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1. INTRODUCTION

Many engineering structures have constant geometrical

properties along a particular direction. Such prismatic

structures are ver& common in plate and folded plate problems,
where the transverse cross-section of the structure often
remains constant in the longitudinal direction. In axi-
symmetric shell problems, the cross-section of the shell does
not change in the circumferential direction (see Figure 1).

If the material properties of the structures are also éénstant
in the game direction, the analysis can be simplified by the
combined use of finite eclements and Fourier expansions to model

the transverse and longitudinal behaviour.

The combination of finite elements and Fourier series is
not new and it has for some years been used in the study of
un-symmetrically loaded axisymmetric shells and solids by

Grafton and Strone[1l], Ahmad et 21[2], and Wilson[3].

The extension to plate and shell analysis was first
developed by Cheung[4] and termed the fimite strip method.
Since then, further refinements in the method have been made
and some of the main contributions are listed in references

{51 - [18].

In this chapter the basis of the Mindlin finite strip

formulation will be presented for a wide range of prismatic
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Fig.1  Different structyres which can be dnalyzed with the finite
strip method.
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structures. Rectangular plates will be considered first as an
introduction to more complex problems énd details of the
general finite strip formulation will be given., The second
part of thé chapter deals with folded plate shell type struc-
tures. It will be shown that the finite strip formulation for
right folded plates and axisymmetric shells can be simply '
derived as a special case of the more general formulation for
folded plates with curved planforms which will be preéented
first. The last part of the chapter deals with the computer
implementatioﬁ of the finite strip method and full details of
a finite strip computer program for the analysis of rect-

angular and curved plates will be given,

Before discussing the basis of the finite strip method,

it is interesting to introduce the reader to the basic concepts

" of the use of Fourier series for structural analysis. This is

done in the next section for the simple case of a beam.

2. ANALYSIS OF A SIMPLY-SUPPQRTED BEAM BY FGURIER SERIES

Consider the beam shown in Figure 2 under an arbitrary
loading gq{(y). The Total Potential Energy for a beam in bending
can be written as
2- 2 (b

dy - | qwdy (1)
JO

BI (bdw
W(w)z7;(d2
. o y

where E and I are the Young's wmodulus and the modulus of
inertia of the beam transverse cross-section, resp., and w is
the lateral beam deflection at each point, which must satisfy

the following boundary conditionmns

w = » =0 at y=0andy =Db (2)

The above conditions are satisfied by the following

Fourier series
o0
w=Zw’Q‘s:‘m!LJ{;li (3
=1
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where b is the beanm length and £ refers to a particular term,
i o . ) -
i.e. £ =1,2,3, etc, and w is the undetermined deflection

amplitude for the %th harmonic.

The loading q(y) is defined by Fourier series as

<
qly) = Z qi sin- L %% (4)
=1
I .
where q” is the loading amplitude for the £th harmonic, which
can be obtained using Euler's formula for Fourier series, i.e.
by
J q(y) sin ’iﬂdy
b b
& 0 2
q = - - el
b - b
J ‘gin® g ¥ dy by
o b

by

a(y) sin & 35;: dy (5)

where the load is applied in the zone from ¥ o= b0 toy =b

as shown in Figure 2.

Seccidn AA
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v

Figure 2 Simple supported beam of constant cross-section
under arbitrary distributed leoading q(y)

The value of qJl is easily obtained provided that the pro~
duct q(y) sin Egz-is integrable, Therefore, for a given load
harmonic the problem is one of finding the unknown amplitude
W which unigquely describes the deflected bean prefile for
that harmonic, Substituting (3) and (4) into (1) it is poss-
ible to write

[

=T (EL 3 b 10
Ty = ] (=2 (w2 -z aw) g
LG 5 (8)
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The value of wﬂ is obtained by minimising the Total
L
Potential Energy with respect to w , i.e,
[} Sy
21¥) . 0 which leads to w- = —2 o %)
awl ; EIL"T

The first deflected prefile is obtained if the summation

in (3) is performed and from the deformed shape of the beam

the curvatures and hence, the bending moments may be calculated.

As an example of application the beam shown in Figure 3 is
subjected to two loading cases: a uniformly distributed load-
ing of intensity ¢ acting along the whole beam length; and a
vertical point load, P, acting at midspan. The Fourier co-

efficient, ql, for each loading can be obtained using (5) as

qﬂ = %% {1 - cos 47y for the uniform load
(8)
qR = %? sin %} for the point load
Thus the vertical deflection for each load case is
cbtained from (7) and (3) as
v 3 )
w = qus P €98 27 gsin =¥ for the uniform load
Elw £ b
fa=1
. (9
3
w = EBEW z -jk sin Ll sin AV gor the point load
EIw 2 2 b
£=1
The bending moments are obtained by the expression
2
M= -1 ¥ (10)
dy?
Thus for each loading case the bending moment can be
written as
2 o
M = E%%— Z -f% (1 - cos &m) sin ﬁgxrfor the unifora load
=1
{11)

o
M= EE? E 1 sin %;-sin &%Z' for the point load
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Note that in (9) and (11) the even harmonic terms are
Zero, This is due to the symmetry of the loading about the
9, Porcentage error with A centre of the beam, .
} respect to exact solution {19}
20 R Numerical results for the vertical deflection and bending
moment at midspan, taking nine non-zero harmonics for the two
\ - ; load cases, are shown in Figure 3, from which the following
§
\ c¢onclusions can be drawn:
4 ) ) :
\ Central datlection Central bending mament a) Convergence to the theoretical value [18] for the
Exciet soluti i
\ s 'T Exact solution deflection and bhending moment is much faster for the
18- : Pl |
\ Point toed —- | 002083 -_— | — — |
y El - 0.25PL uniform loading than for the point load case. |
“\ Uniform ad | me—0— | 0,0130208 ‘é—l:- —_—— 0,125q|? ) ‘
\ b) In both load cases the convergence of the bendin
\ E
\ : moment is slower than that of the vertical deflection.
\ i
\ P ' The convergence of the solution is therefore loading
\ 4 , )
0 § R ll{‘lll ll;l} l‘;ftli]l] . '} dependent, A? a rule, solutions for uniform loads convergé
\\ c ; much more rapidly than those for point loads. Also, the number
“3 74
N ! : of harmonic terms needed to achieve a given degree of accuracy
\ I I :
) \ : for the sclution is greater for the bending moments than for
k\ the displacements.
N
~
sl \V\ These practical rules, deduced from a simple case, apply
\\\ for the gemneral finite strip formulation,
S
TS : :
{L‘““‘q}“- 3. FINITE STRIP FORMULATION FOR THE ANALYSIS OF
~0 RECTANGULAR MINDLIN PLATES
Exoct sotutign 191 :
= thy t 1 L | ——
7 9 il 13 15 17
Number of non zero harmonic terms

In this section the Mindlin finite strip formulation for
Fig.3

rectangular plate bending analysis will be derived in detail
as an introduction to more complex structural problems, e.g,
Simple supported beam analyzed by Fourier serfes. Convergence

study of centrat deflection and central bending moment for @ point

load and an uniform load.

folded plates, shells, which can also be treated with the strip
formulation in a similar manner.

3.1 Basic theory for Mindlin plates

1)
2}

Mindlin's assumptions for plate bending can be stated
gimply as follows:

The lateral deflections of the plate, w, are small,

Normals to be mid-plane of the plate bhefore deformation
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Fig.5 Sign convention for moments and shear forces.
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where for an isotropic plate

D = ~k (18)
0 D
~8
in which
1 Y] 0 ]
AU A I . (19)
b T 12(1-v2) ' is  o2(1+w) [0 vy
(1-v)
00 Ty

are resp. the bending and shear contributions to the elasticity
matrix D; E and v are the Young's medulus and Poisson's ratio
resp., t is the plate thickness, and vy is a shear modification
coefficient to take into account the warping of the section

[19]. <{(Note that y = % for rectangular sections,)

3.2 Finite sirip formulation for Mindlin platesg

The finite strip formulation for the analysis of Mindlin
plates follows similar steps to those involved in the simple
beam problem of Section 2. Thus, the displacements are now
éxpanded in terms of truncated Fourier series along direction,
¥, in which both the material and geometrical properties of the

plate are taken to be constant, i.e.

@

w(x,y) = E Wl(x) sin %} ¥
£=1
a
1 B G,y = | ei(x) sin %} v (20)
4 g=1
n
b3 &
g X = —_
y( ') 2Elﬁy(x) cos = ¥

where b is the plate length, wz, Bi and 65 are the displacement

amplitudes for the f#th harmonic term and n is the number of

harmonic terms used in the analysis,

The next step is to discretise the displacement amplitudes

(vhich are a function of the % coordinate only) using a stand-

ard finite element representation [20] along the transverse
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direction of the plate. Thus, within an element e the dis~

placemént amplitudes can be written as

I

e
wl(x) = E N.(x) wg
i i
i=1
e
efy = Y N0 8t (21y
x . i xi
i=1
ne
ol = § N, x) egi
¥ i=1 ¥
2 L L .
where woo 8y and eyi are the nodal amplitudes of the ith node

of element e, Ni(x) is the (one-dimensional) shape function of

node i of element e, and n, is the number of nodes in element e.

Thus, the process is equivalent to dividing the plate into
longitudinal elements (or strips) so that each strip has a
certain number of nodes (or more accurately, nodal lines) ass-—
ociated with its transverse direction. The displacement field
is defined longitudinally by the Fourier expansion of (21) and
transversely by the finite element discretisation of (22).

{See Figure 4.)

Substituting (21) into (20} it is possible to write

n ]‘le
w= ) 7 el (22)
k=1 j=1
where u = {w, 8 & ]T
— 1 x’ Y
, Hng 0O 0
N~ =
N o NS, o
v} NiCR
£ 2 £ £ .7
ud =
an a; [wi, exi’ eyi] {23}
with 8 = sin Lr and C = cos A ¥

£ b e b
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The harmonic expansions chosen satisfy the following

houndary conditions

LYz 36 for y =0 and y = b

= =L =g

Px | Ix 3y

which imply that the plate is simply supported at the two
opposite ends, Other boundary conditions can be reproduced by
an appropriate selection of the Fourier-like expansions of (20),
However, the expansions chosen here are the most simple and
usdal in practice for economy reasons as will be explaineéed

later.

The discretised expressions for the strains and stresses
within a strip can be simply obtained by substituting (22) into
(14) and (18) resp. Thus, after substitution, the following

expressions are obtained

n
n e
e= 1 1 8 & (24)
=1 i=1
and n n
a
g= 1 1 pB a3} (25)
=1 =1

whers §i is the strain-displacement matrix of the ith node of

strip e for the Zth harmonic term, which is written as

BY - ”blt (26)
-i Il
i
~ai
whers b
0 My s 0
ix R
oo in
?bi = Q Q _Ni = SE (27)
a
L i
0 Nl b CQ ihd Cl




oN, F
2 N 8 )

. ax & i%2

B, =

~81 i
Nl b C,Q 0 Nicﬁli

in which Béi and §ii are the contributions to the strain matrix
of node 1 due to bending and shear, resp. for the Lth harmonic

term.

Expanding the forces in the same way as the displacements,
the distributed vertical load can be represented by the exp-

ression

z q sin ——-y (28)

Thus, substituting (25) and (26) and using (21) and (28)
the expression for the Total Potential Energy of the plate can

be expressed as the sum of the contributions n° from each strip

gl e T

e e A 2=1 3=1" m=1 j=1
n_ (29)
f n
(J {N Slw)(Zq smm}
- 211_1 m=1

e . . .
where A~ is the area of the transverse cross-section of strip e.

Taking into account the orthogonal properties of the functions

SR and C,, i.e,

£
b 1 b
J S£ Sm dy =3 if 2 =m
0
(30)
(b
J CE Cm dy =0 if L #m

0 J

The expression for the Total Potential Energy of the

strip, ﬂe, of (29) can bhe written as
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n n ne n
=3y 1) T @b 1 g -
f=1 m=1 i=i je=1

(3L
n
2 LT, L
- ) Z(a)TEfJ
8=1 i=1
in which ( P
b a(ﬁ)Tnﬁd for &
e = 5 2. VB, X for = m
1) 2o, ) (32)

0 for L # m

; : e .
is the stiffness matrix of the strip e of width a  connecting
nodes i and j for the fth harmonic term, and

e
L

a
e b . T
(" =2 ( {0, N.q, 0] ax (33)
~1 2 } 1

¢
is the vector of forces of node i of element e for the %th

harmonic term,

Matrix ﬁi of (32) is obtained from (27) by simply making
S =C, =1,

From (32} and (33) it can be seen that there is no
coupling between the different harmonic terms and, therefore,
the stiffness matrix and load vectors of the strip can be

computed separately for each harmonic.

The discretised equilibrium equations can be easily
obtained by minimising the Total Potemntial Energy of the plate,

T, with respect to all the nodal amplitudes, i.e.

a2
3

(34)

az

i

R o=
!
=

Equation (34) leads to a system of linear equations of the

form
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I K11 0 al { £t
1522 a.?. f2
1 . = ' (35)
o e e |

Therefore the global stiffness gﬁg and the load vector gg
can be computed separately for each harmonic by assembling the
contributions from the different strip matrices in the standard
manner {20]. The system of equations for the fth harmonic term
can then be solved independently for the nodal ampiitudes 52.
By repeating this process for all the harmonics, the different
nodal amplitude parameters can be obtained. Subsequently, the
displacements at each point in the structure can be computed
by (22), whereas the strains and siresses can be evaluated

using (24) and (25) resp.

It is worth pointing out here that the decoupling of the
stiffness and load matrices for each harmonic term is a direct
consequence of the Fourier expansions chosen for the displace-
ment field in (20). If any other expansion is used to re-
produce a different type of boundary condition at the plate
ends, then decoupling does not occur due to the appearance of
products SQCm which do not satisfy the orthogonality condition
{12]. 1In such cases the stiffness matrix is a full matrix and
special iterative techniques have to be used in order to make
the finite strip method competitive by comparison with the

more general finite element procedures [12].

3.3 PNumerical evaluation of the integrals

In the present implementation all integrals in the trans-
verse direction, such as those of (33) and (34}, are evaluated
numerically using one-dimensional Gauss-Legendre quadrature [20],

Thus, ecach integral is evaluated gs follows
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e {+1 ng

a
J £ dxo= | gt di = ] () W, (36)
¢ | i=1
where Ei and Wi are the coordinate and weight factor of the
ith Gaussian point, resp. and ng is the number of integration

points used. A table with the values of the Gaussian co-

ordinates and weights can be found in reference [20].

3.4 'The reduced integration family of Mindlin finite strips

Mindlin finite strips must be used with caution when
dealing with very thin plates., The problem is similar to
that experienced with Mindlin plate finite elements. As the
plate thickness becomes small, the influence of the shear
terms tends to dominate the numerical solution and unrealistic
overstiff results (locking) can be obtained unless some pre-

cautions are taken,

The stiffness matrix associated with the fth harmonic

: . L
can be written in terms of bending and shear contribution gb
and %Sgg'resp. as

RS 4 ST % ) e
SRR =R T K (37)

_'Oné of the simplest ways to ensure the singularity of
L8

‘matrix gs and hence avoid locking is to relax the constraint

imposed by the shear terms by under-integrating the coeffi-
cients of gsll in the numerical integration of the integrals
which appear in the stiffness matrix ggg. The rest of the
stiffness matrix can be exactly integrated and thus the pro-
cess is called "selective integration", or else it can also be

under-integrated which is usually termed "reduced integration”.

The number of integrating points to exactly integrate the
strip matrices, obviously depends on the degree of the shape
function polynomials of each particular strip. Figure 4 shows
the shape functions for the linear, quadratic and cubic

Mindiin strip elements, Table 1 gives the number of Gaussian
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TABLE 1: Gaussian integration rules for malrices K' and K

for various Mindlin strip elements.

GAUSSIAN  INTEGRATION RULES
STRIP FULL (F) SELECTIVE (S) REDUCED (R)
ELEMENT 5: 52 51 52 5: 5:
o0 2 2 2 1 % 1
0—0—0 3 3 3 2 2 2
O30 4 4 3 3 3 3
NUMBER OF INTEGRATION POINTS

integrating points [20] needed for the full, reduced and

selective integration of Kbﬁl and Ksﬁﬁ.

