PrepicTivE CONTROL OF STRUCTURES

By José Rodellar,” Alex H. Barbat,” and Juan M. Martin-Sanchez’

Apstract: Different continuous-time approaches have been proposed in re-
cent years to formulate active control algorithms to reduce the response of civil
engineering structures under dynamic excitations. In this paper, a general for-
mulation of a new discrete-time control methodology is presented and applied
to structural control. This methodology, based on the concept of predictive con-
trol, is discussed and compared to the optimal control methodology by means
of numerical examples.

InTRODUCTION

The impact of control theory in the different domains of engineering
and applied sciences has become increasingly important in the last few
decades. Although the body of this theory is extremely broad and rich,
it has essentially been built up on a few basic control strategies. Negative
feedback, a strategy of remarkable simplicity that computes the control
signal by using the difference between the set point and the process
output, was the first strategy to be considered and the one most used
in practical applications. In an attempt to improve the performance of
negative feedback systems, a more sophisticated control strategy, opti-
mal control, was developed. According to the concepts of optimal con-
trol, the control signal is calculated by minimizing a performance index
that requires the solution of a Riccati equation (Bryson and Ho 1975;
Sage and White 1977). Pole placement was another strategy to be con-
sidered, based on the assignment of specific values to the closed-loop
poles (Brogan 1974).

The infroduction of digital computers in control systems motivated not
only the discrete-time formulation of the aforementioned control strat-
egies, first formulated in continuous-time, but also the development of
new digital control strategies. Predictive control was developed within
this context as a control strategy that computes the control signal which
makes the predicted process output equal to a desired process output.
This desired output belongs to a desired output trajectory generated by
a driver block. The predictive control strategy was first defined within
a more general adaptive-predictive control system (APCS) introduced by
Martin-Sanchez (1974; 1976a; 1976b) and used in a number of control
applications (Martin-Sanchez 1977, Martin-Sanchez and Shah 1984).

The interest in reducing the response of structures subjected to dy-
namic excitations produced by earthquakes, wind, moving loads, and
others has led to the use of control techniques in this field as well (Yao
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1972). In order to develop active structural control systems, different
methods have been taken from control theory in recent years. Thus, some
works have been based on the negative feedback strategy (Yang and
Giannopoulos 1978; Roorda 1980), others have used the pole placement
approach (Martin and Soong 1976; Abdel-Rohman and Leipholz 1978),
but the most widely used technique has been optimal control as consid-
ered in Yang (1975), Abdel-Rohman and Leipholz (1979), Chang and Soong
(1980), and Meirovitch and Silverberg (1983). Recently, predictive control
schemes have also been applied to structural control (Rodellar and Bar-
bat 1985a; 1985b; Rodellar and Martin-Sanchez 1986).

In this paper a general formulation of predictive control is presented,
based on a general driver block design as proposed in Martin-Sdnchez
(1980) and Rodellar (1982). This design essentially consists of generating
a desired output trajectory that satisfies a certain performance criterion.
Distinct solutions for the driver block can be found depending on the
criterion chosen. Two solutions are included in this paper. One of these
minimizes a linear quadratic index, thus requiring the solution of a Ric-
cati equation. Within this case, a standard optimal control problem may
be formulated. The other does not require a Riccati equation and is
therefore more attractive. Practical examples in the field of structural
control are presented and used to compare the predictive control ap-
proach with that of optimal control.

Previous approaches for structural control have been formulated in
continuous-time, thus requiring an “‘a posteriori”’ discretization of the
control law for computer implementation. Conversely, in this paper a
discrete-time representation of the structural control problem is given,
which allows the direct application of the predictive control strategy within
a digital control scheme.

GENERAL FormuLATION OF PREDICTIVE CONTROL

In order to implement the predictive control strategy, the block dia-
gram shown in Fig. 1, which includes a predictive model and a driver
block, can be considered. The predictive model is used at each sampling
instant to compute the control signal which makes the predicted process
output belong to a desired output trajectory. The driver block is de-
signed to generate a desired output trajectory that satisfies a perfor-
mance criterion.

