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Abstract. This paper presents selected results regarding the implementation, validation and
testing of a simple 2D-1D coupled model designed to capture some essential features of the
oscillatory air flow in human respiratory system. The model relies on a 2D flow model solved
by a simple finite-difference scheme in the immersed boundary setting. The incompressible fluid
flow from this model is coupled to a simplified 1D fluid-structure-interaction model simulating
the flow in a tube with elastic walls. Some first results obtained using the coupled 2D-1D
model in an oscillating (Womersley-like) type of flow are presented and discussed in detail.
The influence of model parameters is explored for a range of physically relevant settings.

1 INTRODUCTION

This work is motivated by the air flow in the human respiratory system. From the mathemat-
ical modelling point of view this problem can be considered (with certain level of simplification)
as flow of an incompressible viscous fluid in a system of branching channels. This leads to a
complex multiscale problem, whose solution requires a large amount of complicated and time-
consuming numerical calculations.

In order to better understand the problem and save some time with the implementation
of the full-scale three-dimensional numerical simulations, a simplified (almost toy-like) model
was developed, validated and tested. This model considers a 2D flow problem coupled to a
reduced 1D FSI problem. The numerical methods and coupling algorithms were tested for a
Womersley-like oscillatory flow (with periodically changing flow direction in time) coupled to
a simple one-dimensional flexible tube model. The modeling and coupling issues are explored
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hereafter. The main aim of this work is to test the model for the conditions and parameters
close to those found in the human respiratory system. These settings are quite different from
those in blood flows for which such model systems were typically developed. In addition, some
effort is made to adjust the coupled model to a 2D flow problem in a rigid geometry, which is
an unusual choice for this kind of models.

2 AIRFLOW IN THE HUMAN AIRWAYS

Numerous characteristic flow phenomena can be found in the human airways, such as merging
streams, oscillating flows, turbulence, secondary flows, and separation [2]. Although it is a
generally accepted assumption that most of the flows in respiratory system can be considered
as laminar, few exceptions may occur [6].

The air flow in respiratory system is naturally unsteady, having a time-periodic oscillatory
character. A human’s normal respiratory rate for an adult at rest is between 10 and 15 breaths
per minute, which corresponds to a Womersley number (Wo) between 2.41 and 2.95. Depending
on the Womersley number, analytical velocity profiles, velocity gradient at the wall and volume
flow rate can be computed based on an oscillating pressure gradient (pressure drop) [12]. An
illustration of such time-periodic two-dimensional analytical solution is shown in Fig. 1. This
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Figure 1: Velocity profiles for Womersley number 2.41.

analytical solution can be (and was) used for validation of the numerical code developed for
unsteady flow simulations. It is interesting to observe the change of shape of the velocity profile
over time, where certain profiles are quite far from the usual parabolic shape normally found
in steady flows.

3 TWO-DIMENSIONAL FLOW MODEL

The work presented in this paper is based on the coupling of a 2D flow model with a
simplified 1D Fluid-Structure-Interaction (FSI) model. The 2D model is the standard system
of Navier-Stokes equations for an incompressible, Newtonian fluid. The system consists of
linear momentum balance equations, complemented by the divergence-free incompressibility
constraint, replacing the mass balance equations for constant density fluids.

This governing system of partial differential equations is solved by the finite-difference
method in the immersed boundary approach. The modified (reduced numerical diffusion) Lax-
Friedrichs scheme was used, together with the pressure correction method for velocity-pressure
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coupling, employing a Jacobi solver for the discretized Poisson equation. More details about
the implementation and validation of this numerical approach can be found in [4], [11].

4 ONE-DIMENSIONAL FSI MODEL

4.1 Governing equations

The simple one dimensional FSI model used in this paper describes the flow of an incompress-
ible viscous fluid in an elastic tube. The tube is assumed to be axially (rotationally/radially)
symmetric, having a cross-section that can vary in time and space, based on the difference be-
tween internal and external pressure. The 1D model is derived from the fully 3D incompressible
Navier-Stokes equations coupled with a structure model for the vessel wall, by making some
simplifying assumptions and integrating the variables over the cross section [9]. The result-
ing system of coupled evolutionary partial differential equations (1)-(2) for flow-rate Q(x, t)
and cross-sectional area A(x, t) can be rewritten in terms of the averaged velocity U(x, t) and
pressure P (x, t) variables [1], [3].