It has been shown by Onate and Suarez [18] that singular-
ity of matrix 5522 for the linear, quadratic and cubic strips
is ensured for most practical cases if reduced or selective
integration is used. The linear strip with full integration
behaves badly and it gives overstiff, unrealist%c results even
for the case of moderately thick plates. The quadratic strip
with full integration is somewhat unreliable. Although de-
flections and bending moments agree in most cases with theo-
retical values, the shear forces oscillate and smoothing is
recommended. The cubie strip, however, performs well with
full integration. Nevertheless, reduced integration can be

recommended for economy reasons,

Some of the properties mentioned above will be shown in

the examples which are now presented.
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3.5 Numerical examples

3.5.1 Example 1: Convergence with number of harmonics

Figure 6 shows the convergence of the central deflection
and central bending moment, Mx’ for a simply supported square
thick plate under uniform loading., Numerical results have
been obtained for the meshes of linear, quadratic and cubic
elements shown in the same figure. The convergence rate for
reduced, selective or full integration is the same for all
strip elements. Five non-zero harmonics (the even harmonic
terms are zero due to the symmetry of loading) are required to
obtain an error of less than 0.3% in both deflection and bend-

ing moment compared with the converged solution,

3.5.2 Example 2:  Convergence with number of strips

Figure 7 shows the convergence of the central deflection
and central bending moment, Mx’ with the number of strips for
the plate considered in Section 3.5.,1 for twoe different thick-
ness/span ratios of t/L = 0.1 and 0.01 resp., The percentage
error with respect to the theoretical "exact” solution [21] is
shown for the linear, guadratic and cubic strip elements with

full, selective and reduced integrationm,

' It can be seen that results for the linear element with
selective and reduced integration are extremely good in both

cases when compared with the gquadratic or cubic strips.

3.5.3 Example 3: Thin plate behaviour study

Figure 8 shows the value of the central deflection of the
Square plate of Figure 6 for a wide range of thieckness/span
ratios. It can be seen that all elements behave well with
reduced or selective integration and give the correct solution

for thick, thin and very thin plates,

It is interesting to look at the distribution of shear
forces along the centre line of the plate for different thick-

nesses. The shear forces have been plotted in Figure 9 for
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Fig. 7 Square plate under uniform loading. Convergence study of the deflection
and bending momment, Mx, at the plate center for the linear, quadratic and
cubic strip elements with full, reduced and selective integration.
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two thickness/span ratios of t/L = 0.1 and 0.01. We can see

that wrong results are obtained with the linear element and
full integration for the two cases, whereas selective and re-
duced integration give the correct results., Results for the
quadratic element with full integration oscillate, as already
mentioned. These oscillations are eliminated if selective or
reduced integration is used. More information about this

example can be found in reference [18].

3.5.4 Example 4: Gquare plate subjected to localised edge
load

This square plate is simply supporied on two opposite
edges, clamped on one edge and free on the remaining edge.
The centre of the free edge is subjected to a line load of
varying intemsity, as shown in Figure 10, In the vicinity of
the load, the transverse stresses are large compared to the in-
plane stresses with the result that shear deformation, in
these regions, contributes significantly to the total deform-
ation, The results obtained with the linear, quadratic and
citbic Mindlin strips with reduced integration are compared
with solutions based on classical plate theory [21} and with
results of the work of Alwar and Ramachandran in which
Reissner’s theory is compared with experimental results [22].
Figure 10 clearly shows the importance of allowing for shear
deformation., As the intensity of the line load increases, the
numerical results obtained with classical plate theory, ser-
iously overegtimate the maximum tensile stress at the centre
of the free edge. This situation worsens for thicker plates,
The numerical results obtained for all three Mindlin strip
elements are in good agreement with the experimental results.
Figure 11 shows the localised nature of this overestimate and
how thin plate theory is satisfactory in regions not too dis-~

tant from the load.

3.5.5 Conclusions

For economical solutions which do not exhibit locking
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Fig.10 Square plate simply supperted at three edges under localised line load
acting at free edge.Moximum tensile stress.
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reduced integration should be used in all strip elements for

practical plate problems, In addition, the linear strip with

reduced integration seems to be the best value element due to
— — Classical plate the'ury[”:l

its excellent behaviour for thick and thin plate analysis and
—— Mindlin's strip

its simplicity. Moreover, an explicit form of the element

matrices is simply obtained by evaluating the integrals at the

0.0 - 10,0 - strip mi¢-point [18].
10% 10# 4. ANALYSIS OF FOLDED PLATES WITH CURVED PLANFORMS
|
\ | The Mindlin finite strip formulation for felded plate
l“'\ ma% analysis closely follows the pattern presented for the analysis
\ E of plates in the previous sections.
|
e \ 7'0"‘\\ The most general case of curved folded plates with cir-
\ \ cular plan shape is considered. It will also be shown later
tia=120 ta=
6.0 [~ \ wla=00t 60 \ JZ;E; g that the formulations for folded plates with rectangular plan~

forms and axisymmetric shells can be obtained as particular

cases of the formulation for curved folded plates presented in

the next sections,
4.1 Basic theory

4.1.,1 Displacement field

In the shell element shown in Figure 12, the three dis-

placements, u, v, w, of a typical point can be expressed in

terms of the three mid-plane displacements uo, v, and ¥ and

1,0 | 1 i 1o | ! | the two normal rotations 6_ and 98 as

0,30 0,85 0,40 0,35 0,50 Q45 0.40 0,35 ; °

xfa xia
) . u{s,0,n} = u (s,0) +n 0 (s,8)
Fig.11  Square plate simply supported at three edges under localised line oad ¢ °
acting al free edge Moximum tensile stress at various points, v(s,9,n) = v (s,8) +n Bt(s,e) (38)
[s]

H

w(s,b6,n) wo(s,e)

in (38) GS and et are the normal rotations contained in
planes sp and tn resp. These rotations can be expressed as the
sum of the change in slope of the middle surface and an extra

average rotation due to shear, so that
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fig.12 Sign convention for displacements in a troncoconical shelt

Bwo
9% =~ 55 T
dw
=.1_o
Bt =775t rbt 39

The displacement vector at a typical point may now be de-

(40)

fined as
T
u = [uo,vo,wo,es,et}

-

, n) which

4,1,2 Strains
The relevant strains in the local system (s, t

is illustrated in Figure 12, are defined as

77
r du ]
Es as
ERNCLAN SN R
Et r a8 r Rt
H 1 Ju av v n av
= = | ISR S e = - 41
g Vet | r 36 T s Ty sind R_ B8 (41)
dw
st GS+ is
g 4 1w v
Yin t " F¥38 TR
\ L t ]

Upon substitution of (38) into

(41) the strain vector can bhe

written as \
ngb
=& + (42)
= m
£
ts |
where _
u
.5
Js
1 v wo
?—BT.O-+-—sin¢———-cos¢
avo 1 Buo vO
Sm © 5s T 3p ~ S
o]
; 0 -
- 58 -
1
fs
a0
1"t s _.
gb = T 58 + sin ¢
30 30 [¢] v
t + 1 s _ _E sin ¢ - cos @ ]
a8 r o8 r r s |




awo
es * 3s
and Es = - (43)
1 o + —— cos ¢
r ab

are the generalised strain vectors due to membrane, bending
and shear effects, resp. 1In obtaining (43) the following

assumptions have been made

t+39 =1, =~ —t-9 (44)
t t

and r = Rt cos ¢.

The generalised strain vector is now defined as
» £y Eg (45)

4.1.3 Stresses

The vector of stress resultants corresponding to the gen-

eralised strain vector of (45) can be written as
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Fig.13  Sign convention for displocements and resultant stresses
in a trongoconical shell,

4.1.4 Stress-strain relationship

For an elastic material the relationship between general-

ised strains and stress resultants can be written as

g= g 9y 97 (46)
where
T

T = Mg Neo Fgil

g, = [M M M ]T 47
“b “sr Tt Mgt (47)

T
9 = 19, Q1

are the stress

shear effects,

resultant vectors due to membrane, bending and

resp. For the sign convention see Figure 13.

g=D¢ (48)
with
¢ 0
m ¥ b
= (49)
D °© p, 0
o o 1o

where for an

may be written as

1 u Y
’ Et
= 0 1 a (50}
~m 1-y#
1-v
0 0 3
and P'b and IQS have the same meaning as those in (19).

isotropic material the membrane elasticity matrix
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4.1.5 Total Potential Energy of the shell

It can be shown [25] that the Total Potential Energy of
the shell can be written in a form equivalent to that for a

plate in (13) as

r
Tr=%”sTGdA—HudeA—iJu tdA-{uTPdI‘ (51)
IV Jigm " I S

where u is the displacement vector, b and t are the body force
and distributed loading vectors acting per unit area, P is the
vector of point loads acting along a line ', and A the area

of the shell mid-surface,

4.2 Finite strip formulation for curved folded plates

The folded plate is divided into longitudinal strips as

shown in Figure 14,

If k is the number of nodes within a particular strip e,
the displacement field within the strip is expressed as
n k
v L
L Z z N, %ig’ (52)
=1 i=1
£ & . R
where gi and a, are resp. the generalised shape function
matrix and the vector of nodal displacement amplitudes assoc-
iated with node i for the Lth harmonic term. These matrices

have the following form

NS, O 0 0 0
o N 0 0 0
it
3
NS =] o °o NS, o0 0 (53)
0 0 °o Ks o
0 0 0 0 N
g _ 2 2 L 2 L T
25 T DMgi 0 Vouo Vair O By ) (543

bridge strip

14 b Straight

l4a-Curved bridge sirip

coordinale

element

local

bridges . Finite strip discretisations and

FIG. ¥:Curved and straight
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S %) L
where S2 = sin - g, C, = cos 7;—8 and the angle o is defined

in Figure 14.

It is easy to check that the chosen harmonic expansions
satisfy the simple support conditions at & = 0 and 6 = 4,
This formulation is thus valid for simply supported folded

pPlates with rigid diaphragms at the two ends,

The generalised strain vector ¢ of (41) can be simply
obtained at any point within the strip in terms of the nodal

displacement amplitues by substituting (52) into (41) to give

TR g
€= ) )} B'a 55)
g=1 i=1 * 71 (
L
where gi can now be written as
2 2 £ 2. T
B =
~1i [gmi’ §bi’ gsi] (56)
with
R ) ]
7;;‘ g 0 0 a O
2 N Nizw Ni
gmi = | —sgin ¢ 8 By SE - cos ¢ SR o] o
Niﬂw aNi .
c — e gy
| B . (as " 51n¢)c2 0 0 0
N 1
0 0 0o —
as Sy 0
1y N Niﬁn
gbi =] 0 0 0 — gin ¢ SR - SR
3
o i cosg 0 Ni£W c BNi N:i.
L s r a b G G T osimdg
[ BN,
0 +] —
- 5s Sy NSy 0
Bes = N, N, on B
0 —— 08 C =
L N © NiCy
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£
i gbf‘ and gsi are resp. the generalised

strain matrices due to membrane, bending and shear effects for

where b' = ro and Bm

node i and the 2£th harmonic term,

If the force vectors are represented by the same kind of
expansion as the one used for the displacement field, then it

is possible to write

2 ) % %
b, t, pl = ) IS, b ,s t,8, p1I (58)
arok g w0 Rt Ry
=1
where
SQ 0 0 o] ¢}
0 C 0 e} 4]
s;=l0o o s, 0o o0 (59)
o] O 0 SR 8]
i 0 o 8] C£ i

and QR, ER and pﬂ are the force amplitude vectors for the 2th

term of the series,

Upon substitution of (52), (56) and (48) into the Total
Potential Energy expression of (51) and by taking into account
the orthogonal properties of functions Sﬂ and Cm it is poss-
ible to obtain, after an identical process to that followed in
(30) - (32) for the plate bending case, the expression for the

strip stiffness matrix and load vectors which have the follow-

ing form a
. % [ € {Eig']Tlg E,’Qrds for % =nm
K,"] = Jo J (60)
ij
O for L #m
and
([ ' {
1 * o JJ wHTo da + JJ ahTe aa I abHTp ar 61y
=i A ~ 4. = A ~i ~ . ~i %

Further details on the load vector for different loading
cases are given in Section 8. Matrix E;’of (60) can bhe

obtained from (57) by simply making S2 = CQ =1,
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The discretised equilibrium equations for the whole struc-
ture are obtained by minimising the Total Potential Energy.
This process leads to a set of uncoupled systems of equations
which are similar to those of (3) and which can be salved sep-

arately for each harmonic term,

4.3 Assembly of the stiffness matrices and coordinate
transformation
—-austormation

One of the main differences between the plate and folded
plate strip formulations is that in the plate bending case the
strips are all in the same Plane, which coincides with the
plate middle surface, whereas in the folded plate case the
Strips usually meet at different angles. Thus, to assemble
the complete stiffness matrix of the structure from the in-
dividual strip stiffness matrices all nodal forces and dis-
bPlacements must be expressed in a common, and uniquely defined,
coordinate system. The nodal displacements defined in the
local strip coordinate system, shown in Figure 12, contain
only twe rotation components Bs and Bt. The third rotation,
Gn, about the n axis does not appear in the strain definition
and is therefore not required to model the structural behaviour
of each individual strip. However, when severail strips meeting
at a common node lie in different bPlanes it is necessary to
include ez, the rotation about the global z axis, for a con-
sistent transformation of displacements snd forces from the

local to the global coordinate system,

Thus, it is possible to write that

5..2 = Tfe) a.g (62)
~1 ~ ~1
and EE = T(e) f’q’ (63)
~1 -~ ~1
where
s b “~f % .2 2 % 2 T
f’i = Eui’vi'wi’el’;i'szij'
(64)
N LA 2 L 2.7
~L T Eb;i L l"z':i ' Me.“. ’ M@-—, ’ Me__ 1

85
are the displacement and force vectors at node i of element e
in the global coordinate system i, ;, Z where y is parallel to

t and z is the vertical axis as shown in Figure 12, Note also

that
£ 8 . £ £ £ T 85
BTl T W B By 0 (65)
£ L 2 £ 1 £ T 86
= F . M M 0] (66)
fl [Fsi ' Fti ' Tni ! 851’ eti’

are the same vectors in the local strip coordinate system.

The matrix

(sin ¢ 0 -cos¢ O 0 0
0 1 0 0 0 0
cos ¢ 0 sin ¢ 0 0 o
T(e) . (67)
= - 1 0 0 1 0 0
0 4] o 0 sin ¢ cos ¢
] Q 0 0 =~cos $ sin ¢

is the coordinate transformation matrix of elemént e, and ¢ is

the angle between axes g and z, as shown in Figure 12,

The strip stiffness matrix in the global system can be

written in the standard form as

T _
8 e = (@) ey (68)
~ij ~ ~ij ~
with
g9
. S
K'RR - (5x5) (69)
{6%6) 0 0

: : t LA . .
The sixth row and column of 513- contains only zeros.
This is done in (69) to facilitate the transformation from the
ldcal to the global system, Equation (69) éan be written in a

more practical form as

g e o o S~ {70}
= = B’} DB r ds
By =3 J£~1] D B,




BY = B, T (71)

Matrix BI allows the direct evaluation of the ilocal stress
resultants from the global displacements using (55) and (49).

Thus, the local stress resultants can be written as

(72}

=)
]
[

I et
i) =]
210
©

In general, matrix ﬁiiﬁ will be fully populated and thus ez

will be an independent degree of freedom. A problem, however,
arises if all strips associated with a particular node happen
to lie in the same plane because the resultant diagonal stiff-
ness coefficient corresponding to BZ, after assembly, will be
zero, Such g node is termed a coplanar node and examples can
be seen in Figure 14. This singularity of the global stiffness
matrix has been avoided, in practice, by assembling the equa-
tions corresponding to the three rotations at a coplanar node,
in the local system s,t,n in which s,n lie in the same common
plane containing all the adjacent strips. Any arbitrary number
is then put in the sixth leading diagonal location of matrix
Eiijz. This implies that the sixth equation is a pseudo-
equation, However, this does not affect the solution process
since such an equation is uncoupled from the rest of the stiff-
ness equations, This artifice, first suggested by Clough and
Wilson[23] implies that all coplanar and non-coplanar nodes
have six degrees of freedom. This is very convenient if the

equation solution system does not allow for varying numbers of

degrees of freedom at different nodes.