In the driver block design, an interval [k, k + \] is considered at each
sampling instant k, and the predictive model is used to predict a process
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FIG. 1.—Basic Scheme of Predictive Controller
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output sequence as a function of a control sequence. The predictive model
can be formulated by means of a discrete-time state model of the form

Rk = ARG+ = 1)+ Bak + 7~ 1) oo (1a)
G0+ ) = HRG + 1) oo (1b)

where %(k + jlk) and §(k + jlk) = the state vector and the process output
predicted at instant k for the instant k + j, respectively; i(k + jlk) = the
control sequence; and A, B, and H = the discrete-time system matrix,
control matrix, and output matrix, respectively.

This model is redefined at each instant k in the form

ROK) = x(k); QI = W) o )

where x(k) and u(k) = the state vector and the control signal at instant
k, respectively.

Matrices A and B in Eq. 1a are here considered to be known and con-
stant. In a more general adaptive-predictive control system, these ma-
trices are time-dependent and are updated at each sampling instant k by
means of estimation algorithms (Martin-Sdnchez 1980; Martin-Sanchez
and Shah 1984).

The driver block under its general design selects at each instant k, as
desired output trajectory y;, a process output sequence in the finite in-
terval [k + 1,k + A\] which is caused, according to the predictive model,
by a control sequence in the interval [k, k + A — 1] in such a way that
both sequences satisfy a certain performance criterion. This performance
criterion may be formulated by means of an index that may include, in
a general case, the predicied output and the control sequences as well
as a reference trajectory.

Two different solutions for the driver block design problem are pre-
sented in the following sections. In the first one a linear quadratic index
is minimized by solving a Riccati equation. In order to obtain a more
economic solution, the second one considers the minimization of an in-
dex in which a specific shape for the control sequence is imposed.

Drivern Brock Sovurion via Riccan EquaTion

The driver block performance index may be defined by the following
linear quadratic cost function:

[y

X
QZ [k + jlk) = yilk + DITQMHIFK + jlk) — yo(k + f)]
o
+ 5 Gk + jIOTRGYGE + k) 3)
={

where the weighting matrices Q(/)(j = 0,1,.. A and RG}j = 0,1,..., A
~ 1) are real positive semidefinite, and R(j) are also nonsingular. The
reference trajectory y, may be redefined at each sampling instant k start-
ing from the current output and evolving towards the setpoint according
to a chosen dynarmics.

Following standard optimization procedures (Sage and White 1977),
the minimization of index 3 introduces a 2n X 2n matrix P(k) that satisfies
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a discrete-time matrix Riccati equation of the form

Pk +j) = HQ)H + APk + j + D[I + BRT'()B'PKk +j + D] 'A;

F L VD N (4a)
P+ 0 = HIOMH (4b)
and a 2n vector w(k) that satisfies the equation

nk + j) = HQ()y,(k + j) + ATk +j + 1) = ATP(k +j + 1)

I+ BR'()B'P(k +j + )] 'BR() "Bk +j + 1);

T = 0,0, e e (5a)
kAN =HOMY;+ M) (5b)

Then the sequence of vectors in [k, k + A — 1] that minimizes the index
is expressed as -

ik + jlk) = =Dk + )&+ jlk) Fuole +) (6)
where D(k + j) = an v X 21 gain matrix expressed as

Dk +j) = R*l(j)BT(AT)“i[P(k ) -HQGOH]. .. )
and ug(k + j) = an r vector given by

ulk + ) = RYGDBIAN ek + ) —H QG k+ )] oot (8)

According to the driver block design, the control vector u(k) to be ap-
plied at instant k is, as indicated in Eq. 2, the value at instant k of the
input sequence given by Eq. 6. Then, by making j = 0 in Eq. 6 and
taking into account the redefinition at instant k of the predicted state
[#(klk) = x(k)], one obtains the following control law:

(k) = =DUOXK) + Uolk) « e ©)

In order to obtain the gain matrix D(k) and the vector uy(k), Eqs. 4a
and 5a must be solved recursively backwards in time starting from the
terminal conditions 4b and 50 for j = X to j = 0, and then Eqs. 7 and 8
must be applied for j = 0.

