficiently smooth in
time.

2.2 Continuous approximation
The exact solution of the boundary value problem (1) has to be approximated. In the following,
the approximation of u, usm

τ,h, is assumed to be continuous both in space and time. Note that if
the method provides a discontinuous approximation, it has to be smoothed out in order to fulfill
this assumption.

The approximation usm
τ,h is associated with a spatial mesh of the domain Ω and to a time-

grid discretization of I . The characteristic element size of the mesh is denoted by h and the
characteristic time step is denoted by τ . The space mesh generates a discrete space Vh ⊂ V .
The points of the time grid are denoted by 0 = t0 < t1 < . . . < tn < . . . < tN = T and the
corresponding time slabs are denoted by In = (tn−1, tn].

The approximation usm
τ,h is piecewise polynomial in time; that is, usm

τ,h is polynomial of de-
gree q inside each time slab In and globally continuous. In every time t ∈ I , the spatial
dependence is such that usm

τ,h(t) ∈ Vh. That is,

usm
τ,h ∈ Wτ,h := {v ∈ C0(Ī;V), v|In

∈ Pq(In;Vh), n = 1, . . . , N}.
The time-polynomial space Pq(In;Vh) is defined in terms of the one dimensional Lagrangian
shape functions of degree q in the interval In, Nnj(·), j = 0, . . . , q

Pq(In;Vh) := {v : In → Vh, v(t) =

q∑
j=0

vjNnj(t), vj ∈ Vh}. (2)

It is important to note that equation (1) only imposes the initial condition weakly; however,
the smoothed approximation usm

τ,h must verifiy the initial condition exactly, namely usm
τ,h(0) =

u0. This is only possible if u0 ∈ Vh ⊂ V and therefore this has to be also included as an
assumption.

In this work, the approximation usm
τ,h is obtained postprocessing the approximation of u

provided by the discontinuous Galerkin method in time, cG(p)dG(q). The cG(p)dG(q) approxi-
mation of u is a standard continuous Galerkin finite element approximation of degree p in space
(where p denotes the degree of the complete polynomials used in the interpolation of Vh) and it
is a piecewise polynomial globally discontinuous Galerkin approximation of degree q in time
[20, 6, 21]. Thus, the continuous space-time approximation required here, usm

τ,h, is recovered by
a simple post-processing, smoothing out the time-discontinuities at t = tn, n = 1 . . . N − 1. It
is worth noting, however, that the method presented here is valid for any approximation of u in
Wτ,h such that usm

τ,h(0) = u0.
In order to simplify the notation, in the remainder of the paper the dependence on the

time discretization is omitted and, consequently, the continuous approximation usm
τ,h and the

associated interpolation space Wτ,h are denoted by uh and Wh respectively.
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2.3 Error equation
The equation for the error associated with uh, e = u−uh ∈ W , is obtained replacing u = e+uh

in equation (1) and using the linearity of the first argument of A(·, ·). Thus, e ∈ W is such that

A(e, v) = L(v)− A(uh, v) =: RP(v) ∀v ∈ L2(I;V), (3)

where RP(·) is the residual associated with the approximation uh. It is worth noting that, since
uh is not a Galerkin approximation of u, then, the Galerkin orthogonality condition of the
residual does not hold in general, that is

RP(v) is not necessarily 0 ∀v ∈ Wh. (4)

3 Outputs of interest and adjoint problem
As previously said, this paper aims at providing upper and lower bounds for quantities of inter-
est depending on the exact solution u. Here, the quantities of interest are restricted to be linear
functions and therefore they take the form

LO(u) =

∫ T

0

`O(t; u) dt + (uOT , u(T )), (5)

where uOT ∈ Vh and the linear functional `O(t; ·) reads

`O(t; v) := 〈fO(t), v〉 =

∫

Ω

fO(t)v dΩ,

for fO ∈ L2(I;V ′). Note however, that the linear restriction may be relaxed in some problems,
see [22].

The quantity of interest depends on the solution at the final time (via uOT ) and accounts for
the behavior of the solution along the complete time evolution (via the weight function fO).

Due to the linearity of LO(·), assessing the value or obtaining bounds for LO(u) is equiva-
lent to evaluate or bound LO(e). In other words, introducing s := LO(u) − LO(uh) = LO(e)
and computing bounds for s,

slb ≤ s ≤ sub,

is perfectly equivalent to compute bounds for LO(u):

LO(uh) + slb ≤ LO(u) ≤ LO(uh) + sub.

An adjoint (or dual) problem with respect to the selected output is introduced in order to
derive upper and lower bounds for s. The adjoint problem reads: find ψ ∈ V such that

A(v, ψ) = LO(v) ∀v ∈ W . (6)

Note that following the definition in (5) the initial condition for ψ is now uOT at t = T .
Analogous to the direct (or primal) problem, the adjoint problem is solved numerically.

Similarly to the primal problem, the smoothed approximation to the dual problem, ψh, is
continuous both in space an time, belongs to Wh and verifies exactly the “initial” condition
ψh(T ) = uOT .

4



The error associated with the adjoint approximation ψh is ε := ψ − ψh ∈ W , and it is such
that

A(v, ε) = LO(v)− A(v, ψh) =: RD(v) ∀v ∈ W , (7)

where RD(·) is the weak adjoint residual associated with ψh. Also here, the adjoint residual
does not fulfill, in general, the Galerkin orthogonality condition

RD(v) is not necessarily 0 ∀v ∈ Wh. (8)

4 Bounding the output by a space-time norm
This section introduces bounds of the output of interest s in terms of a space-time norm denoted
by |||·|||. The choice of the norm is the same as in [10]. This choice is not unique. In fact other
authors [1, 3] use different measures.

For every time t, the inner spatial product associated with the symmetric counterpart of the
bilinear form a(t; ·, ·) is introduced

as(t; w, v) :=
1

2
(a(t; w, v) + a(t; v, w)) =

∫

Ω

[
ν(t)∇w ·∇v + σ(t)wv

]
dΩ.

Note that the advection term (related to α(t)) is purely skew-symmetric because α(t) is divergence-
free ∀t ∈ I and the boundary conditions are of Dirichlet type. This inner product induces the
norm denoted by ‖·‖, ‖v‖2 := as(t; v, v) = a(t; v, v). The space-time norm |||·||| is readily
defined as

|||v|||2 :=

∫ T

0

‖v‖2 dt.

The bilinear form A(·, ·) and the space-time norm |||·||| are related by the following lemma.
The proof is straightforward from the definition of A(·, ·). See also the particularization of
lemma 1 in Part I of this work [15] to continuous-in-time functions.

Lemma 1 For any v ∈ W

A(v, v) = |||v|||2 +
1

2
(v(0), v(0)) +

1

2
(v(T ), v(T )) ≥ |||v|||2 .

The following result shows that bounding s is equivalent to obtain upper bounds for the
errors measured in the space-time norm |||·|||.

Theorem 1 Let es and εs ∈ Ŵ be such that for any v ∈ W
∫ T

0

as(t; es, v) dt = RP(v) and
∫ T

0

as(t; εs, v) dt = RD(v), (9)

where
Ŵ := {v ∈ L2(I;V), v|In

∈ L2(In;V) and v̇|In
∈ L2(In;V ′)}.

Then,

RP(ψh)− 1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes − 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ s ≤ RP(ψh) +
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes +

1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

,

for any nonzero parameter κ ∈ R.
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Proof. Combining equation (7) for v = e and equation (3) for v = ψh yields the following
error representation

s = LO(e) = LO(e)− A(e, ψh) + A(e, ψh) = RD(e) + RP(ψh), (10)

where the term RP(ψh) is not zero, in general, since the Galerkin orthogonality property of the
primal residual does not hold, see equation (4).

