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Summary

The paper describes how the finite element method and the finite volume method
can be successfully combined to derive two new families of thin plate and shell triangles
with translational degrees of freedom as the only nodal variables. The simplest elements
of the two families based on combining a linear interpolation of displacements with cell
centered and cell vertex finite volume schemes are presented in detail. Examples of the
good performance of the new rotation-free plate and shell triangles are given.

INTRODUCTION

The need for efficient plate and shell elements is essential for solving large scale
industrial problems such as the analysis of shell structures in civil, mechanical, naval
and airspace engineering, the study of vehicle dynamics and crash-worthiness situations
and the design of sheet metal forming processes among others. Despite recent advances
in the field [1-3], the derivation of simple triangles capable of accurately representing
the deformation of a plate or a shell structure under complex loading conditions is still
nowadays a challenging topic of intensive research.

The development of plate (and shell) finite elements was initially based on
the so called thin plate theory following Kirchhoff’s main assumption of preserving
orthogonality of the normals to the mid-plane [1,4]. Indeed, most plates and shells
can be classed as “thin” structures and therefore Kirchhoff’s theory can reproduce the
essential features of the deformation in many practical cases. The well known problems
to derive conforming C7 continuous thin plate and shell elements motivated a number
of authors to explore the possibilities of Reissner-Mindlin theory. This theory relaxes
the normal orthogonality condition, thereby introducing the effect of shear deformation
which can be of practical importance in thick situations, such as the analysis of some
bridge slabs and, more important, it requires only Cy continuity for the deflection and
rotation fields. Unfortunately Reissner-Mindlin plate and shell elements suffer from



the so called “shear locking” deffect which polutes the numerical solution in the thin
limit. This defficiency has jeopardized the full success of Reissner-Mindlin plate/shell
elements for practical engineering analysis, an exception perhaps being the four node
quadrilateral based on an assumed shear strain formulation developed by Dvorkin and
Bathe [5]. Thus, despite considerable efforts [6-23] there are not yet well established
simple triangles which are currently used for solving large scale industrial plate and
shell problems.

This paper presents a general approach to derive very simple plate and shell
triangular elements incorporating the deflection as the only nodal variable. The elements
are based on Kirchhoff’s thin plate theory and as such can be viewed as a return to
the origins of plate and shell finite elements. Indeed for the applications in mind such
as the analysis of standard thin plate and shell analysis, vehicle crash-worthiness and
sheet stamping processes, Kirchhoft’s theory suffices for practical purposes.

The idea of using the deflection as the only nodal variable for plate bending analysis
is not new and many finite difference (FD) procedures are based on this approach [24].
The obvious difficulties of FD techniques are the treatment of boundary conditions and
the problems for dealing with non-orthogonal or unstructured grids.

Several authors have tried to derive plate and shell finite elements with
displacements as the nodal variables. So far the methods limit their applicability to
triangular shapes only. The first attempt was probably due to Nay and Utku [25] who
derived a rotation free thin plate triangle using a least square quadratic approximation
to describe the deflection field within the patch surrounding a node in terms of the
deflections of the patch nodes. The stiffness matrix of the resulting three node plate
triangle were computed by the standard minimum potential energy approach. A few
years later Barnes [26] proposed a method for deriving a three node plate triangle with
the nodal deflections as the only degrees of freedom (d.o.f.) based on the computation of
the curvatures in terms of the normal rotations at the mid-side points determined from
the nodal deflections of adjacent elements. This method was exploited by Hampshire et
al. [27] assuming that the elements are hinged together at their common boundaries,
the bending stiffness being represented by torsional springs resisting the rotations about
the hinge lines. Phaal and Calladine [28,29] proposed a similar class of rotation-free
triangles for plate and shell analysis. Yang et al. [30] derived a family of triangular
elements of this type for sheet stamping analysis based on so called bending energy
augmented membrane approach which basically reproduces the hinge bending stiffness
procedure of Hampshire et al. [27]. Brunet and Sabourin [31] proposed a different
approach to compute the constant curvature field within each triangle in terms of the
six node displacements of a macro-element. The triangle was successfully applied to non
linear shell analysis using an explicit dynamic approach. Rio et al. [32] have used the
concept of side hinge bending stiffness to derive a thin shell triangle of “translational”
kind for explicit dynamic analysis of sheet stamping problems.

