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Abstract. Reactive impregnation concerns many science and engineering areas, such as 
corrosion in the steel-making industry and chemical engineering. Furthermore, reactive 
impregnation can become dangerous in some applications. Simulating non-reactive 
impregnation with classical methods is the first step before computing reactive impreg++nation. 
However, existing numerical methods present problems such as high computational cost and 
spurious oscillation. To avoid these computational difficulties, we propose the Self-organized 
Gradient Percolation model. It is a numerical model based on probabilistic approaches and, in 
particular, on percolation methods. This work aims to present a 2D model based on the 1D 
developed model. The first results are free from spurious oscillation and drastically reduced the 
computational cost compared with the classical methods. 

Keywords: Impregnation, Richards’ equation, Porous media, Percolation  

1. INTRODUCTION 

Numerical modeling of the non-reactive impregnation process in porous material requires a 
multi-physics model with several material properties [1, 2]. Yet, it often demands extensive 
computing facilities, thereby leading to time-consuming computation. It also requires a fine 
mesh leading to spurious oscillations at the first few time steps affecting accuracy [4]. As a first 
attempt to find a way less time-consuming but still making sure the numerical accuracy, Self-
organized Gradient Percolation (SGP) method has been successfully proposed to reproduce the 
Capillary Pressure Profiles over time without solving Richards’ equation [1]. 

This study aims to extend the existing 1D SGP model for the non-reactive and unsaturated 
impregnation for a higher dimension (2D/3D). At a starting point, our current strategy only 
focuses on the 2D case. Indeed, we obtain the local saturation by interpolating a “cluster” based 
on the index of the considered local square (i.e., the interpolation-index method will be 
introduced in this paper). Moreover, the spread over time of that cluster is based on Classical 
Gradient Percolation with assumptions. Visualization and comparison with finite element 
method (FEM) to validate the implementation of the method are given in this paper. 

2. SELF-ORGANIZED GRADIENT PERCOLATION (SGP) METHOD 

Gradient Percolation Method is a probabilistic method reproducing the liquid's spread at a 
microscopic scale [5, 7]. Two typical types of percolation methods are bond percolation and 
site percolation [5]. From physics standpoints, the site percolation model is a better candidate 
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to perform the non-reactive unsaturated impregnation process, whose local square represents a 
local pore space having one of two states (let say “occupied” and “empty”) [7].   

Mathematically, the site percolation model is defined as the following:  Considering a site 𝒛 
of the lattice ℤଶ. Let 𝑈(𝒛) be a uniform random variable over [0, 1],  𝑃 = 𝑃(𝒛) be a real-valued 
function having range in [0, 1].  

 Site 𝒛 is 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 by liquid if 𝑃(𝒛) ≥ 𝑈(𝒛); 
 Otherwise, site 𝒛 is 𝑒𝑚𝑝𝑡𝑦. 

The condition can understand that the site 𝒛 has a probability 𝑃(𝒛) to be occupied. In 
simulation, we define a function 𝐶𝑙𝑢𝑠𝑡 connecting to site 𝒛. We say that 𝐶𝑙𝑢𝑠𝑡(𝒛) = 1 if the 
site 𝒛 is occupied, otherwise 𝐶𝑙𝑢𝑠𝑡(𝒛) = 0. 

2.1. Self-Organized Gradient Percolation for 1D case 

Self-Organized Gradient Percolation method (SGP) in light of the Gradient Percolation 
Method has been proposed to reproduce Capillary Pressure Profiles overtime of the 
impregnation phenomena [6]. For the capillary rising test, we choose the function 𝑃(𝒛) to be a 
function of a local site (nodes in the sense of numerical analysis). Physics implies that the state 
of a local site is given by the capillary pressure determined by the difference between the force 
of the wetting and non-wetting phase of phenomena [3]. However, it is visible that the 
numerical simulations of the SGP method have problems of continuity (Figure 3). Moreover, 
it is natural to ask how to define boundary conditions for the model. That is why the convolution 
operator has been proposed to ensure continuity and consider various boundary conditions. The 
local saturation of each local site is calculated by two steps: (1) providing a local state 𝑋(𝒛, 𝑡) 
for the whole model and (2) using the convolution operator as the following: 

𝑆(𝒛, 𝑡) = 𝑋(𝒛, 𝑡) ∗ 𝛿(𝒛) (1) 

where <∗> is the convolution operator, 𝛿 is the smoothing function. 

