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Abstract: The study presented a simulation of non-Fourier heat conduction with phase
change using a hyperbolic lattice Boltzmann method (HLBM). To handle the latent-heat
source term, the equilibrium distribution function was modified for the temperature, lead-
ing to a novel approach. Unlike the conventional lattice Boltzmann method (LBM), the
HLBM process employed a hyperbolic collision operator. This innovative approach facil-
itated the retrieval of the enthalpy conservation equation without the need for iteration
stages or solving groups of linear equations. Consequently, this method demonstrated
enhanced efficiency and accuracy compared to previous approaches.

The research showcased the potential of employing HLBM in simulating intricate ther-
mal processes, especially those involving phase change. The approach’s applicability ex-
tends to various domains, including designing efficient heat exchangers and gaining in-
sights into material behavior during phase transitions. The findings suggest that HLBM
holds promise as a valuable tool for addressing complex thermal phenomena and advanc-
ing our understanding of such processes.

Keywords. Phase change, Hyperbolic Lattice Boltzmann method, Equilibrium distribu-
tion function

1 INTRODUCTION

A phase change is a significant issue in engineering applications, such as energy stor-
age and alloy solidification. Although the differential equation can help determine the
type of phase changes, its non-linear nature makes it challenging to solve analytically.
Consequently, numerical approaches have been developed as viable solutions, since an-
alytical solutions are generally restricted to simple geometry and boundary constraints.
The progress in microscale processing technology has drawn significant interest in dealing
with solid-liquid phase problems involving microscale alterations, like laser cutting [1] and
selective laser melting (SLM) [2]. Scholars have put forward numerous numerical methods
to tackle the intricacies of the phase transition process. These methods can be classified
into two groups: those that employ a fixed grid to analyze the solid-liquid interface and
those that utilize a warped mesh or modified coordinates. However, the distorted mesh
approach has certain drawbacks, such as complex coding and long processing times, in
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contrast to the fixed grid method. Voller et al. [1] have discussed several fixed grid ap-
proaches for solving phase change problems. However, the enthalpy approach and the
equivalent heat capacity method [2] are the two most commonly used fixed grid methods.

One of the numerical methods used to solve phase change problems is the Lattice
Boltzmann method (LBM). Many authors have coupled the enthalpy method with LBM
to address these problems. Jiaung et al. [3] employed an iterative strategy to handle
the source term and directly obtain the temperature to find a solution to the phase
change problem. Gorla et al. [4] utilized a double distribution function approach coupled
with the Enthalpy method to solve the phase change problem. Chaterjee et al. [5]
presented a method for simulating phase change by coupling a passive scalar-based thermal
Lattice Boltzmann model with a fixed grid porosity approach. Additionally, a new Lattice
Boltzmann model for solid-liquid phase change has been proposed by [6], which modifies
the equilibrium distribution function for the temperature to handle the latent heat source
term

The LBM-BGK format proposed by Bhatnagar-Gross-Krook solely takes into account
the Fourier effect and ignores all other effects. To overcome this, Cattaneo [7] and Vernotte
[8] developed the CV model, which solves the hyperbolic heat equation while taking
into consideration the non-Fourier effect.[9] suggested the hyperbolic lattice Boltzmann
technique (HLBM) to get around this, and for that, the hyperbolic collision operator
entered the picture. [10] brought out the concept of one-dimensional (1D) non-Fourier
heat conduction with phase change using HLBM.

To avoid the challenges associated with the iterative technique used in [3], this paper
proposes a method that combines the latent heat source term into the transient term.
The approach involves modifying the equilibrium distribution function and developing an
HLBM model based on the governing equation. With this method, the temperature can
be directly calculated for 1D and 2D Fourier and non-Fourier heat conduction phenomena
with phase change.

2 Governing Equations

The enthalpy method is widely acknowledged as one of the most efficient approaches
for modeling solid-liquid phase change problems. The governing equations representing
the enthalpy formulation of phase change are as follows:

∂(ρCpT )

∂t
= ∇.(K∇T )− La

∂(ρfl)

∂t
(1)

In this context, the variables ρ, K, and T stand for density, thermal conductivity, and
temperature, respectively. Additionally, Cp, La, and fl represent specific heat capacity at
constant pressure, latent heat of phase change, and the liquid phase fraction, respectively.
The left-hand side of equation (1) accounts for the transient term, while the last term on
the right-hand side is referred to as the latent heat term.