5. CURVED PLATES

The Mindlin strip formulation for the analysis of curved
plates can be derived directly from the formulation given for
curved folded plates presented in the previous section by

simply neglecting the membrane behaviour of the structure in

all equations. Details of the formulation follow precisely
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the same steps as those explained previously and they will not

be repeated here, The stiffness and load vectors for each

harmonic term are obtained from (60} and (61) resp. However,

B?’and P are now written as
~1 ~

r BN .
0 -— 8
s L
N Ni£ﬂ <
0 -= sin 9 SE B 2
N, AT aN, N.
bl S —1 .1 sin eyc, ((73)
LB © o 1 G~ 7 sin 96
aNi o
- N.S
3s og 15
Niln
b’ Cg] 0 Nicl _
and
D, o
D = J (74)
N 0 D
~8
in which b' = ro and §f’of (54) is now expressed as
3 L £ £ .7
By =Wy By 0 Byl

1n . . .
By making r very large so that - 0 and by letting b' = b it
is possible to obtain the strain-displacement matrix for a

straight (or right) plate given in (27).

6, FOLDED PLATES WITH RECTANGULAR PLANFORM

The formulation for folded plates with rectangular plan-
form can be easily derived from the formulation for their
curved counterpartis presented in Section 4, Thus, only details

of the main differences will be given here.
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6.1 Displacement field

For a plane '"shell" element the three displacements of a
point across the thickness can be expressed in terms of the

displacements of the middle surface as
u(x,y,z) = u (x,y) +z 8 %,y
v(x,y,z) = vo(x,y) + = By(x,y) (75)
w(x,y,z) = W (X, 7)
where all terms have the same meaning of those of (38) except

that the fixed local axes X,¥,% replace the curvilinear ones

5,t,n (see Figure 14(b)).
6.2 BStrain field

From standard elasticity theory the strain vector can be

written as

£ ZE
= ~b
g= 4 N+ (76)
0 £
s L Es
where
ax dx { Yo
&) + —3—
e = v - a8 = j : * 77
~ia o 5 L £s T ow, D
3y oy l o
5 4+ —a*"-
ju_ v 36 ae v Y
L, _0 S 4
dy 9% 3y 3x

are the corresponding generalised strain vectors for membrane,
bending and shear. It is worth noting the decoupling between
membrane and flexural! effects at element level, which did not

occur in the curved bridge formulation (see (43)).
6.3 Stresses

The expressions for the stress resultant vectors are
identical to those for curved bridges (see (47)) with indices
X, ¥ and s replacing s, 6 and n resp. The sign convention
given in Figure 13 iz also followed, The stress/strain relst-

ionship i identical fo the one given in (48),
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6.4 Finite strip formulation for folded plates with
rectangular planform

The displacement and strain fields are expressed in
exactly the same way as for curved bridges (sece (52) and (56))
with the bridge length b and the coordinate y replacing the
angles o and ¢ resp. (see Figure 14). The strain matrix gf’is

obtained from (77) and (56), and it now takes the form

L [} L £ T
BiZ DBy By o By ! 78
where
_BNi
—_ o o 0
X SE ©
1 im
B 0 g S, o} 0 0
JA aNi ‘
! N:L —gmcl iz Cﬂ. 4] 0 Q0
; A
- an, ]
1] 4] 1) . SJ?, 0]
B = 0 0 0 a N g (79)
~bi : ib 8
N,
L i
0 o o N3 G % 1y |
” o, -
(4] 0 E—SE leﬂ, [+
QJ —
~8i
L1
P 0 0 N3¢ 0 NiCy

are resp. the membrane, bending and shear strain matrix for

node i and the fth harmonic term.

A
It is worth noting that matrix gi for rectangular folded

plates can be directly obtained from the expression for curved

folded plates by simply making r very large so that i/r +~ 0

and by setting b' = b in (57).

These ussful analogies allow all of the relevant matrices

for rectangular folded plates to be derived from the corres-
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ponding expressions for their curved counterparts[17].

7. AXISYMMETRIC SHELLS

The Mindlin formulation for axisymmetric shells closely
follows the steps of the formulation for folded plates with
curved planforms, In fact, for axisymmetric shells under
arbitrary loading the expressions for the displacement, strain
and stress fields are identical to those of (38) - (50), More-
over, the Total Potential Energy of the shell can be written in
a form which is almest identical to that of (51) - the only
difference being that all integrals are taken now over a whole

circumference.

Thus, the Mindlin finite strip formulation for axisymmetric

shell problems can be considered as another particular case of

the curved folded plate formulation (as was the case for rect-

angular and folded plates) and the basic steps in both form-

ulations are essentially the same.

7.1 Mindlin finite strip formulation for axisymmetric shells
under arbitrary loading

The shell is divided into circular strips as shown in
Figure 1. For axisymmetric shells under arbitrary loading
the displacement vector can be expressed within each strip in
terms of the symmetrical and non-symmetrical contribution
L &

(N.a, + E

a a,”) (80)
1 1 1

Il e~11"

n
u= )
=0 i

where the displacement vector, u, and nodal parameter vectors

A - g
éi and gi are defined by (40) and (54) resp., and

N

1% 0 0 0 0
. 0 Nisz 0 0 4}
NS =10 0 NMC 0 0 (81a)
0 0 0 NiC£ 0
o 0 o g N.8
" 174 ]
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N.S 0 0 0 4]
it
0 Nici 4] 0

= o 0 N.S 0 0 (81b)
ik
0 0 0 N,8 o
i
0 0 0 0 N.C
L ig

are the shape function matrices corresponding to symmetrical
and non-symmetrical displacement fields resp. Furthermore,

SQ = gin &6 and C}Q = cos K8.

Note that inm (80) the harmonic 'zero' has been included,
This term has a clear physical meaning and it corresponds to

an axisymmeirical deformation.

To simplify the computation it is usual to evaluate the
response of the shell to an arbitrary loading as an independ-
ent sum of the symmetric and non-symmetric part of the deform-
ation. Thus, for the case in which all loads are symmetric
with respect to a plane (which we will take here as that of
6 = 0 for simplicity) only matrix §j’of (80) will be used.

The study of the non-symmetric part will be identical

- %
taking gf‘instead of §i.

Following precisely the same steps as those explained in
Section 4.2 for the curved folded plate case, the decoupled
system of stiffness equations for each harmonic term with the

stiffness matrix may be obtained and written as

e

g _
k. ¥%9e - 2 J EHTp B rds for £ =0
~1] ~i ~ =3

0

(82)
17} a®

[K..]e=WJ E5TpB rds for & 20
Ky 3 B)' DB

0

£ .
where matrix D is given by (49) and matrix §i can be written

in a general form for the axisymmetric and non-symmetric cases

as T
=12 = R.T = 4.T L.
§i = [[?mi 1, [gbi 1, [§Si ] ] (83)




where
2 Ny 7
7s a 0 g 0
N N
[ sin ¢ i et
~mi Ni - T L - cos ¢ 0 0
N BN
- —= 3 e
. r 3s sin ¢ 0 6 0 J
B L) 7
0 0 -_— 0
38
. N, N,
lﬁbi = Q 0 0 - sin ¢ 5 2 {84)
. N, aN. N
i cos ¢ - i
0 —— 0 ) - — gj
L 3r r r 38 r St ‘bd
[ ON
[0} 0 1 N' 0
2 s i
B " =
~g5i Ni N,
0 ~X cos 4 --27 0 N,
r r i

are the membrane bending and shear strain matrices for the {th

harmonic with

2

4 for the symmetric case

=l
1]

- for the non-symmetric case

It is worth pointing out that matrix éf’can be directly
obtained from its analogous expression for curved folded plates
R . . . 2 =
by simply substituting in (57) the value of TE-by 2 and making

SE = CE = 1,

This shows again the versatility of the general formul-
ation of Section 4 and how it allows folded plates, plates and

axisymmetric shells to be treated in a unified manner,

The transformation of the strip stiffness mairix into a
global coordinate system follows precisely thae steps presented
in 8Section 4,3 for curved folded plates with the transform—
ation matrix being identical to that of (67). The transform- -

ation wilil not bhe repeated here.
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The loads are obtained using the method described in

Section 4.2 with the following expansions

n

b, t, pl = | 15,p, 5,45, 5,09 (85)
=0
where
"ci 0 0 0 0
0 Sl 0 0 0
§E = 0 0 CR o 0 (86)

0 0 0 Cg Q

a 0 0 0 SQ

for the symmetric loading case. For the non-symmeiric case

s, 0 00 0]
0oc, 0 0 0
s, =| 0 08 0 0 (87)
© 0 05, 0
0 00 0c|

Details of the load vector for different loading cases are

given in the next section,

If the loading is also axisymmetric the same formulation
is directly applicable by simply evaluating the contribution
of the zero harmonic term only {(i.e. T =0 in {84))., Howsver,
a simpler formulation can be antomatically derived taking into
account the contribution of the non-zero displacements u, w
and GS only in matrix Eié' Details of thig formulation can be

found in reference [24].

8. COMPUTATION OF THE EQUIVALENT NODAL ¥FORCE VECTOR

Az already mentioned im Section 4.2, the external loads

acting over the struciure are expanded in the same way as the
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displacements, that is as the sum of the harmonic series along

the longitudinal/circumferential direction of the structure.
Moreover, the form of the Fourier expansions for the loads is

the same as that chosen for the corresponding displacements,

i.e.
Displacements Loads
n n
g2
u= ] sh £= )8 (88)
=1 =1
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Euler's formula. For instance for a uniformly distributed
£
vertical load we can write @, as
b
. &
2 [0515 b v zqw
G = = — (& - cos &m) (91)
W m
b
( L
J sin? qg-y dy
o
An identical process will be followed for the evaluation

L ¢
where f and §° are the load amplitudes vector

of the harmonic functions for the £th harmonic

and the matrix

term resp.

Thus, for the case of a rectangular plate

n
- T O S S AN A S I A
P = = =
L N LS s N L -
£=1 £=1
n
_ T I A S T S )
to= [t M, ,M_] b8t M =
¢ N g , 1= ) 8"t 89)
x y 121 w ox ' oy 01 (
n
_ T ) T _ 2
b=1Ib, 0,01 = }sm-o0 0 = jsht
=1 0=1

s
, 0 o
st =
=10 s, o0 (90)
0
o ¢

In (89) P, t and b are the vectors of point loads, surface
loads and body forces loads, resp. The three components of
such vectors correspond to the loads associated with the ver-
tical deflection and the two rotations, resp. For the body
forces case only the vertical component , bw' corresponding to
the self weight of the structure per unit area, has been con-

sidered.

The load amplitudes are calculated individually using

of the rest of the loading amplitude terms.

The vector of nodal forces for each strip for the ith
harmonic term can be written in a general form for the diffe-
rent structures studied in this chapter using (61) and the pro-
perty of the orthogonal function 5, and C  as

2 £

e e
(a

a
i

f°=2¢C J N, hirds + C J N, tErds + Cq, (92)
o *° o 7 o

For plates and folded plates C = %-where L is the length
or angle of the structure for the rectangular of curved case,
resp. For axisymmetric shells, C = 2m and 7 for £ = 0 and

L = 0, resp. For right structures r = 1 in (82).

In Table 2, the expressions of £i£ for three typical
loading cases of point load, uniform load and self weight, for
plates, folded plates and axisymmetric shells (under symmetric
loading) are given. The evaluation of the formulae of Table 2
for different strip elements mentioned in this chapter is
simple and only involves the appropriate evaluation of the
corresponding integrals for the strip shape functions over the
strip length. This can be easily performed using the shape
functions expressions of Figure 4, and it is left as an exer-
cigse for the reader. More details can be found in references

[17] and [25].
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TABLE 2

8. THE REDUCED INTEGRATION FAMILY OF MINDLIN STREP ELEMENTS
FOR FOLDED PLATE AND AXISYMMETRIC SHELL ANALYSIS

The behaviour of Mindlin strip elements for folded plate
or axisymmetric shell analysis is analogous to that explained
in Section 3.4 for the plate case, i.e. the optimum performance
of all strip elements occurs when selective or reduced inte-
gration is used. The Gaussian quadratures for the different
integration rules for the linear, gquadratic and cubic elements
for the folded plate formulation presented in the last section
are identical to those presented in Table 1. Moreover, it has
been shown by Suarez[25] and Onate and Suarez[17,18] that the
linear strip with reduced integration (one single Gaussian
point for all integrals) has an excellent performance in prac-
tical folded plate and axisymmetric shell problems. Indeed,
useful ‘explicit' expressions for all element matrices can be
obtained by simply evaluating all integrals at the strip mid-
point{17]. The accuracy of the reduced integration linear

strip will be shown in the examples which are mow presented.

10, EXAMPLES

10.1 Bxample 1: Curved simply supported plate

In this example a curved thin plate simply supported at
the two ends is subjected to a point load., Both experimental

and numerical results are available for the plate.

The geometry of the plate, material properties, loading
position and finite strip mesh used in the analysis are given
in Figure 15. Results for the mid-span deflections obtained
with the reduced integration linear element using six non-zero
harmonic terms can be seen in the same figure where experi-
mental and theoretical results obtained by Coull and Das[26],
finite strip solutions based on Kirchhoff's theory obtained by
Thorpe[27] and Cheung{12], and finite element solutions re-
ported by Sawko and Meriman[28] and Fam and Turkstra[29] for
the same problem are alsc shown for comparison. The solution

obtained using the linear strip element is accurate.
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12 Elements

6 Mon zero harmenics
E= 42460 |b/inch?
V=03

t=0.172"

Loading - Point load of 11ib acting in AByC

VERTICAL  DEFLECTION  {IN)
Loading |Rad,| COULL & DAS FINITE STRIP FINITE ELEMENT
Fosition [inc. [ Experi. | Theor. | Thorpe | Cheung % Sawko | Fam & Turkstra
13 0876 0752 0.882 0.995 0874 0851 088 0881
A 1| hsTe 0500 0582 0.624 0.581 0,559 0577 4578
s | 0353 0300 0358 [ET 0357 e 0357 0354
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13| 0457 0470 0459 [ [ 0LL5 Taik AT
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9 1 wst 0725 0153 0.149 0155 051 275 0751
1 DiES 0145 0170 5373 B 0170 0169 0169
Reterence 26 27 12 28 29
% LINEAR MINDLIN STRIP ELEMENT REDUCED INTEGRATION

Fig 15 Slab medel of Coull and Das : Results for the deflection along ABC obtained by severcl authors.
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10.2 Example 2: Right bridge - Simple supported concrete slab/
beam bridge over the motorway -~ Nueve de Julio (Buenos

Aires)

This example shows the adeguacy of the linear strip element
for practical bridge deck analysis, The example chosen is one
of the bridges of the urban motorway, Nueve de Julio actually
under construction in the city of Buenos Aires (Argentina).

The geometry of the structure, loading position, material pro-
perties and finite strip discretisation used in the analysis
can be seen in Figure 16. Numerical results for the vertical
deflection, transverse'bending moment and longitudinal result-
ant stress in the slab at the mid section obtained with 15 non-
zero harmonic terms are plotted in Figure 17. The corresponding
diagrams shown in the same figure are extrapolated from the
finite strip results which are marked with a circle., To assess
the validity of the numerical sclution, an equilibrium check
was performed comparing the total longitudinal bending moment
in the mid-span section with the value obtained using simple
beam theory. The percentage of error obtained is less thanm 5%,

which can be considered as good for practical design purposes.

10.3 Example 3: Simply supported curved box girder bridge

The geometry of the structure, material properties and
finite strip mesh of 18 linear strip elements (with reduced
integration) used in the analysis can be seen in Figure 18.
This problem has also been analysed by Cheungl[l6]} using a
Kirchhoff strip formulation. Results for the horizontal and
vertical displacements of the mid-span section for three dif-
ferent positions of the point load are shown in Figure 19, 1In
Figure 20 the axial circumferential stress resultant and the
radial and circumferential bending moments are plotted to-
gether with some of Cheung's results which are shown for comp-

arison, A total of 15 non-zero harmonic terms were used in the

analysis.
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1 Radian

" i

E=1Kp/in?
T . 1
V=016 z - —=
48° 4
T
'-4'-}-—- B 1a'——.-{.4’«!
18 Strips
17 Nodes

Fig 18 Curved box girder bridge. Geometry of the structure and finite

strip idealisation into 18 strips.
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Fig 19 Curved box girder bridge : Displacements at the mid
section for severa{ loading positions.
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o
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o Linear strip element
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Fig 20 Curved box girder bridge : Circunferencial resultant
siress, Ng.and bending moments Mg and M, at
the central section
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10.4 Example 4: Circular plate under an eccentric point load

The fourth example is a thin circular plate subjected to
a point load acting at a certain distance from the centre of
the plate, The example is fully described in Figure 21 where
results for the deflection and radial bending moment along
several sections obtained with the linear axisymmetric element
and with a mesh of 8-noded isoparametric reduced integrated
Mindlin plate finite elements are shown for comparison., The
Timoshenko[21] "exact"™ thin plate sclution for the deflection
under the load is also plotted. The accuracy of the linear

element is again good.