 

Figure 1: SGP model. Left: Before the convolution, there is a problem with continuity. 
Right:  After the convolution. 
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Figure 2: Convolution operator works in the local sites. Left: Before the convolution. Right: 
After the convolution. 

From physics standpoints, on the first step time, the state function 𝑋(𝒛, 𝑡) is defined by [6]:  

𝑋൫𝑃௖௔௣(𝒛), 𝑡௡൯ = 𝑆௥ + (𝑆௠௔௫ − 𝑆௥)𝑒
ቌି

ቚ௉೎ೌ೛(𝒛)ି௉೎ೌ೛,೟౤

ೄ೘ೌೣ ቚ
೘

௠ఙ೙
೘ ቍ

(2)
 

where 𝑆௥ and 𝑆௠௔௫ are the residual and maximum saturation, respectively, 𝑃௖௔௣ is the local 

capillary pressure, 𝑃௖௔௣,௧బ

ௌ೘ೌೣ  is the minimum pore pressure to initiate the impregnation, 𝜎௡ is the 
standard deviation of Gaussian distributions, 𝑚 is an empirical parameter which allows 
switching between probability distributions to fit the capillary pressure curve (e.g., 𝑚 = 1 and 
𝑚 = 2 designate Laplace and Gaussian distributions, respectively). 

To reproduce the physical phenomenon, the evolution of the 1D-SGP should be autonomous 
with time, following the phenomenon's physical laws. The relationship is proposed in tube-
model [8] – non-gravity version:  

𝑣௡ = 𝐴
𝑃௖௔௣,௙௜௫

𝜎௡

(3) 

𝜎௡ାଵ = 𝜎௡ + 𝑣௡𝑑𝑡௡ (4) 

𝑃௖௔௣,௡ାଵ
ௌ೘ೌೣ = 𝑃௖௔௣,௡

ௌ೘ೌೣ + 𝐵𝑣௡𝑑𝑡௡ (5) 

where 𝑑𝑡௡ is the size of the step time, 𝐴 is a physical constant, 𝑃௖௔௣,௙௜௫ is capillary pressure 
relating to tube model [8], and 𝐵 is the constant relating to the evolution of saturated zone. 

SGP method has been validated [6] for 1D- impregnation case. In the next steps, the SGP 
method is therefore modified with extension to the 2D case.  

2.2. Self-Organized Gradient Percolation for 2D case  

Extending to the 2D SGP method is dealing with main challenges as follows:  

 How to define the direction of the flow in the impregnation process? 
 How to define boundary conditions according to the shape of the boundary?  

This section aims to define the direction of the flow in the process.  

With an initial condition 𝐶𝑙𝑢𝑠𝑡ଵ on the domain such as the L-domain (Figure 5), at the time 
step 𝑛 + 1, our approach is to extend the SGP method as the following three steps:  
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a) First step: 

1. The probability value 𝑃௡ାଵ(𝒛) at this time step is defined to be  

𝑃௡ାଵ(𝒛) = (𝐶𝑙𝑢𝑠𝑡௡ ∗ 𝛿ଵ)(𝒛) (6) 

where 𝐶𝑙𝑢𝑠௡ is the cluster obtained by percolation method at time step 𝑛, 𝛿ଵ 
is a smoothing function that will be chosen appropriately and <∗> is a convolution 
operator. This assumption guarantees the practice of the simulation. 

2. The cluster at the time step 𝑛 + 1 is calculated by a formula: 

𝐶𝑙𝑢𝑠௡ାଵ(𝒛) = ቄ
1                𝑃௡ାଵ (𝒛) ≥ 𝑈௡ାଵ(𝒛)

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7) 

where 𝑈௡ାଵ(𝒛) is a uniformly random variable depending on the site at time step 
𝑛 + 1. 

3. The cluster value 𝐶𝑙𝑢𝑠𝑡௡ାଵ(𝒛) of site, 𝒛 becomes one if there is a neighborhood 𝒛𝟏 
of that the site 𝒛 (node) such that: 𝐶𝑙𝑢𝑠𝑡௡(𝒛𝟏) = 1. The liquid only flows from a site 
to its neighbor site. 