This formulation of the driver block design essentially differs from the
standard optimal control problem in the sense that the optimization pro-
cedure is repeated at each sampling instant k, since the prediction ho-
rizon is redefined, which is inherent in the predictive control strategy.
As is well known, in optimal control the optimization problem is solved
only once at the initial instant k = 0. Thus, if in Eqgs. 4-8 one makes k
= 0 and X = N, where N = the final instant of the control action, an
optimal control formulation is found. By way of example, in the optimal
regulator problem, which corresponds to a null reference trajectory vy, ,
a Riccati equation of the form

P(j) = H'Q(H + ATP(j + 1)[I + B7'R()B'P(j + 1)] 'A;

T =0, N (10a)

PINY = HTONYH ... (10h)
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must be solved. In this case u, is a null vector and the gain matrix is
given by

D) = RIHBADPG) - HOMHL oo an
and the control law is
(/) = =DIXGY o (12)

Dawver BLock SoLution via SHareD CONTROL SEQUENCES

The driver block performance criterion may consist of the minimiza-
tion of an index in which the control sequence has a specified shape on
the prediction horizon. Particular choices of the shape of the control se-
quence may be that of a step or of a pulse. One may consider, as an
example, the following index:

1S o s T NGk 4 i .
J =5 2, 90+ ) = v,k + DI + k) = y(k + )]
j=1

+ % AOTRAMK) . . oo (13)

In the case of a step-shaped control sequence, the minimization of this
index (Eq. 13) is performed by using the condition

A+l = uk); F= 1, A =T (14)

By using Egs. 1, 2, and 14, the process output predicted at instant k
for consecutive instants k + j (j = 1,...,\) can be expressed as a function
of the current state vector x(k) and the control vector u(k) as follows:

gk + k) = HT()x(k) + HZ(uk) ..o (15)
where T(j) and Z(j) are matrices given by

TG) = A e (16a)
ZH =@ +A+ A+ . +ANTTHAB . (16h)

By substituting Eq. 15 into Eq. 13 one has

X

1 . . R T, R
J =5 > HT(x®) + HZGu(k) = y.(k + )Q()

2 &
1
([HT()x(E) + HZGuk) = y,(c + )1 + 5 () Ra(k) e 17)

Since u(k) is the only unknown in Eq. 17, it can be obtained by imposing
the following condition on the gradient of [:

A S & N (18)
du(k)

The application of condition 18 to Eq. 17 results in
() + Bulk) = wk) . (19)
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where o and  are matrices given by

BN AL0)) < {010)) 1 § V1) PSR (204)
j=1

N A(0)): €010)): ¥40) I (200)
j=1

and p(k) is a vector defined by

k) = D0 ZTGIHTQU)Y (k4 1) v eveee et e 1)
j=1

which represents a weighted average of the reference trajectory in [k, k
+ \]. The control vector is finally deduced from Eq. 19, resulting in the
following control law:

k) = =B7rax(k) + BTUMK) . et (22)

The computation of the gain matrix ™' in the control law (Eq. 22)
is significantly more economic than that of the gain matrix in the optimal
control law (Eq. 12), which requires the solution of the Riccati equation
(Eq. 10). A particular choice of weighting matrices Q(j) and R which
further simplifies the computation of matrices a and B is

R=0; Q;)=0; j=1,...0x=1 QN =Q ......cvrriiru.. (23)

In this case the control law reduces to

uk) = =B lax(k) + BIYYr(k +A) i (24) .
where now

@ =ZTONHTQHTA) « ottt e (25a)

B=ZTOHQHZ(\) ..ottt (25b)

Y= 2T O H Qo (25¢)

From this particular choice of matrices Q(j) and R, Eq. 16 reduces to
1
J= : [§(k + Nk) — y,(k + N]I"Q[F(k + Nk) —y,(k + N)] - eveveennn. (26)

The minimization of this index implies that the desired output at instant
k + X\ will be as close as possible to the reference trajectory. In that spe-
cial case in which the input and output vectors have the same dimen-
sions, the minimum value for | is zero. This case means imposing the
criterion that the desired output at instant k + A should have a given
value y,(k + \), which appears as a simple generalization for A > 1 of
the predictive control law used in some previous papers (Martin-Sdnchez
1976, Rodellar and Barbat 1985) in which N\ was considered equal to 1.

DigitaL CONTROL OF STRUCTURES

Consider an n DOF model of a structure subjected to a dynamic load.
Its motion can be described by the equation
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EiG. 2.—Closed-Loop Digital Control Scheme

Md + CAd+Kd = F 4+ 8 oot (27)

where M, C, and K, = the n X n mass, the damping, and the stiffness
matrices, respectively; d, d, and d = the displacement, velocity, and
acceleration n vectors relative to the ground, respectively; f = an n force
vector induced by the external excitation; and g = the n control force
vector whose component g; is the control force applied in the horizontal
direction by an actuator on the jth degree of freedom. If the number of
actuators is 7 < n, it can be written as

where u = an r control vector whose components are the forces supplied
by the actuators; and L is an n X r matrix whose elements are equal
either to zero or to one, depending on the presence or absence of an
actuator on the different degrees of freedom.