10.5 Example 5: Pinched cylindrical shell

The last example is the classical thin cylindrical shell
under two diametrically opposed point loads., The cylinder has
rigid diaphragms at the two end sections (see Figure 22), This
example, well-known in the shell literature, has been solved by
several authors., Amongst others, there is an "exact" analytical
double series solution due to Flugge[32]. Finite element sol-
utions have been reported by Ofiate et. al.[31], Lindberg et.
al.{32], Ahmad et. al,[33] and many others. The solution pre-
sented here is probably the simplest one using only 20 linear
axisymmetric shell elements. Nevertheless, it is highly accu-
rate as demonsirated in Figure 22 where results obtained with
the linear element for the displacements and axial forces along
several sections using 15 non-zero harmonic terms compare well
with the more sophisticated analytical and finite element sol-

utions.

11. COMPUTER IMPLEMENTATION OF THE FINITE STRIP METHOQD

~ In this section the gemeral lay-out of a computer program
for analysis of prismatic structures by the finite strip method
will be presented. Also, a detailed computer listing of a

finite strip program for the analysis of right or curved Mindlin
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Fig.22 Pinched cylindrical sheil Displacernents and axial forces along several sections,
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plates will be provided together with some examples and user's

instructions.

We will adopt here the notation used by Hinton and Owen
[34] for the definition of the program variables and sub-
routines. Details of such a notation can be found in refer-
ence {34} and will not be given here. Also, details of stand-
ard subroutines, like that of solution of the system of linear
equations by the frontal method which can also be found in ref-

erences [34] and [35], will be omitted.

Program lay-out

Figure 23 shows the flow chart of a standard finite strip

praogram. It can be gseen that the construction of a finite

Strip program falls into four well-defined phases,

One of the advantages of the finite strip method is that
relatively little data is needed compared with that required
with the finite element method. Input data for a finite strip

program is equivalent to that needed for a standard computer

program for the analysis of framed structures. The subroutine

controlling the input data is named INPUT,

The strip stiffness and stress matrices are calculated in
subroutine STIFFS. The load vector is evaluated in subroutine
LOADFS. Both subroutines are within a loop which implies that
the calculations are performed for each harmonic term of the
series used in the definition for the displacement field.

[Note that after subsequent solution for the nodal displacement
amplitudes for each harmonic term, the strip stress matrices
are employed.in the evaluation of the stress resultants for

that harmonic. This task is performed in subroutine STREFS,]

LOOP OVER TOTAL
NUMBER OF PROBLEMS

CALL INPUT

LOOP OVER NUMBER
OF HARMONICS

CALL STIFFS

LOOP OVER NUMBER
OF LOAD CASES

CALL LOADFS

SFR

JACOB 1

CALL FRONT

CALL STREFS

l

CALL ADD

F16.23 FLOW CHART OF PROGRAM PBSTRIP
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Subroutine FRONT is the equation solution subroutine which

assembles the strip stiffness equations for each harmonic term

and solves the unknown displacement amplitudes for the current

harmonic using the frontal elimination technique [34,35]

Subroutine ADD sums the contribution of all harmonic terms
to evaluate the nodal displacements and stress resultants at

any point in the structure,

The different phases of the program will be detailed in the

following sections. As an example, and for the sake of clarity,

all phases will be deseribed for a plate bending finite strip
program,

The FORTRAN computer listing is also given. However,

most steps in such a program are completely general and applic-

able to the different structures studied in this chapter.

12. PROGRAM PBSTRIP FOR THE ANALYSIS OF RIGHT OR CURVED
PLATES BY THE FINITE STRIP METHODR

In this section the different phases of the finite strip
program introduced earlier will be described for the particular
c¢ase of a program for analysis of right and curved plates using

any of the reduced integration family of Mindlin plate strip

elements studied in Section 3. Most subroutines of the program

are equally valid for direct use in more general finite strip

programs for analysis of folded plates or axisymmetric shell

structures. This point will be stressed throughout the follow-

ing sections,

12.1 Main segment

A listing of the master segment of the program is now

given. This is followed in Table 2 with a Nassi-Schneiderman

(NS)-chart which describes the main segment,

[zR N

an

a0

c

HASTER PHSTRIP

DIMENSION ADISP[3,40],AFQRC(S,4,20),AS01S[120),CO0R0{40,13,

-DISPL(120), DIZPLHEDJ EFURC[MD) ELﬂADlEEI 121, FOREEMUIJ!
JIFPRE(Z,3),LM0D05 (29, 4] MATNO (20), NOFIX([2]) PUSGP[G] PHESC[E a),
-PADPS(20,5), TITL£[1BI \\‘EIGF‘H]

OIMENSION STATEMENTS ASSOCIATED WITH FAGNTAL SOLUTION

DIMENSION EQRHS(1),EQUATE12,1),FIXED([120],6LDAD 12},

LBSTIF{72), IFFIXHED] HACVA[12], NAMEV (1], KPIVD (1], VECRY (12])

GATA MELEM/20/,MFACT /4007, MMATS/20/ ,HPOIN/ 40/, MTOTV,/ 120,/
DATA STATEMENY ASSOCIATED WITH FRONTAL SOLUTION ARRAYS

DATA MBUFA/1/ ,MFRON/12/ , MSTIF/72/ MVFIX/2/

Rl L e bt e L e e A L T Y TL P L L S P ey

PROGARAM FGR THE ANALYSIS OF RIGHT AND CURVED PLATES

BY THE MINDLIN FINITE STRIP METHOD USING LINEAR,
QUADRATIC QR CUBIC STRIP ELEMENTS WITH FULL, REDUCED OR
SELECTIVE INTEGRATION

0

5

EIE N

BARRARF R R R IUA RSB MDA SRR AR ER WA KAk

AEAD{S,900! NPROB

FORMAT [15]

WAITE(6,905) NPRGS

FORMAT (// 5X, '"NUMBER OF PROBLEMS TO BE SOLVED=',T3)
DO 40 1PROB=1,MPROB

REWIND 7

REWING 8

READ {5,910) TITLE

FORMAT [18A4)

WRITE(6,915) IPROB,TITLE

FORMAY (/////,6X, 12HPROSLEM NO. ,13,10X,18A4)
AEAD (S, §30) NHARM, NSYME

FORMAT [215)

WRITE(G,925] NHARM,NSYME

FORMAT[//, ' NUMBER OF HARMONIC TERMS YO BE USED =',IS,

-/,' IMDICATOH FOR SYMMETRY OF |QADING { 1 FOR NON SYMMETRY,
. 2 FOR SYMMETRY] =',I5]

C*** CALL THE SUBAGUTINE WHICH READS MOST OF THE PROBLEM DATA.
C

Crss

feled
gese

Q=¥
Ca%»

cree
Cyue

CALL INPUT [COORD, IFPRE, LNODS, MATNE , MELEM, MMATS , MPOIN, MVFIX

JNCASE, NDIME, NDOFN, NELEM, NEVAB, NGAUB, NBAUS , NHATS , NNODE, NOFIX,
-NPDIN,NPROP, NSTRE,NTYPE, NVFIX,PRESC,PROPS, TLENG]

LOCP OVER ALL YHE HARMONICS

DG 30 IHARM=1,NHARN, NSYME
AEWIND 1
REWIND 2
REWIND 3
REWINO 4
REWIND 9

NEXT CREATE THE STRIF ELEMENT STIFFNESS FILE FOR EACH
HARMONIC

CALlL STIFFS(COOAD, IHARM, L.NODS , MATNO , MELEM , MMATS ,MPOIN, NELEM,

-NEVAB, NGAUB , NGAUS , NKODE, NSTRE, NTYPE, POSGP, PROPS, TLENG, WELGP }

00 20 ICASE=1,NCASE

COMPUTE LOADS,FOR EACH HARMONIC,AFYER READING THE RELEVANT
EXTRA DATA

CALL LOADFS(COGAD,ELDAD, ICASE, IHARH, LNCDS, MATHO , MELEM, MMATS,

.HPOIN, NDOFN, NELEM, NEVAB, NGAUS , NNODE, NPOIN, NTYPE, POSGP, PROPS,
LTLENG, WEIGP!)

MERGE AND SOLVE THE RESULTING EQUATIONS BY THE FRONTAL SOLVER
FOR EACH HARMONIC

CALL FRONT [ASD1S,ELOAD, EQRHS, EQUAT, FIXED, Bi0AD,GSTIF, ICASE,

.IFF1X,IFPRE, LNOOS, MBUFA, KELEM, MFRON, MSTIF , MTOTV, MVFLX, MACVA,
.NAMEV, NDOFN, NELEM, NEVAB  NNOQOE , ROFIX  NPIVO, NPOIN, NVFIX ,PRESC,
.VECRV}

0G 10 IPOIN=1,NPOIN
NEASH=TPOIN*NDOFN
NGISH=KGASH-NDCGFN+1

HATH

HAIN

MALN
MAIN
MALN
HAIN
MALN
MAIN
MAIN
HAIN
HMAIN
HAIN
HAIN
HAIN
MAIN
MAIN
MAIN
MAIN
MATN
MAIK
HAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIH
MAIK
MAIN
HAIN
MALN
HAIR
MAIN
MAIN
MALN
MAIN
MAIN
MAIN
MAIN
HAIN
HAIN
MAIN
MALN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MATN
MAIN
MAIN
MAIN
MAIN
MATH

MAIN
HAIK

MAIN
MALN
MALN
MATN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
HAIN
MAIN
HALN
MAIN
MAIN
HAIN
HAIN
MAIN
MAIN
MATN
MAIN
MAIN

[~ N S N X I




113

¢ ol : MAIN 81
CY¥** WRITE IN DISC DISPLACEMENTS FOR EACH HARMONIC . HAIN B2
c MAIN 83 A
WRITE (7] [ASDIS(IGASH), IGASH=NGISH, NGASH] HAIN B4
10 CONTINUE HAIN 85 |
c MALN 96
s COMPUTE THE STRESSES TN ALL THE STRIPS FOR EACH HARMONIC MAIK a7
€ MAIN BB Loop over each load case. MAIN 62 9
CALL STREFS (ASDTS, LNOGS , MELEM, MTOTV,NDOFN, NELEM, NBAUS, NNOCE, HAIN 88
-NSTRE) MAIN SO0
20 CONTINUE MAIN 91
o OO CONTIRGE - Evaluate load vector by calling
C*®* GUM DISPLACEMENTS AND STRESSES FOR ALL HARMONICS MAIN 94
c MAIN 85 LOADFS, MAIN 67-69 10
CALL ADD (ADISP,AFORG,DISPL,0IZPL, EFORC, FORCE, MELEM, MEACT ,MPOIN,  MAIN E6
.MTOTY, KGASE, NDOFN, NELEM, NGAUS , NHARM , KPO T N, NSTRE , NSYME,, TLENG ] MAIN 97
40 CONTINUE MAIN 9B
STOP MAIN 98 Call FRONT to solve for unknowns.
END MAIK 100

MAIN 74-77 11

Set of maximum dimensions and read and write number Write displacements to peripheral

of problems, MAIN 11-27 1 storage device 7. MAIN 78-85 12
Loop over number of problems. MAIN 28 2 Call STREFS to evaluate stress
resultants for current harmonic.
Rewind tapes for displacements and stresses. MAIN 89-90 13
MAIN 20-30 3
Call ADD to sum displacements and stress result-
Read and write problem title and data,
ants for all harmonics and then write our results,
MAIN 31-40 4
MAIN 96-97 14
Call INPUT to read input data. G
8 Table 2 Nassi-Schneiderman (N§) chart for
MAIN 44-46 5 - main segment of PBSTRIP
Loop over number of harmonics. .;. 12.2 Input data subroutine INPUT
AIN 50 : i
" 6 The input data for a finite strip program can be subdivided
into three main classifications. Firstly, the data required to
Rewind tapes 1-4,9. MAIN 51-55 7 define the geometry of the structure and the support conditions
must be supplied. Secondly, the properties of the constituent
Call STIFFS to evaluate element stiffness. materials must be specified and finally, the applied loading
MAIN 60-61 8 must he defined.
I The input data subroutine presented in this section is
A concerned with the geometrical and consitutive properties only.
Table 2 Nassi-Schneiderman (NS) chart for ; Al] the loading data is supplied in subroutine LOADFS. Sub-~
main segment of PBSTRIP routine INPUT, as presented here, can be used for any of the
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structual applications of the finite strip method studied in

this chapter. As already mentioned, all variables have essen-
tially the same meaning as in reference {35] and full details
will not be given here. However, for clarity, a definition of
the control parameters and main variables is presented at the

end of the chapter.

The geometry of the structure neceded for the analysis is
completely defined by the prescription of the nodal coordinates
of the strips which discretise the transverse cross-section of
the structure. The coordinate of each node must be defined
with reference to an xz global coordinate system which may have

an arbitrarily located origin.

The prescribed degrees of freedom are constrained along
the entire length of the structure. Simply supported end
boundary conditions at ¥y = 0 and y = b require no definition
of prescribed nodes since such a condition is antomatically

satigfied by the Fourier expansions adopted.

Subroutine INPUT is now presented. Descriptive comments
in the form of a N8 chart in Table 3 are provided after the
FORTRAN listing of the subroutine.

SUBROUYLNE INPUT[CGORD,IFPRE,LNDDS.MA?NU.MELEH,HHATS,MPDIN,

INPY 1
.HVFIX,NCASE,NDIHE.NDOFH,NELEM,NEVAB,NGAUB,MGAUS,NHATS,NNODE, INPY 2
.NDFIX,NPUIN,NPHDF,NSTRE,NTYPE,NVFIX,PRESC,FRUPS,TLENG) INFLU 3
OTMENSION COUHD!MPGIN,?l.IFPRE[MVFIX,H],LNUDSlMELEH,4l, INFU 4

c .HATNO(MELEH],NUFIX[HVFIX?,FRESC(MVFIX,E!,PROPS[HMATS,S! INPU 5
INP
C*** DATA INPUT SUBROUTINE ;sz ?
c INPY B
c INPU 8
C*** READ THE FIRST DATA CARD, AND ECHO IT IMMEDIATELY. INFU 10
C INPE 11
READ (5,500} NPOIN, NELEM, NVFIX, NCASE, NTYPE, NNODE, NMATS, INPU 12
-NGAUB, NGAUS INPU 13
NODFN=3 INPU 14
NPRAOP=5 INPU 15
NSTRE=5 INPU 16
NDIME=1 INPU 17
S0C FORMAY (1315) INPU 18
READ[5,905) TLENG INPY 1B
BI5 FORMAT(F1D.51 INFy 20
IF(NTYPE.EG.1) GG TO & INFU 21
WRITE[G, 910} TLENG INPU 22
910 FORMAT [/8X, 'ANGLE OF THE PLATE =',F10.5} INPL 23
GO 70 10 INPY 24
& WRITE(E,915) TLENG INFU 25
915 FORMAT [/ 85X, 'LENGTH OF THE PLATE=',F10.5) INPU 26
10 GONTINUE INPU 27
NEVAB=NDGFN*NNODE INPY 28
WRITE{6,0201 NPDIN, NELEM,NVFIX,NCASE, NTYPE, NNODE, NCOFN,NMATS, INPL 29
NPROP, NGAUB , NGAUS, NDIME, RSTAE, NEVAR INFU 20
920 FORMAT [//BH KPOIN =,14,4X,8H NELEM =,I4,4X,8H RVFIX =, 14,4, INFU 31

.BH NCASE =,14,4%,BK NTYPE =,14,4,BH NNOOE =,14,4X,BH NOOFN =,I4//INPU 32

. B KNMATS =,14,4X,8H NPAOP =,I4,4X,BH NBAUB =,14,4%X,8BH NGAUS =,T14,INPU

- (,BH NOIME =,I4,4X,BH NSTRE =,I4,4X,BH NEVAB =,I4)
c
C*** AEAD THE ELEMENT NODAL CONNECTIONS, AND THE PROPERTY NUMBERS,
c

WRITE (§,925]
925 FORMAT [//BH ELEMENT ,3X,BHPROPERTY , BX, 12HNODE NUMBERS)
06 15 1ELEM=1,NELEH

READ (5,90C) NUMEL,MATNO (NUMEL ], (LNODS (NUMEL, INODE ), INODE=1 , NNODE )