4. If 𝐶𝑙𝑢𝑠𝑡௡(𝒛) = 1, 𝐶𝑙𝑢𝑠𝑡௡ାଵ(𝒛) = 1. On microscopic scale, if the boundary is 
unchanged over time, there will be liquid from the boundary flowing to this site. 

To understand the method, consider a simple example: 

          

a)                              b) 

                                    

c)                 d) 

Figure 3: Simple simulation to describe the method. a) Initial condition. b) Apply the 
convolution to a). c) The result of the method. d) Assumption 3. to c. 

Let an initial condition Figure 3a, the sites having cluster value 𝐶𝑙𝑢𝑠𝑡ଵ(𝒛) = 1 are the 
boundary condition. After that, we use the convolution to obtain Figure 3b. Classical Gradient 
Percolation is applied with probability in Figure 3b. For example, “0.2” means that the site has 
one over five chances to become one. The result of this process is Figure 3c. By assumption 3, 
we obtain Figure 3d. 

Considering a finer mesh, we can achieve a better result being closer to reality. 
Mathematically, a cluster is a collection of sites (nodes) having 𝐶𝑙𝑢𝑠𝑡௡ = 1 in the sample of 
the above method at each time step 𝑛. In physics, this step is analog to the microscopic scale of 
impregnation. We will use the result of the first step to define the flow direction. 
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b) Second step: 

 

Figure 4: 1D SGP model, we define the index of saturation value to link node index. The 
uniform division is applied to the index. 

In practice, the macroscopic saturation value varies from 0 to 1. The key here is to use a 
function linking to Richards’s equation to interpolate the cluster. Fortunately, we have this 
function from the 1D SGP model (Khoa 2018). Recall Capillary Pressure Profile (CPP) at time 
step 𝑛 + 1: 

1𝐷𝑆𝐺𝑃௡ାଵ(𝑖𝑛𝑑𝑒𝑥) ≔ 1𝐷𝑆𝐺𝑃൫𝑃௖௔௣,௜௡ௗ௘௫ , 𝑡௡ାଵ൯ = 𝑆௥ + (𝑆௠௔௫ − 𝑆௥)𝑒
ቌି

ቚ௉೎ೌ೛,೔೙೏೐ೣି௉೎ೌ೛,೙శభ
ೄ೘ೌೣ ቚ

೘

௠ఙ೙శభ
೘ ቍ

(8)
 

c) Third step: 

 

Figure 5: Left: Initial domain with boundary condition. Center: Result of Gradient 
Percolation method with the above assumptions in the first step (Cluster result). Right: Result 

when we apply interpolation-index method (Saturation result) 
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Figure 6: Left: The index of the cluster in time step n + 1. Right: 1D SGP model. The 
“orange” isoline takes the value of “orange” saturation. 

To achieve the macroscopic saturation, Interpolation-Index method is proposed as follows:  

First, index function 𝐼𝑛𝑑𝑒𝑥௡ାଵ of the site 𝒛 is 𝑖, i.e., 𝐼𝑛𝑑𝑒𝑥௡ାଵ(𝒛) = 𝑖 if the cluster 
𝐶𝑙𝑢𝑠𝑡௜(𝒛) = 1 and 𝐶𝑙𝑢𝑠𝑡௝(𝒛)  =  0 for all 𝑗 < 𝑖. The definition can be understood that the 
smallest value 𝑘 such that 𝐶𝑙𝑢𝑠𝑡௞(𝒛) = 1 is taken to be the site index. Because of assumption 
3, the condition “𝐶𝑙𝑢𝑠𝑡௝(𝒛)  =  0 for all 𝑗 < 𝑖” is necessary to ensure the unity of the site index. 
As a result, the index creates an iso-line (Figure 5, center) used to define 2D saturation.  

Second, we partition the Capillary Pressure Profile (Figure 4) with uniformly distributed 
index (CPP’s capillary pressure value is partition uniformly).  

Finally, the 𝑖th indexed sites take the value of the 𝑖th element of the vector to obtain the 
saturation. (Figure 5 and Figure 6). More precisely, the 2D saturation 𝑆௡ାଵ at the site 𝒛 has the 
value 1𝐷𝑆𝐺𝑃௡ାଵ(𝑖), i.e. 𝑆௡ାଵ(𝒛) = 1𝐷𝑆𝐺𝑃௡ାଵ(𝑖) if 𝐼𝑛𝑑𝑒𝑥௡ାଵ(𝒛) = 𝑖. 