By defining a 2n state vector x' = [d",d"] and using Eq. 28, Eq. 27 can
be written in the form

K=+ GU + W (29)
where

_ O I ) -1 O | .1 O

S O 0 - A

Since the closed-loop control of the structure is governed by a com-
puter, the digital conirol scheme shown in Fig. 2 can be considered. At
each sampling instant k, sensors are used to measure the displacement
and velocity components of the state vector x(kT), where T = the sam-
pling period. Another sensor can be used to measure the dynamic load
that defines the excitation vector w(kT). The digital computer calculates
the value for the control vector u(kT) by means of a given algorithm. A
hold device keeps constant the value of the u(kT) constant between kT
and kT + T thus converting the sequence of vectors u(kT) into a contin-
uous time control signal u(t), which is applied to the structure by means
actuators. If a linear variation of the excitation w(f) is assumed between
kT and kT + T, the following discrete-time model describing the diagram
of Fig. 2 can be formulated (Rodellar and Barbat 1985a; 1985c):
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X(kT + T) = Ax(kT) + Bu(kT)
+PowkT + T) + PowkT + T) = WD) oo e (31)

where A, P, and P, = 2n X 2n matrices and B a 21 X r matrix defined

_ The discrete-time output (or response variables) to be controlled can
be represented by an m vector y(kT) expressed as

YET) = HXUT) oo (33)

where H is the m X 21 output matrix.

CompaRATIVE EXAMPLES AND ANALYSIS

Example 1.—Consider a 1 DOF system with mass m = 866.5 x 10°
kg, stiffness k = 128 X 10° N/m, and damping ¢ = 346.6 x 10° kg/s
subjected to the horizontal seismic ground acceleration a(t) shown in Fig.
3. The system’s equation of motion takes the form of Eq. 27, where the
excitation is f = —ma(t). The discrete-time Eqs. 31 and 33 have been used
to simulate this system, the output matrix being H = (1,0). In order to
perform the digital control of the system, both optimal and predictive
control methods have been applied with a sampling period T = 0.5 sec.

For the implementation of optimal control, Eq. 10 should be used.
However, if the number N of steps becomes large, P(j) reaches a steady-
state P, which verifies the algebraic equation

P,=HQH+ AP,[I+BRBP, 1A ......covvin . (34)

which, according to Eq. 11, leads to a constant gain matrix given by

D, =RTBUANP, —HTQH] ... (35)

Thus, the control law (Eq. 12) becomes

w() = () o (36)
ES
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FIG. 3.—Seismic Ground Accelerstion
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Eq. 34 has been solved by iterating Eq. 10 until the steady-state P, has
been reached.

In this 1 DOF case, the weighting matrices reduce to positive scalars
g and r. The latter has been fixed with a value r = 1, while g is the
parameter needed fo choose in each application.

Predictive control has been implemented by using the control law (Eq.
24). The value y,(k + \) is selected belonging to a reference trajectory
defined by the discrete-time equation

Vek+) =0y k+j— 1)+ 0y, (k+j -2 j=T1..0h coeernn... (37a)

which is redefined at instant k starting from the present and previous
values of the system’s response, i.e.

vy =y(k);, v,tk=1D=9ylk—1)...... .. ... (37b)

Parameters 6, and 8, have been chosen in such a way that Eq. 37a rep-
resents the free response of a harmonic oscillator, with a critical damp-
ing and a certain frequency w, with the initial conditions of Eq. 37b. As
shown in Fig. 4, a faster trajectory corresponds to a higher frequency.
In a limit case, a null trajectory may be considered, thus resulting in a
discontinuous jump from y(k) to a null value. The weighting matrix Q
reduces, in this 1 DOF case, to a positive scalar fixed equal to 1. Con-
sequently the parameters to be chosen in each application are the value
of h defining the prediction horizon and that of frequency o of the ref-
erence trajectory.