∂A

∂t
+
∂Q

∂x
= 0 (1)

∂Q

∂t
+

∂

∂x

(
αQ2

A

)
+
A

ρ

∂P

∂x
= −Kr

Q

A
. (2)

In this system the coefficient α is the so-called momentum flux correction coefficient, and ρ
is the fluid density, both are assumed to be constant (in space and time). Parameter Kr is
defined using the fluid dynamic viscosity, as the friction parameter, since it reflects the original
momentum diffusion term [8], [11]. For the air flow with very low viscosity, the effect of the
whole viscous resistance term is close to negligible (confirmed in numerical experiments), thus
the value was kept from 3D derivation. Some other model parameters and assumptions with
possible higher influence were explored in more details.

4.2 Pressure relation

In order to close the system (1)-(2) a relation for the average (over the cross-section) pressure
P in terms of the system variables Q and A has to be provided. Various such pressure-laws
have been used in the past. The most common relation applied in studies of blood flow and
flow in human upper airways is that used by Formaggia [8] and other authors [7],[10], [13],[9].
This algebraic relation linking pressure P and area A may be written in the general form:

P (x, t)− pext = ψ(A(t, x);A0(x), β(x)),
∂ψ

∂A
> 0, ψ(A0;A0; β) = 0 , (3)

where pext is the external pressure from surrounding tissue. External pressure is set to be zero in
the present simulations, but a more realistic value should be prescribed for future experiments.

In the pressure law (3) it is assumed that the pressure depends not only on the wall dis-
placement through the change of section area A, but also on the reference area at rest A0 (as a
deviation of A from the equilibrium state characterized by A0). The proportionality coefficient
β is related to the mechanical properties of the wall. Assuming for simplicity that the pressure
is a linear function of the vessel radius we can obtain the following relation [8], [14], [13],[9]
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ψ(A;A0; β) = β

√
A−

√
A0

A0

, with β =

√
πh0E

1− κ2
E

, (4)

where E is the vessel wall Young modulus, κ
E
is the corresponding Poisson ratio and h0 is the

wall thickness. As biological tissues are almost incompressible, the Poisson ratio is assumed to
be κ

E
= 0.49 for the airways wall. Different other possible laws are discussed in [9].

The relation (4) was originally derived from the full 3D FSI model and it is usually used for
the coupling of 3D with 1D FSI models. However, for now, the flow model considered in this
work is based on 2D flow in a rigid (planar) channel flow coupled with 1D FSI model. Thus
it seems to be reasonable to change and adjust the algebraic relation (4) linking pressure and
area to the specific geometry of the 2D model. For example instead of using

√
A to characterize

the cross-sectional radius of a 3D tube, the distance between the walls of a planar channel is
denoted directly by A (as it numerically corresponds to the area A).

P (A) = pext + β

√
A−

√
A0

A0

change for−−−−−→
2D

P (A) = pext + β
A− A0

A0

. (5)

This change was tested on several cases and gives better results in the simulations of coupling
the 2D and the 1D models. The proportionality (wall elasticity) coefficient β should however
be adjusted as well, because the original values were derived from a 3D model (rather than
from a 2D model).

5 2D-1D COUPLING STRATEGY

In order to couple the previously described 2D flow and 1D FSI models a specific strategy is
needed to bridge the different nature of both models and their implementation. From the naive
straightforward perspective it seems to be logical to require that the cross-sectional area A and
the global flow rate Q at the common boundary of the 2D model matches at all instants the
corresponding values of the attached 1D simplified model. This behavior, although certainly
desirable, can not be enforced for the coupled model. The main reason behind this problem
comes from the mathematical properties of the 1D FSI model that can be proved to be a
hyperbolic system of PDEs, which means (among other issues) that there can be only one
boundary condition prescribed at each end of the 1D domain. Thus it is not allowed (not
possible) to prescribe both variables A (or P ) and Q (or U) at the common 2D-1D coupling
interface.