In 1993 Onate and Cervera [33] proposed a general procedure based on finite
volume concepts [34-36] for deriving thin plate elements of triangular and quadrilateral
shapes with the nodal deflection as the only degree of freedom and presented a
competitive and simple three d.o.f. triangle. In this work the ideas presented in [33]



are extended to derive new rotation-free plate and shell elements. The basic ingredients
of the derivation are a mixed Hu-Washizu formulation, a standard discretization of
the plate surface into three node triangles, a linear finite element (FE) approximation
of the deflection field within each triangle and a finite volume (FV) type approach for
computing the curvature and bending moment fields within appropriate non-overlapping
control domain. Basically two modalities of control domain will be considered here,
leading each to a different plate triangle: the so called “cell centered” patch formed by
each individual triangle, leading to the BPT plate triangle and the BST shell triangle,
and the “cell vertex” domain formed by the non-overlapping nodal regions, leading to
the BPN and BSN plate and shell triangles, respectively.

The layout of the paper is the following. In the next section the basic concepts
of Kirchhoff’s plate theory are given and the set of governing equations emerging from
the standard Hu-Washizu formulation are described. Next, details of the combined
finite element /finite volume approach used in the formulation of the rotation free BPT
and BPN plate triangles are described. An extension of the BPT element based on a
linear least square interpolation of the deflection gradients over an element patch is also
presented. The relevant matrices and vectors for each case are given in explicit form.
The formulation of the rotation-free BST and BSN shell triangles is then described as
an extension of the parent thin plate formulation. Examples of the efficiency of the new
triangles for a wide range of plate and shell problems are finally presented.

BASIC THEORY

Let us consider the plate of Figure 1. We will assume Kirchhoft’s thin plate
conditions to hold, i. e.

ow ow
0, = e and Oy = (")—y

(1)

The curvatures field and the moment-curvature relationship can be expressed in
the usual manner as

k = Lw, m = Dk (2)
with

T
K= [ha, Ry, ,@my]T m = [mg, my, mmy]

(3)
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where F and v are the Young’s modulus and the Poisson’s ratio, respectively and ¢ is
the plate thickness.
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Figure 1. Sign convention for the deflection and the rotations in a plate

The set of governing equations will be expressed in integral form starting from the
standard Hu-Washizu functional [1]

H= %//AnTDndA—//A[Lw—n]deA—//AqwdA (4)

where ¢ is the distributed loading and A is the area of the plate. Variation of II with
respect to kK, m and w leads to the following three equations

Constitutive equation

//A 5nT[Dn —m|dA=0 (5a)
Curvature-deflection equation

//Ame[Lw —kldA=0 (5b)

Equilibrium equation

//A[L(Sw]deA—//A(qudA:0 (5¢)

Egs. (5a), (5b) and (5c) represent the global satisfaction over the plate of the
constitutive, kinematic and equilibrium equations, respectively. Eqgs. (5) are the basis
of the FE/FV discretization to be presented next.



FINITE ELEMENT /FINITE VOLUME DISCRETIZATION

Let us consider an arbitrary discretization of the plate into standard three node
triangles. The curvature and the bending moments are described by constant fields
within appropriate non-overlapping control domains (also termed “control volumes” in
the FV literature [34-36]) covering the whole plate as

m = Izmy, om = I3dmy, (6a)
k = I3k, ok = I30kp (6D)

where I3 is the 3 x 3 unit matrix and (-), denotes constant values for the p-th control
domain.