Also, taking v = e ∈ W in equation (3) and using the relation between the bilinear form
A(·, ·) and |||·||| given in lemma 1 it follows that

RP(e) = A(e, e) ≥ |||e|||2 . (11)

The proof now follows from a simple algebraic manipulation. Indeed, let κ be a nonzero
real parameter and consider the inequality

∣∣∣∣
∣∣∣∣
∣∣∣∣
1

2
(κes ± 1

κ
εs)− κe

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≥ 0. (12)

Expansion of the l.h.s. yields

∣∣∣∣
∣∣∣∣
∣∣∣∣
1

2
(κes ± 1

κ
εs)− κe

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

=
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes ± 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ κ2 |||e|||2 − κ

∫ T

0

as(t; κes ± 1

κ
εs, e) dt. (13)

Moreover, using v = e ∈ W in equations (9), the last term in the r.h.s. of (13) is rewritten as

κ

∫ T

0

as(t; κes ± 1

κ
εs

h, e) dt = κ2

∫ T

0

as(t; es, e) dt±
∫ T

0

as(t; εs, e) dt

= κ2RP(e)±RD(e) ≥ κ2 |||e|||2 ± (s−RP(ψh)),

where equations (10) and (11) are used to derive the inequality.
Considering equations (12) and (13) yields

0 ≤
∣∣∣∣
∣∣∣∣
∣∣∣∣
1

2
(κes ± 1

κ
εs)− κe

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ ∓s±RP(ψh) +
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes ± 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

,

that is,

±s ≤ ±RP(ψh) +
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes ± 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

.

The proof is concluded by noting that the + sign in the previous equation yields the expression
for the upper bound of s, whereas the − sign yields the expression for the lower bound of s. ¤

Theorem 1 reveals that bounds for s are obtained if the space-time norms of the linear
combinations of es and εs are available. It follows also that it is sufficient to obtain upper
bounds of these norms, namely

RP(ψh)− 1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes − 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

UB

≤ s ≤ RP(ψh) +
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣κes +

1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

UB

, (14)

where the subscript UB denotes upper bound.
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Remark 1 The space Ŵ is obtained from W allowing time discontinuities at each time stage
tn, n = 1, . . . , N − 1. Therefore, the primal and dual symmetric errors es and εs are in general
discontinuous at these points in time. Moreover, the conditions given by equation (9) do not
uniquely determine es and εs because W ( Ŵ .

Remark 2 For any v ∈ W , the primal and adjoint residuals, defined in equations (3) and (7),
may be rewritten as

RP(v) =

∫ T

0

[
〈f − u̇h, v〉 − a(t; uh, v)

]
dt =: R̂P(v),

and

RD(v) =

∫ T

0

[
〈fO + ψ̇h, v〉 − a(t; v, ψh)

]
dt =: R̂D(v).

by simply integrating by parts the term with the time derivative. This rearrangement of the
residuals requires v to be continuous and therefore it does not hold for v ∈ Ŵ . That is, in
general, for v ∈ Ŵ , RP(v) 6= R̂P(v) and RD(v) 6= R̂D(v), see appendix A.

In practice, es and εs are chosen as the unique solution of the following residual equations:
find es and εs ∈ Ŵ such for any v ∈ Ŵ

∫ T

0

as(t; es, v) dt = R̂P(v) and
∫ T

0

as(t; εs, v) dt = R̂D(v). (15)

Note that, according to remarks 1 and 2, the solutions of (15) fulfill the assumptions of theorem
1 and, in particular, equations (9).

The symmetrized errors es and εs are non-computable because the problems (15) are posed
in infinite-dimensional spaces. With respect to the original error equations (3) and (7), equa-
tions (15) are discontinuous-in-time and symmetric (both in space and time).

Next section is devoted to obtain computable upper bounds for the space-time norm |||·||| of
the symmetrized errors es and εs.

5 Upper bounds for the space-time norm

Consider the auxiliary function z ∈ Ŵ solution of
∫ T

0

as(t; z, v) dt = R̂∗(v) ∀v ∈ Ŵ , (16)

where R̂∗(v) = αR̂P(v) + βR̂D(v) for α, β ∈ R. Note that for α = 1 and β = 0, then
R̂∗(v) = R̂P(v) and problem (16) is the residual problem for es. Therefore in this case z = es.
Analogously, the choice of α = 0 and β = 1, produces R̂∗(v) = R̂D(v) and the residual
problem for εs is recovered yielding z = εs. In particular, α = κ and β = ±1/κ will be used
later to obtain the required upper bounds for |||κes ± 1/κ εs|||2.

The purpose of this section is to establish a procedure to compute upper bounds on |||z|||2.
It is worth noting that the model problem under consideration, equation (16), is symmetric both
in space and time and that it does not contain derivatives with respect to time.
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In order to come up with a computable upper bound of |||z|||2 the following four steps are
considered. First, it is shown that z ∈ Ŵ may be computed solving q + 1 independent steady
diffusion-reaction problems in each slab In. Second, for every infinitely dimensional steady
diffusion-reaction problem (q + 1 in every time slab), the solution is decomposed in its pro-
jection into the finite element mesh Vh (which is computable) and the orthogonal complement
(which is assessed with a standard error estimation technique). The problems characterizing the
orthogonal complement are posed in the whole spatial domain Ω. In the third step, a domain
decomposition strategy is used to decompose the global problem into nel independent (infi-
nite dimensional) local problems defined in the elements of the mesh (triangles in our case),
nel being the number of elements of the spatial mesh. Finally, the fourth step uses a duality
method to transform each local steady problem (posed over an infinite dimensional space) into
a computable discrete problem yielding upper bounds of the solution.

5.1 Time decomposition
The first step to derive a computable expression for an upper bound of |||z|||2 is to decompose
the global-in-time problem given by equation (16) into q+1 steady diffusion-reaction problems
in each slab In.

Using remark 2, for all v ∈ Ŵ ,

R̂∗(v) =

∫ T

0

[
〈f ∗, v〉 − a(t; αuh, v)− a(t; v, βψh)

]
dt,

where f ∗ = α(f − u̇h) + β(fO + ψ̇h). Therefore, using the broken-in-time nature of the space
Ŵ , equation (16) decomposes into: find zn ∈ W(In) such that

∫

In

as(t; zn, v) dt =

∫

In

[
〈f ∗, v〉 − a(t; αuh, v)− a(t; v, βψh)

]
dt ∀v ∈ W(In), (17)

where
W(In) := {v ∈ L2(In;V) such that v̇ ∈ L2(In;V ′)}.

Now, assume that ν(t),α(t) and σ(t) are piecewise constant-in-time functions inside each
time slab, that is

ν(t)|In
= νn, α(t)|In

= αn and σ(t)|In
= σn,

for νn, σn ∈ L∞(Ω), αn ∈ H(div; Ω) and ∇ · αn = 0. Working with piecewise constant-in-
time parameters has the advantage of avoiding the notational complexity introduced by more
complex time dependencies. The proposed methodology is however more general in the sense
that it is valid also for piecewise polynomial parameters ν(t),α(t) and σ(t). In this case,
however, computing zn ∈ W(In) requires solving a larger number of steady diffusion-reaction
problems in each slab In (larger than q + 1).