This inability to prescribe both A and Q at the interface, naturally provides two elementary
coupling options, resulting in two distinct coupling strategies. In each of them, just one of the
quantities is imposed to the 1D model at the coupling interface, while the remaining quantity
can only be prescribed at the second, uncoupled end of the 1D domain. The two basic coupling
strategies can be summarized as follows:

2D model set up:

• prescribed P0(t), P2(t)

• prescribed U0(t), P2(t)

Coupling strategies

• Q1(1, t)
1D = Q1(end, t)

2D P1(end, t)
2D = P1(1, t)

1D

• P1(1, t)
1D = P1(end, t)

2D Q1(end, t)
2D = Q1(1, t)

1D

The 2D flow model can be driven by a prescribed pressure drop, i.e. by prescribing the
pressure P0(t) and P1(t) at the two inflow/outflow boundaries of the 2D channel. This set-up
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is preferred, because it doesn’t requires any a-priori knowledge of the shape of the velocity
profile and thus can be used without any change for turbulent and non-Newtonian fluids flows,
as well as for the oscillatory (Womersley-like) flows, where the velocity profiles might be quite
far from the simple parabolic shape. As an alternative, the velocity profile can be prescribed
at one boundary and pressure at the other one. This set-up is less convenient (because of the
unknown and varying shape of the velocity profile), but on the other hand it can be used to
simply enforce the desired flow rate Q(t) for the whole model.

Assuming now the 2D model is fully set, it provides a complete flow field u(x, z, t) and
p(x, z, t). To couple this model and fields to the 1D FSI model we can follow one the two above
outlined coupling strategies. In the first one, for example, the already calculated flow rate from
the 2D model is imposed as a boundary condition for the attached 1D model at the common
interface, Q1(1, t)

1D = Q1(end, t)
2D. Simultaneously, the average pressure calculated by the 1D

model is imposed as the boundary condition to the corresponding interface of the 2D domain,
P1(end, t)

2D = P1(1, t)
1D.

The second coupling strategy works the other way around, but it still keeps the same phi-
losophy of exchanging the values between 2D and 1D models. Both coupling strategies are
schematically summarized in Fig. 2. In general, the explicit coupling consists of passing, at

A=A

(P ,Q  )
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x
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h(x)

u=u(t)

u=u(x,t)
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l1

l
2
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Figure 2: Coupling strategies of 2D with 1D models.

each time step, the flow rate or pressure computed by the 2D model to the 1D solver, which
in turn computes and returns the mean pressure P or the flow rate Q, to be fed into the
2D model as a boundary condition. This data exchange procedure repeats at each time step.
For simplicity, this procedure is kept explicit in the present simulations, without any internal
sub-iterations to enhance the time accuracy and stability.

It is important to remind that as a consequence of the impossibility to prescribe both Q and
P at the common coupling interface, inevitably a discontinuity (jump) may occur in one of the
quantities. For example, in the first coupling strategy, only the flow rate Q is passed from the
2D to the 1D model, thus the flow rate will remain continuous across the interface. However
the pressure P (and consequently A) will be discontinuous on the coupling interface (see [11] for
possible fix). Thus the first coupling strategy can also be referred to as Flow-rate-continuous
coupling1 , which is the method used to obtain the results presented hereafter.

1In contrast to pressure-continuous coupling for the second strategy.
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6 NUMERICAL EXPERIMENTS

A series of numerical tests based on the above described coupled model was performed in
order to evaluate its sensibility to selected parameters. In the what follows the influence of
parameters α and β is discussed in detail.

6.1 Influence of momentum flux correction coefficient α

The momentum flux correction coefficient α is sometimes called Coriolis coefficient. It is
defined as the ratio of momentum flux based on actual velocity u(z) to the momentum flux
obtained using averaged (constant) velocity profile ū across a given section. This coefficient,
for unidirectional flows of fluids with uniform density can be defined as

α =

∫
A
ρu2 dA

ρAū2
=

1

A

∫
A

(u
ū

)2
dA. (6)

Usually the derivation of the coefficient α starts from considering a Poisseuille type of flow,
leading to a parabolic velocity profile (in the 3D axisymmetric case). Such parabolic profile
can be generalized by allowing higher than quadratic power laws, for more flat velocity profiles
found in turbulent or non-Newtonian fluids flows:

u(r) = Umax

(
1−

( r
R

)2γ)
,where γ ≥ 1 , (7)

where Umax is the maximal velocity of the parabolic profile, attained at the center axis where
the radial distance r = 0. This velocity profile naturally satisfies the no slip condition when
the distance r reaches the diameter of the tube, i.e. at r = R. It was shown (for example in
[1]) that for this type of 3D velocity profile, the average velocity ū

ū =
1

A

∫
A

u(r) dA =
1

πR2

∫ R

0

u(r) dr =
γ

γ + 1
Umax (8)

and consequently

α =

∫
A
ρu2 dA

ρAū2
=

1

A

∫
A

(u
ū

)2
dA =

2γ + 2

2γ + 1
(9)

leading in the case of parabolic profile with γ = 1 to the well known ū = 1
2
Umax and α = 4

3
.