15 WRITE(E,930) KUMEL,MATNO (HUMEL), (LNOGS (NUMEL, 1NODE), INODE=1,
.NNODE )
930 FORMAT{1X,I5,19,6X,BI5}
)
C*** ZEARG ALL THE NODAL COORDINATES, PRIOR TO READING SOME OF THEM,
[
00 20 IPDIM=1,NPOIN
DO 20 IDIME=1,NDIME
20 COORD{IPOIN, 1DIME)=D.0

G*** READ SOME MNODAL COORDINATES, FINISHING WITH THE LAST NODE OF ALL.

c
WRITE (6,935)
935 FDRMAT(//25H HODAL POINT CODADINATES)
WALTE(6,940)
840 FORMAT(BH NODE,7X,1HX,89X)
25 READ(5,945) IPOIN, {COORD [IPQIN,IDIME], IDIME=1,NDIME]
945 FORMAT(15,2F10.5)
IF{IPCIN.NE.NPOIN] G0 TO 25
DO 30 TPOIN=1,NPOIN
30 WRITE(B,950) IPOLN, (COORD{IPOIN,IDIME), IDIME=1,NDIME)
950 FORMAT[1X,15,3F10.5)
LF (NVFIX.EQ.0) GO TO 40
9
€*** AEAD THE FIXED VALUES.
[o

WAITE (B, 565]
855 FORMAT(// ,' RESTRAINED NODES')
WRITE (6,960}
960 FORMAT (X, 'NODE',1X,'CODE",6X, '"FIXED VALUES*}
00 35 IVFIX=%,NVFIX
READ(5,985) NOFIX[IVFIX], (IFPRE(IVFIX, IDOFN) , IDOFN=1,NDOFN),
. (PRESC {IVFIX, IDOFN] , IOOFN=1,NDOFN}
35 WRITE(6,966] NOFIX{IVFIX}, [IFPRE{IVFIX,100FN},IDOFN=1,NDOFN],
. [PRESC [IVFIX, IDOFN) , IDOFN=1, NDOFN)
965 FORMAT [IS,2X,354,3F40.5]
CONTINYE
40 CONTINUE
c
C**% READ THE AVAILABLE SELECTION DF ELEMENT PROPERTIES.
c
WAITE(6,870)
970 FORMAT(//21H MATERIAL PROPERTIES)
WAITE{E,975}
975 FOAMAT (BH NUMBER, 25X, 10RPROPERTIES]
00 45 IMATS=1,NMATS
READLS,880] NUMAY, (PAOPS {NUMAT , IPROP ], IPROP=1,NPROP}
980 FORMAT [I5,5F10.5)
45 WRITE(G,985) NUMAT, (PROPS (NUMAT,IPROP), IPROF=1, KFROF )
985 FORMAT {1X,15,7X,5E14.6)
RETURN
END

INPY
INPY
INPUY
INPU
INPY
INPU
INPY
INPU
INPU
INPU
INPY
INPU
INPY
INPU
INPU
IKPU
INPY
INPU
INPU
INPU
INPU
INPU
INFU
INPU
INPU
INFU
INPU
INPU
InPU
INPU
INPY
INPY
INPU
INPY
INPU
INPU
IKPU
INPY
INPUY
INPU
INPY
INPY
IKPU
INPU
INPU
NPy
INPU
INFPU
INPY
INPU
INPU
INPU
INPU
INPU
INPU
INFY
INPU
INPU
INPU
INPU




define gome further parameters.

Read and write the control parameters and

INPU 12-34 1.

material identification number

for each strip, INPU 38-44

Read and write the sirip number, NUMEL, nodal
connection numbers LNODS (NUMEL,INODE), and

MATNO (NUMEL)

Initialise nodal coordinates ar
then read and write node number
coordinates COORD (IPOIN,1) for
INPU 48~63

ray COORD and
IPGIN and

each node,

values PRESC (IVFIX, IDOFN) for

of freedom IDOFN, INPU 64~79

For prescribed nodes, read and write the
prescribed node number, NVFIX (IVFIX), the
prescribed degree of freedom indicator

IFPRE (IVFIX, IDOFN) and the prescribed

each degree

material NUMAT. INPU 83-81

Read and write the material properties

PROPS (NUMAT, IPROP) for each individual

Table 3 NS chart for subroutine INPUT

12.3 Stiffness matrix subroutine STIFFS

The purpose of this subroutine is to evaluate the stiff-

ness and stress matrices for each strip
termg of the series, Both matrices are
subzequent use in the eguation solution
i the subroutine STREFS to compure the

A N8 chart describlng STIFFE is provided

and for each harmonic
stored on disc file for
subroutine FRONT, and
stress resultants resp.

in Table 4.

SUBROUT INE STIFFS [COORO, THARM, LNQDS , MATNO, MELEM, MMATS , MPOIN,
-HELEM, NEVAB, NGAUB , NGAUS , KNODE, NSTHE  NTYPE, POSGP , PROPS , TLENG ,
WEIGP)

OIHENSION BMATX(8,%2),CARTD{1,4],COUAD (MPOIN,1),08MHAT (5,121,
.DERIV(1,4),DMATX(5,5),ELCOD(1, 4], ESTIF(12,12},6GPCO0 (1, 4},

.LNODS {MELEM, 4) , MATNO (MELEM) ,POSGP (4], PROPS (MMATS, 51, SHAPE (4],

LBMATX(5,%2,4} ,WEIGP (4]

c
C*** EVALUATION OF THE STIFFNESS MATRIX FOR THE

C¥*3 LINEAR,QUADRATIC OR CUBIC STRIP ELEMENT
C

c

C¥** +00P OVER EACH ELEMENT

[
B0 55 IELEM=%,NELEM
1PROP=MATND [IELEM)
DO 5 INODE=1,NMODE
LNODE=LNODS (ZELEM, INODE]
ELCOD [1, INODE }=COORD (1.NODE, % )

5 CONTINUE

c
G*** EVALUATE THE D-MATRIX
c
CALL HODPE (DMATX,LPROP, MMATS , NSTRE , PACPS )
C*** INITIALIZE THE ELEMENT STIFFNESS MATRIX
c

00 10 IEVAB=1,KEVAB
DO 10 JEVAB=1,NEVAB
10 ESTIF(IEVAB,JEVAB]=0.0
KGASP=0
CALL BAUSSQINGALB,POSGP, WEIGP)
c

C*** FULL OR SELECTIVE INTEGRATION FOR BENDING (NC. GAUSS POINTS=NGAUB)
c

0O 25 IGAUS=1,NGAUS
KEASP=KEASP+1
EXISP=PUSGR (IGAUS)
CALL SFR1(DEALY,EXISP, NNODE, SHAPE ]
CALL JACDB1{CARTD,DERIV,0.ACB ,ELCOD, GPCOD, TELEM, KGASP,
.NNODE, SHAPE |
OLENG=0JACB*WEIGP [IGAUS)
CALL BMATFS (BMATX, CARTO, GPCOD, IGAUS , THARH, NEVAB, NNODE , HSTRE
NTYPE , SHAPE, TLENE)
CALL DBE[BMATX,DBMAT , DMATX, NEVAR, NSTRE }
KSTRE=NSTRE-2
DO 20 IEVAS=1,NEVAR
0O 20 JEVAB=IEVAB,NEVAB
D0 20 ISTRE=1,KSTRE
IF(NTYPE.£0.2] GD TO 15
ESTIF [IEVAB, JEVAB )<ESTIF (IEVAR, JEVAG 1+BMATX (1STRE, IEVAR ) ®
.DBMAT (ISTRE, JEVAB ] *OL ENG*TLENG/2.0
60 To 20
15 ESTIFIIEVAB,JEVAB}=ESTIE [IEVAB, JEVAS1+GPCOD (1, [GAUS)
.*BMATX (TSTRE, 1EVAG | *DEMAT (ISTRE , JEVAE } *OLENGITLENG/2.0
20 CONTINUE

258 CONTINUE

c
C*=* REOUCED INTEGRATION FOR SHEAR TERMS [NO. GAUSS POINTS=NGAUS)
C

CALL BGAUSSOINGAUS,POSGP,WEIGP)

C
C*** ENTER LOOPS FOR AREA HUMERICAL INTEGRAYICH
g

KGASP=0

0g 45 T8AUS=1,NGAUS

KGASP=XGASP+Y

EXISP=PDSGR (TBAUS)

CALL SFR1{DERIV,EXISP, NHODE , SHAPE }

CALL JACOR1SCARTD, DERIV, DSACE, ELCOD, GPCOD, IELEM, KBASP,
.HNODE, SHAPE )

Bt ENG=DJACB=WEIGP [ TGAUS )

TALL BMATFS{BMATH,CARTD,GPCOD, IGAUS, THARM, NEVAR, WHODE  NSTRE,
.MTYPE,SHAPE , TLENG }

CALL DBE{BHATH,DBMAT , DHATX, BEVAR , HSTRE)

LSTRE=NSTRE—1

2035 1EVAB=Y,HMEYAR

00 A5 JEVAB=IEVAD, NEVAB

DO 35 ISTRE=LSTHE,RSTAE

IF(NTYPE.EQ.2] 60 TO 30

STIF
5TIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
5TIF
STIF
STIF
8TIF
STIF
STIF
STiF
STIF
STIF
STEF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
S§TIF
STIF
STIF
STIF
STIF
SY1F
STIF
STIF

‘8TIF

STIF
STIF
STIF
STIF
STIF
STIF
5TIF
STIF
STIF
STIF
5TIF
STIF
STIF
STIF
8T1F
STIF
8TIF
STiF
8TIF
8TIF
ETIF
5TiF
STIF
STIF
3TIF
STiF
STIF
STiF
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C** STHAIGHT PLATE -
¢ .

ESTIF [TEVAB, JEVAB)=ESTIF {1EVAB, JEVAR ) +BMATX [LSTRE, IEVAR | “DRMAT

. LISTRE, JEVAB ) *DLENG*TLENG/2,0
GO To 25

C
C*** CUAVED PLATE
C

30 ESTIF [IEVAB,JEVAR)=ESTIF (IEVAB, JEVAB)4GPCOD (4, IGAUS | SBMATH(

-IBTRE, TEVAS }*DBMAT [ISTRE, JEVAB ) *CLENG* TLENG/2.0
J5 CONTINUE
<
C*** STORE THE COMPORENTS OF THE DB MATHIX FOR THE ELEMENT
c

20 40 ISTRE=1,NSTRE

00 40 IEVAB=1,NEVAB
40 SMATX (ISTRE, IEVAB,KGASP ] =DBMAT {ISTRE, IEVAB )
45 CONTINUE

c
C*** CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX
C

DO 50 IEVAB=1,NEVAB
DO 50 JEVAS=1,NEVAR
S0 ESTIF(JEVAR, IEVAB}=ESTIF [IEVAB, JEVAB]

c
C*** STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING
C*** POINT COORDINATES FOR EACH ELEMENT ON DISC FILE
[

WRITE(1) ESTIF

WRITE[3] SMATX,GPCOD

95 CONTINUE
RETURN
END

STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
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Loop over each strip IELEM. STIF 15

Identify the material set number for current

strip. S8TIF 16

Extract nodal coordinates for current strip.

STIF 17~-20

Call MODPB to evaluate matrix D for the strip.

STIF 24

Initialise (zero) stiffness matrix array and

Gauss point counter. STIF 28-31

Call GAUSSQ to set the Gauss-Legendre gquadrature

parameters for bending, STIF 32

J

A

Table 4 NS chart for subroutine STIFFS

A
]

Loop over bending Gauss points., STIF 36 7
Increment Gauss point counter, extract sampling
pogition and call SFR1 to evaluate shape func-
tion Ni and local derivatives aNi/ag.

STIF 37-39 8

Call JACOBl to evaluate BNi/ax and then dx.

STIF 40-42 g

Call BMATFS to evaluate strain matrix.

STIF 43-44 10

Call DBE to evaluate stress matrix.

STIF 45 11

Accumulate contributions to the strip stiff-

ness matrix for either right or curved plates.

STIF 47-57 12

Call GAUSSQ to set the Gauss-Legendre gquad-

rature parameters for shear., STIF 61 13

Zero Gauss point counter, STIF 65 14

Loop over shear Gauss points. STIF 66 15

increment Gauss point counter, extract
sampling coordinate and call SFR1 to
evaluate shape function Ni and local
derivatives aNi/BE. STIF 67-69 16

J

B

Table 4 NS chart for subroutine STIFFS




B
l

Call JACOB1l to evaluate BNi/ax and
then dx. STIF 70-72 17

Call BMATFS to evaluate strain matrix.

STIF 73-74 18

Call DBE to evaluate stress matrix.
STIF 75 19

Accumulate contributions to the strip
stiffness matrix for either right or

curved plates, STIF 76-92 20

Extract components of the stress matrix for

later use. STIF 96-99 - 21

Construct lower triangular part of strip stiff-

ness matrix. STIF 103-105 22

Store on peripheral storage devices stiffness
matrix, stress matrix and Sampling point coor-

dinates for each strip. STIF 110-112 23

Table 4 NS chart for subroutine STIFFS

The computer listing of STIFFS, provided above for the
plate case, can be of direct use for folded plate of axisym-
metric shell programs with the only (conceptual) difference
being that for the axisymmetric shell case matrix g:ﬂ of (57),
relating local strains with global displacements, should be used
instead of matrix §il of (26). Also, the matrix D of (49) would
substitute D of (18), used in the plate program.

12.4 Subroutines used by STIFFS

12.4.1

D given

The NS c

Subroutine MODFS

This subroutine calculates the matrix of plate rigidities
in (18) and (19)
SUBROUTINE MODRB [DMATX, LPROP, MHMATS, NSTRE, FROPS ] MODP 1
OIMENSION DMATX(S,5},PRAOPS{MMATS,S) Mapp 2
c HODP 3
C*** EVALUATE D MATRIX MoP 4
[ HODP 5
00 & ISTRE=1,MSTRE MIOP 6
D2 5 JSTRE=1,NSTRE KODP 7
DHATX (ISTRE,JSTRE)=0.0 MODP B
5 CONTINUE MbP 8
YOUNG=PROPS [LPRGP, 11 M50P 10
POTSS=PROPS(LPROR, 2] hooP 11
THICK=PROPS (LPROP, 3] MODP 12
GHATX (1,1 )=YOUNGSTHILK* THICK*THICK/ (12, 0% {1_0-POISS*POISS) | KODP 13
CHATX (1, 2)=PDISS*DMATX(1,1) KGDP 14
DHATX (2, 2}=DHATX(1,1) MIDP 15
DHMATX2,1)=DMATX {1, 2) MODP 16
DHATX [2,3)=[1.0-PDISSI*NKATX(1,1)/2.0 MIDP 17
OMATX (4, 4)=YDUNG*THICK/ {2.4* [1.0+PQISS] } MIOP 18
OMATX{S, 5)=0MATX (4, 4) MOOP 19
RETUAN MIDP 20
END HODP 21
hart is now given in Table 5,
{ Initialise (zero) D matrix. MODP 5-8 1.
Extract Young's modulus, E, Poisson's
ratio v and strip thickness t, MODEB 9-12 2.
Compute I} matrix, MODPE 13-18 3.

Table 5 NS chart for MODFS

For folded plate and axisymmetric shell programs, matrix

D should be extended to include membrane effects according to

{49).

12.4,2

Subroutine GAUSSQ

This subroutine sets up the local Gauss point coordinates

with a2 egtrip and their resp. weights,




SUBADUTINE GAUSSQ(NGAUT,PDSGP,NEIEPJ GAUS 1
BIMENSION POSGP (4}, WEIGP (4] GAls 2

c GAUs 3
C*** SET UP GAUSS PDINT COORDINATES AND WEIGHTS GAUS 4
[ GAUS 5
IF (NGAUT.GT.3) GO TO an GAUS &
IFINGAUT.GT.2) B0 TO 20 Gaus 7

IF (NGAUT .GT.1) GO T& 10 BAUS B
POSGP [1)=0.0 GAUS g
WEIGP[1)=2.0 GAUS 10

G0 TO &0 GAUS 11

10 POSGP (1)=—0.577350269189606 GAUS 12
WEIGP(%)=1.0 GAUS 13

GO TO 40 GAUS 14

20 POSGP(1)=-0.774596669241 483 BAUS 15
POSGP (2]=0.0 GALUS 1B
WEIGP (1)=0,555555565555556 GAus 17
WEIGF|2)=0, BBSB0BUSEEEANAY GAUS 18

GO 7O 40 GAUS 18

30 POSGP(1)=—,B6%1363115 GAUS 20
PCSGP (2}=-,3359810435 GAUS 2%
WEIGP(1}=0.3478548452 GALS 22
WEIGP (2)=0,6521451548 GAUS 23

40 KGAUT=NGAUT/2 GAUS 23
00 50 IGASH=1,KBAUT GAUS 25
JGASH=NGAUT+%-1GASH GAUS 2B
PO3GP [JGASH ) =-POSEP (IGASH } BAUS 27
WEIGP [JGASH J=WEXBP [IGASH ) GAUS o8

50 CONTINUE GAUS 29
RETURN GAUS 3¢
ERD GAUS 31

Note that NGAUT may take values from 1 to 4 for the resp,
Gaugs-Legendre rule. This routine is valid for folded

plate and axisymmetric shell programs.