Two modalities of control domains are considered: a) that formed by a single
triangular element (Figure 2a) and b) the control domain formed by one third of the
areas of the elements surrounding a node (Figure 2b). The two options are termed in
the FV literature “cell centered” and “cell vertex” schemes, respectively.

Note that in the cell centered scheme each control domain coincides with an
standard three node finite element triangle. Alternatively in the cell vertex scheme
a control domain is contributed by different elements, as shown in Figure 2b.

It is also useful to define the term “patch of elements” associated to a control
domain. In the cell centered scheme (Figure 2a) this patch is always formed by four
elements (except in elements sharing a boundary segment), whereas in the cell vertex
scheme the number of elements in the patch is variable (Figure 2b).

Control domain

Figure 2. Cell centered and cell vertex finite volume schemes. BPT and BPN triangles



REMARK 1

The name “cell centered” (CC) indicates that the chosen variables (i.e. the
curvatures and bending moments) are “sampled” at the center of the cells discretizing
the analysis domain (i.e. the three node triangles). Similarly a “cell vertex” (CV)
scheme denotes that the variables are sampled at the corners (i.e. the nodes) of the
discretizing grid. This terminology has suffered some controversial interpretations in
the past (for instance in [33,34] a different criterion was chosen). The meaning given
here to the CC and CV schemes corresponds to above definition.

The constant curvature and bending moment fields within each control domain
are expressed next in terms of the nodal deflections associated to the corresponding
element patch.

The area integrals in egs. (5) can be written as sum of contributions over the
different control domains taking into account eqs. (6) as

Constitutive equation
>/ /A 5k} [Dicy — mpldA = 0 (7)
p p

where Aj is the area of the p-th control domain.

Recalling that the virtual curvatures are arbitrary, gives

my = Dykp (8a)

1
D,=— [ [ DdaA 8b
=], (8b)

where Dy, is the average constitutive matrix over a control domain. Eq. (8a) defines the
constant bending moment field over the control domain in terms of the corresponding
constant curvatures.

Curvature-deflection equation
Z//A sl [Lw — kpldA = 0 9)
) p

Taking into account that the virtual bending moments are arbitrary, gives

Ky = Aip//Ap LwdA (10)

A simple integration by parts of the r.h.s. of eq. (10) leads to



where
T 0
T=|"" O _”y} , V:{ﬁ} (12)
and n = [nm,ny]T is the outward unit normal to the boundary I’y surrounding the

control domain (Figure 2).

Eq. (11) defines the curvatures for each control volume in terms of the deflection
gradients along its boundaries. The transformation of the area integral of eq. (10) into
the line integral of eq. (11) is typical of finite volume methods [33-36].

REMARK 2

The computation of the line integral in eq. (11) poses a difficulty for cases where
the deflection gradient is discontinuous at the control volume boundaries and some
smoothing procedure is then required. This issue is discussed in more detail in a later
section.

Equilibrium equation

Eq. (5¢) can be expressed as
[Low]Tm,dA — SwqdA = 0 (13)
> [ o mpda— | |

Integrating by parts the first integral in eq. (13) and recalling that the bending
moments are constant within each control domain, gives

Z(/F [TVéw)Tdl)m,, — //Af?wqu =0 (14)

p p

Substituting eqs. (8a) and (11) into (14) gives finally

;( /r,, [Tvaw]Tdr)Aipr /P TV - / /Aawqu ~0 (15)

Eq. (15) is the basis for deriving the final set of algebraic equations, after
appropriate discretization of the deflection field as described next.



