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RESUMEN

En este estudic se aborda el problema de andlisis de sélidos metdlicos sometidos
simultdneamente a no-linealidades materiales y geométricas. El comportamiento plastico
elegido estd basado en el criterio de plastificacién de von Mises con ley de flujo asociada y
endurecimiento isétropo, pudiendo ser las deformaciones plasticas finitas. La base del método
numérico empleado es el Método de los Elementos de Contorno aunque, al no poderse trasladar
todas las integrales que intervienen al contorno, es necesario discretizar también el dominio. Se
ha adoptado una formulacién material junto con un planteamiento lagrangiano actualizado y se
utiliza el algoritmo de retorno generalizado para el calculo de las deformaciones plésticas. lLos
gradientes de desplazamiento se obtienen indirectamente mediante derivacién polindémica del
campo de desplazamientos en el dominio, evitando asf las singularidades que se presentan. El
método global obtenido es incremental y en cada incremento se necesita un proceso iterativo.
Se presenta un ejemplo que muestra la aplicabilidad del método propuesto.

SUMMARY

This paper presents a formulation of the static problem of metallic solids undergoing both
material and geometrical nonlinearities. The plastic constitutive relations are based on the
von Mises yield criterion with associated flow rule and isotropic hardening. The plastic strains
can be large. The numerical approach is based on the Boundary Element Method but, as it
is no possible to take all the integrals to the boundary, domain discretization is needed as
well as boundary discretization. A material description is adopted together with an updated
Lagrangian approach. The generalized midpoint algorithm is used for the computation of
the large scale plastic strains. The displacement gradients are obtained, in order to avoid
singularities, from polynomial differentiation of the displacement field in each domain element
from the nodal values. The resulting method is incremental and iterations are needed in each
increment. A example is presented, showing the applicability of the proposed method.
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INTRODUCCION

El analisis de sélidos bajo hipdtesis de comportamiento lineal ha sido ampliamente
estudiado tanto a nivel tedrico como experimental. Las ecuaciones que gobiernan el
problema estdn claramente planteadas y su resolucién, aunque en la mayoria de los
casos ha de ser realizada mediante métodos numéricos, no plantea grandes dificultades.
En cambio, estdn menos extendidos los estudios sobre el comportamiento no-lineal,
incluso a nivel tedrico, debido, en parte, a la gran variedad de no-linealidades que
pueden presentarse.

En este trabajo se desarrolla la formulacidon tedrica y se plantea un método
numérico para abordar el estudio de materiales metdlicos en los que pueden ocurrir
simultdneamente no-lincalidades materiales y geométricas. La no-linealidad material
que se trata es la debida al comportamiento plastico y la no-linealidad geométrica se
debe, por una parte, a la existencia de grandes desplazamientos que hacen que haya que
aplicar el equilibrio en la geometria deformada del sélido y, por otra, a la existencia
de grandes deformaciones de manera que la relacién entre los desplazamientos y las
deformaciones no es lineal.

FExisten muchas aplicaciones tecnoldgicas en las que los sdlidos metélicos sufren
deformaciones plasticas que no pueden considerarse infinitesimales. Estas no se reducen
a la industria del conformado en frio (laminacién, extrusién, embuticién etc.), sino
que también en el campo estructural tiene sentido un estudio limite con deformaciones
finitas, bien para predecir el comportamiento ante sobrecargas o para realizar un andlisis
plastico local (rétula pléstica).

El método de analisis numérico que se va a usar estd basado en el “Método de los
Elementos de Contorno” (MEC). Aunque la aplicacién de este método al problema en
estudio exige discretizar también el dominio, todavia presenta ventajas con respecto al
Método de los Elementos Finitos (MEF) ya que el orden del sistema de ecuaciones que
permite conocer la solucién en el contorno depende sélo de la discretizacion del contorno
y $6lo es necesario discretizar la porcién de dominio afectada por las no-linealidades.

La aplicacién del MEC a problemas materialmente no lineales esta razonablemente
bien establecida®?*?*, Sin embargo no fue hasta 1982 cuando aparecieron las primeras
publicaciones relativas a su aplicacién al tratamiento de la no-linealidad geométrica.
Novati y Brebbia®' plantean el problema de grandes deformaciones elasticas a nivel
tedrico bajo una formulacién lagrangiana total. Chandra y Mukherjee® utilizan un
planteamiento lagrangiano actualizado y llega a la formulacién del MEC en forma
incremental para problemas viscoeldsticos y elastoplasticos, resolviendo varios ejemplos.
Jin et al*®' retoman el problema y presentan una formulacién variacional con
la que obtienen un sistema no-lineal que resuelven iterativamente, junto con otro
procedimiento iterativo en cada incremento de carga que asegure que la solucién esta
en equilibrio.

En este trabajo se plantea el MEC de forma similar a la desarrollada en las
referencias 8 y 19 si bien se utilizan otros algoritmos con el objeto de abordar los
principales inconvenientes que se presentan en las formulaciones anteriores. Estos se
centran en la evaluacién de los coeficientes que intervienen por integracién numérica,
en la obtencién de determinadas magnitudes mediante derivacién polinémica, en la
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determinacién de las deformaciones plédsticas y en el esquema general del proceso
incremental-iterativo.

ECUACIONES DE COMPATIBILIDAD Y DE EQUILIBRIO

El sélido puede cambiar su forma y su posicién debido a que sobre él pueden
actuar acciones exteriores a lo largo del tiempo t. La regién del espacio que ocupa en
el instante inicial ¢y, en el que comienza el estudio, se denomina configuracién inicial o
indeformada. Esta regién es un dominio Q° cerrado, con un contorno I'° que se supondré
suficientemente regular. Cada particula en este instante estd definida por su vector
de posicién X con respecto al sistema de coordenadas cartesianas elegido, definido
por la base e;, ¢ = 1,2,3. Para describir el movimiento se adopta una formulacién
lagrangiana o material de forma que, er cualquier otro instante posterior, el sélido
adopta la configuracién denominada actual o deformada, en la que cada particula esté
definida por el vector de posicién x referido al mismo sistermna de coordenadas. Asi, la
configuracién inicial es la que se toma como configuracién de referencia.

