5. Conclusions

The use of the CAD/CAM technique considerably speeds up the design
worklof a progressive tool. This is based on the CAD/CAM system's
ability to unfold a 3D sheet part into a plane and the idea of using
this geometry for all the process and tool design phases. Tool
standard part Tibraries and stored expert data speed up the designing
process further. However, the design and manufacture demand a
g?niagegggle nuTberkgg]higgly—skilied personnel and the effective use
gner's skill and experie i igni - i
Processes 1o Sttt raguieed. p nce in designing metal-forming
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Summary

A formal analogy between the equations of pure plastic and viscoplastic flow theory
_ for void containing metals and those of standard non linear elasticity is presented.
It is shown how by direct simplifications of the general equations, the standard
incompressible flow expressions for non voided metals are obtained. The general
formulation is particularized for the analysis of sheet metal forming problems and
details of the viscous voided shell and membrane formulations for dealing with the
axisymmetric case are given. Finally, some examples of applications of pure and
hemispherical stretching and deep drawing of a circular sheet are presented.

1. Introduction

Tt is well known that an effective way of treating the continuous deformation of
metals is to use a rigid plastic flow model in which elastic effects are neglected.
- The simplest and perhaps most widely used model, uses the Von Mises yield
eriterion, which results in the incompressibility of the material flow. The governing
equations in this case are entirely analogous to those of standard elasticity with
a single material parameter, the shear modulus, playing the role of the non
© linear strain rate dependent viscosity, and the displacements and strains that
of the velocities and strain rates in the analogous flow model respectively {1].
This analogy has allowed the solution of complex metal forming problems with
standard finite element programs originaly written for 2D and 3D elasticity [2}-
[4]. Applications of this approach in the context of sheet metal forming analysis
leaded to the derivation of the so called viscous shell model. This is based on a
simple modification of standard small displacement elastic shell theory using the

mentioned flow-elasticity analogy [5].
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Recently, Ofate et al. [6] have extended the viscous shell model to deal
with material degradation effects by taking into account nucleation, growth and
coalescence of microscopic voids in the deforming metal sheet. The resulting
viscous voided shell model introduces the effect of material compressibility in the
form of a two parameters constitutive model which can be simply identified as the
equivalent shear modulus and Poisson’s ratio of an analogous non linear elasticity
material. This allows finite element solutions to be obtained for such potentially
more difficult problems by directly using computer programs written for standard
~—compressible— elasticity.

The objective of this paper is to present in an unified form the basic concepts
of the viscous shell model for plastic/viscoplastic materials including the effect
of material degradation due to the development of microscopic voids, for the
finite element analysis of sheet metal forming problems. The formulation will be
particularized for the axisymmetric case using simple linear axisymmetric shell and
membrane elements. Details of the treatment of the contact and friction effects are
also briefly given. Finally, some examples of application of the general formulation
to three examples of pure and hemispherical stretching and deep drawing of a
circular sheet are presented.

2. Basic concepts

The basis of the plastic/viscoplastic flow approach is  toneglect elastic
stresses and strains in the deforming material {1],[3]. This assumption allows to
write the following rate equation

&5 = éf}rb = f(oi;) (1)

where &y and é¥¥ account for the total and non linear ~-plastic/viscoplastic—
strain rate tensors, respectively. The form of function f depends on the type
of plastic/viscoplastic constitutive model used. In any case (1) describes the

behaviour of an equivalent fluid in which strain rates and velocities w are simply
related by

. l 81&; Buj .
€y = 7 ('5;; + aa‘_) or €= Lu (2)
and the stresses salisfy the standard equilibrium conditions {7l

oetb=0 in the volume Vv

. 3
MTe2=0 in the boundary T ®
where b and ¢ are body force and surface load vectors, respectively, and M is a
matrix containing the components of the unit normal to the boundary I .