By combining the latent heat term and the transient term, we can derive the total
enthalpy-based energy governing equation. This equation, which is a reformulation of
Equation (1), is given by:
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∂H

∂t
= ∇.

(
K

ρ
∇T

)
(2)

In this equation, H represents the total enthalpy and is defined as the sum of the
product of the specific heat capacity at constant pressure (Cp) and temperature (T ) with
the liquid phase fraction (fl) multiplied by the latent heat of phase change (La):

H = CpT + flLa

3 Hyperbolic Lattice Boltzmann method for heat conduction with phase
change

3.1 CV Heat Conduction Problem

Combining the latent heat source term ∂t(ρ0Lfl) into the transient term ∂t(ρ0cpT ),
The CV heat transfer total enthalpy-based energy governing equation as

∂H

∂t
+ τ

∂2H

∂t2
= α∇. (Cp∇T ) (4)

Equation (4) can be rewritten as:

∂H

∂t
=

α

1 + τ ∂
∂t

∇2(CpT ) (5)

The equation (4) LBM form is

gi(x+ ci∆t, t+∆t)− gi(x, t) = Λ[gi(x, t)− g0i (x, t)] (6)

In this case, gi and g0i represent the particle distribution function and equilibrium dis-
tribution function in the ith direction, respectively. The time step is denoted as ∆t, the
lattice size is represented by ∆x, and the collision operator we need is referred to as Λ.

g0i =

{
H − CpT + wiCpT i = 0

wiCpT i ̸= 0

The weight functions corresponding to each distribution function are labeled as wi.
The Taylor series expansion of gi(x+ ci∆t, t+∆t) around (x, t) is given as:

gi(x+ ci∆t, t+∆t) = gi(x, t) + ∆t∂tgi +∆t∂xαciαgi

+
1

2
(∆t)2(∂t∂tgi + 2∂t∂xαciαgi + ∂xα∂xβ

gi) +O(∆t3) (7)

The variables xα, xβ represent the components of the vector x in the x and y directions,
respectively. In addition, the variables ciα and ciβ represent the velocities in the x and y
directions respectively. Substituting equation (7) in equation (6) gives:

∆t∂tgi +∆t∂xαciαgi +
1

2
(∆t)2(∂t∂tgi + 2∂t∂xαciαgi + ∂xα∂xβ

gi)

= Λ[gi(x, t)− g0i (x, t)] (8)
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The distribution function has the following constraints:

∑
i

g0i = H (9)∑
i

gri = 0, (r ≥ 1) (10)∑
i

cicig
0
i = CpTC

2
s (11)

The variable r is used to denote higher-order derivatives, while the symbol Cs represents
the speed of the lattice. By introducing the Knudsen number ϵ [11], provides the following
equations Introducing the Knudsen number ϵ [11]

∂t = ϵ2∂t(2) , ∂x = ϵ∂x(1) (12)

The parameter t(2) represents the slow time scale related to the diffusive process, while
x(1) represents the corresponding relatively large spatial scale. The expansion of gi(x, t)
is involved in this context.

gi = g
(0)
i + ϵg

(1)
i + ϵ2g

(2)
i +O(ϵ3) (13)

Substituting (12) in (8) and truncating the terms with an order of magnitude larger than
O(ϵ3). To recover (4), summation over all states for (8) is given as:∑

i

ϵ2∆t∂
(2)
t gi +

∑
i

ϵ∆t∂
x
(1)
α
ciαgi +

∑
i

1

2
∆t2ϵ2ciαciβ∂x(1)

α
∂
x
(1)
β
gi

= Λ
(∑

i

(gi(x, t)− geqi (x, t))
)

(14)

The first term on the LHS of (14) corresponds to the unsteady term as:∑
i

ϵ2∆t∂
(2)
t gi =

∑
i

∆t∂tgi = ∆t∂tH (15)

The second term on the LHS of (14) is given as:∑
i

ϵ∆t∂
x
(1)
α
ciαgi =

∑
i

ϵ∆t∂
x
(1)
α
ciα

[
g0i + ϵg1i +O(ϵ2)

]
= ϵ∆t∂

x
(1)
α

∑
i

ciαg
(0)
i + ϵ2∆t∂

x
(1)
α

∑
i

ciαg
(1)
i +O(ϵ3)

= ϵ∆t∂
x
(1)
α

∑
i

ciα

(
1

Λ
ϵ∂

x
(1)
β
ciβg

0
i

)
= ϵ2∆t2

1

Λ
∂
x
(1)
α
∂
x
(1)
β
ciαciβg

(0)
i

=
∆t2

Λ
c2∇2T (D1Q2)