Numerical experiments have been carried out in which the optimal
conirol has been applied by varying the parameter g and the predictive
control has been used by varying the value of ) for different values of
w. Fig. 5 shows a summary of the results obtained. In Figs. 5(a) and 5(b)
the rms and the maximum value for the displacement response are shown
for both the optimal and the predictive control methods respectively.
Similar plots are presented in Figs. 5(c) and 5(d) for the control forces.
In the case without control, the maximum and rms of the displacement
response were 9.7 cm and 3.2 cm, respectively. As can be seen in Figs.
5(a) and 5(b), the displacements under optimal control reduce as the
weighting parameter g increases, while at the same time the control forces
in Figs. 5(c) and 5(d) increase. In the predictive control case, it can be
observed in the same figures that, for a given reference trajectory, the
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FIG. 5.—Optimal and Predictive Control Experiments: (a) Root Mean Square Dis-
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decrease in parameter \ results in a decrease in the displacements, to-
gether with an increase in the control forces. At the same time, by com-
paring the graphs for different reference trajectories, it can be seen that,
for a greater w, displacements are smaller and control forces are greater.
These comments may be interpreted according to the physical signifi-
cance of parameters g for the optimal control and A and o for the pre-
dictive control. An increase in the value of 4 imposes a more demanding
control since the displacement is more weighted in the performance in-
dex. A smaller value for \ implies a shorter prediction horizon and, ac-
cording to the strategy of predictive control, it determines a desired out-
put closer to the equilibrium position. On the other hand, as shown in
Fig. 4, a higher value for w results in a faster reference trajectory, which
also imposes a desired output closer to equilibrium. Consequently, the
smaller the value for \ or the greater the value of w, the more demanding
is the control action. Finaliy, it can be noted that the effect of increasing
q in optimal control is similar to that of reducing the value for \ or in-
creasing the value for w. Furthermore, it can be concluded that for a
given value of g there are a couple of values A\ — o for which optimal
and predictive control produce similar results.

Example 2.—In order to perform a comparison between optimal and
predictive control methods in a more complex case, the 10 DOF shear
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building model shown in Fig. 6 has been considered. It is subjected to
the ground acceleration a(t) of Fig. 3. Its horizontal motion is described
by Eq. 27 with § = —Mia(t), i being the identity vector. The values for
the mass and stiffness characteristics are given in Table 1. The damping
matrix C corresponds to a damping ratio of 0.05 for each mode of vi-
bration and was calculated by using a direct modal evaluation procedure
(Wilson and Penzien 1972). In order to simulate the response of the con-
trolled system, the discrete-time Eqs. 31 and 33 have been used. The
output y(kT) is a 10 vector whose components are the displacements of
each floor. The conirol action is supplied by three actuators located in
floors 4, 7, and 10, respectively. This control action is then represented
by a 3 control vector u(kT). The sampling period for digital control was
T = 0.05 sec.

Egs. 34-36 have been used to implement the optimal control. In this
case, the weighting matrix R was fixed as equal to the 3 X 3 identity
matrix while § = g-I, where I = the 10 x 10 identity matrix; and g4 =
a positive scalar that is the parameter to choose in each application.

The control law of Eq. 24 has been used to apply the predictive control

TABLE 1.—Mass and Stifiness Characteristies of Structure

Floor Mass (kg) Stiffness (N/m)
M (2) (3
1 136,000 187,000,000
2 122,000 175,000,000
3 109,000 149,000,000
4 109,000 127,600,000
5 98,000 93,000,000
6 85,000 81,000,000
7 85,000 65,000,000
8 73,500 61,500,000
9 73,500 51,000,000
10 67,500 45,000,000

807



24

16

centimeters
-8 o a

3

-t

—~| \/\/A\VWNWV

o 13} i2 H
secends

FIG. 7.—Uncontrolled Displacement Response

23
2%
o Kl ‘2 \3 IA Ii IS ,7 8 ,9 l! o 1t 13 ‘! 3 ‘! 4 ‘l 5 ‘\ 13 '! 7 'l 1] ‘! k]
seconds
FiG. 8.—Displacement Response under Optimal Conirol
i
w8

55

N

L

kilonewtons

.45 5

K

v v oo

T T T T T T T T T T
0 1 2 3 4 5 B 7 e B [ f2 33 14 45 1% 17 18 48

seconds

FIG. 8.—Control Force under Optimal Control

method. y,(k + X) is, in this case, a 10 vector selected corresponding to
ten scalar trajectories, one for each DOF, defined by Eqgs. 37. As in the
case of Example 1, all these trajectories have been defined by critical
damping and frequency o. The weighting matrix O has been fixed as
equal to the 10 X 10 identity matrix. Thus the application of control law
(Eq. 24) finally requires the choice of only parameters A and .