Derivation of the discretized equations

The final step is to discretize the deflection field. The simplest option is to
interpolate linearly the deflection within each triangular element in terms of the nodal
values in the standard finite element manner [1] as

3
w = Z Niwi = N(e)w(e) (16)
1=1

with N(€) = [N1, Na, N3] and wl©) = [wl,wg,wg,]T. In eq. (16) w; denotes the nodal
deflection values and N; are the standard linear shape functions of the three node
triangle [1]. Substituting eq. (16) into (11) gives

1
= — (e) (6) =
Kp 1, /F,,TVN w Byw, (17)

where vector wy lists the deflections of the nodes linked to the p-th control domain and
B, is the curvature matrix relating the constant curvature field within a control domain
and the nodal deflections associated to the control domain. The computation of matrix
B, is different for cell vertex and cell centered schemes and the details are given in next
sections.

Substituting eq. (16) into (15) gives the final system of algebraic equations as

Kw=f (18)

where vector w contains the nodal deflections of all mesh nodes. The global stiffness
matrix K can be obtained by assembling the stiffness contributions from the different
control domains given by

Ky= [Bp]TDpoAp (19)

The components of the nodal force vector f in eq. (18) are obtained as in standard
Cy linear finite element triangles [1], i. e.

Point loading

fi = pi (20)

where p; is the point load acting on the ¢-th node

Distributed loading

79 = [ [ o Niala)ia (21)



The global nodal force component f; is obtained by assembling the element

contributions f,i(e) in the standard finite element manner. For a constant distributed
load ¢ this gives

Ale)
fi=), d 3 (22)

(4

where the sum extends to all triangular elements sharing the i-th node and Al®) s the
area of element e.

CELL CENTERED PATCH. BPT ELEMENT

The evaluation of the constant curvature field in eq. (11) requires the computation
of the deflection gradient along the control domain boundaries. This poses a difficulty
in cell centered configurations where each control domain coincides with an individual
element. Here if the deflection is linearly interpolated within each triangle, then the
term Vw is discontinuous at the element sides. A simple method to overcome this
problem proposed by Ofiate and Cervera [33] is to compute the deflection gradients at
the triangle sides as the average value of the gradients contributed by the two elements
sharing the side. The constant curvature field for each control domain can be expressed
in this case as

3 ZFP) ,
W= 3. LT INDw + INOw®) = B, (230)
P j=1
with
wp = [wi,wj,wk,wl,wm,wn]T (23b)

In eq. (23a) the sum extends over the three sides of element p coinciding with the
p-th control domain, Tg-p) is the transformation matrix of eq. (12) for side 7, l;p) are the

lengths of the element sides, 4, = AP) is the area of the pth triangle and superindex
k refers to each of the elements adjacent to element p (k = a,b,c for j = 1,2,3. See
Figure 2a).

The computation of the curvature matrix is simple noting that the gradients of
the shape functions are constant within each element. The explicit form of matrix By,
is given in Box L.

Note that By, in this case is a 3 x 6 matrix relating the deflections of the six nodes
of the four element patch contributing to the control domain. Consequently the stiffness
matrix K, is a 6 x 6 matrix.

The resulting plate element is identical to that derived by Onate and Cervera
[33] and it is termed BPT (for Basic Plate Triangle). The element can be viewed as a
standard finite element plate triangle with one degree of freedom per node and a wider
bandwidth, as each element is linked to its neiboughrs through eq. (23a).
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Box I. Matrix B, for the 3 d.o.f. basic plate triangle (BPT)

Boundary conditions for the BPT element

The implementation of the boundary conditions is straightforward and the main
difference with standard finite elements is that the conditions on the prescribed rotations
must be imposed when the curvature matrices B, are being built. The different
situations are considered next.

A BPT element with a side along a boundary edge has one of the elements
contributing to the patch missing. This is simply taken into account by ignoring this
contribution when performing the average of the deflection gradient in eq. (23a). Thus,
if side 1 corresponding to nodes 4j lies on the boundary (Figure 3), the curvature field
for the control domain is obtained by

3 ZF,P)
Kp = %T&P)VN(PWP) + Aip 22 JTT?’) VNP w®) + YNF*)) = Bw, (24)
]:

Additional conditions must be imposed in the case of boundary edges where the
rotations and/or the deflections are constrained as explained next.

