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Abstract. The objective of this study is to predict the degree of danger to the human body from 

motion information such as acceleration, velocity and displacement during a collision between 

a car and a human body. As a preliminary step, the maximum bending moment that occurs in 

the leg was predicted using a convolutional neural network. The responses which are 

represented by  learning data generated by 1D-CAE system.  A number of training data sets 

are varied in order to show the enough number to predict. The predictor’s accuracy is evaluated 

by the test data sets. We’d like to discuss necessisty of a total number of training data sets and 

effectiveness of data augmentation technique. In addition, the technique to utilize classification 

by the t-SNE method to improve accuracy is also examined.  t-SNE is based on classification 

algorithm, however an engineering interpolation should be computed based on physical 

meanings and influential parameters. 
 

 

1 INTRODUCTION 

In these days, simulation-based verification methods are utilized more frequently rather than 

verification through experiments using the product in the field of industrial product design. In 

this context, a development of an evaluation method instead of CAE is needed for more 

effective designing of industrial products. Machine learning methodology is one of the most 

anticipated way to accelerate evaluation process.An application of a surrogate model in deep 

learning to engineering problems is still studied. The accuracy of the prediction is improved by 

augmentation technique, which is called as oversampling to avoid overfitting. The 

augmenta t ion  i s  conducted  us ing  data  se t s  wi th  l ow predic t ion  accuracy . 
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2 EXPERIMENTAL DETAILS AND DATA AUGMENTATION 

2.1 Least Squares and Maximum Likelihood Methods 

In this study, a regression predicts the output y from the input x. We assume that the output 

is a scalar and is a parametric model. y is always represented by the following equation. 

 
𝑦̂ = 𝑓(𝑥;𝑤) 

(1) 

However, 𝑤 is unknown, and learning is the task of determining optimal parameter values 

from given data. The effect caused by random uncertainty, which is always present in the 

observation and creation of data, is denoted as noise 𝜖. 

 

𝑦 = 𝑓(𝑥;𝑤) + 𝜖 (2) 

𝜖 is a random variable and represents the stirring up of regularity by random noise. Assuming 

that the regularity is a linear function of the parameters, the assumed regression model becomes 

the following equation. 

𝑓(𝑥; 𝜔) = 𝑤⊤ℎ(𝑥) = ∑𝑤𝑗ℎ𝑗(𝑥)

𝑗

 
(3) 

This is linear regression. Model 𝑓(𝑥; 𝑤) fits the implicit function that represents data D. The 

mean squared error (MSE) is the error function that represents that measure. 

 

𝐸𝐷(𝑤) =
1

𝑁
∑(𝑦̂(𝑥𝑛; 𝑤) − 𝑦𝑛)

2

𝑁

𝑛=1

 

(4) 

𝑦̂(𝑥𝑛; 𝑤) is the model prediction obtained by substituting the nth beauty power data into the 

model, where 𝑦𝑛 is the target value of the correct output that actually corresponds to the data. 

Thus (𝑦̂(𝑥𝑛; 𝑤) − 𝑦𝑛)
2 is the difference between the prediction and the correct answer square. 

This is the error function, and the method of minimizing the mean squared error is the least 

squares method. Machine learning has a generalization error for arbitrary data, but this is 

approximated and minimized by the sample mean of the data. Assume that the data are given 

by equation (1) for the functional regularity f and the noise contribution. Suppose that 𝜖 follows 

a Gaussian distribution with mean 0 and variance 𝜎2. That is, if y itself is based on a Gaussian 

distribution with the estimated value 𝑦̂(𝑥; 𝑤) as the mean, the entire model is expressed by the 

following equation. 

 

𝜖~𝑁(𝜖; 0, 𝜎2) → 𝑦~𝑃(y|x = 𝑥;𝑤) = 𝑁(y; 𝑦̂(𝑥; 𝑤), 𝜎2) (5) 

The maximum likelihood method can be used to bring this model closer to the distribution 

that generates the data. 

𝐿(𝑤)∏ 𝑃(𝑦𝑛|𝑥𝑛; 𝑤)
𝑛

 
(6) 

Maximize the logarithm of the likelihood function above. In this model, (𝑥𝑛, 𝑦𝑛) is sampled 
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from a Gaussian distribution, so from the definition of Gaussian distribution, the log likelihood 

is the following equation. 

 

log∏𝑃(𝑦𝑛|𝑥𝑛; 𝑤)

𝑛

= −
1

2𝜎2
∑(𝑦̂(𝑥𝑛; 𝑤) − 𝑦𝑛)

2 + 𝑐𝑜𝑛𝑠𝑡.