Under the assumption of piecewise constant-in-time parameters, the bilinear forms a(t; ·, ·)
and as(t; ·, ·) are also piecewise constant-in-time inside the time slabs, that is

a(t; w, v)|In
=: an(w, v) =

∫

Ω

[
νn∇w ·∇v + αn ·∇w v + σnwv

]
dΩ,

8



for w, v ∈ L2(I;V), and

as(t; w, v)|In
=: as

n(w, v) =

∫

Ω

[
νn∇w ·∇v + σnwv

]
dΩ. (18)

The notation introduced above allows rewriting equation (17) as: find zn ∈ W(In) such
that ∫

In

as
n(zn, v) dt =

∫

In

[
〈f ∗, v〉 − an(αuh, v)− an(v, βψh)

]
dt ∀v ∈ W(In). (19)

The source terms are assumed to have a piecewise polynomial time-dependence, that is
f |In

and fO
∣∣
In

belong to Pq(In;V ′) and consequently f ∗|In
∈ Pq(In;V ′). Recall that uh and

ψh belong to Pq(In;V) and therefore zn ∈ Pq(In;V) and is such that

as
n(zn, v) = 〈f ∗, v〉 − an(αuh, v)− an(v, βψh) ∀v ∈ W(In) ∀t ∈ In.

The previous equation must be fulfilled for every t ∈ In. Nevertheless, due to the polyno-
mial nature of zn it suffices to enforce it in q + 1 time instants inside In.

Note that the time dependence of zn(t) ∈ Pq(In;V) is uniquely characterized by giving
q + 1 space functions zni, i = 0, 1, . . . , q, corresponding to the representation in a basis Nni(t),
i = 0, 1, . . . , q, of Pq(In;R), namely

zn(t) =

q∑
i=0

zniNni(t), (20)

where zni ∈ V are the space functions to be determined. Taking the basis Nni(t), i =
0, 1, . . . , q, as the usual 1D finite element basis, see figure 1, the degrees of freedom zni corre-
spond to the values of zn at the intermediate times tn−1+i/q := tn−1 + i(tn − tn−1)/q, that is
zni = zn(tn−1+i/q), for i = 0, 1, . . . , q. For simplicity, tn−1+i/q will be denoted by tni in the
following.

Figure 1: Representation for q = 2 of the time dependency of the function zn.

In this case, zni ∈ V is the solution of the steady diffusion-reaction problem

as
n(zni, v) = 〈f ∗(tni), v〉 − an(αuh(tni), v)− an(v, βψh(tni)) ∀v ∈ V . (21)

Thus, the solution of equation (16), z ∈ Ŵ , is computed solving q + 1 independent steady
diffusion-reaction problems in each time slab In. Once the functions zni ∈ V are obtained
solving (21), the time-dependent function zn(t) ∈ Pq(In;V) is directly recovered using equa-
tion (20). The assembly of these solutions associated with every time slab makes z ∈ Ŵ a
piecewise polynomial function in time, discontinuous at t = tn for n = 1, . . . , N − 1 (recall
that z|In

= zn).
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Remark 3 As already mentioned, the assumption that ν(t), α(t) and σ(t) are piecewise constant-
in-time functions inside each time slab, and also that f ∗|In

∈ Pq(In;V ′) may be relaxed. In
fact, if ν|In

, α|In
, σ|In

and f ∗|In
are polynomial functions inside In, then a larger degree of

the polynomials representing the time dependence of the solution zn, say q̃, can be selected
such that zn belongs to Pq̃(In;V). Then, zn must be computed solving q̃ +1 independent steady
diffusion-reaction problems.

5.2 Enforcing orthogonality
The solution zni of the steady diffusion-reaction (21) and therefore the norm |||z|||2 to be used
in the bounds are not computable because V is infinite-dimensional. It is however possible to
derive a computable upper bound for |||z|||2 using a domain decomposition technique and, in
every local problem, a complementary energy approach. The idea is to use the error estimation
strategy proposed in [18] to each steady reaction-diffusion problem (21) as in [15]. However,
these techniques may only be applied if the r.h.s. of the residual equation, in this case equation
(21), vanishes for every v ∈ Vh (this is referred as the orthogonality property) [2, 8, 11, 16].
This orthogonality condition is needed to properly produce the domain decomposition strate-
gies and the equilibration of the local problems.

As already noted, recall (4) and (8), the orthogonality is not fulfilled. That is, in general for
v ∈ Vh

〈f ∗(tni), v〉 − an(αuh(tni), v)− an(v, βψh(tni)) 6= 0.

This problem may be circumvented decomposing zni into

zni = zh
ni + z⊥ni,

where zh
ni ∈ Vh is such that

as
n(zh

ni, v) = 〈f ∗(tni), v〉 − an(αuh(tni), v)− an(v, βψh(tni)) ∀v ∈ Vh. (22)

Note that the zh
ni is the projection of zni into Vh. Thus, from (21) the orthogonal complement

z⊥ni ∈ V is the solution of the residual equation

as
n(z⊥ni, v) = 〈f ∗(tni), v〉 − an(αuh(tni), v)− an(v, βψh(tni))− as

n(zh
ni, v) ∀v ∈ V . (23)

This decomposition precludes the problem associated with the lack of orthogonality because
zh

ni is computable and equation (23) for z⊥ni, is such that the r.h.s. fulfills the orthogonality
condition. That is, the r.h.s. of (23) vanishes for every v ∈ Vh. Therefore, a computable bound
for the norm of z⊥ni is obtained after a domain decomposition technique.

This orthogonalization strategy is used in [7, 16] in a different context (assessment of the
pollution). A similar approach is used also in [19] to recover strict bounds for the energy.

Summarizing, the upper bound for |||z|||2 requires computing first zh
ni ∈ Vh and then ap-

plying the error estimation technique proposed in [18] to approximate z⊥ni. This has to be
performed for every time tni (q + 1 times in each time slab In).

5.3 Domain decomposition and complementary energy approach
Now, the standard complementary energy approach is applied to obtain estimates for z⊥ni given
by equation (23) following the ideas introduced in [17, 18, 15]. Note that this is possible
because orthogonality has been enforced as described in the previous section.
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The basic idea is to relax the problem of finding z⊥ni ∈ V fulfilling equation (23). The
relaxed problem consists in obtaining a pair of dual estimates p̂ni ∈ [L2(Ω)]nsd and r̂ni ∈ L2(Ω)
such that ∫

Ω

[
νnp̂ni ·∇v + σnr̂niv

]
dΩ = as

n(z⊥ni, v) ∀v ∈ V . (24)

The estimates for p̂ni and r̂ni are taken in an elementwise-polynomial space of degree r,
namely

P̂r(Ω) := {v ∈ L2(Ω), v|Ωk
∈ Pr(Ωk)},

i.e. r̂ni ∈ P̂r(Ω) and p̂ni ∈ [P̂r(Ω)]2, where Ωk for k = 1, 2, . . . , nel are the elements of
the mesh. The fact that the data fields u0, uOT , f(t) and fO(t) are assumed to be piecewise
polynomials both in space (element by element) and time (in each time slab) guarantees that
for r large enough a pair of dual estimates fulfilling equation (24) may be found in P̂r(Ω). This
results in a discrete solvable problem, see [17, 18].

Remark 4 The dual estimates p̂ni and r̂ni are defined over the whole domain Ω. Nevertheless,
their computation can be decoupled locally by selecting appropriate parameterizations. In
practice, the equilibration procedure yielding equilibrated fluxes is local and the a priori global
problem (24) is split into local dual problems in the elements of the mesh.

5.4 Computation of an upper bound
Finally, the estimates obtained from (24) are combined with the projections computed from
(22) to build up an upper bound for |||z|||. This is stated in the following theorem.