Para cuantificar el cambio de situaciéon relativa de dos particulas de un sélido entre
dos configuraciones distintas se define el tensor gradiente de deformacién F mediante

By =g =i =65 tuig (1)
0X;
donde u es el vector desplazamiento. La funcién movimiento x(X,t) se considera
diferenciable con respecto a X; tantas veces como sea necesario.
A partir de este tensor, y buscando magnitudes objetivas y con significado fisico,
se define el tensor de deformacién material o de Lagrange E mediante

1 1 _
Eij = 5 (Frifkj — 8ij) = (i +uji + uru ) (2)

La variacién del gradiente de deformacién F a lo largo del tiempo se puede
relacionar con F a través de un nuevo tensor L denominado tensor gradiente de
velocidad euleriano mediante

- — — — LBz
ot <axj> 0X;  Ozp0X; kM ®)

Fi]' =
y la variacién del tensor de deformacién material E estd dada por
. 1 . . . )
By = §(Fij + Fj; + FiiFrj + FriFyj) = Fri Dy Fy; (4)

donde D es el tensor variacién de deformacién espacial D = 1/2(L + LT).

Aplicando el Principio de conservacién de la cantidad de movimiento se puede llegar
a la férmula de Cauchy p = PN, que permite representar el vector de tensién nominal
p en un punto en el instante actual ¢, con referencia a una determinada superficie de
la configuracién de referencia, en funcién de un tensor denominado tensor de tensién
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nominal o primer tensor de tensién de Piola y Kirchhoff P(X, t) y de la normal N a dicha
superficie. El tensor de tensién nominal P estd relacionado con el tensor de tension
de Cauchy T mediante P = JTFT-! donde J = detF. La ecuacién de equilibrio
de fuerzas local e instantidneo de un sélido deformable en forma diferencial se puede
expresar en funcién de este tensor mediante

pEi = Bijj —bi =0 (5)

donde ademés interviene la fuerza de inercia pX y la fuerza por unidad de volumen b
en el instante actual pero referidas a la geometria de la configuracién de referencia.

Aplicando el Principio de conservacién del momento cinético, tras aplicar el teorema
de la divergencia y operar se obtiene

Py Fyp = Fy Py = 745 (6)

que expresa que existe un tensor simétrico 7 = PF7T denominado tensor de tensién de
Kirchhoff. Este se usara seguidamente.

RELACIONES DE COMPORTAMIENTO

Para el planteamiento completo del problema se han de incluir las relaciones de
comportamiento. Para ello se define el tensor de tension material S o segundo tensor
de tensién de Piola-Kirchhoff mediante

Sij = Fi' Poj = JF Fy T (7)

La relacién de comportamiento material se establece entre este tensor y el tensor
de deformacién material E, su variacién E y su parte plistica E?P de la forma

S =S[X,E,E,EF] (8)

Se puede particularizar al caso eldstico-lineal, obteniendo

Sij = AEkkéij + QGEij = [A&ijékl + G((Sikéjl + 5il5jlc)]Ekl = zijlclEk:l (9)

donde X es el tensor de rigidez o tensor eldstico de Cauchy y A y G son las constantes
elasticas de Lamé.

Como se aprecia, el tensor de rigidez X, que relaciona el segundo tensor de tensién
de Piola-Kirchhoff con el tensor de deformacién de Lagrange, es el mismo (para
materiales eldsticos, lineales, homogéneos e isétropos) que el tensor de elasticidad
para el caso de pequefias deformaciones, que relaciona el tensor de tensién de
Cauchy T con el tensor de deformacién infinitesimal €. Ademds, para el correcto
planteamiento integral en forma incremental a partir del cual se obtendrd la ecuacién
de partida del MEC se utiliza una extensién del comportamiento eldstico-lineal que
se denomina comportamiento hipoeldstico. Segin Truesdell y Noll*®, se denomina
material hipoeléstico a aquel material homogéneo e isétropo en el que, en ausencia
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de deformaciones plasticas, existe una relacion lineal entre la variacién de Jaumann del
tensor de tensién de Kirchhoff 7 v el tensor de deformacién D de la forma

7~'ij = ADkkém -+ 2GDij (]»0)

Para el planteamiento completo de la teoria elastoplastica se ha de definir, ademds
de la relacién entre tensiones y deformaciones en la fase eldstica (ley hipoeldstica),
el criterio de plastificacién que indique a partir de qué nivel tensional (tensién de
limite eldstico) comienza el comportamiento plastico y la relacién entre tensiones y
deformaciones en la fase pldstica. Esta relacién viene dada a través de la denominada ley
de flujo. Ademads, debido al fenémeno de endurecimiento por deformacién es necesario
definir la relacién entre la tensién de limite eldstico y las deformaciones plasticas cuando
éstas no son nulas. En este trabajo se ha elegido la ley de plastificacién de von Mises, la
ley de flujo asociada y objetiva dada por Green y Naghdi'? y una ley de endurecimiento
isétropo de tipo potencial dada por Y (EP) = K(EP + E°)", donde K y n son los
coeficientes de endurecimiento.