In the following sections particular forms of (1) for different types of material
behaviour will be presented.
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2.1. RIGID PLASTIC FLOW OF VOID CONTAINING METALS

The yield condition for a randomly voided material with spherical —for 3D
problems— or cireular cylindrical voids —for plane stress problems— may be
assumed following Gurson [8] as

g 220 _ g ()

2 iy
where ¢y and s; are the macroscopic Cauchy stress and stress deviabor,
respectively, opr is the lensile yield limit of the matrix material (assumed
incompressible), £ is the void volume fraction and

we]l— 2fcosh(§%) + f2 (5

Note that for porosity parameter f =0, w = 1 and (4) reduces to the c?assical
Von Mises yield condition [2]. The change of the void volume fraction during the
deformation increment is taken as [8]-[11]

fl=flg+-fln+flc (6)

where subscrits g, n and e stand for growth, nucleation and coalescence of voids.
Also, it can be assurned that {5]-[10]
o= =D& fa= (ot T 7

the material parameter &k being the volume fraction of particles converted to .voids
per unit fractional increase in stress. Nucleation is assumed to oceur only if the
approximate value of the maximum normal stress oar + 2t exceeds in the cu.rrent
time increment  its previous maximum. Finally, the term f. can be numerically
accounted for in the following way. According to [10], coalescence takes place at
f =02 Thus a simple and effective numerical scheme can Eae usctd to rep1."oduc:e
this phenomenon if, at points for which f = 0.2, a proportional increase in fis
assumed for a number of fixed incremental steps (~5), up to f = i, for which the
material carrying capacity in that point is effectively zero. . .

Using standard plasticity theory [8], it is possible to arrive at the following
expression for the non linear —plastic— strain rates of eq. (1)

ég’) = 5"-3 g 515(”” - %I:,‘ﬂ'kk&j) . (8)

where G a0t fAS) {9)
TN 1-f

P= s .
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vx.rith B =1 A. =g 5= sinhd and € = \f2¢;¢;. After some manipulations a
simpler expression for & can be found as

A Tar/u
G ———— 11
3y fer — gel, 1

Comparing (8) with the constitutive equation for classical elasticity [7], and
taking into account (2) and (3) it can be easily be concluded that there is a
perfect analogy between the equations of plastic flow of a voided metal and those
of standard elasticity,

Therefore, displacements and strains in the analogous elastic model, can be
identified with the velocities and strain rates, respectively, and the elastic shear
modulus and Poisson’s ratio with parameters & and » given by (8)-(10). Note
the stress/strain rate dependence of & and & which makes the analogous elastic
problem non linear and the numerical solution must therefore be found iteratively,

2.2. PLASTIC FLOW OF NON VOIDED METALS

For classical plastic materials f = 0 and w = 1 and therefore, from (8)-(10) we have

s=l  E_x
v=g G= a2 (12)
and
. 1 Trk a7}
b= g5 (- ‘3"5"') 3G (9

Thl:ls the incompressible form of the deformation is recovered and the
expression for the equivalent shear modulus & coincides with that of the non-
Newtonian viscosity of the standard plastic flow problem {2].

2.3. INCLUSION OF VISCOPLASTIC EFFECTS

The expression for the viscoplastic strain rate can be postulated as £7]

99, for y>¢
doryg (14}

é{j=0 for x=10

é:’j =7x"

where v is the material fluidity and x is the overstress parameter defined as

- 33{1'!."
x—‘fi—wi-—m'u {156)

Note that for the non viscous case x = 0 (see eq. (4)).
Ofiate et al. [6] have shown that accounting for the viscous properties of a
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voided metal in the manner described above corresponds to replacing in (9) or
(11) the matrix yield value ox by

i+ (i) ] (19)

with g = £Z. It is easy to see that for the particular case of non voided material
(f = 0,w=1) egs. (9) and (16) lead to

o _omt(H)*

a=2 an)

which again exactly coincides with the expression of the fluid viscosity derived in

(2].

3. Application to thin sheet metal forming problems

The analogy presented in previous sections allows the treatment of large
plastic/viscoplastic deformations of thin sheets of metal making direct use of
classical small displacement elastic shell theory. The solution scheme is thus as
follows
1) Identify an elastic shell formulation. If standard finite elernent techniques
[7] are used, a discrete system of equations is obtained, upon discretization, of the
form
E(Gla=f (18)

where K is the shell stiffness matrix and a and f are the displacement and nodal
force vectors, respectively. The equivalent viscous voided shell is formulated
by simply identifying displacements and strains with velocities and strain rates
respectively, and the shear modulus and Poisson’s ratio with parameters @ and
given in previous section. For the simpler non voided case # = § and & is given by
(12} or (17}. Eq. (18) becomes a system of non linear equations which must be
solved iteratively, In the initial solution values of velocities a®, and void volume
fraction f° must be specified.
2) Solve for o!, If direct iteration is used the first iteration becomes

al = [K@%]'f (19)

3) Check for convergence of velocities. If desired convergence is not achieved
go back to 2.