Theorem 2 Let p̂ni ∈ [P̂r(Ω)]nsd and r̂ni ∈ P̂r(Ω) be the dual estimates fulfilling equation
(24) for every tni, n = 1, 2, . . . , N , i = 0, 1, . . . , q. The time-dependent estimates are readily
recovered in every time slab In:

p̂n =

q∑
i=0

p̂niNni(t) and r̂n =

q∑
i=0

r̂niNni(t). (25)

Analogously, let zh
ni ∈ Vh be the solutions of (22) and

zh
n =

q∑
i=0

zh
niNni(t).

Then, an upper bound for the space-time norm of the solution z of (16) is computed as

|||z|||2 ≤
N∑

n=1

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt. (26)

Proof. Let z⊥n =
q∑

i=0

z⊥niNni(t), where z⊥ni are the solutions of (23). Then, from equation (24)

and using equation (23), the dual estimates p̂n and rn verify for i = 0, . . . , q
∫

Ω

[
νnp̂n(tni) ·∇v + σnr̂n(tni)v

]
dΩ

= 〈f ∗(tni), v〉 − an(αuh(tni), v)− an(v, βψh(tni))− as
n(zh

n(tni), v) ∀v ∈ V ,

11



since p̂ni = p̂n(tni), rni = r̂n(tni) and zh
n(tni) = zh

ni. Moreover, since all the time-dependent
functions appearing in the previous equation are polynomials of degree q, the previous equation
is verified for every t ∈ In, that is,

∫

Ω

[
νnp̂n(t) ·∇v + σnr̂n(t)v

]
dΩ + as

n(zh
n(t), v)

= 〈f ∗(t), v〉 − an(αuh(t), v)− an(v, βψh(t)) ∀v ∈ V ∀t ∈ In.

Integrating from t = tn−1 = tn0 to t = tn = tnq, and expanding the term as
n(zh

n(t), v) using
equation (18) yields

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) ·∇v + σn(r̂n + zh
n)v

]
dΩ dt

=

∫

In

[
〈f ∗, v〉 − an(αuh, v)− an(v, βψh)

]
dt =

∫

In

as
n(zn, v) dt ∀v ∈ W(In),

where in the last equality, equation (19) has been used. In particular, taking v = zn ∈ W(In)
in the previous equation yields:

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) ·∇zn + σn(r̂n + zh
n)zn

]
dΩ dt =

∫

In

as
n(zn, zn) dt. (27)

At this point, the previous equality along with an elementary algebraic manipulations reveal
that ∫

In

as
n(zn, zn) dt ≤

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt. (28)

Indeed, the result is obtained using the obvious inequality
∫

In

∫

Ω

[
νn(p̂n + ∇zh

n −∇zn) · (p̂n + ∇zh
n −∇zn) + σn(r̂n + zh

n − zn)2
]

dΩ dt ≥ 0

along with the algebraic manipulation
∫

In

∫

Ω

[
νn(p̂n + ∇zh

n −∇zn) · (p̂n + ∇zh
n −∇zn) + σn(r̂n + zh

n − zn)2
]

dΩ dt

=

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt

+

∫

In

∫

Ω

[
νn∇zn ·∇zn + σn(zn)2

]
dΩ dt

− 2

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) ·∇zn + σn(r̂n + zh
n)zn

]
dΩ dt

=

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt

+

∫

In

as
n(zn, zn) dt− 2

∫

In

as
n(zn, zn) dt

=

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt−
∫

In

as
n(zn, zn) dt,
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where both equations (27) and (18) have been used.
Finally, using the inequality given by equation (28)

|||z|||2 =

∫ T

0

‖z‖2 dt =

∫ T

0

as(t; z, z) dt

=
N∑

n=1

∫

In

as(t; z, z) dt =
N∑

n=1

∫

In

as
n(zn, zn) dt

≤
N∑

n=1

∫

In

∫

Ω

[
νn(p̂n + ∇zh

n) · (p̂n + ∇zh
n) + σn(r̂n + zh

n)2
]

dΩ dt,

concluding the proof. ¤

6 Bounds for the output of interest LO(u): an algorithmic
summary

According to theorem 1 the upper and lower bounds of s, and hence of LO(u), are available
once the upper bounds of the energy norm |||z||| are obtained for the two combinations (α, β) =
(κ, 1/κ) and (α, β) = (κ,−1/κ). The general strategy to obtain these upper bounds is devised
in the previous section. As already mentioned, due to the linearity of the problem, obtaining
the estimates for these two values of |||z||| is equivalent to obtain the estimates for z = es and
z = εs, that is for the two combinations (α, β) = (1, 0) and (α, β) = (0, 1).

The following description of the bound algorithm differs from the description given in part
I of this work [15] because here the algorithm is designed to parallelize the computation of the
estimates in each time slab. However, if memory requirements are critical, the same strategy
proposed in [15] can be implemented. That is, only the primal solution must be stored. The
adjoint one is computed (but not stored) step by step in each time slab.

The main steps of the procedure to compute bounds for LO(u) are the following:

1. Compute and store the continuous primal and dual solutions uh and ψh respectively (for
instance, computing the cG(p)dG(q) approximations and smoothing out the time discon-
tinuities).

2. For each time slab In do (this step is independent for each slab and can be easily paral-
lelized):

2.2. For each subtime tni, i = 0, . . . , q do:

2.2.1. Compute the primal and adjoint projections es,h
ni and εs,h

ni ∈ Vh solution of:

as
n(es,h

ni , v) = 〈f(tni)− u̇h(tni), v〉 − an(uh(tni), v) ∀v ∈ Vh,

as
n(εs,h

ni , v) = 〈fO(tni) + ψ̇h(tni), v〉 − an(v, ψh(tni)) ∀v ∈ Vh.

2.2.2. Compute the primal and adjoint dual estimates p̂P
ni, p̂D

ni ∈ [P̂r(Ω)]nsd and r̂P
ni,

r̂D
ni ∈ P̂r(Ω) such that for all v ∈ V:

∫

Ω

[
νnp̂P

ni ·∇v + σnr̂
P
niv

]
dΩ

= 〈f(tni)− u̇h(tni), v〉 − an(uh(tni), v)− as
n(es,h

ni , v),
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∫

Ω

[
νnp̂

D
ni ·∇v + σnr̂

D
niv

]
dΩ

= 〈fO(tni) + ψ̇h(tni), v〉 − an(v, ψh(tni))− as
n(εs,h

ni , v).

2.3 For each element, recover the time-dependent projections in the time slab In

es,h
nk (t) =

q∑
i=0

es,h
ni

∣∣∣
Ωk

Nni(t) and εs,h
nk (t) =

q∑
i=0

εs,h
ni

∣∣∣
Ωk

Nni(t),

and the dual time-dependent estimates

p̂P
nk(t) =

q∑
i=0

p̂P
ni

∣∣
Ωk

Nni(t) and r̂P
nk(t) =

q∑
i=0

r̂P
ni

∣∣
Ωk

Nni(t),

p̂D
nk(t) =

q∑
i=0

p̂D
ni

∣∣
Ωk

Nni(t) and r̂D
nk(t) =

q∑
i=0

r̂D
ni

∣∣
Ωk

Nni(t).