Aunque el problema estdtico elastoplastico es independiente del tiempo, ha de ser
resuelto de forma incremental, para saber a partir de que momento los distintos puntos
del sélido plastifican y, por tanto, su ley de comportamiento cambia. Esta resolucién
incremental necesaria se materializa discretizando una magnitud pseudotemporal,
denotada también por t, que hace referencia a la forma en la que se aplican las acciones
exteriores sobre el sélido. En ¢t = 0.0 comienzan a actuar las acciones exteriores sobre
el s6lido y cuando ¢t = 1.0 éstas alcanzan el valor final. Las relaciones elegidas que
describen el comportamiento plastico se exponen seguidamente.

e La variacién del tensor de deformacién material E. se descompone aditivamente,
siguiendo a Green y Naghdi'?, en su parte eldstica E¢ y en su parte plastica EP

Eij = EZ + Eg : (11)

o FEl tensor de tensiones material depende sélo de las deformaciones eldsticas a través
del tensor de rigidez %

Sij = DyjmEgy = Sein(Er — Epy) (12)

e La variacién de deformacién pldstica estd regida por el criterio de plastificacién
de von Mises y por la ley de flujo asociada. La condicién de fluencia plastica se
expresa mediante la ecuacién

IE?li(@ —Y) =0 (13)

de manera que sélo existe variacidn de la deformacién pléstica si la tension equivalente
& en el punto considerado supera o iguala a la tensién de limite eldstico Y(E?) en
ese punto, que depende de la deformacién pléastica equivalente EP (endurecimiento por
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deformacién). Se puede definir de esta manera la denominada funcién de fluencia Fy
mediante

Fy(5,BP) =6 —Y(EF) =0 (14)

La tensién y deformacién plastica equivalentes se definen mediante

= Cem e o= Tss - s o

La ley de flujo asociada establece que la variacién de la deformacién plastica
es proporcional a la derivada de la funcién de fluencia con respecto a las tensiones
materiales, que se puede expresar en funcién de las tensiones desviadoras S’ y de la
tensién equivalente mediante

; OFy 3 S¢,
EP = (g = (X — ¢4
1J CaZ] 48513 <2

— (16)
o2

A continuacién se va a operar con las expresiones anteriores para obtener otras
equivalentes en una forma més operacional, con el objeto de ser tratadas de forma
incremental. Cada incremento de tiempo At comienza en el instante % y acaba en el
instante 1t = % + At. Los indices 0 y 1 situados en la parte superior izquierda hardn
referencia a estas situaciones.

e Se considerard un estado pldsticamente admisible caracterizado por una
deformacién total °E y una deformacién plastica °EP, al que le corresponde una
tensién °S de tal manera que se satisface

OE,°EP = 9S = %(°E - °EP), % <Y(°EF)="Y (17)

¢ Dada una nueva deformacién 'E, se tiene que buscar la deformacién plastica 1 E?
y la tensién 'S para que se satisfaga

g 1P = 1S=28(E-1EP), ls<Y(E)=1Y (18)

e Para esta busqueda se elige un estado de prueba (no necesariamente admisible)
basado en la nueva deformacién total 'E pero todavia con la deformacién pléstica
anterior °EP, lo que equivale a suponer que todo el incremento de la deformacién
es clastico. A este estado le corresponde una tensidn de prueba S que puede no
cumplir el criterio

5 .7 _
1E,°EP = § = 2(*E - °EP), 5<Y(°EP) (19)

o Si & < Y(PEP), la variacién de la deformacién pléstica en este incremento es nula y
por lo tanto 1EP = OEP y 1§ = S. Perosi & > Y (°FP), la particula en consideracién
sigue fluyendo, la suposicién de que todo el incremento de deformacién era eldstico
no es correcta y habra que encontrar el incremento de deformacién plastica AE? y
a partir de éste calcular 'EP mediante, por ejemplo, el método de integracién paso
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a paso de Euler. Notese que al existir AEP # 0, la tensién de prueba S, que era
una prediccién elastica a 'S, necesita ser corregida en dS = —XLAEP (correccién
plastica) y que el efecto de tal correccién, teniendo en cuenta (16) se dirige en la
direccién normal a la superficie de fluencia (Figura 1).

s A
22| ds

d;S
S
S

'S

oy [ v/ /ly [ty

-3 S“

Figura 1. Algoritmo de retorno

Nétese también que en (16) se necesitan conocer las tensiones actuales 'S que serén
desconocidas mientras se desconozca 'EP, lo que hace que este método sea implicito
y se necesite un proceso iterativo para acercar el estado de prueba al estado final (o
solucién aceptada dentro de una determinada tolerancia). El procedimiento que se va
a seguir para este fin es el denominado algoritmo de retorno generalizado (A.R.G.),
introducido por Ortiz y Popov??. Para su planteamiento se toma un pardmetro de
integracién « € [0, 1] a través del cual poder expresar el incremento de la deformacién
plastica como '

AEfj = ([(1 - @) %ai; + o Yayy] (20)

Para valores o > 0.0 el algoritmo es implicito, lo que puede suponer alguna
desventaja (planteamiento iterativo) pero confiere una gran estabilidad y una buena
velocidad de convergencia®?. Adicionalmente si & < 1.0 el retorno no sera exactamente
ortonormal a la superficie de fluencia (retorno generalizado). Siguiendo un proceso
anédlogo al desarrollado por Nikiskov y Atluri®® para deformaciones infinitesimales se
puede llegar a la siguiente ecuacion escalar no lineal en (

) =0 (21)

. § ol . 0 & g B 0. § Sza
£ = /21851l - 3G Y(Ep+(\/; (- ) O a2 =
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donde
S% = Si; — 2G¢(1 — @) %ay; (22)

La determinacién del pardmetro ¢ ha de ser abordada, en el caso general,
numéricamente. Un método adecuado es el procedimiento iterativo de Newton-
Raphson, que se aplica a la ecuacién (21) de la forma

. =/ o N f(z—lo ' ,
OC =AE ’ zc - Z—lC f/(i-IC) . (23)

donde f'(¢) es la derivada de la funcién f(() respecto a ¢ dada por

ey = —2. /360 — ) g0 _ﬁﬂ
Q) = 2\/;G(1 Y) az]HSqu” 3Ga 3 dEP

El indice situado en la parte inferior izquierda indica el nimero de iteracién. El
criterio de convergencia es