𝑛

 
(7) 

The maximization of this equation is the minimization of (𝑦̂(𝑥𝑛; 𝑤) − 𝑦𝑛)
2, which is identical 

to the minimization of the mean squared error. From the above, the least squares method is the 

maximum likelihood method when the variation of the estimator from the functional model is 

assumed to follow a Gaussian distribution. 

This study dealt with an engineering problem and data augmentation was used to compensate 

for the insufficient data. Uniform noises with a few percentages to original data value were 

added to the original data. Because the least squares method can be equated with the maximum 

likelihood method. Data augmentation was based on the distribution of the target variable, as 

shown in Equation (8). 

 

𝑛𝑖 × 𝑐𝑖 = 𝑥𝑛𝑚𝑎𝑥  (8) 

𝑛𝑖 is the number of data in the range to be augmented. 𝑐𝑖 is the individual augment fact . x is 

the augmentation factor by definition. 𝑛𝑚𝑎𝑥 is the number of data in the mode-most data range. 

 

2.2 Data and Research Methods 

In this study, results of a collision simulation between a finite element method model of a 

car and a leg is predicted by machine learning. 

 

          
 

Figure 1: Simulation model using finite element method                 Figure 2: input-output point 

 

The input values is acceleration, velocity, and displacement at points P1 and P2 and the  

value to be predicted is set the maximum bending moment at point M1. The distribution of the 

objective function is shown in figure 3. 

 

Initial Velocity 

𝑉0 



Kai Ogata, Yoshitaka Wada 

 4 

 
 

Figure 3:  The maximum bending moment 

 

Figure 4 shows a convolutional neural network in this study. 

 

 
 

Figure 4: Convolutional neural network model 

 

In this study, three convolutional layers and three all-coupled layers were set up. Input data  

consist of the acceleration, velocity, and displacement of the P1 and P2 points and their 

maximum values. All of data are regularly arranged and normalized as a 12 × 12 matrix. 

 

3 RESULTS AND DISCUSSION 

The number of the mode in Figure 3 is 1,654. According to Equation (8), the bin was 

augmented up to 16,540. The number is approximately 13.8 times greater than the original data. 

The augumented data sets is designated as case A. 

 

 
 

Figure 5: Prediction Results of Case A                 Figure 6: Prediction Results ofr Case B 
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The maximum error between the predicted and validated values is approximately 41.2%, and 

the last validation loss is 1.1838 × 10−3. From this result, it can be seen that the predictions 

contain errors of 25% or more at the four points shown in Figure 5. 

It is speculated that the large prediction error may be due to the small number of data at that 

point. Therefore, we augment the number of data consider to be insufficient by an additional 

factor of 1243 by a factor of 50, add them to the training data, and train them as Case B. After 

the expansion, the number of data is 19 times larger than the original. The maximum error is 

approximately 20.1%, and the last validation loss is 9.2471 × 10−4. 

Compared to Case A, extending the missing interval resulted in not only a decrease in the 

maximum error within that interval, but also a 17.3% increase in the overall accuracy of the 

learning in terms of last validation loss; the MSE decreased by 32.6%. A correlation diagram 

is shown in Figure 7. 

 

          
 

Figure 7: Regression line                                                     Figure 8: Range settings 
 

If the insufficient data can be explored and estimated machine learning, it is expected to 

reduce the computational cost. We’d like to define the evaluation ranges as shown in Figure 8. 

Range 1 is for a bending moment range between 350 to 450 case numbers. The other ranges are 

also defined by the same manner as shown in Figure 8. For the estimation, 50 data including 

four points which is over 25% error randomly chosen from the groups shown in Figure 8. The 

data classified by the t-SNE method for displacement and maximum bending moment were 

classified by t-SNE. Range 2 does not include the results over 25% error.  

 

  
 

Figure 9: Results of t-SNE for range 1           Figure 10: Results of t-SNE for range 2      
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Figure 11: Results of t-SNE for range 3         Figure 12: Results of t-SNE for range 4 
 

Decision boundaries in t-SNE represent classification boundaries. This makes it possible to 

use linear interpolation, which is a data augmentation other than including noise. 

The t-SNE allowed us to set and classify decision boundaries, however, we could not find 

any suggestions to get more accuracy from the boundaries. We claim that classification of 

parameters by time series is not effective, and that it is necessary to classify parameters 

according to their accuracy at characteristic times. In addition, when attempting linear 

interpolation using data of different classifications based on decision boundaries, it is necessary 

to verify whether the additional data to be interpolated can represent the implicit function for 

an engineering problem for evaluation of pedestrian protection. 

4 CONCLUSION 

The results of Case B show that data augmentation with low frequency of occurrence is 

effective in improving prediction accuracy. In order to use the t-SNE for data augmentation, 

the parameters should be classified by learning accuracy. 
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