2.4 Compute and store the three scalar quantities

ηP
n :=

nel∑

k=1

ηP
nk =

nel∑

k=1

∫

In

∫

Ωk

[
νn(p̂P

nk + ∇es,h
nk )2 + σn(r̂P

nk + es,h
nk )2

]
dΩ dt,

ηD
n :=

nel∑

k=1

ηD
nk =

nel∑

k=1

∫

In

∫

Ωk

[
νn(p̂D

nk + ∇εs,h
nk )2 + σn(r̂D

nk + εs,h
nk )2

]
dΩ dt,

ηPD
n :=

nel∑

k=1

ηPD
nk =

nel∑

k=1

∫

In

∫

Ωk

[
νn(p̂P

nk + ∇es,h
nk ) · (p̂D

nk + ∇εs,h
nk )

+ σn(r̂P
nk + es,h

nk )(r̂D
nk + εs,h

nk )
]

dΩ dt.

3. Compute the global quantities

ηP =
( N∑

i=1

ηP
n

) 1
2
, ηD =

( N∑
i=1

ηD
n

) 1
2
, ηPD =

N∑
i=1

ηPD
n ,

and recover the bounds for the output s− ≤ LO(u) ≤ s+ where

s− := LO(uh) + RP(ψh)− 1

2
ηP ηD +

1

2
ηPD

and
s+ = LO(uh) + RP(ψh) +

1

2
ηP ηD +

1

2
ηPD.

Remark 5 The final expression for the bounds of the output LO(u) are recovered by means of
the following considerations. First theorem 1 states that in order to obtain bounds for the error
in the output s it is sufficient to obtain upper bounds for the quantities

∣∣∣∣∣∣κes ± 1
κ
εs

∣∣∣∣∣∣2
UB

, see
equation (14). In order to compute the upper bounds for the space-time norm, the procedure
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detailed in section 5 is considered for z = κes ± 1
κ
εs. Then, from theorem 2, the following

upper bounds are obtained:

∣∣∣∣
∣∣∣∣
∣∣∣∣κes ± 1

κ
εs

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

UB

=
N∑

i=1

∫

In

∫

Ω

[
νn

(
κ(p̂P

n + ∇es,h
n )± 1

κ
(p̂D

n + ∇εs,h
n )

)2

+ σn

(
κ(r̂P

n + es,h
n )± 1

κ
(r̂D

n + εs,h
n )

)2]
dΩ dt.

Finally the given expressions for the bounds are obtained taking κ2 = ηD/ηP and rearranging
terms.

7 Numerical examples
The numerical tests presented in this section are the same as in the first part of the paper [15] but
with the numerical tools introduced in this second part. These examples are used to demonstrate
the ability of the presented approach to account also for the error associated with the time
discretization and to point out the difficulties in recovering the predicted a priori convergence
rates. Moreover, h-adaptivity does no longer suffice here to control the error and ∆t has to be
adapted also to reduce the error assessed with the presented strategy (including the time error).
The notation used here is therefore the same as in [15] and it is briefly recalled. The upper
and lower bounds for LO(u) introduced above are denoted by s− and s+. The bound average,
save := (s+ + s−)/2, is taken as a new approximation of the quantity of interest and the half
bound gap, ∆ = (s+ − s−)/2, is seen as an error indicator. Note that,

|LO(u)− save| ≤ ∆,

that is, ∆ measures the absolute error of the approximation save with respect to the exact value
LO(u). Since the exact solution of the problems is not known, the relative counterpart of the
half bound gap, ∆rel = ∆/save, is also used in the presentation.

The meshes are adapted to reduce the half bound gap, ∆. In the examples a simple adaptive
strategy is used based on the decomposition of ∆ into local positive contributions from the
elements:

∆ =

nel∑

k=1

∆k

where the element contribution to the bound gap ∆k is

∆k :=
N∑

i=1

[1

4
κ2ηP

nk +
1

4κ2
ηD

nk

]
.

The validity of this decomposition is discussed in [15]. The remeshing strategy (with respect
to space) consists in subdividing, at each step of the adaptive procedure, the elements with the
larger values of ∆k.
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7.1 Example 1: uniformly forced square domain
The transient pure diffusion equation (ν = 1, σ = 0, α = 0) is solved in the squared domain
Ω = [0, 1] × [0, 1] and for a final time T = 0.1. A constant source term f(t) =

√
10 and

homogeneous Dirichlet boundary conditions and initial condition (u0 = 0) are considered.
The quantity of interest is an average of the space-time solution

LO(u) =

∫ T

0

∫

Ω

√
10 u(x, y, t) dΩ dt,

that is fO =
√

10 and uOT = 0 in equation (5). The solution ψ of the adjoint problem is in this
case such that u(t) = ψ(T − t).

Two spatial discretizations are used in this test: linear and quadratic triangular elements in
space, p = 1 and p = 2. In the computation of the hybrid fluxes, the equilibrated normal fluxes
along the edges of the elements are linear, both for p = 1 and p = 2. The local approximation
to Ẑnjk and its fluxes in the interior of the elements, P̂ njk ∈ [Pr(Ωk)]

nsd and R̂njk ∈ Pr(Ωk)
are fourth order polynomials, i.e. r = 4.

The convergence of the bounds is analyzed for a uniform mesh refinement in a series of
structured meshes. The initial mesh is composed by 8 triangular elements (half squares) and
in each refinement step every triangle is divided in four similar triangles. The study is done
using different strategies to determine the time step: in each refinement step the time step is
kept constant ∆tn = ∆t (all the time slabs In have the same size) but different strategies are
used to modify the time step ∆t as the meshes are refined uniformly.

The results for linear elements (p = 1) are shown in figure 2 for 3 cases: 1) constant time
step ∆t = 0.05 (N = 20) during all the mesh refinement procedure, 2) varying the time step as
∆t ∝ √

t and 3) varying the time step as ∆t ∝ h. The optimal finite element convergence rate
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Figure 2: Example 1: Convergence of the half bound gap in a series of uniformly refined
meshes of linear triangular elements (p = 1) using different strategies to determine the time
step ∆t.

in space for the quantity of interest is O(h2) which is approximately obtained when the time
step is taken to be ∆t = h. If a constant time step is considered, the bounds have the expected
rate of convergency for the initial meshes but in the last step the time discretization error is
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no longer negligible in front of the space discretization error. The strategy which considers
∆t ∝

√
h does not reach the expected rate of convergence and shows that in this case the

convergence of the half bound gap is determined by the time step ∆t and not by the mesh size
h. This shows that in order to asymptotically approach the optimal finite element convergence
rate in space, the time step ∆t has to be chosen carefully.

The bounds obtained with the strategy ∆t ∝ h are displayed in table 1 and in figure 3. Also
the bound average save and the approximation of the output associated with the cG(p)dG(q)
approximation of u, LO(ûh), are shown. Note that, in this example, the bound average provides
a better approximation of the output LO(u) even for the coarser meshes.
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Figure 3: Example 1: Bounds obtained in a series of uniformly h-refined meshes using linear
triangular elements using the time step ∆t = h.

linear elements
nel N LO(ûh) LO(uh) s− s+ save ∆ ∆rel

8 3 0.017239 0.016743 0.016528 0.022392 0.019460 0.002932 15.07%
32 6 0.018582 0.018433 0.017991 0.023181 0.020586 0.002595 12.60%
128 12 0.019845 0.019803 0.019669 0.021323 0.020496 0.000827 4.03%
512 23 0.020295 0.020282 0.020248 0.020690 0.020469 0.000221 1.08%
2048 46 0.020419 0.020416 0.020407 0.020519 0.020463 0.000056 0.27%

Table 1: Example 1: results in a series of uniformly h-refined meshes using linear triangular
elements and using the time step ∆t = h.