@

' 3
(1—a)0a--+a e
N 2[1Sgl

| (24)

£l < Y (EP) (25)

donde ¢ es la tolerancia relativa permitida. Generalmente de 2 a 4 iteraciones son
suficientes para conseguir la convergencia con un valor de € de 1078,

FORMULACION INTEGRAL

El punto de partida del enfoque integral, que dara base al Método de los Elementos
de Contorno, es el principio de reciprocidad o teorema de Maxwell y Betti. Este se
establece entre el problema elastoplastico con grandes deformaciones que se acaba de
plantear y un determinado problema de referencia. Se elige como problema de referencia
el de un sélido eldstico, lineal, homogéneo e isétropo de extensién infinita que sufre
deformaciones infinitesimales debidas a que actia, sobre uno de sus puntos p, una
determinada fuerza de volumen pF; modelada matematicamente mediante la Delta de
Dirac. Las distintas variables relacionadas con este problema de referencia se denotaran
con el superindice ¥. Al punto p de aplicacién de la fuerza se le denomina punto de
carga de coordenadas X;(p), mientras que al punto analizado g de coordenadas X;(q)
se le denomina punto de campo. Cuando estos puntos estan situados en el contorno se
les denota con las mismas letras pero en mayisculas.

El principio de reciprocidad entre los dos problemas que se acaban de exponer se
expresa de la forma

/Q FijendV = /Q oy EGdV (26)

habiéndose realizado la aproximaciéon D = E, justificada seguidamente. La ecuacién
(26) esta aplicada en cada instante ¢, por lo tanto el dominio de integracién €2 es
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el dominio actual, todavia desconocido. Para poder abordar el problema se usara
el Planteamiento Lagrangiano Actualizado'®, por el cual se utiliza la configuracién
del sdlido en el instante ¢t como la configuracién de referencia para conocer la
solucién en el instante ¢ + At. Adoptando este tipo de planteamiento se simplifica
mucho la formulacién integral del problema; a cambio exige plantear el problema
incrementalmente e ir actualizando la geometria y las variables en cada incremento
At. Esta exigencia no complica adicionalmente el problema presentado, ya que el
planteamiento incremental venia impuesto previamente por la existencia de la no-
linealidad material.

Una consecuencia importante de la formulacién lagrangiana actualizada es que en
cada incremento de tiempo suficientemente pequeno el tensor gradiente de deformacion
F es aproximadamente igual al tensor identidad I, ya que la configuracién actual del
sélido al comienzo del incremento es tomada como la configuracién de referencia. Otra
consecuencia es que las derivadas, que hasta aqui siempre se han tomado con respecto
a las coordenadas de referencia X;, ahora se pueden aproximar por las mismas pero
respecto a las coordenadas x; de la configuracién actual. Con éstas aproximaciones se
puede poner

. 1 1{0u; Ou,
Dy~ Eyméy= (U +Ui5) = = LA Bl 27
J v] 23 2( 3] s ) 9 (637] 8$Z> ( )
Asimismo, la definicién del tensor de Jaumann queda ahora como
. D . . .
Tig = Ftﬂ'j — Wikaj + Tikaj =~ Tig + TikWkj — wika]- (28)
yva que también se puede utilizar la aproximacién
1 1 1 /(00 Ou;
Wii = =(Li; — L) 2w = (U5 — Uig) = = LA 29
3] 2( 3] ji) A Wij 2(“.] U,i) 2(8:1:]- 63:,-) (29)

Ademés se verifica también que L F e é+wy T~ T y se puede llegar, junto
con la derivada temporal de la ecuacién (6) dada por 7;; = P Fji, + TilF,;llek, a
5 2 . -1 ; . .
Tij 2 Pij+ Tine g —winThj = Pij+ 5 (Tinju+Tibkj — Tijbinct Thjbu ) ing = Pij+ Gugratiay (30)
Las modificaciones realizadas permiten expresar la ecuacién (26) de la forma

/Qo (P” + Gijklil,kvl)z—:;pj dV = /Qo U;I]{éfjdv (31)

Si se introduce la solucién del problema de referencia o solucién fundamental y se
opera convenientemente'® se llega a

uj(p) = /F Wij(p, Q)pi(Q) — Tij(p, Q)1 (Q)]dSG + /Q L 2GVin (P, €7, (0)dVy +

(32)
+/QO Vijm (D, ) Gkt (0)ir,1 () V)
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Esta ecuacién es muy parecida a la que se obtiene para comportamiento elastico-
lineal, pero en ella aparecen dos sumandos adicionales. Uno de ellos, el segundo
sumando del segundo miembro, es debido a la no-linealidad material y el otro es el
tercer sumando del segundo miembro, que proviene de la existencia de no-linealidad
geométrica. Ademds existe otra diferencia importante que radica en la magnitud
;i = 1Py Esta se puede expresar en funcién de las tensiones de Cauchy mediante

pi = njPj; = njTj — njGjigites = nyTi — ni Gt = ti — i Gjipil, (33)
La aproximacién utilizada se justifica en®?*°.
Si en la ecuacién (32) se hace tender el punto p € § del dominio al punto P ¢ I’
del contorno se llega a'®

Cif(P)is(P)= [ V(P Q@) (P, Qu(Q))dSG+ »
34
+[20 ZGVij,k(P’ Q)é]z‘gk((Z)dV:IO-f—/Qo Vij,m(P, q)Gmikl(q)uk,l(q)dI/;l"

y derivando la ecuacién (32) con respecto a las coordenadas z; del punto interno en
consideracién, que es el punto de carga p, resulta

0 . 0

aTclui(P)f‘: o2, /]."0 Vij (p, Q)p:(Q) — Tij(p, Q)i (Q)]dSE+
0 :p (4] d 8 0
+ o2 /QO 2GVij(p, 9)€5(9)dVy +3—331 /QO Vijm (0, 0) Gmikn(9)ln(q)dV