4) Once convergence has been achieved the geometry is updated by aAt, where
At is an appropriate time step size, which can be taken as constant or equal to the
time increment for which the first node of the non contacting region comes into
contact with the indenting punch [5],[6}. Also, the boundary conditions must be
changed if new points have come into contact with the tool surface, Finally, the
values of the sheet thickness and void volume fraction are updated according, to



168

the values of the thickness and volumetric strain respectively.

B} The process is restarted with the new values of the sheet geometry and void
volume fraction. _

The algorithm is thus very simple and it also allows other effects like strain
hardening and friction conditions to be included in a straight- forward manner (8]
(see also Section 5).

It is worth nothing that in well developed sheet forming stages the spatial
velocity ficld does not change mueh between two consecutive solutions, Thus,
significant savings in computer time can be obtained by updating the sheet
geometry using the constant spatial velocity field for a number of incrementa]
steps {6].

We have also to point out that direct iteration usually yields convergence of
the velocity field after a small number of iterations. This is due to the well posed
boundary value nature of the problem in which velocities are prescribed at the
tool-blank contact nodes, and forces (reactions) are obtained ‘a posteriori’ from
the converged velocity field. Thus for each solution the initial velocities can be
guessed to be not too far from their correct values and convergence is rapidly
achieved. Special care, however, must be taken to define the cut-off value of
the equivalent shear modulus in zones of the sheet where rigid deformations are
expected, to prevent ill conditioning of the stiffness matrix.

In the next sections we present details of the finite element viscous voided shell
formulation for axisymmetric sheet metal forming problems.

4. Axisymmetric formulation

4.1. AXISYMMETRIC SHELL FORMULATION

The basis of the successof the viscous shell approach described in previous
sections lies in the efficiency of the analogous elastic shel! formulation. We will
briefly present here the relevant expressions of the finite element axisymmetric
formulation developed by Ofiate et al. [5],[8] for thin sheet metal forming analysis.
The formulation is based on Reissner-Mindlin shell theory and uses the simple two
node linear element. Details of the shell theory can be found in [6},{13].

The velocity field, after discretization of the shell in axisymmetric linear
elements, can be expressed as

" 2 u
o= { w} = ZN‘G‘ with N = NI, and a;= {w" } {20)
/] i=1 i

with u,w; and ¢; being the two global velocities and the angular vélocity of node
i, respectively and N; the linear shape function of node i. {Figure 1).
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Figure 1.- Axisymmetric shell. Discretization in axisymmetric linear elements

The generalized strain rate and stress vectors can be expressed as

2
E=[i,é0, 4 = Y, Bum (21)
i=!
2
o= [o',,a'g,f}T =Dé= DZ Ba; (22)

i=1

where for an isotropic material

diy dia O
D= dzl dzz (] (23)
0 0 das
with 1 . P .
d“ = dzz = QGI_:”_I_I_’ d12 = dz]_ = 2Gm, da_'-; =G (24)

where @ and & are given by (9)-(11), and the expression of the strain rate matrix
B, is given in the Appendix.

The element contributions to the stiffness mattix K, and the nodal force vector
F are

K =2 f“ ) B DByrds (25)
{e) = o / Ntrda + 2zmyp (26)
[t

where () is the element length, » the radial distance, ¢ and p, surface and point
load vectors, respectively and the expression of matrix D is given in the Appendix.
It has been shown that for a successfull use of this formulation the integral of (25)
must be numerically computed using a single’ Gaussian integration point. This
allows to obtain an explicit form of K{j’ as

E{) = 2x 8] DBy (21
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where (7) denotes values at the element midpoint. The expression of B is readily
obtained by substituting the terms & and 2% in eq. (A.1) by i and G
respectively.