The results for quadratic elements (p = 2) are shown in figure 4 for four cases: 1) piecewise
linear interpolation in time (q = 1) with a constant time step ∆t = 0.002 (N = 50), 2) linear
interpolation q = 1 for a constant time step ∆t = 0.00025 (N = 400), 3) linear interpolation
q = 1 and varying the time step ∆t ∝ h2 and 4) quadratic interpolation q = 2 for a varying
time step ∆t ∝ h. For linear elements, p = 1, if a constant time step is considered, the bounds
have the expected rate of convergence for the initial meshes but deteriorate as the importance
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of the time discretization error increases with respect to the spatial discretization error (when
the time discretization error is no longer negligible in front of the space discretization error).
In particular, if the time step is kept constant the bound gap does not converge to zero with h.
The strategy taking ∆tn ∝ h2 recovers the expected rate of convergencs, but it requires the use
of a non reasonable amount of time steps (this could be precluded using a non-uniform time
discretization). Finally, using a quadratic interpolation both in space and time p = q = 2 and
∆t ∝ h the desired convergency rate O(h4) is not reached. This is due probably to two facts:
first, a slight drop off in the rate of convergence may be due to the use of linear equilibrated
fluxes for λP

nj and λD
nj . Second, the convergence rate is possibly determined by the time step

∆t and not by the mesh size h. However, this strategy allows obtaining reasonably good results
with few time steps.
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Figure 4: Example 1: Convergence of the half bound gap in a series of uniformly h-refined
meshes using quadratic triangular elements (p = 2), using different strategies to determine the
time step ∆t.

quadratic elements
nel N LO(ûh) LO(uh) s− s+ save ∆ ∆rel

8 3 0.019892 0.019224 0.019505 0.020906 0.020205 0.000701 3.47%
32 6 0.020366 0.020185 0.020286 0.020541 0.020414 0.000128 0.62%
128 12 0.020452 0.020404 0.020433 0.020475 0.020454 0.000021 0.10%
512 23 0.020461 0.020447 0.020456 0.020464 0.020460 0.000004 0.02%
2048 46 0.020462 0.020458 0.020460 0.020462 0.020461 0.000001 0.005%

Table 2: Example 1: series of uniformly h-refined meshes using a quadratic interpolation both
in space and time, p = q = 2 and ∆t = h.

The results in the case of using both a quadratic interpolation in space and time p = q = 2
combined with the use of ∆t ∝ h are displayed in table 2 and figure 5. In this case the bound
average again provides a better approximation for the output LO(u) than LO(uh) and LO(ûh).
It is worth noting that in this case s− ≥ LO(uh) due to the term RP(ψh) which in this case is a
positive number appearing in the expression of the bounds.
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Figure 5: Example 1: Bounds in a series of uniformly h-refined meshes using a quadratic
interpolation both in space and time, p = q = 2 and ∆t = h.

7.2 Example 2: composite material
The unsteady heat conduction problem is solved in the domain described in figure 6 for a non-
uniform (composite) material. The problem is purely diffusive (σ = 0 and α = 0). The
thermal conductivity is smaller in the rectangular inclusions (ν = 0.01) and larger for the bulk
material (ν = 1). The specimen is assumed to be thermally isolated on the lateral sides, that is
homogeneous Neumann boundary conditions are prescribed in this part of the boundary. The
temperature is set to zero on the top (u = 0) and a prescribed heat flux is imposed on the
bottom, Γb, that is ∇u · n = g

N
(t), where

g
N
(t) =

{
4t(1− t) + 1 for t ∈ [0, 1]
4(1− t)(2− t) + 1 for t ∈ (1, 2].

The initial thermal state is assumed to be u(0) = 0 and the time interval is taken from t = 0 to
t = T = 2.

Figure 6: Example 2: Composite domain Ω: inside the rectangles, Ω2, the thermal conductivity
is ν = 0.01 and in the remainder of the domain, Ω1, ν = 1.

Here, both space and time discretizations are quadratic, that is p = 2 and q = 2. The
selected output of interest is the average of the temperature on the bottom, Γb:

LO(u) =
1

meas Γb

∫ T

0

∫

Γb

u(x, y, t) dΓ dt.
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This quantity of interest is represented by a Neumann boundary condition for the dual problem
gO

N
(t) = 1/meas(Γb) on Γb.
An adaptive procedure is carried out subdividing the elements with larger values of ∆k

(larger contributions to the bound gap). The bounds are obtained using a fourth order interpo-
lation for the dual estimates, r = 4. The results along the adaptive process are shown in figure
7, where the representative mesh size h is defined as h =

√
1/nel. At each remeshing step
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Figure 7: Example 2: Computed bounds for an adaptive h-refinement using a quadratic in-
terpolation both in space and time p = q = 2 (left) and convergence of the half bound gap
(right).

1% of the elements are marked to be refined. For each step a constant time step is considered
∆tn = ∆t and the time step is reduced along the adaptive loop such that the convergence rate is
driven by the space discretization error. That is, in the adaptive steps where the rate of conver-
gence of the half bound gap with respect to the space discretization is not the expected one (due
to a non-negligible time discretization error), the time step ∆t is divided by two. The adaptive
procedure is then continued until the relative bound gap reaches a target value of 0.5%, that is,
∆rel ≤ 0.005. The adaptive procedure starts with N = 7 and the time step does not need to be
modified in all the steps. Note that in this example since the time discretization error is very
small, LO(uh) ≈ LO(ûh). Moreover, the lower bound estimates provide better approximation
than the upper bound and the bound average.

Table 3 summarizes the results for the first and final iteration and the initial and final meshes
are shown in figure 8. The adaptive procedure guarantees a relative half bound gap less than
0.5% using only N = 7. For the final mesh an extra computation has been done with a lower
time step, using n = 10 and N = 20 to compare the resulting bounds. The error in the final
mesh with 1429 elements is mainly due to the space discretization error: decreasing the time
step does not practically vary the output and yields only a slight improvement of the bounds.

7.3 Example 3: quasi-2D transport
This example is the transient version of a steady quasi-2D transport problem introduced in [18].
The effect of including the convective term is analyzed in this simple problem for different
values of the velocity α. Equation (1) is solved in the unit square, Ω = [0, 1]× [0, 1], for ν = 1,
σ = 1 and a uniform horizontal velocity field α = (α, 0). The performance of the introduced
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nel N LO(ûh) LO(uh) s− s+ save ∆rel

454 7 3.19971 3.19517 3.13694 3.99799 3.56747 12.07%
1429 7 3.22388 3.21936 3.21962 3.24922 3.23442 0.46%
1429 10 3.22404 3.22144 3.22068 3.24844 3.23456 0.43%
1429 20 3.22404 3.22310 3.22135 3.24775 3.23455 0.41%

Table 3: Example 2: results in a series of adaptive h-refinement.

Figure 8: Example 2: Initial (left) and final meshes (right) of the adaptive procedure with
nel = 454 and 1429 respectively.

estimates is tested for different values of α. The boundary conditions are of Dirichlet type on
the lateral sides, homogeneous on the right u(1, y) = 0 and set to 1 on the left u(0, y) = 1.
The boundary condition on both the top and bottom are Neumann homogeneous. The source
term is f = 0, and the initial condition is u0(x, y) = 1 − x. Time integration is performed to
t = T = 1. The degrees of the space and time interpolations are p = 1, q = 1 and r = 4.