(35)
Los tensores que intervienen en estas ecuaciones, para el caso bidimensional que se
va, a tratar de deformacion plana, son

-1

Vii(p,q) = m[@ —4v)In(r)bi; — 747 ;] (36a)
—l or
Zij(p,q) = yr (1 = 20)bi; = 2rir gl 5 — (1= 2v)(rim; — 7 jma) | (36b)
-1 1 Lo
Vij,k(p, q) = m;[(f; — 41/)7",]9L7’L(?“)5i]’ == r,jéik = 7"77;(5]']6 -+ 27",1'7",]"/',/“ (36(:)

En este punto se tiene resuelto, al menos matemadticamente, el problema
de determinar desplazamientos, tensiones y deformaciones en un sélido con
comportamiento elastopldstico y con posibilidad de deformaciones finitas. Para ello
hay que resolver simultdncamente las ecuaciones (32), (34) y (35) en cada incremento
¢ ir actualizando las variables obtenidas en los sucesivos incrementos hasta que esté
aplicada la carga total. Existe un problema en la resolucién de las ecuaciones anteriores
ya que las incégnitas en desplazamientos no sélo ocurren en las integrales del contorno,
sino también en las de dominio. Debido a que para calcular los desplazamientos en
el dominio es necesario conocer previamente los desplazamientos en el contorno, el
conjunto de ecuaciones anteriores da lugar a un sistema implicito que debera ser resuelto
mediante algin procedimiento iterativo.
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DISCRETIZACION

Para poder realizar numéricamente las integraciones que aparecen en las ecuaciones
(32), (34) y (35), extendidas sobre el contorno y sobre el dominio, es necesario discretizar
el contorno del sdlido en NE elementos de longitud ASEg el dominio en NC celdas de
superficie AA¢. Cualquier variable 1) asociada al contorno o ¢ asociada al dominio se
interpola en cada elemento o celda mediante

nE
NOEDIR IO -1<n<1
j=1

nC
P&, &) =) ®i(&1,8)¢; —1<6,6<1
j=1

donde ¥, 7 =1,...,nE y ¢;, j = 1,...,nC son los valores de dicha variable en los
nkF nodos del elemento o nC nodos de la celda. Se han elegido e¢lementos de contorno
curvos y continuos con interpolacién cuadritica (nE = 3) y celdas internas curvas y
continuas correspondientes al elemento cuadréitico de la familia serendipita (nC = 8).
Tanto en los elementos como en las celdas, los nodos estan situados, en el dominio
generalizado, en posiciones fijas de las coordenadas intrinsecas n y (£1,&2). Ademds
se ha optado por establecer una dependencia entre la discretizacion del contorno y del
dominio que radica en el hecho de que cuando un nodo de los usados para definir una
celda estd situado en el contorno, éste se hace coincidir geométricamente con el nodo
del elemento de contorno correspondiente.

A partir de éste punto se puede desarrollar el planteamiento matricial usual del
MEC y expresar las ecuaciones (34), {32) y (35) de la forma

Hu=Gp+Aé+Bv¥ (38)
=G p-Ha+A &+B ¥ (39)
=G p-H u+A"&+B'Y (40)

En los vectores i1 y p se hallan todas las componentes de los vectores desplazamiento
y tensién en los nodos situados en el contorno y en los vectores €2 y v todas las
componentes de las deformaciones plasticas y gradientes de desplazamiento en todos los
nodos. Finalmente uy y 95 son los vectores variacién de desplazamiento y su gradiente
en el punto interno k.

Estrategia de resolucién

El integrando de los dos tltimos sumandos de la ecuacién (40) es singular y ademads
hay que derivar con respecto a las coordenadas x; del punto de campo, lo que eleva
el orden de la singularidad. La contribucién de la parte no singular al coeficiente que
se trata de calcular ha de ser hallada cuidadosamente. Una posibilidad es calcular la
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integral de volumen analiticamente desde un punto p arbitrario sobre una celda genérica
AAc que incluya al punto p en el que el integrando se hace singular y luego derivar el
resultado obtenido en el punto p respecto a las coordenadas z;. A la complejidad propia
del integrando se afiaden las funciones de forma y los jacobianos de las transformaciones,
lo que hace que s6lo sea viable esta posibilidad para tipologias sencillas de celdas®®. Otra
posibilidad, més sistemadtica, es introducir la derivacién espacial dentro del integrando
y realizar la integral numéricamente, de donde se obtendré el valor principal de Cauchy
de la misma, al que habrd que sumar la aportacién puntual correspondiente (término
libre) ya que, al derivar, el orden de la singularidad aumenta (aparece una singularidad
fuerte). Esta posibilidad es posible pero costosa computacionalmente’.

Sin embargo el principal inconveniente radica en que no es posible obtener una
representacién de la ecuacién (40) en la que el punto de carga esté situado en el contorno,
ya que en este caso se presentan singularidades esenciales o hipersingularidades
inabordables desde el punto de vista matemético®. Notese que en la ecuacién (38)
aparece p que depende de v en el contorno, que habra de ser obtenido pues mediante
algtn procedimiento indirecto, bien sea por extrapolacién al contorno de los valores
de v en el dominio® o por derivacién polinémica del campo de desplazamientos®™.
Procedimientos andlogos han de ser usados para obtener el tensor de tensiones en
el contorno.

Como el uso de estos procedimientos indirectos no se puede evitar, se puede plantear
un método que prescinda de la ecuacién {40). Se desarrolla con este fin un procedimiento
de derivacién polinémica para calcular o y el tensor de tensiones no sélo en €l contorno,
sino también en el dominio a través del campo de desplazamientos en los nodos de cada
celda calculado mediante (38) y (39). El modo de calcular 05 y a partir de iy es a
través de la expresién

u1,1 dz; Bz | | Oy
. Uy 1 Us,1 1 982 91 061 18 -
L ;9| Oz18z2 _ Oz Ozp s o (4)
il s N -
U2 &2 01 &2

El diagrama de flujo del proceso de resolucién global se da en la Figura 2. En él
se distinguen tres pasos:

Paso 1:

- Resolver eldsticamente en el contorno mediante (38) con €° y v nulos.