4.2, AXISYMMETRIC MEMBRANE FORMULATION

The membrane formulation can be easily derived from the general case presented
in previous sections by simply neglecting in all expressions the flexural and shear
terms. The relevant matrices and vectors are now defined as

u:{;}:iN;Iga; a,—:{::f‘_} (28)

i=1

Velocity field:

. 2
Generalized strain rate field: €= { z; } = Z B e (29)

i=1
~ 2
Generalized stress field: &= {;; } =Dné=Dn, ‘Z;; B8 (30)
where

di dl2]
D=1
m [d:u daz (31)

where ¢ is the thickness, d;; are given in (24) and

B = cos(ﬁ%‘ sing2f
m; = N; 0

T

(32)

Finally the explicit expression of the stiffness matrix for the linear element in this
cage is identical to (27) with B, and D,, instead of B; and D, respectively.

5. Treatment of friction

An algorithm to simulate friction effects between the contact interfaces can be
based on an simple adjustment of nodal reactions at contact nodes after each
iterative solution, until they satisfy a Coulomb type of friction law. This method
has been succesfully implemented by the authors [5],{6] and it is used in the
examples presented in this paper.

A more consistent procedure to model contact and friction can be developed
by imposing the contact conditions via a penalty type approach, using the
total potential of the contact forces with the geometric compatibility conditions.
Generally the contact constraints can be written as

r=Ca—s ' (33)

where a iz the velocity field at a particular deformed configuration and ¢ and #
are obtained from the appropiate sticking or sliding contact rule [14].
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The expression of the total potential energy penalized using (33) is expressed
as 1 1
I = EGTKG —-aTf+ '?-‘I“Ta“ (84)

where « is a diagonal penalization matrix. The stationarity of {34) gives the
modified system of equations to be solved at each iteration as

[E+CTaCla=f+Cas (35)

The friction conditions can now be taken into account at each iteration by
imposing a Coulomb type of relationship between the total resultant normal
and tangential forces acting on each element belonging to the contact surface.
This procedure is currently under development by the authors. For more general
information see {14].

6. Examples

6.1. STUDY OF THE INFLUENCE OF POROSITY IN THICKNESS CHANGE

In the first example the effect of porosity development in the change of thickness
in a circular sheet, of radius = 2.20 in. and an initial thickness of 0.035 in., under
uniform stretching has been studied. The uniaxial stress-effective strain curve of
the matrix material is given by

oy =54+ 27.88%%  tn/fin* < 0.36
oy =54+ 24489 <920 tn/in’ &2 0.36

Fifty axisymmetric linear elements have been used in the analysis. The thickness
strain and porosity distributions obtained for two cases with & = 0.005 and & = 0.01
respactively, in all the sheet and 7% = 0.0 in all elements except f° =0.01 in element
20 (» =~ 1.0 in.) for both cases, are shown in Figure 2. It can be clearly secen in
these figures that porosity development affects very strongly the otherwise uniform
thickness strain field and causes strain localization as expected. Also from Figure
2 it is clear that the inclusion of the void nucleation parameter k amplifies the
mentioned localization effect.

8.2. HEMISPHERICAL STRETCHING OF CIRCULAR ISOTROPIC SHEET

The geometrical configuration of the problem is shown in Figure 3. Fifty
axisymmetric linear elements have been used in the analysis. The uniaxial stress—
effective strain curve of the matrix material is the same as in previous example.
A friction coefficient of 0.04 has been used, as suggested in [15]. The problem has
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been analysed for different initial void volume fractions of f° = 0.0, 0.01, and 0.05,
and nucleation parameters k = 0.0 and 0.02 in all elements. Numerical results for
the punch load-displacement curves for various values of #° and k are shown in
Figure 3. From these results it can be deduced that:

{a) An increase of the initial void porosity and nucleation parameters caugeg
a progressive reduction of the load carrying capacity of the sheet. Values of the
maximum punch load obtained for f° = 0.0 and 001 with & = 0.0 and 0.02, and
f° = 0.05 with k = 0.0, are in agreement with the experimental results reported in
[15], However, for f° = 0.05 and k = 0.02 a reduction of the maximum punch load
of 35 per cent is obtained.