12.4,3 Subroutine SFR1

This subroutine calculates the shape functions SHAPE and
their derivatives DERIV of a specified sampling point with

coordinate S,

SUBROUTIKE SFAt [DER1Y, S, NNODE , SHAPE ) SFR1

1

OIMENSION DERIV(1,4},5KAPE({4) SFRT 2

< SFR1 3
C***  CALCULATES SKAPE FUNCTIGNS AND THEIR DERIVATIVES SFR1 4
¢ SFR1 5
c SFRT B
Coxx SHAPE FUNCYIONS SFRt 7
c SFR1 g
IF (NMDDE.EQL.4) GO To 10 SFR1 9
IF{NNODE.EC.3) %0 TO 5 SFR1 10

c SFA1 11
C**s TwO NODED STREP SFR1 12
< SFR1 13
SHAPE(1)=(1.0-5)/2.D SFR1 14
SHAPE(2]=01.0+8)/2.0 SFA1 15
DERIVI1,1}1=—1.0/2.0 SFRt 18
DERIV(1,2)=1.0/2.0 SFRY 17

60 TQ 15 SFR1 18

< SFR1 19
C*** THREE NODED STRIP SFA1 20
c . SFR1 21

5 SHAFE(1]=(5*5~8)/2.0 SFR1 22
SHAPE(2)=1,0-5*5 SFR1 23
SHAPE [3)=(s5+5*8}/2.0 SFR1 24
DERIV(1,1)=(2.0%5-%.01/2.0 SFR1 25
DERIV(1,2}=-2.0%8 SFA1 26
DERIV{1,3)=(1.0+2.0%5)/2,0 SFR1 27
GO ¥C 15 SFA1 P8

C SFR1 28
C*** FOUR NODED STAIP SFA1 3D
c SFR1 31

30 SHAPE (1)=-8,0/16,0% (S*5*5-5/3,0-8*5+1 .0/9.0) SFA1 ap
SHAPE(2)=27.0/16.0* ($*5*S-5-8%5,/3.0+1.0/3.0) SFR1 33
SHAPE [3)=—27 .0/16,0® [S*5*5~8+8§35/3 . 0-1,0/3.0) SEA1 34
SHAPE [4)=8.0/16,0% [S¥S*5-5/9,0+5%5-1,0,/9.0} SFA1 35
DERIVI1,1}=-9,0/16.0%(3,0%5%5-1.0/9,0-2.0%3) SFR1 38
DERIVI%,2)=27.0/16.0% (3,0%5%5-1,0-2,0,/3.0%5 ] SFA1 37
DERIV(1,3}=-27.0/16.0*[3,0%5*5-1 .0+2,0,/3.0%5) SFR1 38
DERIV(1, 4]=9.0/16.0%(3.0G*S*5-1,0/9.0+2.0%5) SFAY 39

15 CONTINUE SFA1 40
RETURN SFAY &1
END SFA1 42

The NS chart is now given in Table 6
Evaluate shape functions and their local
derivatives for a linear, 2-node strip.
SFR1 14-17 1.
Evaluate shape functions and their local
derivatives for a quadratic, 3-node strip.
SFR1 22-27 2.
Evaluate shape functions and their local
derivatives for a cubic, 4-node strip.
SFR1 32-39 3.

12.4.4

Table 6 NS chart for subroutine SFR1

Subroutine JACOB1

123

This subroutine calculates the Gauss point coordinates,

the Cartesian shape function derivatives dNi/dx and an elem~

ental length dx.




g4
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SUBROUTINE (ACOB1 (CART 3 4.5 Subroutine BMATFS
-gmUE,SHAFE} 0. OERTV,DJACB, ELCOE, GPCOD, T ELEM, KEASE, JACO 4 e
IMENSION C Jaco g , . .
¢ ARTOL1, 41,0ERIV 1, 4), ELCOD (1,4, GPCOD 1, 4}, SHAPE (4] JAD & This subroutine calculates the strain matrix given by (27)
C***  CALCULATES CODADINATES OF JAZO 4 :
BAUSS POINTS A e ) _
g“‘ MATAIX AND ITS DETERMINANT AND THE INVERgg THE JACORZAN j:gg : at a sampling point,
DJACE=D.C j:‘gg ; :
GPCOD [1,KBASP =0, 0
C j:gg 8 SUBROUTINE BMATFS [BMATX,CARTD,GPCOD, IGAUS, IHARM, NEVAB, NNODE, BMAT 1
gs= CALGULATE COORDINATES CF SAMPLING POINT Jaca :2 .NSTRE, NTYPE, SHAPE, TLENG] BMAT 2
¢ DIMENSICN BMATX(5,42),CARTO(1,4),6PCOD(Y,4),SHAPE(4) BMAT 3
00 & INGDE=1,NNODE jﬁg b c BMAT 4
s ggﬁg?;:léKGASP]:EFCUDU,KGASPHSHAPE[INODE]*ELCODH.INGDE) JACD 14 %% EVALUATE B MATRIX BMAT S
< BMAT [+
c . j:gg :: 00 & ISTRE=1,NSTRE BMAT 7
g *  CALCULATE DETERMINANT OF JACOBIAN MATRIX JAco 17 0o %{Egg?i:““{ - BMAT B
BHA LIEVAB)=0. BMAT 8§
00 10 INODE=1, NNGOE j:‘ég Ig § CONTINUE BMAT 10
10 ggﬁﬁ?:g?smmzmv“'XNDDEPELCOD”'INDDE} JACo 20 ggAfgngonE 1, NNGDE BMA; 112
= BMA
IF(DJACB] 15,15, 20 daco 21 TGASH=JGASH+1 BMAT 13
15 WRAITE(E,800} 1ELEM j:gg gg IF [NTYPE.EQ.2) GO TO 10 BMAT 14
STOP I BMAT 15
C JACD 24 G***  STRAIGHT PLATE BMAT 15
C**%*  CALCULATE CARTESIAN DERTVATIVES JACD 25 C BHAT 17
c jggg 25 BMATX {4, IGASH}=CARTD (1, THODE] BMAT 4B
20 DD 25 INODE=1,HNODE Jaco 2; BMATX (5, IGASH ) =SHAPE ( LNODE )*FLOAT {IHARM) *3. 14159265, TLENG BMAT 19
a ggm??mélmﬂﬂcnmwﬁ,INODEI/DJACE YAt 28 Ig:sn=ie.qsn+1 gMAT 20
JBASH=IGASH+ BMAT 24
900 FORMAT L//, 10X, 36H PROGRAM HALTED IN SUSROUTINE JACOBA,/ 11 Ao o1 SMATX(1, IGASH )=—CARTOD 1, INODE) BMAT 22
221 IERD OR NEGATIVE AREA,/ 10X, 16H ELEMENT NUKBER ,18) ' JACD 3z BT oA | onArE (INODE) *FLOAT (THARMI®3 . 14150265/ TLENG A
: 2
END jigg :3 BMATX (2, JGASH ) =SHAPE { INODE | *FLOAT [THARM ] %3. 14159265/ TLENG GHAT 25
BMATX (3, JGASH)}=—CARTD [1, INODE) BMAT 26
BMATX (5, JGASH ) =-SHAPE [1MODE ) BHAT 27
X i ] 60 TO 15 BMAT 28
The NS chart is now given in Table 6. Note that JACOB1 is ¢ BHAT 4
liq £ C*** CUAVED PLATE BMAT 80
vali : .
or folded plate and axisymmetric shell programs. ¢ 10 BMATX {4, IGASH}=CARTD (1, INODE ] gm; g;
GHATX {5, IGASH J= [SHAPE { INODE | /GPCOB 14, IGAUS ) )*FLOAT [IHARM)® BHAT 33
.3.14158265/TLENG HMAT 34
1GASH=TGASH+1 HMAT 33
Initisli . . JGASH=IGASH+1 BMAT 36
itialise (zero) Jacobian determinant and BMATH (1, TGASH }=-CARTD [1, THDDE) BMAT 37
the G . . BHATX (2, TGASH }=-SHAPE { INODE ) /GPCOD {1, IGAUS} BMAT 38
e Lauss point coordinate vector, JACO 8-9 1 BMATX(3, IGASH ) =~ [SHAPE {INODE ) /GPCOD {1, IBAUS} V¥FILDAT ( THARM) ® BMAT 39
b .3, 14455265/ TLENG BMAT 40
BMATX (4, IBASH ) =—SHAPE {IRODE) BMAT &1
BMATX(Z, JBASH )= [SHAPE | INGDE }/BPCOD (1, TRAUS? ) *FLOAT {THARM}® BHAT 42
Caleulate the . . . .3.14159265/TLENG BHAT 43
¢ coordinates of the sampling point, EMATX[3, JGASH ] =—CARTD (1, TNODE J+SHAPE [TNODE 1/GPCOD {9 , 16AUS EMAT 44
~ _ BMATX (5, JBASL ) 5-SHAPE TINDDE ] BMAT 45
JACD 13-15 2, 15 CONTINUE BMAT 45
AETUAN DHAT 47
END BMAT 48
Evailuvate the Jacobian determinant and if it
is zero or negative write a messa .
sage and Foyr folded plate and axisymmetric shell programs, subroutine
terminate run, JACO 19-24
3. BMATFS should evaluate the strain mairix accordiang to (36) -
(37). The NS chart for NMATFS is now given in Table 8.
Tvaluate Cartesian shape function derivatives
CENi/dX. JACO 28-30 4
Table € NS chart for subroutine JACOBRI :
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: 127
attempted by the reader,
Initialise (zero) strain matrix. BMAT 7-10 1
A FORTRAN listing of the subroutine is now presented,
Loop over each strip node. BMAT 12 2
SUBAOUTINE LOADFS(COQRD, ELOAD, ICASE, IHARM, LNJDS, MATNO , MELEM, LOAD 1
MMATS , MPOIN , NDOFK, NELEH, NEVAB, NGAUS , KNODE, NFOIN , NTYPE , POSGF, wan e
.PROPS, TLENG  WEIGP ) LOAD 3
DIMENSTON CARTR(1,4},CO0R0 [MPOIN,1),DERIVI(1,4),ELCO0(1,4), W0AD 4
Is plate curved? .ELDAD {KELEH, 12],6PCOD [1, 41, LNODS [MELEM, 4)  HATNG (MELEM) ,POINT{3], tOAD §
.POSGP [4],PROPS {MMATS, 51, SHAPE (4], TITLE (18) ,WEIGP{4) LBAD B
BMAT 14 c Lol 7
No C*** EVALUATE MODAL FORCE VECTOR a8
Yes 3 c L0AD 8
LF(IHARM.GT.1) GO TO § LOAD 1D
c LoAD 11
C¥** READ AND WRITE TITLE OF LOAD CASE L0AD 12
c LDAD 13
: " ) READ(S,900) TITLE LOAD 14
Evaluate strain matrix Evaluate strain matrix 500 FORMAT (1BA4] LoAD 15
- C LOAD 1B
for right plate. for curved plate. C*** READ AND WRITE INDICATORS FOR TYPE OF LUAD LoAR 17
c LDAD %8
BMAT 18-27 4 BMAT 32-45 READ(5,8905) IPLOD, IUNIF LoAD 39
5 905 FORMAT [215] LoAD 20
WRITE(9) IPLOD,IUNIF LoAD 2%
WAITE{6,910) ICASE LOAD 22
. 910 FORMAT(/ 10X,' LOAD CASE NUMBER ',1X,T2] 10AD 93
Table 8 NS chart for subroutihe BMATFS WRITE [6,900) TITLE LOAD 24
WALTE{6,905) IPLODD,IUNIF LBAD 25
GO TO 10 LOAD 26
12.4.6 Subroutine DBE 12 gs:’;;f{dgp'-ﬁﬂ-w"“ L‘-g:g g;
0O 15 IELEM=1,NELEM LoAD 29
This subroutine simply calculates the stress matrix DBE' 15 Efolgliiﬁéﬁéﬁ‘.f?gu_u tg:g 32’
. . = c Laap 32
at any sampling point. G POINT LOAD L0AD 33
T C LoaD 34
T 1F(1PLOD.EG.D) G0 TG 50 LDAD 85
SUBROUTINE DBE (BMATX, DBMAT, DMATX, NEVAB , NSTRE ] bBE 1 o IF[IHARM.EQ.1] WRITE[E,915] LOAD 3B
DIMENSION BMATX(S,12),DBHAT {5, 12) , DMATX (S, 5) pBE 2 20 CONTINUE r
c DBE 5 1F (IRARM.GT.1) GO TO 25 L0AD 38
C***  CALCULATE I X B GBE 4 READ{5,920] LODPT,POINT{1},YLOAD LpAD a8
c BBE WHITE(S) LODPT, {POLNT [IDOFN), IDDFN=1,NDOFN], YLDAD LOAD 4D
DO 5 ISTRE=1,NSTRE ooE g 915 FORMAT [/10X, 'POINT LOAD'] L0AD 4%
DO 5 IEVAB=1,NEVAB DBE WRITE{E,020} LODPT, [POINT{IDOFN],TDOFN=1,RDGFN),YLOAD LDAD 42
DEMAT (ISTRE, EEVAB]=0.0 SBE g i 920 FORMAT (15,4F10.5] LDAD 43
DO 5 JSTRE=1,NSTHE DBE i GO T 30 LOAD 44
OBMAT (ISTRE, IEVAB 1=DBMAT (ISTRE, IEVAB )+ oBE 13 o 25 READ(9) LODPT, {POINT (IDOFN], IDDFN=1,NDOFN], YLDAD LDAD 45
-DHATX (1STRE, JSTRE 1*BMATX [JSTRE, TEVAB ) B 39 CONTINUE LOAD 4B
5 CONTINUE DBE 13 : c LOAD 47
RETURN DBE 32 : C*** CALCULATE LOADS AND ASSOCTATE WITH MODAL POINTS LoAD 48
ENT DBE 13 : c LDAD 48
DRE 14 : FALOA=FLOAT (IHARM] *3.14159265%YLOAD/ TLENG LOAD 50
i DO 35 IELEM=1,NELEM LOAD 51
: : D0 35 INDDE=1,KMIDE LDAD 52
. . P NLDCA=LNODS{IELEM, INODE] LDAD 53
12.5 Evaluation of equivalent nodal load vector for each IF[LODPT .£0.NLOCA) GO TO 40 LOAD 54
harmonic term: Subroutine LOADFS e FNet. NDGFN oA 22
i IF[1DOKN.£Q.1.0R. IDOFN.EG,2) SINCO=SIKIFPLOA} tﬁ:g gs
; ; : . S 1F(IDOFN.EQ.3] SINCO=COSEFPLOA)
Only two loading cases will be considered in the plate i NJ&guNm&4pumpmimFN LoAD 59
. . 2 ELDAD [T XL EM, NGASH } =ELDAD { IELEH, NGASH }+PDINT (IO0FN ) *SINCD LpaD B0
program presented here: a) a vertical point load acting at a : 45 CONTINUE LoAD &1

node at a certain distance from the simply supported end and

b) a uniformiy distributed load acting over a certain number

of strips. Extensions of the program for the consideration of

other loading situations is easy once the basic steps for the

two cases presented here are fully understood, and can be
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70
75

IF(LODPT.LT.KPRIN] 80 70 20
CONTINUE

UNTFORM DISTRIBUTED LOAD

VLEPT=3.14158265%FLOAT {IHARM)
COEFL=2.R*TLENG/VLEP]

LOOP OVER EACH STRIP

CALL GAUSSQ [NGAUS, POSGP, WEIGP )
GO 75 IELEM=1,NELEM
LPROP=KATNG (1ELEM)
VOLOD=GIEFL*PROPS (LPROA, 4)
IF(VDLOD.EG.G.C) GO TO 75
KGASP=0

EXTRACT ELEMENT MODAL CCORDINATES

00 55 INDDE=1,NMODE
LNODE=LMDOS [IELEM, INODE )
ELGDD 1 + INCDE ) =CDORD [ LNODE, 1)
CONTINUE

NTER LOOPS FOR NUMERICAL INTEGRATION

DO 70 IGAUS=1, NGAUS
KGASP=KGASP+1
EXTSP=PDSGP {IGALS ]

EVALUATE THE SHAPE FUNGTIONS AT THE SAMPLING PGINTS AND
ELEMENTAL LENGTH

CALL sFR1[DERIV,EXISP, NNGDE, SHAPE)

CALL .]JAGDB1 [CARTD, DERIV,GJACE, ELCOD, GPCOD, IELEM, KGASP ¢ NNODE,
-SHAPE

CALCULATE LOADS AND ASSOCIATE WITH ELEMENT MODAL PDRINTS

00 85 INODE=1,NNODE
NPDSN= [INGDE~1 } *NDAFN+1
IF(NTYPE.ER.2) GO TO 60

STRAIGHT PLATE

ELOAD [ZELEM, HPOSK) =ELOAD {TELEM, NPOSN ]+
- SHAPE [IMODE I *YOLOD*DJACB*WEIGP {IGALS )
GO TO 65

CURVED PLATE

ELOAD {IELEM, MPOSH =ELOAD (IELEM, NPOSN ] +GPCOD (1 JBAUS
-BHAPE { INDDE ) *VDLGD*0 2 ACA*WELGP [ [GALS )

CONTINUE

CONTINUE

CONT INUE

RETURN

ERD

LOAD
LoAD
LOoAD
L0AD
LGaD
LDAD
LOAD
Loan
LOAD
LOAD
LoAD
LOAD
LZAD
LOAD
LoAD

LOAD
LoAD
LDAD
LOAC
LoAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

The NS chart for LOADFS is presented in Table 9
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For the first harmonic only read and write the load

case title and the load type code. LOAD 10-28 1
Initialise (zero) the load vector. LOAD 29-31 2
If there are point loads continue, otherwise
jump to 10. LOAD 35 3
Is this the first harmonic?
LOAD 38
Yes No 4

Read and write nodal load data] Read load data from file 9.