- Aplicar {39) con €7 y v nulos para conocer los desplazamientos de los nodos internos.

- Aplicar (41) en cada celda para obtener Ux en todos los nodos y por tanto el vector
total v.

- Calcular las tensiones en todos los nodos mediante la ley de comportamiento.

- Calcular la tensién equivalente méxima Gpax v escalar la solucidén elédstica para que
no exista ningin nodo con tensién superior a la de fluencia. En este momento estd
aplicada una determinada fraccién ¢y de la carga total dada por ¢g := Y(0)/Fmax-
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Paso 2: (Incremento nimero 1)

- Aplicar un incremento de carga. Este es una determinada fraccién At de la carga
total que resta desde la carga £y con la que comenzé la plastificacién, que se calcula
mediante la expresién

At =t; —t;_
ti=to+ (1 -to) |(1—¢) (n%)“”(%)z  ee(-L) (42)

- donde ¢ es un pardmetro de deunsificacién y nf es el nimero total de incrementos en
los que se estudia el proceso plastico. Para facilitar-la convergencia en los primeros
incrementos es conveniente utilizar ¢ > 0.

Resolver el
problema lineal

Calcular las matrices SI
GHyA

!
/ Calcular la matriz B
1

~a Resolver (38) para
conocer u y p enel contorno

:

Calcular 4 en el dominio
mediante (39)

;Actualizar la
geometria?

‘ Actualizar
Caloular desﬁ:zmnintos
mediante (41) 1ones y
deformaciones
‘ lasticas
Calcular AE? )
mediante A R.G.

NO

(Converge?

SI

Figura 2. Diagrama de flujo del proceso general
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- Aplicar (38) y (39) con €” y v nulos y derivar polinémicamente (41) para obtener
la primera (j = 0) aproximacién de ¥ y aplicar la ley de comportamiento plastico
para obtener la primera aproximacién de €°.

- Volver al paso anterior pero no con €° y v nulos, sino con las aproximaciones
obtenidas en el apartado anterior, denotadas ahora por ;_1€” y ;_1v, de modo que
se obtienen las siguientes aproximaciones ;€° y ;v.

- Cuando las sucesivas aproximaciones se diferencien entre si, en el nodo més
desfavorable, en menos de una determinada tolerancia s especificada de antemano

max | [;1AE?]

[AE7] 43)

nodos

- se da por concluido este procesc literativo y se adopta como solucién para el
incremento nimero 4 la obtenida en la iteracién nimero j.

Paso 3:
- Conseguida la convergencia se procede a acumular los desplazamientos, tensiones
y deformaciones plasticas y a actualizar la geometria si procede.
- Finalmente se vuelve al paso 2 hasta que toda la carga (¢ = 1} haya sido aplicada.
El procedimiento de iteracidén directa aplicado no es ni mucho menos el més
eficiente desde el punto de vista computacional, pero es el tinico que se puede emplear.
Esto es debido a que no es posible obtener de forma explicita el sistema no-lineal al
que se deben reducir las ecuaciones que gobiernan el problema. Por lo tanto no se
pueden aplicar métodos de mayor orden de convergencia. Tampoco es posible aplicar
técnicas de aceleracidn de la convergencia ya que no estd garantizado que las sucesivas
aproximaciones ;&P converjan linealmente (en cada una de sus componentes) hacia la
solucién y estas técnicas sélo son aplicables bajo este requisito.

Evaluacién de los coeficientes

Unoc de los aspectos esenciales para la aplicacién del MEC es el cédlculo preciso
de los coeficientes del sistema de ecuaciones que resulta de la discretizacion del
problema. Estos coeficientes se obtienen generalmente por integracién numérica
(integrando regular). Cuando el integrando se hace singular es necesario utilizar
técnicas especiales. En algunos casos sencillos, es posible realizar la integracion de
forma analitica. Seguidamente es expone el modo de célculo para cada uno de los casos
que se presentan.

e Cuando el integrando es regular, la integraciéon se realiza directamente por
cuadratura de Gauss. Si la distancia entre el punto de colocaciéon y el elemento
es muy pequefia se obtienen, aidn con un alto nimero de puntos de Gauss
(nG), resultados numéricos con una precisién baja, por lo que se llevan a cabo
subdivisiones del elemento y se realiza la cuadratura de Gauss en cada uno de los
subelementos obtenidos. El nimero de subelementos (nS) se decide en funcién de
un criterio de cercanfa y posicidén relativa entre el punto de colocacién p(n, () y el
segmento n € (—1,1) que representa al elemento, ambos situados en el dominio

normalizado (n,() Cada subelemento j estd definido por las coordenadas 'r]ZX*; y
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Niwr v de sus extremos. La férmula que da el coeficiente de integracién y los
jacobianos que intervienen son

f(z)dl = ZJng z(m:)) |Jo ()| wi (44)

ASg
2 ay
" (—
z> anl;

Ju(mi) = \/(Z—i

De forma anéloga, el cdlculo de integrales sobre celdas se realiza también mediante
cuadratura de Gauss mediante la férmula

2 t1 j
> JS ntjaxtr = ngxtr ( 45 )

nG nG

/A f@)d0 =S5 Flalént)) 1ol )] wiw (46)

i=145—1

Se han de usar mas puntos de Gauss cuanto mas cercano esté el punto de colocacién
a la celda. El nimero de puntos de Gauss (nG) se elige en funcién de la relacién
entre la méxima distancia entre dos nodos de la celda sobre la que se integra lpax
y la distancia entre el punto de colocacién p y el centro de dicha celda dee . El
esquema de integracién elegido es

nG=4x4 si 1max/dcel < 0,7
nG=6x6 s 0,7 < 1max/dcel < 1,25
nG=8x8 si 1,25 < lnax/deal

con el que se consigue, para el tipo de integrales de que se trata, y dado que, por
la forma de discretizar, el punto de colocacién nunca estd excesivamente cercano a
la celda sobre la que se integra, una precisién adecuada sin necesidad de realizar
subdivisiones de celdas. Esta precisién se puede cuantificar en errores menores al
0.1 %, comparando con la solucién obtenida al realizar la integral con un nimero
elevado de subdivisiones y utilizando asimismo un alto nimero de puntos de Gauss.