{b) Inclusion of void porosity induces localized failure with a rapid loss of
rigidity which causes an almost vertical descent of the load-displacement curve,

T T T T 1
T ¥

T gty ¥ T T T T T ¥ T 1
a0 Dal £.3 0.3 Oud a3 OaF BaF B Dul L@ Ll 3aZ Jed Jed L3 18 L7 BB L a0 Rl B3 R3

3

6.3. HEMISPHERICAL DEEP DRAWING OF CIRCULAR ISOTROPIC
SHEET

The geometrical configuration of the problem is shown in Figure 4. Fifty
axisymmetric linear elements have been used for the analysis. The uniaxial stress—
strain curve of the material is the same as in previous example. A frietion
coefficient of 0.04 has been used [16]. Numerical results of the punch load-
displacement curve and hoop and thickness strain distributions for f =0 and k= ¢
have been plotted in Figure 4 Numerical results compare reasonably well with
experimental ones [16]. Finally a 3D perspective of the sheet geometry at different
deformation stages is shown in Figure 5.
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7. Conclusions

The equations describing plastic and viscoplastic flow of metals including the
effects of nucleation, growth and coalescence of voids, are analogous to those
of classical non linear elasticity. The formulation for non voided materials is
directly obtained from the general case simply by neglecting the effect of voids,
thus yielding the classical form analogous to incompressible elasticity. This allows
standard finite element methods developed for elastic shell problems to be directly
used for the analysis of complex sheet metal forming processes, including material
degradation effects by development of microscopic voids.

The examples analysed show that by adjusting parameters such as the value
and distribution of the initial void volume fraction and of the fraction of particles
converted to voids per unit increase of stress, the model should be able to predict
development of voids and localized material failure.

T d

T

— Woo [16]

\

146 ZuD  Zed Z-B T2 36 4uD

strain distributions for various deforming configurations.
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Pigure 4.- Hemispherical deep drawing. (a) Punch load-displacement curves. (b) Hoop and thickness
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Appendix

STRAIN RATE AND CONSTITUTIVE MATRIX FOR AXISYMMETRIC
SHEET FORMULATION

Strain rate matriz B = (B, B,
cos ¢B_a1_\f‘_¢ #in cﬁ%‘ i}
A 0 0
P o s (41
0 ¢ - iﬂ?i
— ain ¢%—‘;ﬂ cos qﬁ%@i N
for definition of 4 see Figure 1.
Constitutive mairiz .
D= f L sTDSd (4.2)
T
10 2 0 0 dy dip 0
S=10 I 0 P 0 D= dzl dzz 1]
¢ 0 0 @ 1 ] 0 das

di; as given in (24). Note that the computation of D implies an integration across
the thickness. This is in practice performed using numerical integration.

TIME STEPPING SCHEMES FOR THE NUMERICAL ANALYSIS OF SUPERPLASTIC
FORMING OF THIN SHEET

J, BONET, R.D. WOOD and 0.0. ZIENKIEWICZ
Civil Engineering Department, University College of
Swansea, Swansea, SA2 8PP, Wales, U.K.

SUMMARY

The numerical simulation of the superplastic forming of thin sheet
involves the time integration of velocities in order to determine the
changing configuration of the sheet as it forms into the final com-
ponent shape. During the course of developing a finite element
analysis of the problem various time stepping schemes have been
investigated. This paper discusses these schemes and reports on the
success or otherwise of their implementation.

INTRODUGTION

Superplastic forming of products made from thin sheet is a manufact-
uring technique whereby, typically, titanium or aluminium alloy sheet,
at sufficiently high temperature, can be blow formed, without frac-
turing, into a die te produce a very complex, light and strong '
component | In addition judicial use of the diffusion
bending characteristics of superplastic alloys enables assemblages to
be formed which are structurally more integral than the same component
produced by traditional means.

The crucial problem of predicting the relationship between the
forming pressure cycle and the product thickness distribution can be
ameliorated by using a finite element based numerical simulation of
the forming behaviour, [1-8]. This usually involves a solution scheme
in which velocities have to be integrated in order to ascertain the

‘changing shape of the product as forming progresses, Furthermore,

since the constitutive equations are nonlinear, the integration scheme
is intimately connected to the nonlinear solution procedure.

This paper discusses explicit and implicit time stepping schemes
associated with a finite element solution to the problem of simulating
thin sheet superplastic forming. In particular, deficiencies ex~
perienced when the explicit scheme is used for general shapes are
overcome by introducing a trapezoidal implicit scheme which is further
improved by using a two step backward difference implicit scheme.
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