The 2D model solved in this paper requires similar, but slightly modified procedure, to
derive the coefficient α as a function of the velocity profile shape parameter γ. In the 2D
planar channel consisting of two infinite parallel plates placed at a distance H, the parabolic
profile (emanating from the Poiseuille type flow) can be generalized to:

u(z) = Umax

(
1−

(
z

H/2

)2γ
)

,where γ ≥ 1. (10)

For this generalized 2D velocity profile, the average velocity ū can be calculated as

ū =

∫
A
u dA

A
=

∫ H/2

−H/2
Umax

(
1−

(
z

H/2

)2γ)
dz

H
=

∣∣∣∣∣ z̃ =
2
H
z, z = 0 ⇒ z̃ = 0

dz̃ = 2
H
dz, z = H

2
⇒ z̃ = 1

∣∣∣∣∣ =
=

2Umax

H

H

2

∫ 1

0

(
1− z̃2γ

)
dz̃ = Umax

[
z̃ − z̃2γ+1

2γ + 1

]1
0

=
2γ

2γ + 1
Umax

(11)
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and similarly the integral∫
A

u2 dA =

∫
A

U2
max

(
1−

(
2z

H

)2γ
)2

dA = 2U2
max

∫ H/2

0

(
1−

(
2z

H

)2γ
)2

dz =

=
2HU2

max

2

∫ 1

0

(
1− z̃2γ

)2
dz̃ = HU2

max

∫ 1

0

(
1− 2z̃2γ + z̃4γ

)
dz̃ =

=HU2
max

[
z̃ − 2z̃2γ+1

2γ + 1
+

z̃4γ+1

4γ + 1

]1
0

= HU2
max

(
1− 2

2γ + 1
+

1

4γ + 1

)
=

=HU2
max

(2γ − 1) (4γ + 1) + 2γ + 1

(2γ + 1) (4γ + 1)
= HU2

max

8γ2

(2γ + 1)(4γ + 1)

(12)

leading to the final expression for the coefficient α depending on the parameter γ

α =

∫
A
u2dA

A ū
=

∫
A
u2 dA∫

A
ū2 dA

=

HU2
max

8γ2

(2γ + 1) (4γ + 1)

HU2
max

4γ2

(2γ + 1)2

=
4γ + 2

4γ + 1
(13)

Again, in the generic case of the parabolic profile with γ = 1 it leads to ū = 2
3
Umax and α = 6

5
,

which are values just slightly different from those of the 3D case.
For both the classical parabolic (second order) profile in the 3D case (α = 4/3) and in the

2D case (α = 6/5) the values of the Coriolis parameter are already close to α = 1, which
is the asymptotic value for flat (constant) velocity profile. Evidently for more flat (than the
parabolic) profile, e.g. for shear thinning fluids or for turbulent flows, the physically correct
values of the parameter α should be chosen very close to unity. This argument, together with
a significant simplification in the derivation and analysis of the 1D model often leads to the
a-priori assumption of α = 1.

It should be kept in mind that the above described considerations and derivation of the co-
efficient α were based on steady flow and constant-in-time velocity profile. In the time-periodic
case considered in the simulations presented in this paper, such assumption was evidently vio-
lated. This is why a series of numerical tests was performed to assess the effects and importance
of different choices of the parameter α in the simplified 1D on the solution in the fully resolved
coupled 2D model. Results of the velocity gradient, pressure gradient and velocity profiles from
the 2D model for different values of the alpha parameter are shown in Fig. 3. These results
are compared with the analytical solution and with the solution for a 2D rigid pipe.

When looking into the 1D model results, see Fig. 4, just some transitional effects at the
beginning of the simulations are observed, decaying in time and eventually leading to a solution
that virtually doesn’t differ from the one obtained for α = 1.