Cuando el punto de colocacién pertenece al elemento o a la celda en consideracién
el integrando es singular y se necesita un especial cuidado para tratar la integral.
Para el orden de aproximacién elegido (cuadratico) es muy dificil desarrollar la
integracién analiticamente debido a la complejidad de la expresién del integrando,
complicada atin mds por el jacobiano que aparece de la transformacién, por lo que
es preciso abordar su célculo mediante un algoritmo numérico de integracién.

El integrando a partir del cual se han de obtener los coeficientes de la matriz H
es singular del orden de 1/r y por tanto fuertemente singular. Para su obtencién
se puede calcular numéricamente su valor principal de Cauchy y anadir el término
no integral o utilizar, como se hace en el presente trabajo, el usual procedimiento
de movimiento de sélido rigido.

Los coeficientes de la matriz G son débilmente singulares (del orden de Ln r) y se
calculan numéricamente mediante cuadratura de Gauss con subdivisién. Ademaés
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se realiza una transformacién no lineal del intervalo de integracién', que conduce
a integrandos mejor acondicionados, obteniéndose un resultado més preciso.
Para el tratamiento de las integrales singulares sobre celdas se dan los siguientes
pasos:

- Se transforma la celda en el dominio z; — z2 en un cuadrado en el dominio
normalizado &; — &2

- Este cuadrado es dividido en dos tridngulos, si el punto de colocacién estd en un
esquina, 0 en tres si estd situado en un lado. En cada uno de ellos se aplica la

transformacion
&1 [& rcosf _
[52 = 12] 4| o) osr<io), m<o<o (47)

donde [€]o son las coordenadas intrinsecas del punto de colocacién y 7#(8) y 61 y 6
son los limites de cada tridngulo.

- Seguidamente el tridangulo es transformado en un cuadrado en el dominio
normalizado 7 - - 2 mediante

0 [(0 +92)+(92—91)7’]2]/2 B ‘
[T]_[ dl(1+771)/2cos(9—a) ]’ 1<m,m<1 (48)

Sobre éste se aplica la cuadratura de Gauss. El jacobiano de la transformacién de
coordenadas entre z; — x2 vy 71 — 12 viene dado por

’I“d(92 — 91) 8ml

 4dcos(f — )| 9¢;

or 00 or 80] Oz, (49)

On Oy Om2 Om ] | 0§
La presencia de r en el numerador de esta expresién hace que la evaluacién de la
integral singular por este método sea satisfactoria, ya que cancela numéricamente

la singularidad del nucleo. Los resultados se mejoran si, para la coordenada r, en
vez de la transformacién dada por (48) se realiza la siguiente''

D —48
8

J(n,m2) =7 {

d
~ 2cos(0(m,m2) — @)

que, como se ve, cumple las condiciones requeridas en el contorno. Ademds su
jacobiano es

r(n,mz) = B(1+m)” + (1+m)® (50)

Tmm) =" B0 (g my + X2 a2 |2
2 8 9¢;

que tiende a cero en el entorno de la singularidad y por ello es una transformacién

adecuada para la evaluacién de dicha integral.

Desde el punto de vista del coste computacional hay que destacar que los
coeficientes de las matrices G, H, G’, H, A y A’ s6lo necesitan ser recalculados
cada vez que se actualice la geometria ya que sélo dependen de ésta. La conveniencia
o no de actualizar la geometria se ha de evaluar en funcién de si han existido cambios
significativos de la misma, aunque sélo sean locales. Los coeficientes de las matrices B
y B’, al depender también de las tensiones, han de ser reevaluados en cada iteracién. Se
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puede realizar sin embargo una aproximacién consistente en suponer que las variaciones
incrementales de las tensiones en cada iteracidén no influyen significativamente en el nivel
tensional total, y asi evitar su célculo (linea de puntos en la Figura 2), lo cual lleva a
un gran ahorro computacional.

EJEMPLO

En esta seccién se a,plica el método desarrollado al andlisis de problemas de
mecanica de sélidos con posibilidad de grandes deformaciones plasticas. Cuando
se aplica dicho método a problemas en los que se cumple la hipétesis de pequenas
deformaciones, los resultados obtenidos (sin hacer uso de dicha hipétesis) se ajustan
satisfactoriamente a la solucién analitica’®. El problema que se analiza a continuacién, a
pesar de no tener solucién analitica, es suficientemente ilustrativo y ha sido ampliamente
estudiado en la literatura, bajo distintas relaciones constitutivas, no solamente mediante
el MEF*®2% sino también mediante el MEC3#3,

En la Figura 3 se presenta la geometria y discretizacién utilizada. La longitud
L original es 0,6 m y el didmetro d del agujero es de 0,2 m. Las acciones exteriores
consisten en un desplazamiento prescrito en la direccién X2 que provoca un aumento
del 5 % de la longitud L. Las constantes eldsticas del material son E = 206,8 GPa
y v = 0,3; la tensién de limite eldstico es Y (0) = 110,87 MPa y los coeficientes de
endurecimiento son K = 500,0 MPay n =0, 2.