The quantity of interest is an overall average of the solution, that is

LO(u) =

∫ T

0

∫

Ω

u(x, y, t) dΩ dt,

which corresponds to fO = 1.
The error estimation strategies and the computation of bounds are performed for a series of

uniformly h-refined meshes with ∆t = h and different values of α. The results are displayed in
table 4 and figure 9. For all the values of α, the rate of convergence of the bound gap is found
to be equal to the expected one for the error, that isO(h2). It is worth noting that the bound gap
is larger as α increases. For α = 100 the bound gap is 4 orders of magnitude larger than the for
α = 0, being the quantity of interest of the same order. The convergence rate in all the cases
is clearly determined by the spatial error. Moreover, although the bounds account both for the
discretization error in space and time, the results are nearly as sharp as the bounds obtained in
[15] which only considers the contribution of the spatial error.

This increment in the bound gap does not correspond to the actual error increment and
therefore it has to be concluded that the efficiency of the computed error bounds is deteriorated
if the convection parameter is large.

In order to check the convergence in time of the proposed algorithm a ∆t-refining procedure
is carried out. A fixed spatial mesh composed by 2048 triangular elements (half squares) and an
initial constant time step ∆t = 0.5 are considered to start the process. In each refinement step,
the time step ∆t is divided by two. The results are displayed in figure 10. The convergence of
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α = 0 α = 1 α = 5 α = 10
nel N save ∆ save ∆ save ∆ save ∆
32 6 0.466028 0.001717 0.532588 0.002032 0.738888 0.036791 0.848585 0.171335
128 12 0.465682 0.000414 0.532864 0.000488 0.739246 0.008675 0.849791 0.040686
512 23 0.465587 0.000103 0.532940 0.000120 0.739414 0.002056 0.849588 0.009456
2048 46 0.465562 0.000026 0.532959 0.000030 0.739465 0.000493 0.849582 0.002212
8192 91 0.465555 0.000006 0.532964 0.000007 0.739479 0.000121 0.849585 0.000530

Table 4: Example 3: results in a series of uniformly h-refined meshes with ∆t = h.
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Figure 9: Example 3: convergence of the half bound gap for different convection parameters
α = 0, 1, 5, 10 and 100.

the bound gap degenerates as the value of α increases at the same time that the bound gap is
larger for larger values of α. For α = 100 the bound gap is 4 orders of magnitude larger than
the for α = 0, being the quantity of interest of the same order.

The bounds obtained with the algorithm presented in the first part I of this work [15] are
compared with the results of the present algorithm. Figure 10 shows that the bounds which only
account for the spatial error (non-strict bounds) are nearly insensitive to the change of the time
step. In fact, if the convergence of the bounds which do not account for the time discretization
error is plotted for each value of α, it can be seen that the bounds increase as the time step
is reduced (although the rise of the half bound gap is barely perceptible as compared to the
variations of the bounds accounting for both the error in space and time).

Figure 11 shows bounds obtained for the values of the convection parameter α = 0, 5 and
100. For very large time steps the smoothed approximation LO(uh) is not a good approximation
of LO(u) (in comparision with the cG(p)dG(q) approximation LO(ûh)). However, for α = 0
and 5, the procedure yields quite competitive bounds taking into account that the starting point
of the procedure is LO(uh). Therefore, in this case for low values of α the quality of the bounds
is determined by the quality of the smoothed approximations. For large values of α, although
the smoothed approximations are worst that the cG(p)dG(q) approximation, the bounds are
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Figure 10: Example 3: convergence with respect to the time discretization of the half bound
gap for different convection parameters α = 0, 1, 5, 10 and 100 using both the methodology
presented in this paper and in the first part [15].

clearly deteriorated due to the convection-dominated nature of the problem.
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Figure 11: Example 3: bounds accouting both for the error in space and time for different
convection parameters α = 0, 5 and 100 with respect to a uniform refinement in time.

7.4 Example 4: rotating transport
Again, a transient version of a steady problem analyzed in [18] is considered. The compu-
tational domain is Ω = [0, 1] × [0, 1] and the model parameters are ν = 1, σ = 10 and
α = 250(y − 1

2
, 1

2
− x). The boundary conditions are Dirichlet homogeneous on the whole

boundary ∂Ω and the initial condition is u0 = 0. A localized source term is f = 100 in the
square [0.7, 0.8] × [0.7, 0.8] and f = 0 elsewhere, see figure 12. The output of interest is a
local average in the square region [0.2, 0.3]× [0.2, 0.3], that is fO = 1 in [0.2, 0.3]× [0.2, 0.3]
and fO = 0 elsewhere. The parameters describing the space-time discretization are p = 1 and
q = 1, and for a final time T = 0.03.
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Figure 12: Example 4: Rotating transport forcing and output regions.

A series of adapted meshes is produced by subdividing at each remeshing step 4% of the
elements, those with the larger contributions to the bound gap. Also the time step ∆t is adjusted
(is divided by two in the iterations where a slow convergence of the half bound gap is observed).
The adaptive procedure starts with a mesh of 322 elements and with N = 6 and stops when the
half bound gap reaches the target value of 0.000006, that is, ∆ ≤ 6 · 10−6, see figure 13.
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Figure 13: Example 4: Error bounds for an adaptive h-refinement and adjusting the constant
time step ∆t.

The initial mesh of 322 elements and N = 6 certifies a wide interval for the quantity of
interest, LO(uτ ) = 3.77287 · 10−5 ± 9.45362 · 10−5 , after remeshing the bounds associated
with the final mesh of 5855 elements and N = 896 set a much narrower interval, LO(uτ ) =
3.79554 · 10−5 ± 0.58690 · 10−5, see table 5. The primal and adjoint solutions at the final
computational times (t = T for the primal and t = 0 for the adjoint) are displayed in figure 14.
The local elementary contributions ∆k to the global bound gap are plotted in figure 15 for the

initial mesh and for an intermediate mesh of the adaptive procedure. The larger values of the
local contributions are precisely in the zones where either the primal or the adjoint solutions
have larger gradients. Also in figure 15 the resulting final mesh is displayed.
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nel N LO(uh) s− s+ save ∆
322 6 3.677 · 10−5 −5.681 · 10−5 13.226 · 10−5 3.773 · 10−5 9.454 · 10−5

5855 896 3.792 · 10−5 3.209 · 10−5 4.382 · 10−5 3.796 · 10−5 0.587 · 10−5

Table 5: Example 4: results for the initial and final meshes of the adaptive h-refinement proce-
dure.
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Figure 14: Example 4: Primal and adjoint solution at the final time: t = T for the primal and
t = 0 for the adjoint.
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Figure 15: Example 4: Elementary contributions to the bound gap in initial mesh (left) and
intermediate mesh with nel = 1577 (center). Final adapted mesh (right).

7.5 Example 5: canister
The final example represents the transport of pollutant inside an active carbon filter. The
transient convection-reaction-diffusion equation is solved in the simplified canister geometry
shown in figure 16. The diffusion is constant ν = 0.01 whereas the reaction is larger in the
outlet of the canister (σ = 10 in Ω2 ∪ ΩO) and smaller in the rest of the canister (σ = 0.1 in
Ω1). Thus, ΩO is a pollutant trap capturing all the pollutant that the actual filter (domain Ω1)
is not able to retain. The advection field, α, is a piecewise linear field (see figure 16) resulting
from a finite element computation of a potential flow in the same mesh. The inlet concentration
of pollutant is set to one (u = 1 in Γ1) and the outlet concentration of pollutant is set to zero
(u = 0 in Γ2). The rest of the boundary conditions are Neumann homogeneous because the
walls of the canister are considered to be impermeable.

The initial pollutant concentration state is taken as u0 = 1 in the inlet boundary, Γ1, and
zero elsewhere. In practice, the initial condition u0 has to be interpolated in the mesh and
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Figure 16: Example 5: Computational domain (left) and incompressible advection field α
(right).

therefore u0 is set to 1 in the nodes of the mesh lying in Γ1 and set to zero in the rest of the
nodes. The time interval is taken from t = 0 to t = T = 2.