Several experiments have been simulated in which optimal and pre-
dictive conirol have been applied with different values for their param-
eters. Some time histories are given in Figs. 7-11 for floor 10. Fig. 7
shows the uncontrolled displacement. Figs. 8 and 9 show the displace-
ment and the control force for the optimal control applied with g = 10",
while Figs. 10 and 11 show them for the predictive control applied with
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A = 2 and a null reference trajectory.

By comparing the results in Figs. 8-11, it can be observed that the
values for the displacements and the control forces are similar and rep-
resent a significant reduction of the structural response, as compared
with the uncontrolled one, with reasonable control forces. This conclu-
sion is in agreement with the results obtained in Example 1.

However, some advantages of the predictive control should be pointed
out. First, the computation of the gain matrix B™'e in the predictive con-
trol law (Eq. 24) is significantly more economical than the calcuation of
gain matrix D, in the optimal control law (Eq. 36), which needs the re-
cursive solution of the Riccati equation (Eq. 34). As an example, in the
case of the 10-DOF structure, 40 iterations have been required to obtain
the steady-state Riccati matrix. Thus the computation of D; has taken
24.2 sec, while the computation of the gain matrix B™'a has taken 0.53
sec by using a VAX-750 computer. Moreover, the fact that the predictive
control strategy redefines a prediction horizon at each sampling instant
allows the development of a predictive controller, which is especially
useful for structural control. Thus a control algorithm has been formu-
lated in Rodellar and Barbat (1985) that uses the on-line measurement
of the excitation signal. An algorithm that considers pulse control forces
has also been developed in Barbat, et al. (1986) within the driver block
solution based on shaped control sequences. Finally, the redefinition of
the control problem at each sampling instant permits an updating of the
parameters by means of an estimation algorithm (Martin-Sanchez 1980;
Martin-Sénchez and Shah 1984). This adaptive capability may be useful
for the control of structures with nonlinear behavior,
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ConcLusions

This paper has presented a general formulation of the predictive con-
trol method, which has been applied for structural control. A compari-
son between optimal and predictive control has been carried out.

Predictive control may be well suited to structural control for the fol-
lowing reasons:

1. It is mathematically simple and easy to use through a digital com-
puter. It does not require the solution of a Riccati equation as does the
optimal control method.

2. Its effectiveness in reducing the structural response is equivalent
to that of optimal control.

3. It can incorporate practical aspects such as the use of pulse control
forces, the use of the on-line measured excitation for computing the con-
trol forces, as well as the use of an adaptive algorithm in order to handle
structures with nonlinear behavior.
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Arpenpix lL—NotaTiOoN

The following symbols are used in this paper:

= discrete-time system matrix;
earthquake ground acceleration;
= discrete-time control matrix;
= damping matrix;
= optimal control gain matrix;
= steady-state optimal control gain matrix;
= displacement, velocity, and accleration vectors;
= continuous-time system matrix;
= excitation force vector;
= continuous-fime control matrix;
= control force vector;
output matrix;
= identity matrix;
= identity vector;
= cost function;
= index indicating time instant;
= gtiffness matrix;
= sampling instant;
= actuator matrix;
= mass matrix;
= optimal control final instant;
Riccati matrix;
B, = steady-state Riccati matrix;
P,,P, = discrete-time excifation matrices;
Q). 0 = output weighting matrices;
g = output weighting factor;
R(j),R = conirol weighting matrices;
= sampling period;
T(j} = matrix of prediction (Eq. 15);
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u = control vector;
ug = term of control law 9;
u(k + jlky = sequence of control vectors;

w = excitation vector;
x = state vector;
x(k + jlky = predicted sequence of state vectors;
y = displacement vector;
y(k + jlk) = predicted process output sequence;
ya = desired outpuf;
y.(k +j) = reference trajectory;
Z(j) = matrix of prediction (Eq. 15);
o, B,y = matrices of the predictive control law;
n(k +j) = vector sequence verifying Eqs. 52-b;
8,,8, = parameters of the reference trajectory;
A = length of the prediction horizon;
p(k) = weighted average of the reference trajectory; and
®w = frequency of the reference trajectory.
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