. [/

Figura 3. Definicién del problema y discretizacién utilizada

Por simetria se discretiza s6lo un cuarto y se hace con 20 elementos de contorno y 24
celdas, utilizdndose en total 98 nodos, 53 de los cuales son internos. Los desplazamientos
prescritos en cada incremento estan dados por la expresién (42) en la que se ha tomado
un valor para el pardmetro ¢ de 0,5. Los resultados mostrados corresponden a una
resolucién del problema con 335 incrementos de carga y una tolerancia relativa de
k = 0,001.
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La zona pldstica aumenta rdpidamente en las primeras etapas de la plastificacién
y para un alargamiento del 1,58 % todo el dominio estd en régimen plastico. En la
Figura 4a se ilustra la propagacion de la zona pléstica a medida que aumenta la carga.
El valor de la carga que corresponde a las distintas zonas se muestra en la tabla que
sigue en funcién del cociente T4 /Y (0), donde T es la tensién normal media a lo
largo de la linea AB. En la misma tabla se presenta también la deformacién plistica

equivalente media EP, en las distintas zonas en el instante final de carga.

(b)
4 5 6 7 8

Tmed /5 | 0,503 | 0,701 | 0,844 | 0,923 | 1,273 | 1,501 | 2,123 | 2,533

0,193 | 0,0866 | 0,0573 | 0,0336 | 0,0241 | 0,00861 | 0,00552 ! 0,00038

Figura 4. Deformacién plastica equivalente media EP, y configuracién deformada

El ntmero de iteraciones requerido para alcanzar la convergencia en cada
incremento depende del tamafio del mismo y de la carga aplicada previamente. En
las primeras etapas, a pesar de que el tamafio del incremento es pequefio (¢ = 0,5) y
la pendiente elastoplastica es grande, se necesitan muchas iteraciones (entre 15 y 40),
posiblemente debido a la fuerte variacién en la distribucién de tensiones en el entorno
del agujero. Cuando la zona pldstica ocupa la mayor parte del dominio se requieren
usualmente menos de 20 iteraciones. Esta misma tendencia en cuanto al nimero de
iteraciones se apunta también en la referencia 13. Naturalmente los mayores ajustes
en las deformaciones pléasticas se llevan a cabo en las primeras iteraciones de cada
incremento.

En la Figura 4b se¢ muestra la configuracién deformada para dos etapas de carga
(correspondientes a alargamientos del 2,5 % y 5 %). Los resultados obtenidos son
similares a los presentados por Mukherjee y Chandra'®.
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La presencia de concentracién de tensiones en el entorno del agujero causa grandes
deformaciones plasticas en esa regién. Estas provocan una redistribucién local de las
tensiones como se ilustra en la Figura 5a. La primera de ellas (T5°¢ /Y (0)=0,501)
corresponde a la carga méaxima en régimen eldstico. En la Figura 5b se representa la
distribucién de las deformaciones plasticas equivalentes en la linea AB en los distintos
instantes de carga.

Finalmente, en la Figura 6 se realiza una representacién de la tensién media y de
la variacién del didmetro del agujero en direccién horizontal y vertical (distancias OA y
OC) frente al alargamiento. Nétese que en la direccién horizontal el didmetro primero
disminuye ligeramente y luego aumenta con la deformacién. Este comportamiento ha
sido comprobado experimentalmente por Bourcier ef al.®.

5 Tn(w TH™ 0.25 E?
2.0 0.20
15 . 0.15
1.0 0.10
0.5 0.05
S 0.15 02 025 0.3 0‘000.1 0.15 0.2 0.25 0.3
A ® B A ®) B

— Ty ) =0.501 ~——T1 Yy 0= 1898 ——T 7y (0)=3242
—o— Ty ()= 1507 —o—TiYy =253 —a—Tiy()=3619

Figura 5. Tensiones normales y deformaciones pldsticas equivalentes

d_(x) 1.06 1 med
d©) s | oy
doa (D)

1.04 0
103 4 o doc%;
1.02 Em&ed
101 ¢ T”/GY
1.00
0.99

* * s * % alargamiento
0 1.0 2.0 30 4.0 5.0

Figura 6. Tensidén media y didmetro frente al alargamiento
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CONCLUSIONES

En este trabajo se ha mostrado que problemas inherentemente no-lineales pueden
ser resueltos mediante un procedimiento basado en el MEC. Se ha incluido un algoritmo
eficiente para la determinacién de las deformaciones plésticas (A.R.G.) y para el célculo
de los gradientes de desplazamiento se ha propuesto un método indirecto de derivacién
polindmica con el que se obtiene una precisién suficiente como para hacer innecesario
el empleo de métodos directos méds complejos desde el punto de vista matematico y
computacional.

La necesidad de discretizar e integrar sobre el dominio deteriora la principal ventaja
del MEC sobre ¢l MEF. No obstante, para el mismo grado de aproximacidn, el orden
del sistema de ecuaciones resultante es menor (ya que depende sélo de la discretizacién
de contorno realizada), lo cual resulta de interés en problemas como el estudiado, cuya
resolucién ha de ser incremental e iterativa.

Hay que destacar que, a pesar de que la solucién obtenida puede ser computa-
clonalmente costosa (por ser elevado el nimero de incrementos e iteraciones necesario
para el correcto andlisis) dicha solucién satisface todas las leyes que rigen el problema
de modo directo, gin necesidad de procesos externos adicionales como los empleados
por otros autores'®'*.

Adicionalmente sélo es necesario discretizar aquella zona del dominio afectada por
las no-linealidades, lo que puede hacer especialmente adecuado este método para el
estudio de problemas con no-linealidad local en los que las variables de interés estén
asociadas al contorno. Dentro de este tipo de problemas se encuentra uno de alto
interés como ¢s el de contacto entre cuerpos con posibilidad de deformaciones plésticas
finitas localizadas en la interfase de unién entre ambos. Cabe esperar que, como ocurre
en problemas lineales, de los resultados numéricos que se puedan obtener del estudio
de este problema, el MEC se presente como método alternativo al MEF también para
problemas no-lineales de mecénica de sélidos.
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