2.3. Boundary conditions  

This paper only uses two types of boundary conditions: drained and undrained boundary 
conditions, which may or may not allow the liquid to impregnate the sample (mathematically, 
Neumann condition). In the first period [𝑡଴, 𝑡ଵ], depending on the problem, we choose a drained 
boundary condition (for example, two surfaces as Figure 5).  
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2.4. Algorithm   

 

Figure 7: Algorithm of the interpolation- index method and SGP model 

where 𝑈 is the uniformly random variable in the percolation method, and 𝑁 is the maximum 
step time for the simulation. The condition 𝑛 ≤ 𝑁 can be replaced with a better condition in the 
future result. At the moment, we still try to find a good way to stop the method.  
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3. APPLICATION 

3.1. Domain description and material data 

In this section, we consider an axisymmetric domain with L-boundary. The blue boundaries 
are subjected to the Neumann condition, whose flux is chosen to be equal to zero (the liquid 
incapable of flowing from the domain to the outside in this region). The red one allows the 
liquid to impregnate. Furthermore, we define the saturation 𝑺 always equals to one in this 
region. The sample's height and width of the sample, respectively, are 𝟎. 𝟎𝟒𝟐 𝐦 and 𝟎. 𝟎𝟐𝟓 𝐦, 
the horizontal impregnated surface (drained boundary condition) where the liquid flows through 
it is 𝟎. 𝟎𝟎𝟐𝒎, the vertical impregnated surface is 𝟎. 𝟎𝟎𝟓 𝐦. We use uniform square-mesh of 
size 𝟏𝟎ି𝟓 𝐦 in the simulation. 

 

Figure 8: Axisymmetric L-boundary domain 𝛀, liquid impregnates through two red zones. 

Recall, Finite Element Method is solving Richards’ equation [1, 3] to simulate the 
impregnation. The equation is given by: 

𝜙
𝜕𝑆

𝜕𝑡
= −div ቆ

𝐾௜௡௧𝜓(𝑆)

𝜂
𝛻(𝑝௖௔௣ − 𝜌𝑔𝑧)ቇ (9) 

where 𝑆 is the saturation of the liquid (dimensionless), 𝜌 is the density of the liquid (𝑘𝑔/𝑚ଷ), 
𝑔 is the gravitational constant (𝑚/𝑠ଶ), 𝜓(𝑆) is the relative permeability (dimensionless), which 
can be a cubic function or more complicated, 𝐾௜௡௧ is the intrinsic permeability (𝑚ଶ), 𝜂 is the 
viscosity of the liquid (Pa.s), 𝜙 is the porosity of the sample (dimensionless). In several cases, 
the capillary pressure is assumed to depend on saturation 𝑝௖௔௣ = 𝑝௖௔௣(𝑆) which is determined 
by many authors [1, 3] (such as van-Genuchten, Brooks and Corey, etc.). In this simulation, the 
van-Genuchten model is used for determining this relation:  

𝑝௖௔௣(𝑆) = 𝑝଴ ൬𝑆
ଵ
௜ − 1൰

ଵି௜

(10) 
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where 𝑝଴ is the reference pressure (Pa) and 𝑖 is a parameter of the model (dimensionless).  

For SGP simulation, the constant 𝐴 is related to the kinetic of the impregnation process. 
According to viscosity 𝜂 and intrinsic permeability 𝐾௜௡௧, we propose: 

𝐴 =
𝐾௜௡௧

𝜂
. (11) 

Table 1: Parameters for the simulation 

 

Parameter Value Unit Description 

𝜙 0.2 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 Porosity. It links to the porous 
volume of the sample 

𝐾௜௡௧ 9.5 ∗ 10ିଵସ 𝑚ଶ Intrinsic permeability. It 
relates to the “speed” of the 

impregnation process. 

𝛾 = 𝜌𝑔 12348 𝑁

𝑚ଷ
 

Specific weight. It is for 
characterizing the “mass” of 

liquid. 

𝜂 1.48 𝑃𝑎. 𝑠 Viscosity. It relates to the 
interior friction of the liquid 

𝑝଴ 1100 𝑃𝑎 Reference pressure. It is for 
controlling the capillary 

pressure‘s magnitude in the 
van-Genuchten model. 