=
∆t2

3Λ
c2∇2T (D2Q5)
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The third term on LHS of (14) becomes:

1

2
∆t2ϵ2

∑
i

ciαciβ∂x(1)
α
∂
x
(1)
β
gi

=
1

2
∆t2

∑
i

ϵ2ciαciβ∂x(1)
α
∂
x
(1)
β

[
g0i + ϵf 1

i +O(ϵ2)
]

=
1

2
∆t2ϵ2∂

x
(1)
α
∂
x
(1)
β

∑
i

ciαciβg
(0)
i +O(ϵ3)

=
∆t2

2
c2∇2T (D1Q2)

=
∆t2

6
c2∇2T (D2Q5)

The RHS of (14) is:

Λ
(∑

i

gi −
∑
i

geqi
)
= Λ(H −H)

Thus, (14) becomes:
∂H

∂t
= −

(
1

Λ
+

1

2

)
∆tc2∇2T (16)

Comparing equation (5) and equation (16)

−
(
1

Λ
+

1

2

)
∆tc2 =

α

1 + τ ∂
∂t

(17)

The Hyperbolic collision operator Λ is given by:

Λ = −
2
(
1 + τ ∂

∂t

)
2α∗ +

(
1 + τ ∂

∂t

) (18)

Substituting the value of Λ in equation (6)

ψi = ϕψ0
i − 2(ϕ+ φ)θi + 2ϕθ0i (19)

Here, ψi(x, t) = gi(x+∆x, t+∆t)− gi(x, t), ψ
0
i (x, t) = ψi(x, t−∆t), θi(x, t) = gi(x, t)−

geqi (x, t), θ0i = θi(x, t−∆t), c = ∆x
∆t

, α∗ = α1

∆tc2
, ϕ = γ

2α∗+1+γ
, φ = 1

2α∗+1+γ
, γ = τ

∆t

The operator Λ is commonly referred to as the hyperbolic collision operator, and the
lattice Boltzmann method utilizing this operator is recognized as the hyperbolic lattice
Boltzmann method (HLBM).
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3.2 Method

3.2.1 Lattice arrangement

In the collision phase of HLBM, the collision operator is used to calculate the rate of
change of the distribution functions, which describe the probability of particles having
certain velocities at a given point in space and time. The collision operator is derived
from the governing equations of fluid dynamics and accounts for the interactions between
particles.

During the streaming phase, the distribution functions propagate to neighboring nodes
on a lattice based on a set of discrete velocities.

D1Q2 and D2Q5 are two different lattice models as shown in figure (1). In LBM, a
fluid is represented by a set of discrete velocities on a lattice, and the dynamics of the
fluid are simulated by tracking the evolution of the distribution functions associated with
these velocities.

D1Q2 model is a 1D model with two discrete lattice velocities (c0 and c1), and two
distribution functions (f0 and f1) associated with these velocities. It is a simple model
used to simulate fluid flow in one dimension.

On the other hand, the D2Q5 model is a 2D model with five discrete lattice velocities
(c0, c1, c2, c3, and c4), and five distribution functions (f0, f1, f2, f3, and f4) associated
with these velocities. It is a more complex model used to simulate fluid flow in two
dimensions.

In general, the choice of the lattice model depends on the specific problem being sim-
ulated and the accuracy and efficiency required.

Figure 1: Details of lattice arrangement. Panels (a) and (b) showing the D1Q2 and D2Q5 configurations,
respectively.

4 Results and Discussion

The provided excerpt explores the utilization of HLBM to investigate a heat conduc-
tion problem involving phase change, which deviates from the conventional Fourier heat
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conduction. The study highlights the LBM’s effectiveness in dealing with Fourier heat
conduction and the HLBM’s capability in handling more sophisticated cases incorporating
relaxation time (τ). The developed model in this research simplifies coding complexity
and facilitates the extraction of enthalpy and temperature from the equilibrium distribu-
tion function.

4.1 Solidification in 1D half space (One region problem)

The schematic diagram shows a 1D system undergoing a phase change from liquid to
solid state. The system is initially at a temperature Tm and in a liquid state, and the
temperature abruptly decreases to T0 at x = 0 at time t = 0. The temperature is then
held constant at T0 for all times t > 0. The liquid-solid interface, denoted by the dashed
line, moves in the positive x direction as solidification progresses.