The results shown in Figs. 3 and 4 document only a marginal effects of different settings
of the parameter α. This demonstration justifies the simplification to α = 1 also for the time-
periodic applications, where the velocity profile is quite far from being parabolic. An open
question remains, whether a time-dependent setting for α(t) based on the integration of the
Womersley solution (instead of the Poiseuille one) could bring some non-negligible improvement
into the simulations.
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Figure 3: Velocity gradient, pressure gradient and velocity profiles for different values of the
parameter α, compared with the analytical (Womersley) solution.

(a) Relative area vs. time at the coupling point. (b) Pressure drop vs. time in the 1D part.

Figure 4: Solution differences in the 1D model for various α > 1 compared to α = 1.
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6.2 Influence of the elasticity coefficient β

The parameter β found previously in the pressure-area laws (3), (4) and (5) represents the
elastic behavior of the channel/tube wall. For the 3D axially (rotationally) symmetric tube
with thin wall, the parameter can be derived and estimated from the formula mentioned in
(4), using the wall thickness h0, Young’s elastic modulus E and Poisson ratio κ

E
. This relation

however can’t simply be transposed into the 2D case, where the geometrical considerations for
infinite parallel plates and associated elastic stress differ significantly from those of a tube with
circular cross-section. Rather than trying to develop a specific 2D version of the formula for
the elasticity parameterβ, only a parameter sensitivity study was performed to show and assess
the relative importance of the choice of the parameter β in the 1D FSI model. In order to
proceed with such study, a multiplicative (proportionality) factor βk was introduced to express
the value of β in the 2D model as:

β =

√
πh0E

1− κ2E

change for−−−−−−→
comparison

β = βk

√
πh0E

1− κ2E
(14)

In addition, as indicated in (5), also the characteristic area A has to be redefined for the 2D
case with parallel plates, rather than using the circular cross-section of the 3D tube case.

A2D = H, instead of A3D = πR2 . (15)

This natural change of A = H in the 2D case, will prevent a significant jump in the pressure
gradient between the 2D and 1D models.

The relative importance of the elasticity parameter β in the coupled simulations can be
assessed by solving the model for different setting of the proportionality coefficient βk in (14) .

(a) Relative area at the coupling point. (b) Pressure drop in the 1D part of the model.

Figure 5: Comparison of results in the 1D model for different values of the factor βk.
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The comparison shown in Fig. 5 for different values of β mainly shows just some transitional
effect at the beginning of the simulations, with some low amplitude oscillations superimposed
to the solution. Evidently these elastic waves have higher frequency for higher values of β
(higher factor βk).

Although the Fig. 5 shows some differences in the 1D part of the coupled model, the overall
effect of different values of β (βk) on the solution in the 2D domain remains close to negligible,
as it can be seen from the comparison of velocity profiles and other quantities shown in Fig. 6.
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Figure 6: Velocity gradient, pressure gradient and velocity profiles for different values of β,
compared with the analytical solution and with a numerical solution for the 2D rigid pipe.
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7 CONCLUSIONS

The aim of this paper was to present the 2D-1D explicit flow-FSI coupling procedure with
some of the associated implementation problems. The main findings demonstrated in the paper
are summarized below:

- The presented explicit coupling procedure for 2D flow and 1D Fluid-Structure-Interaction
models proved to be a working concept for this kind of problems. The validation and test-
ing using the time-periodic setup with alternating direction of the flow provided a com-
putational demonstration of the coupled model to be stable and accurate representation
of the physical system.

- The parameter sensitivity study dealing with the momentum flux correction parameter
α and with the wall elasticity parameter β showed the stability of the numerical methods
and the coupling procedure for a wide range of physically relevant values. Although some
small differences in the converged solutions were observed, the main differences in the
model behavior were just present at the initial stage of the iterative process and fade
away in the course of simulations. It means that some attention should be paid to the
values of these parameters mainly from the point of view of the simulation start-up and
long term stability. Otherwise it is possible to stick with the common values used by other
authors. This however might just be the case of the air flow at the considered velocity
and pressure conditions, taking into account the relatively low density and viscosity of
the air. In other conditions the conclusions may differ substantially from those presented
here.

- For the future work a more careful and detailed study of the coupled model stability is
scheduled, exploring mainly the hyperbolicity of the 1D FSI model. Such analysis may
bring a further insight into an appropriate boundary conditions setup (and thus to the
coupling strategy) for the 1D model.
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