The quantity of interest is the total pollutant captured by the trap domain ΩO along the
complete time evolution. Note that the canister is considered to work properly if this quantity
is small enough. If the outcome of pollutant exceeds a threshold value, the canister breaks and
the design is not admissible. This quantity is expressed in terms of the solution by

LO(u) =

∫ T

0

∫

ΩO
u(x, y, t) dΩ dt,

that is uOT = 0 and fO = 1 in ΩO and zero elsewhere, in equation (5).
Two different strategies for space-time adaptation have been used in order to yield the de-

sired accuracy. The first procedure yields the desired accuracy in two steps: first the time
discretization error is neglected and the strategy proposed in [15] is used to obtain an optimal
adapted mesh with respect to space. It is worth noting that the strategy proposed in [15] is
cheaper since the approximations used as input of the error estimation procedure verify the
Galerkin orthogonality property. For this final mesh, the strategy proposed in this work along
with a uniform refinement of the constant time step ∆t is used to guarantee the bounds for
LO(u), taking into account both the space and time discretization errors. The second strategy
is to use the space-time adaptation also used in the previous sections (in all the intermediate
steps the bounds are strict for LO(u) and the time step is adjusted in each step of the adaptive
procedure).

The starting mesh of the uniform ∆t-refinement procedure (obtained using the strategy
given in [15] for a target relative half bound gap of 2.5%) contains 5786 elements, see figure
17. Here, both the spatial and time discretizations are linear, that is p = 1 and q = 1, and the
bounds are obtained using a fourth order interpolation for the dual estimates r = 4. The results
are displayed in figure 17 and in table 6. As expected, for large values of N the bounds present
a drop off in the convergence as the contribution of the spatial discretization error acquires
importance with respect to the error in time.
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Figure 17: Example 5: starting mesh for the uniform ∆t-refinement obtained with the strategy
given in [15] for a target relative half bound gap of 2.5% (left), computed bounds for the ∆t-
refinement (center) and its convergence (right).

N LO(uh) s− s+ save ∆ ∆rel

25 7.609 · 10−4 5.390 · 10−4 9.802 · 10−4 7.596 · 10−4 2.206 · 10−4 29.04%
50 7.609 · 10−4 6.315 · 10−4 8.893 · 10−4 7.604 · 10−4 1.289 · 10−4 16.95%
100 7.609 · 10−4 6.834 · 10−4 8.378 · 10−4 7.606 · 10−4 0.772 · 10−4 10.15%
200 7.609 · 10−4 7.125 · 10−4 8.088 · 10−4 7.606 · 10−4 0.482 · 10−4 6.33%
400 7.609 · 10−4 7.281 · 10−4 7.932 · 10−4 7.607 · 10−4 0.326 · 10−4 4.28%
800 7.609 · 10−4 7.355 · 10−4 7.858 · 10−4 7.607 · 10−4 0.252 · 10−4 3.31%
1600 7.609 · 10−4 7.384 · 10−4 7.829 · 10−4 7.607 · 10−4 0.223 · 10−4 2.93%

Table 6: Example 5: computed bounds for a uniform ∆t-refinement for a constant spatial mesh
of 5786 elements.

Also the convergence of the bounds is analayzed using the strategy presented in the previ-
ous examples. The adaptive procedure subdivides the elements with larger contribution to the
bound gap and adjusts the time step in each iteration, until the relative half bound gap reaches
a target value of 7%. Also in this example, in each step, 1% of the elements are marked to be
refined. In this case a linear interpolation in space p = 1 and a quadratic interpolation in time
q = 2 are used, whereas the bounds are obtained using a fourth order interpolation for the dual
estimates r = 4. The initial and final meshes are shown in figure 18.

The corresponding bounds are displayed in figure 19. In the first iteration (nel = 686 and
N = 8) the bounds guarantee that LO(u) = 7.678 ·10−4±3.230 ·10−4 = 7.678 ·10−4±42.07%
whereas for the final mesh (nel = 2703 and N = 825), the bounds for the quantity of interest
guarantee that LO(u) = 7.606 · 10−4 ± 0.524 · 10−4 = 7.606 · 10−4 ± 6.89%.

8 Concluding remarks
The methodologies presented in this series of two papers provide computable bounds for linear
outputs of parabolic problems. In the first part the error associated with the time discretization is
neglected and therefore the space adaptivity is sufficient to control the accuracy of the solution.
The quality of the bounds is however degraded for large values of the advection parameter
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Figure 18: Example 5: initial, intermadiate and final meshes with 686, 1489 and 2703 elements
respectively. The associated time steps are N = 8, 109 and 825 respectively.
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Figure 19: Example 5: Computed bounds for the adaptive space-time procedure (left) and
convergence of the half bound gap (right).

because the error equations to be solved are symmetrized. In the second part, the methodology
includes the assessment of the time error and, consequently, time adaptivity is also required
to control the quality of the solution. In this second approach, the approximate solution has
to be post-processed to enforce continuity. This smoothing is required to use the approximate
solution as an input of the error assessment. The predicted convergence rates (of the non-
smoothed solution) are affected by this post-processing. The behavior of the obtained bounds
is also degenerated for advection dominated problems.

The results demonstrate that the procedures introduced here are valuable tools to assess the
quality of linear outputs in the context of parabolic problems. Nevertheless, many questions
still require an answer and there is space for further research in this very same topic. For
instance, considering non-symmetric error equations would possibly allow to better account
for the advection effect. Moreover, the design of optimal adaptive procedures in this context is
also a critical issue, both for the space and time discretizations.
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A Proof of remark 2
For any v ∈ W , using the definitions of the bilinear form A(·, ·) and of the linear functional
L(·), the primal residual can be rewritten as:

RP(v) = L(v)− A(uh, v)

=

∫ T

0

`(t; v) dt + (u0, v(0))−
∫ T

0

[
〈u̇h, v〉+ a(t; uh, v)

]
dt− (uh(0), v(0))

=

∫ T

0

[
〈f − u̇h, v〉 − a(t; uh, v)

]
dt,

since the approximation uh verifies the initial condition uh(0) = u0.
Similarly, for any v ∈ W , using the definitions of the bilinear form A(·, ·), of the linear

functional LO(·), and with the help of the following equality

∫ T

0

〈v̇, ψh〉 dt = −
∫ T

0

〈ψ̇h, v〉 dt + (v(T ), ψh(T ))− (v(0), ψh(0)),

the adjoint residual can be rewritten as:

RD(v) = LO(v)− A(v, ψh)

=

∫ T

0

`O(t; v) dt + (uOT , v(T ))−
∫ T

0

[
〈v̇, ψh〉+ a(t; v, ψh)

]
dt− (v(0), ψh(0))

=

∫ T

0

[
〈fO, v〉 − a(t; v, ψh)

]
dt + (uOT , v(T ))− (v(0), ψh(0))

−
[
−

∫ T

0

〈ψ̇h, v〉 dt + (v(T ), ψh(T ))− (v(0), ψh(0))
]

=

∫ T

0

[
〈fO, v〉+ 〈ψ̇h, v〉 − a(t; v, ψh)

]
dt + (uOT , v(T ))− (v(T ), ψh(T ))

=

∫ T

0

[
〈fO + ψ̇h, v〉 − a(t; v, ψh)

]
dt,

since the approximation ψh verifies the final condition ψh(T ) = uOT .

References
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