Figure 2: Schematic diagram of solid-liquid phase change problem

4.1.1 Fourier heat conduction with phase change

We set τ = 0 to verify the accuracy of the phase change method used to demonstrate
the solidification phenomenon. This simplifies the system to the Fourier heat conduction
with phase change, whose analytical solution is available in [12]. Initially, the system’s
temperature is at the melting point Tm = 0 and subsequently cooled to T0 = −1 while
releasing latent heat La = 0.01, with a thermal diffusivity of α = 0.05. The temperature
distribution is presented in Figure (3), which agrees closely with the analytical solution.
This agreement provides evidence for the accuracy of the simulation studying the solidi-
fication phenomenon.

4.1.2 non-Fourier heat conduction with phase change

In this study, we observe non-Fourier heat conduction with phase change, which differs
from Fourier heat conduction due to the impact of relaxation time τ . The physical

7
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Figure 3: Comparison between Analytical and HLBM solution

parameters selected for the investigation are Tm = 0, T0 = -1 and α1 = 0.05. The
temperature distribution resulting from this setup is illustrated in Figure (4). Thermal
diffusivity is a physical property that describes the ability of a material to conduct heat
relative to its ability to store heat. Materials with high thermal diffusivity are able to
rapidly conduct heat, while materials with low thermal diffusivity are slower to conduct
heat. It is observed that as the α increases, the solidification process increases too and is
shown in figure (8).

Figure 4: Temperature distribution using HLBM

4.2 Solidification in the square cavity (One region problem)

The solidification process involves the transformation of a substance from a liquid to
a solid state. In this specific scenario, a square-shaped cavity is employed to aid in the

8
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Figure 5: Temperature distribution using HLBM at various α
′

s

Figure 6: Schematic diagram of solid-liquid phase change problem.

solidification process. Initially, at time t = 0, the substance exists in a liquid state, and
its phase change temperature Tm apply to the regions where x > 0 and y > 0. However,
the temperature at x = 0 and y = 0 gradually decreases until it reaches T0, after which
it remains constant for all subsequent times t > 0. Consequently, the left side of the
interface solidifies while the right side remains in a liquid state. This situation is known
as a one-region problem because the temperature in one phase is already known, and the
temperature in the other phase is the only parameter of interest. Refer to Figure (6) for
the schematic diagram of the process.

4.2.1 Solidification in Half Region (HLBM)

This case involves observing the 2D non-Fourier heat conduction phenomenon, which
takes into account the impact of relaxation time. The physical parameters used in this
scenario are as follows: τ = 0.1, T0 = -1, Tm = 0, and α = 0.05. It is assumed that the

9



Snehil Srivastava and Panchatcharam Mariappan

material properties are constant. The temperature profile at time t = 1 is depicted in Fig-
ure (7). This non-Fourier heat conduction phenomenon is a more accurate representation
of heat transfer in some materials, particularly in cases where there are high-temperature
gradients or short-time scales involved. By considering the contribution of relaxation
time, this model can more accurately predict the temperature distribution in such cases

Figure 7: Temperature distribution of 2D CV heat conduction problem with phase change using HLBM

4.3 Effect of Thermal diffusivity

Thermal diffusivity (α) plays a crucial role in determining the rate of heat transfer
through a medium. By varying the value of α and studying the resulting temperature
profiles, we have observed that increasing the thermal diffusivity leads to a significant
improvement in the solidification process. This can be attributed to the fact that higher
thermal diffusivity allows for faster and more efficient heat transfer, resulting in faster
cooling rates and finer microstructures. The temperature distribution at different values
of α can be seen in Figures (8) and (9).

5 Conclusion

The solidification problem was tackled in this paper using the total enthalpy-based en-
ergy equation, and modifications were made to the equilibrium distribution function. This
model was then integrated with HLBM to study the 1D and 2D Fourier and non-Fourier
heat conduction phenomena. Additionally, the effect of changing α′

s on temperature was
also examined. By employing this approach, we were able to gain a better understanding
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Figure 8: Temperature distribution of 2D CV heat conduction problem with phase change using HLBM
at various α

′

s

(𝑎)

(𝑐)

(𝑏)

Figure 9: Details of Temperature distribution. Panel (a) α = 0.05, panel (b) α = 0.07, and, panel (c)
α = 0.09
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of the solidification process and the various factors that influence it. The use of the total
enthalpy-based energy equation and modified equilibrium distribution function provides
a more accurate representation of the heat transfer process, and the combination with
HLBM allows for a more efficient and accurate simulation of the solidification problem.
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