Loop over each strip. LOAD 73

and then write on file 9, LOAD 45

LOAD 38-43 5 5
Identify loaded node with a strip, LOAD 52-55 7
Compute nodal forces for either a right or curved
strip. LOAD 56-61 8
If all nodes have been considered continue;
otherwise jump back to 4., LOAD 62 9
Set loading parameters for right and curved
strip plate cases. LOAD 67-68 10
Call GAUSSQ to obtain Gauss point weights and
sampling positions., LOAD 72 11

12

A

Table 9 NS chart for subroutine LOADFS
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A
]
Identify strip material set number and extract
strip load intensity parameter PROPS (LPROP,4).
LOAD 74-75 13
If load intensity is zero, jump to next stirip,
LOAD 76 14
Zero Gaugs point counter and extract element
nodal coordinates. LOAD 77-84 15
Loop over each Gauss point. LOAD 88 16
Increment Gauss point counter and
identify local coordinate of Gauss
point. LOAD 89-90 17
Call SFR1 to evaluate shape functions and
their local derivatives, LOAD 95 18
Call JACOB1 to evaluate elemental length
dx, etc. LOAD 96-97 19
Accumulate contributions to the consistent load
vector for either right or curved strips.
LOAD 101-115 20

Table 9 NS chart for subroutine LOADFS

12.6 Computation of the strip stress resultants for each

harmonic term: Subroutine STREFS

This subroutine evaluates the stress resultants at the
shear Gauss points for each strip and for each harmonic term
accordingly to (25) making use of the stress matrix (see

Section 12.3) and the strip nodal displacements computed in

subroutine FRONT. The strip stress resultants for each har-

monic are stored on a disc file for subsequent use in subrout-
ine ADD

SUBROUTINE STREFS{ASOIS,LNODS,MELEM, MTOTV, NDOFN, NELEM , NEAUS,
.KNODE, NSTRE)

DIMENSION ASOLS [MTOTV},ELDIS{3,4),LNODS(MELEM, 4),GPCOD(1,4],
SMATX (5,12, 4),STRSE{5]

C*** EVALUATE STRESSES AT THE SHEAR GAUSS PDINTS FOR
C*** EACH STRIP
C
c
[Phid LOOF {IVER EACH STRIP ELEMENT
c
D0 20 IELEM=1,NELEM
C
g« READ THE STRESS MATRIX ,SAMPLING POINT CODRDIRATES
C***  FOR THE STRIP

HEAD [3) SMATX,GPCCD

CHns IDENTIFY THE DISPLACEMENTS OF THE ELEMENT NODAL POINTS

00 & INGDE=1,NNOGE
LNODE=LNODS (IELEM, INODE)
NPOSN={LNODE-1 ] *NDOFN
DO 5 IDDFN=1,NDOFN
NPESN=NPOSN+1
ELDIS (IDOFN, INODE }=ASDIS {NPOSN )
5 CONTINUE
KGASP=0
C
[Fhid ENTER LCOPS DVER EACH SHEAR SAMPLING PGINT
G
DO 15 IBAUS=1,NGAUS
KGASP=KGASP+1
Do 10 ISTRE=%,NSTRE
STRSG{ISTRE)=0.0
KGASH=0

CHes COMPUTE THE STRESS RESULTANTS

DO 10 INIDE=%,NNODE
00 1D IDQFR=1,NDOFN
KGASH=KBASH+1
STRSE [ISTRE }=STRSG [1ETHE ) +SMATX (TSTRE, KGASH, KGASF 1 *ELDIS [TDOFH,
.INDDE)
1C CONTINUE
c
CHee WRITE STRESSES IN DISC FDR EACH HARMCNIC
c
WAITE{B} [STRSG{ISTRE],ISTRE=1,NSTRE}
415 CONTINUE
20 CONTINUE
RETURN
END

The NS chart for STREFS is now given in Table 10

STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STRE
STHRE
STRE
STRE
STRE
SYRE
STRE
STRE
STRE
STRE
STRE
SYRE
STRE
STHE
STRE
STRE
STRE
STRE
STRE
STRE

WmN o ok

-
o

Loop over each strip. BSTRE 12

the sampling point coordinates, BSTRE 17

Read from file 3 the stress resultant matrix and

from the global displacement vector ASDIS.
STRE 21-27

Extract the displacements of the strip nodal points

A
Table 10 NS chart for Subroutine STREFS
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A

i
Zero Gauss point counter. STRE 28 4
Loop over Gauss points. STRE 32 3
Increment Gauss point counter, STRE 33 6

Compute stress resultants at each Gauss

point. STRE 34-45 7

Write in disc file 8 the Gauss point stress

resultants, STRE 49 8

Table 10 NS chart for subroutine STREFS
This routine is identical for all of the different structural

applications given in this chapter,

12.7 Subroutine for summing the contributions
harmonics: Subroutine ADD

from all

This subroutine evaluates the displacements and stress
resultants at a given longitudinal section of the structure by
summing the nodal displacements and Gauss point stress result-

ants obtained for alil harmonic terms chosen for the analysis,

SUBROUTINE ADD [ADISP, AFDRC, DISPL,DIZPL, EFORC

+ FORCE, MELEM, MFACT, ADD 1
.:tg;gE'MTUTV.NC.ASE,NDGFN,NELEM,NBAUS,NHAHK,NPOIN,NSTHE,NEYME, ADD 2

. Al 3
DIMENSION ADISF‘[S,MPOIN],AFORC[S,#,HELEHJ,UISPL(H!{I'!’VJ. Agg 4
.DIZPL[MTCTV}, EFORE MFACT ), FORCE (MFACT }, GPCOD [1 41, SMATX(S,12,4), ADD 5
JYSECT{5} ARG B

c ADD 7
g”‘ 5UM DISPLACEMENTS AND STRESSES FOR ALL HARMONICS AbD ]
g“‘ READ AND WRITE SECTION ANALYSIS DATA :I?g 13
READ{5,900) NSECT :g[[)) "II;‘

S00 FORMAT (15) ADD 13
WAITE(E,950) MSECT ADD 14
READ(S,805) [YSECT (ISECT ), ISECT =1 NSECT) ADD 15

905 FOBMAT(BF1G,3) ABD 1B
VARAD=3, 14159265,/ TLENG ADD 17

DO 105 ICASE=1,NCASE ADD 18

DG 10G ISECT=1,NSECT ADD 1§
WAITE[6,915]) YSEQT LISECT) ADD 20
RADIA=VARAD*YSECT {ISECT) ADD 21
WRITE[6,81G)  ICASE CADD 2

910 FOAMAT (//,5X,14H LOAD CASE NG=,138,//1 ADD 23
REWIND 7 ADD 24
BEWIND 8 ADD 35

NUMOR=NPOIN

0O 5 IDOFN=1,NOOFN

00 5 IUMDR=1,NUMOR
ADLSP[IDOFN, IUMDR)=0,0
DD 10 TELEM=1,NELEM

DO 12 ISTRE=%,NSTAE

DD 10 IGAUS=1,NGAUS
AFDRC(1STRE, IGAUS, IELEM]=0.0
WRITE(§,820]
WRAITE(G,025)
LODIS=HUMDR*KDOFN

o

1

=]

C*¥*  READ HACK DISPLACEMENTS

D0 85 [HARM=1,NHARM, NSYME
DO 30 ICAS0=%,NCASE
00 15 IPOIN=1,NPOIN
NGASH=IPOIN*NDOFN
NGISH=NGASH-NDOFN+1
READ(7] (DIZPL(IDDIS), IDDIS=NGISH,NGASH]
IFIICASO,NE.ICASE) GO TC B5
00 20 IDDIS=1,LDOLS
20 DISPL(IDDIS}=DIZPL(IDDIS)
85 CONTINUE
30 CONTINUE
HARMO=FLOAT [IHARM}
FCTOR=HARMO*HADIA

1

o

C***  8UM DISPLACEMENTS FOR ALL HARMONICS

00 35 IUMOA=1, NUMDR

IWOIS=[TUMDR—-1]*3+1

IROTX=THOIS+3

IROTY=TWDIS+2

ADISP (1, TUMOR)=ADISP (%, IUMDR1+DISPLIIWDIS | *SIN(FCTOR )

ABISP (2, IUMDR) =ADIS# |2, IUMOR }+BISPL (IAOTX ) *SIN(FGTOR)

ADISP [3, JUMDR 1=ADISP (3, IUMOR ) +DISPL{IROTY 1 %COS IFCTOR]
35 CONTINUE

C***  PRINT DISPLACEMENTS

IF [IHARM.LT.KHARM) GO TQ 45

D0 40 IFOIN=1,NPQIN

WRITE[S,830]) IPOIN, (ADISP[IDOFN,IPOIN),IDOFK=1,NDOFN)
40 CONTINUE
45 CONTINUE

C*¥*  STRESSES AT SHEAR GAUSS POINTS
LDSTR=NELEM*NSTRE*NGALUS
C**®  READ BACK STRESSES AT SHEAR GAUSS POINTS

Q¢ 70 ICASD=1,NCASE
0 55 IELEM=1,NELEM
KETEG=NSTRE*NGAUS
LSTEG={IELEM-1)*KSTEG
DC 50 IGAUS=1,NGAUS
NEEST=IGAUS*NSTRE+LSTEG
NGEST=NGEST-NSTRE+1
S0 READ{B) (EFORC(IDSTR),I0STA=NBIST,NGEST )
93 CONTINUE
IF [ICASD.NE.ECASE] GO TD 65
D0 60 IDSTR=1,LDSTR
B0 FORCE [10STA=EFQRC (IDSTR)
65 CONTINUE
70 CONTINUE
REWIND 3
c
C*** SUM SHEAR GAUSS POINT STRESSES FOR ALL HARMONICS
G

B0 90 IELEM=1,NELEM
MSTEG=NSTRE®*NGAUS
NSTEG={IELEM-1]°MSTEG

READ(3) SMATX,GPGRD

DO 85 IGAUS=1,NBALS
ISXDI=(IGAUS—1 }*NSTRE+1+NSTEG
ISYDI=ISXDI+1

ISKYD=ISXDI+2

TSXZD=ISXDI+3

ADD
ADD
ADD
ADD
ADD
ARD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ACD
ADD
ADD
ADD
ADD
AGO
ARD
ADD
ADD
ADD
ADD
AGD
ADD
ARD
ADD
ARD
ADD
ADD
ADD
ARD
ADD
ADD
ADD
ADD
ACD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

ADD

108

133
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ISYZD=ISXDI+4

ADD

AFORC (1, IGAUS, TELEM }=AFORC [1 » IBAUS, IELEM]+FORCE (ISXDT 3*SIN (FCTOR) ADD
AF{]HBlE.IGAUS,IELEMJ=AFDRC(2,]GAUS,IELEH]+FDHDE(ISYDI]"SIN{FCTCIR) ADD
AFDRCH.IGAUS.IELEM.'I:AFUHC(3,IBAUS,IELEH]+FGRGEiISXYDJ‘CDSiFBTDRJ ADD
AFDRC{4,IGAUS,IELEH)=AFORC[4,IGAUS,IELEH]+FDHCE[3$XZ€I)'SIN[FETDR] ADD
.ﬁFOHCl5,IGAUS.IELEM?=AFE]HC(5,IGAUS,IELEM]+FC|FICE[ISYZD]‘CGS[FCTOR] AGD

IF [IHARM.LT.NHARM) GO To BO ADD
IF[IGAUS.GT.1) GO TO 75 ADD
WRAITE(6,835) ADD
WRITE [6,940) ADD
WRITE(E,845}) ADD
75 CONTINUE ADD
[% ADD
C***  PRINT FINAL SHEAR GAUSS POINT SYRESSES ADD
c AGD
WRITE(B, 935} I1ELEM,IGAUS, [AFORC (ISTAE, IGAUS, TELEM) JIBTRE=1, ADD
«NSTRE] , BPCOD (1, IGALIS) AaD
80 CONTIMUE ACD
85 CONTINUE ADD
50 CONTINUE ADD
45 CONYINUE ADD
100 CONTINUE ADD
105 CONTINUE ADD
915 FORMAY (1HO, 'TOYAL DISPLACEMENTS AND STRESSES AT 2=' Fg8.3,//) ADD
920 FORMAT {1HD, 5X, 13HOISPLAGEMENTS } ADD
925 FDHHATHHU,EX,‘!HMDE,EX.EHDISP.,BX,EIH XZ-A0T.,7X,8H YZ-ROT,) ADD
930 FORMAT (110, 3E18,8] ADD
935 FORMAT [215,6E15.8,F10.4) ADD
940 FORMAT (/7 1X, 'STRESSES AT THE SHEAR BAUSS POINYS',/} ADD
845 FORMAT[/ ¢, 'EL',aX, 'GP, ' 13H XX-MOMENT ADD
+15H  YY~MOMENT »IBH  XY~MOMENT  ,15H  XZ-FORCE 7 ADD
158 ¥2-FORGE 2 1, "X-CORD GAuUS R,') ADD
950G FORMAT(// 1X,'NUMBER OF SECTIONS To BE ANALYSED=*,13) ADD
RETUAN ADD

END

ADD

108
107
108
109
110
11
112
113
114
1ns
116
117
1ia
118
120
181
122
123
124
123
126
127
128
129
130
131
132
133
134
135
138
137
138
138
140

The NS chart for subroutine ADD is now given in Table 11.

Read and write the numbers of longitudinal sections

at which_displacements and stress resultants are to

be calculated. Also read and write the y coordinate

of the sections.

ADD 11-16

Preset w@/1. ADD

17

Loap over each

load case. ADD 18

Loop over

sections,

the number of longitudinal

ADD 19

and v/

Write section coordinates and evaluate in/a

for right or curved plate case,

resp. ADD 20 - 23

133

A
!