𝑖 0.52 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 Parameter for van-Genuchten 
model 

𝑆௥ 0.1 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 Minimum value of saturation 

𝑆௠௔௫ 1 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 Maximum value of saturation 

 

𝐴 =
𝐾௜௡௧

𝜂
 

 

6.4189 ∗ 10ିଵସ 

𝑚ଶ

𝑃𝑎. 𝑠
 

SGP 1D model parameter.It 
controls the “speed” of the 
impregnation in SGP. The 
mobility of liquid, i.e., the 

ratio of the permeability and 
the liquid viscosity. 

𝑝௖௔௣_௙௜௫ 20000 𝑃𝑎 SGP 1D model parameter. 
This parameter relates to the 

tube model [8]. 

𝑚 1 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 SGP 1D model parameter. It 
relates to the curve’s shape in 

the 1D model. 
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3.2. Numerical result of 2D-SGP method 

This section is about a comparison between the saturation of the two methods.         

 

Figure 9: The simulation for the non-gravity case. Top Left: SGP result. Top right: FEM 
result. Bottom: Absolute error for the simulation between SGP and FEM on the local scale. 

The local error formula: 𝐄𝐫𝐫𝐨𝐫(𝐳) =  𝐚𝐛𝐬(𝐒𝐆𝐏(𝐳)  –  𝐅𝐄𝐌(𝐳)) 

The SGP method computation is obtained by running software on CPU: i5-8350U 1.7 GHz 
with 16GB.  We use the same input data for the simulation of the SGP method and FEM. 

Table 2: CPU – time. Number of nodes: 94376 

 

 

 

There is two CPU time in 2D SGP model. The first is the CPU-time to calculate the cluster. 
The second is calculating the interpolation index method (including 1D SGP evolving. No 
spurious oscillations are affecting accuracy in the result and drastically reduce the CPU-time of 
the simulation. The reason is we do not solve Richards’s equation at every time step. The 2D 
SGP model describes impregnation phenomena through the evolution of Gradient Percolation’s 
result 𝐶𝑙𝑢𝑠𝑡 and 1D SGP curve linking to the increment of 𝜎 at every time step. 

Method CPU time 

SGP 392.8 s cluster + 4.5 s index 

FEM 6916.4s 
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The result shows the differential mechanics of the two methods. In the vertical boundary 
surface, a part of liquid impregnating the sample flows up (more precisely, moving vertically).  

In FEM, the liquid's part flowing up has a speed slower than the one flowing vertically. When 
impregnating the sample, the liquid has to share some of its amounts in the vertical direction. 
The amount of this liquid is less than the one moving horizontally. 

On the other hand, in the 2D SGP model, the liquid has approximately the same speed in 
every direction. With a site having the cluster value equals to one, its neighborhood has the 
same probability to becomes one. For a long time, the movement mostly the same in all 
directions. In the 2D SGP model, the cluster defines the direction of the liquid’s flow.  

In physics, the FEM simulation is more precise to reality [1, 4]. Hence, to obtain the property 
“share amount of liquid” in FEM for the 2D SGP model, further work is needed.  

3.3. Average saturation curve 

The main result of this paper is in this section. The two methods, surprisingly, are the same 
in this method. 

 

Figure 10: The average saturation of the SGP model and FEM. 

The average saturation 𝑆̅ is computed in domain Ω by the following formula: 

𝑆̅ =
1

|Ω|
න 𝑆

ஐ

𝑑𝑥 (12) 

where |Ω| is the volume of the domain Ω. 

These first results show a good agreement between SGP and FEM. We can explain this 
agreement is the liquid's compensation at the top of the sample and the bottom. 

4. CONCLUSION 

In this work, we study the 2D SGP method to simulate the impregnation process. The two 
main problems to extend to 2D are finding the 2D flow direction of liquid and adding the shape 
of boundary condition to the model. We can obtain the flow direction by using the Classical 
Gradient Percolation method and convolution operator. The initial results are promising in 
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drastically reducing computational cost (CPU time). The accuracy of results is quite well for 
simulating the impregnation process (in average saturation curve).   

However, when comparing with FEM in local nodes, the difference between the two methods 
is extensive. The problem comes from the sharing amount of liquid property. Also, the link of 
numerical time to real-time (time of phenomena) is still unknown. The future work will focus 
on fixing those problems and extend this method to gravity case and reactive impregnated case. 
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