Rewind displacement and stress resultant discs
and initialise displacement and stress resultant

vectors., ADD 24-33

Write titles. ADD 34-35

Loop over all harmonic terms. ADD 40

Read back nodal displacements from disc
file 7. Identify displacements for
current load case and accumulate dis-
placements for all harmonics at the

current longitudinal section., ADD 41-63

If this is the last harmonic, then write
nodal displacements at the current long-

itudinal section. ADD 67-71

Read back stress resultants at the Gauss
points for current strip from disc 8.
Identify stress resultants for the current
load case and accumulate stress resultants
for all harmonics for current strip at the

current longitudinal section. ADD 79-111

If this is the last harmonic, then write
stress resultants at the Gauss point for
current strip at current longitudinal

section. ADD 112-122

F

A

Table 11 NS chart for subroutine ADD

Table 11 NS chart for subroutine ADD

This subroutine is almost identical for ali the different
structures studied in this chapter. The only difference lays
in the number of displacement and stress components and the type

of expansions chosen for each particular problem.
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12.9 Subroutine to solve the stiffness equations for each

harmonic term: Subroutine FRONT

This subroutine solves the uncoupled system of stiffness ¥ Unitormly distributed load g
equations for each harmonic term (see (35)) by the FRONTAL 1o + q =10 {F/d?)
o . + '
elimination technique [35]. Full descriptive comments of this £ -10.920 {F7d?)
subroutine, together with the corresponding comments can be v
=0.3
. . C
found in reference [34] and they will not be given here, A—d — ~a— — &R0
thickness = 0.1 d
x 5 three neded strips
SUBROUTINE FRONT [ASDIS, ELOAD,EORNS, EQUAT,FIXED,6LOAD, GSYIF, FRON 1 e
-ICASE, IFFIX, IFPRE, LNODS, MBUFA, HELEM, MFRON, KSTIF, MTGTY , MVFIX, FRON 2 ' Full integration
-NAGYA, NAMEY, NDDFN, NELEM, NEVAS, NNOBE, NOFIX, NPIVO, NPDIN, NVFLX, FRON 3 “‘“ ‘id“ q
PRESG, VECRV] FRON & A . 8 :
DIMENSION ASDIS(MTOTVI,ELOAD (MELEN, 12}, EGRHS (HBUFA), FRON 5 .V r 6 Non zero harmonics
-EQUAT {MFRON, MBUFA) ,ESTIF (12, 121, FIXED (NTOTV ], GLOAD (MERON) , FRON &
-GSTIFIMSTIF), IFFIX IMYQTV], IFPRE [MVFIX, 31,1 NODS [MELEM, 4), FRON 7
-LOCEL[12] , NACYA [MFRON] , HAMEY [MBUFA | , KDEST (12] , NOFIX (MVFIX1, FRON 8 054
-NEIVO(MBUFAY,PRESE (MVFIX, ), VECAY {MFRON) FADN 9
c FRON 10
C™** MERGE AND SOLVE THE RESULTING EQUATIONS FRON 11
E‘" B8Y THE FRONTAL METHOD FOR EACH HARMONIC FRON 12 W (obtaired) = 04272 = 1072 {d)
FRON 43
C*** FOR A COMPLETE DESCAIPTION OF THIS SUBROUTINE FRON 14 = =
C*** SEE THE BOOK "FINITE ELEMENTS IN PLASTICITY: FRON 45 We texact) [211= 04270 « 107 (d)
C***% THEORY AND PRACTICE" BY OWEN AND HINTON FRON 1§
C*** PINERIDGE PRESS, SWANSEA 1980 FRON %7
[ FRON 1B
C RETUAN FRON 13
€ END FROK 20 {Mx),
/Exuct [21]
00479 +
13. EXAMPLES
13.1 Example 1: Simply supported sgquare thick plate under
uniformly distributed load O Finite strip results
. . —— Thecrical resuits [21}
The geometry of the plate and the material properties are
indicated in Figure 24. A mesh of five, three-noded strips
with full integration has been used. This example has been
discussed earlier in the chapter in Section 3.5. Figure 24 \
‘ R : . I | | ] | | | H 1.
shows a plot of the numerical results obtained for the bending v A & L &2 1 (ﬁ 1 & T JS "

moment Mx along the central transverse section of the plate

versus the theoretically exact values [32]. Accﬁracy of the

Fig. 24 Exampte 1. Thick square plate under uniformiy distributed loading.

numerical solution is noticeable. In section 14 computer
listings of the data imput and output results for this example

are given,
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13.2 Example 2: Circular slab simply supported at two ends

under point load acting at the centre of a free edge

This example was discussed earlier in Section 10.1. The

geometry and material properties are shown in Figure 25. A

mesh of twelve, itwo-noded sirips with reduced integration has

C_ VYertical force

* 1 1b been used for the analysis. In the same figure a plot of the
Q 5

numerical solution obtained by Coull and Das for the same pro-

plem [26] is also shown in the figure for comparison, Accuracy

of the numerical results is again good, Data input for this
e, problem is given in Section 15. A listing of the numerical
l 7 1 ' l results obtained is also presented in Section 15.
i T k|
E = 42460 {b/in2 12 two naded strips
V=03 Reduced integration 14. INPUT AND QUTPUT DATA FOR EXAMPLE 1
thickness =0.172in 6 non zero harmonics ) .
Input data for Example 1 is now listed.
W
o9 w5
0.8;
1
ikt SIMPLY SUPPORTED SOUARE PLATE. QUAORATIE STRIP WITH FULL INTEGRATION
1 2
11 5 2 1 4 a1 32
Q.6 1.
1 4 1 2 3
0.5 2 1 3 4 5
a1 s 6 7
4 1 7 8 8
04 . 5 1 9 0 M
—o= Finite strip resulis 1 .0
0.3 X Experimental resulls § :?5
o1 (see Fig 15) g .;5
5 .25
a1 e+ 4, . c 7 .40
A ol 0.2 03 0.4 0.5 06 8 .35
5 .40
Section AC 10 .45
1m .5
G 1101
Fig 25 Example 2 :Circular siob simply supported al two ends wunder :. ; 1:10:‘;3. .3 R 1.
point load acting at the center of a free adge. i UNIFORM LOAD
. ot
1
0.5
¥

Typical output data for Example 1 is now listed.
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INPUT AND OUTPUT DATA FOR EXAMPLE 2

15,

Input data for Example 2 is now listed.

1
CIRCULAR PLATE SUPPORTED AT TwO E£RDS.LINEAR ELEMENT WITH AEDUCED INTEGRATION

2
12

"
13
1.04720

ML NONDO O o
-

FNMTwO~AD o0 TN
-

e e e @D

UM D@ MG OQ

11.5
12.

11

A7

12.8
3.
1.

442450.3 3
CEIRCULAR PLATE URDER £DGE POENT LOAD
5236

12
13
1
13
1

.5238

CO+30EL88Y 0 §0-311L0885 " 0-

00+30000S7°0  BO-3EVSE/S O-
00+304ZLiF°0  B0-318409570-
‘d SvS OHOG-X FHOI-ZA

00+30E£B8E° 0 BO-3v9ipyE 0-
on+30000SE"C BO-322EL08°0-
00+30{2L4E°0  BO-39SVBSY O
‘d SNVD Qd03-X IMOI-74

DD+3DELBB2TD  BO-I0PYSTE O-

BO-351285E° 0-
80-31480428° 0~
30604-ZA

00+3000052°0
00+30£21i2°0
“d SNva QBOI-X

00+30€4B8L°0
G0+36Q00SL "0
0+30LELLL'D
“d SN¥9 (HOI-X

BO-38EL218"0-

80-2E9600L " G-
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16.
DATA

Cols.

DATA INPUT INSTRUCTIONS FOR DPROGRAM PBSTRIP

SET 1

1-5 NPROB

DATA SET 2

Cols,

1-72 TITLE

DATA SET 3

Cols.

Cols.

1-5 NHARM

6-10 NSYME

DATA SET 4

Cols,

L

1-5 NPOIN
6~10 NELEM
11-15 NVFIX

i6-20 NCASE

21-25 NTYPE

26-30 NNODE

31-35 NMATS

PROBLEM DATA (I5). One record

Total number of problems to be

solved in one run.
TITLE (12A6). One record

Title of the problem - limited to
72 alphanumeric characters.
NUMBER OF HARMONICS (2I5). One
record

Total number of harmonics to be

used for each problem.

Symmetry parameter
= 0 non-symmetric loading
= 1 symmetric loading {(with respect

to the axis y = %9.
CONTROL DATA (9I5). Omne record

Total number of nodal points,

Total number of strips.

Total number of restrained points
where one or more degrees of free-
dom are restrained along the long-
itudinal direction.

Total number of load cases to be

analysed,.

Indicator for right or curved nlate,

]

1 right plate

2 curved plate,
Number of nodes per strip,

= 2 linear strip

li

3 quadratic stirip

= 4 cubic strip.

Total number of different materials,

Cols., 36-40
" 41-45
DATA SET 5
Cols. 1-1¢
DATA SET 6
Cols, 1-5
" 6-10
" 11-15
" 16-20
" 21=25
" 26~30
DATA SET 7
Cols, 1-5
" 6-15
" 16~25
DATA SET 8
Cols., 1-5
" 8
re 9

NGAUB

NGAUS

TLENG

NUMEL

MATNC (NUMEL)
LNODS (NUMEL, 1)
LNODS (NUMEL , 2)
LNODS (NUMEL, 3)

LNODS (NUMEL,4)

IPOIN
COOBD(IPOIN,1)
COORD(IPOIN, 2}

NVFIX{(IVFIX)
IFPRE(IVFIX,1}

IFPRE{IVFIX,2)
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Order of integration formulae for

numerical integration of bending
stiffness (see Table 1).

Order of integration formulae for
numerical integration of shear
stiffness (see Table 1).

PLATE LENGTH/ANGLE (F10.5). One
record

Plate length (right plate) or angle
(curved plate).

ELEMENT DATA (6I5). One record for

each strip element, Total of NELEM
cards,

Strip element number.

Material property number,

1lgt nodal connection number.

2nd nodal connectiion number.

3rd nodal connection number {(for
quadratic or cubic strips only).
4th neodal connection number (for
cubic strip only).

NODE CARDS (15,2F10.5). One record

for each nodal point. Total of
NPOIN records.

Nodal point number.
The x coordinate of the node.
The z coordinate of the node.

RESTRAINED NODE DATA (I5,2x,311,
3F10.3)., One record for each res-—

trained nede. Total of NVFIX records.

Restrained node number.
Condition of longitudinal restraint
on nodal displacement w.
Condition of longitudins! restraint

on nodal rotation GX,
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Cols. 10

" 11-20 PRESC(IVFIX,1)

" 21-30 PRESC(IVFIX,2)

" 31-40 PRESC(IVFIX,3)

IFPRE(IVFIX,S) Condition of longitudinal restraint

on nodal rotation ey.
In Cols. 8-10:
IFPRE = 0 No displacement
= 1 Nodal displacement res-
trained.
The prescribed value of nodal dis-
placement w,
The prescribed value of nodal rot-
ation 9§ ,
b4
The prescribed value of nodal rot-

ation 6

Note: The program is able to deal with only zero presc-

ribed values,

Other prescribed values, different from

zero, should be input separately for each harmonic term

accordingly to the contribution of the prescribed move-

ment
ated
DATA SET 9
Cols, 1-5
" 6-15

" 16-25
" 26-35
" 36-45

DATA SET 10

Cols., 1-72

DATA SET 11
Cols., 1-5

to each harmonic, which should be properly evalu-

beforehand.

NUMAT
PROPS (NUMAT, 1)
PROPS (NUMAT, 2)
PROPS (NUMAT, 3)
PROPS (NUMAT, 4)

TITLE

IPLOD

MATERIAL DATA (I15,4F10.5). One
record for each different material,
Total of NMATS records,

Material identification number.
Young's modulus, E,

Poigson's ratio, v,

Element thickness.

Distributed load intensity.

LOAD CASE TITLE DATA (12A6). One
record.

Title of the load case - limited to

72 alphanumeric characters.

LOAD CONTROL DATA (215). One record.

Applied vertical point load control
parameter
= 0 no applied vertical nodal loads

to be input.

" 6-10 IUNIF

DATA SET 12

Cols. 1-5 LODPT
6-15 PQINT(1i)

" 16~-25 YLOAD
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= 1 applied vertical nodal loads to

be input.
Uniformly distributed load control
parameter.
= 0 No distributed load case to he
considered.

1 Distributed load case to be con-

sidered.

APPLIED VERTICAL POINT LOAD DATA
(I5,2F10.5), One record for each
loaded nodal point.

Node number.

Value of the vertical point load
acting at the node.

The y coordinate of the point at

which the load acts.

Notes: 1) The last record should be that for the highest num-

bered node whether it is loaded or note.

2y If IPLOD = 0O in Data Set 9, omit this set.

DATA SETS 10 TO 12 TO BE REPEATED FOR EACH LOAD CASE IN ACCORD-

ANCE WITH NCASE IN DATA SET 4.

DATA SETS 2 TO 12 TO BE REPEATED FCR EACH PROBLEM IN ACCORD-

ANCE WITH NPROB IN DATA SET 1.

DATA SET 13

Cols. 1-5 NSBECT

DATA SET 14

Cols. 1~10 YSECT(1)

' 11-20 YSECT(2)

" 41-50 YSECT(5)

NUMBER OF QUTPUT SECTIONS DATA (I5).
One record.

Number of output section (= 5).
SECTION - COORDINATES DATA (8F10.5).
One record.

The y (right plate) or € (curved
plate) coordinate of the first out-
put section.

ditto for the second section

ditto for the fifth section.




152
17.

ASDIS

BMATX

CARTD

COORD

DBMAT

DERIV

DMATX

ELOAD

ESTIF

GPCOD

IFPRE

LNODS

MATNO

NDIME

NDOFN

HELEM

NEVAB

NGAUB

NHARM

DICTIONARY OF MAIN VARIABLE NAMES

{(NTOTV) - Vector of nodal displacement amplitudes for

each harmonic,

(NSTRE,NEVAB) -~ Matrix BE for each element.
~ N (e}
(1,INODE) -~ Cartesian shape function derivative 7;%
(NPOIN,1) - Coordinates of nodal points.
(NSTRE,NEVAR) =~ Matrix p gﬁ for each element.
an; (&)
(1 NODE) ~ Shape function derivative Tﬂ;
{NSTRE,NSTRE} - Matrix D for each element.
(NELEM ,NEVAB} =~ ©Nodal forces for each element.
&
{NEVAB,NEVAB) - The element stiffness matrix [§e] .
(1,NGAUS) - Coordinate x of the shear integration
points.
(2,NDOFN} -~ 1Integer code to specify prescribed degrees
of freedom,
(10,NNODE) - Element node number listed for each
element.
(NELEM) - Material set number for each element,

- Number of coordinate components required to define

each node (=1).
~ Number of degrees of freedom per node,
- Number of strip elements.
- Number of variables per element = NNODE * NDOFN.

- Number of Gzussian integration points for the

flexure terms.

- HNumber of Gaussian integration points for the shear

terms.

= Number of harmonic terms Lo be used in the analysis.

NNODE

NOFIX

NPOIN

NPROP

NSTRE

NSYME

NTYPE

POINT

POSGP

PRESC

PROPS

TLENG

YLOAD
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- Number of nodes per strip element.

(2) - List of prescribed node numbers (maximum of two

nodes to be prescribed).
- Total number of nodal points.

~ Number of material parameters required to define the

characteristics of a material completely.
- Number of stress components per element.
- Code for symmetric loading.
- Code for right (= 1), or curved (= 2) plate,
-~ Value of the vertical point load.
(4) - Coordinates of integration points,

(2,NODFN) =~ Values of the prescribed degrees of free-

dom.
(1,5) = Values of the material parameters.
- Plate Iength (right) or angle (curved).

- y coordinate of the transverse section where the

point leoad acts.

WEIGP (4) - Weights of the integrating points.

18.
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1. TINTRODUCTION
The main objectives of this chapter are as follows:
a) to briefly review various plate elements based on

Mindlin plate theory,

b) to describe a2 hierarchical version of the heterosis

plate element,

c) to present a documented program called MINDLIN in which

the heterosis element is implementad, and

d)  to provide a set of user instructions for MINDLIN and

also examples demonstrating the use of the program and

the perrormance of the heterosis plate element.

The main equations of Mindlin plate theory have already been
presented in the chapter dealing with closed form solutions,

However, for completeness, a brief resume is now provided.

2. REVIEW OF MINDLIN PLATE THEORY
2.1 Mindlin plate formulation - displacement approach

Mindlin plate theory [1] allows for transverse shear
deformation effects and thus offers an attractive alternative
to ctassical Kirchhoff thin plate thecry. The main assumptions

are that