Clamped edge (w = Vw = 0)

The conditions on the rotations are simply imposed by disregarding the
contributions from the clamped edges when computing the sum along the element sides
in eq. (23a). For instance, if side ¢J is clamped this simply implies making zero the first
term in the r.h.s. of eq. (24).

The condition w = 0 on the nodes laying on clamped edges is prescribed at the
equation solution level in the standard manner.

Symmelry edge (%% =0 or %’5 =0)

The condition of zero rotation is imposed by neglecting the contribution from the

prescribed rotation term (g—‘f or ‘g—‘;’) at the symmetry edge when computing eq. (23a).
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Boundary line

Missing element
in the patch

Simply supported edge (w = % = 0)

The condition 87“; = 0, where s is the boundary direction, is simply imposed by
prescribing w = 0 in the boundary nodes at the global equation solution level in the
standard fashion. The effect of the “missing” contributing element at the boundary
edge is accounted for by skipping the averaging of the deflection gradient for that edge
as described above.

BPT1 ELEMENT

An interesting alternative to the BPT element can be derived by defining a linear
deflection gradient field over the four element patch. The simplest procedure is to use
a least square approximation of the deflection gradients computed at the centroids of
the four elements contributing to the control domain (Figure 2a). This avoids the
averaging procedure of eq. (23a) as the deflection gradient is now continuous over the
control volume. The basic ingredients of the element, termed BPT1, are given next.

The deflection gradient is defined linearly over the four elements patch as

Vw:{al}—i—{zl}m—l—{cl}y:a—}—bm—i—cy (25)
2 €2

as

The a, b and ¢ parameters are obtained by minimizing the following quadratic
form

1
Jp = >_[(Vw)i — (a+ ba; + cy,))? (26)
1=1
with respect to the parameters a;, b;, ¢;

11



In eq. (26) (Vw); are the deflection gradients computed at the centroid (Z5,55) of
each of the four elements linked to the p-th control domain. It can be easily shown that

1 23: a§i)
(vw)l = : { i } wj (27)
2A4(9) =1 ﬂ]( ) J

with a](.i) = y,(:) - yl(i), ﬁ](.i) = a;l(i) — x](j) for an element with nodes j, k, { [1].
In eq. (27) A is the area of the 4-th element and xéi), yJ(i) Jj =1,2,3 are the
coordinates of the element nodes.

Minimization of J;, gives

[a1,b1,¢1]" = CT1GSw, (28a)
[ag, ba, o] = CT1GSyw, (28b)

where wp is given by eq. (23b) and the form of the matrices C, G, S, and Sy is shown
in Box II.

Eq. (25) can be used to compute the curvature vector for each control domain
using eq. (11) as

T§p) [a+bz; + cy;]l; = Bpw, (29)

1
Kp = —/F T[a + bz + cydl' =
1

1 3
Ap 1y Ap 1=
where the sum extends to the three edges of the control domain, =, y; are the
coordinates of the mid-point of the j-th edge and l; is the edge length. The expression

of By in this case can be easily deduced substituting eqs. (28) into (29).

The treatment of the boundary conditions follows the same procedure as for the
BST element. Naturally in a control volume sharing a boundary edge, the linear
interpolation of the deflection field is then exact as only three elements are involved
in the approximation. Also, the contribution of edges where the rotation is prescribed
to a zero value is neglected in the sum of eq. (29).

REMARK 3

The curvature matrix for the BPT1 element can be readily derived by using the
original form of eq. (10) as the second derivatives of the deflection field can be directly
computed from eq. (25). The result is obviously the same in both cases.

REMARK 4

The interpolation of the deflection field can be enhanced using weighted least
square interpolation techniques [37].

12
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Box II. Matrices involved in the derivation of the BPT1 element
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REMARK 5

The performance of the BPT and BPT1 elements is identical for regular structured
meshes as the stiffness matrices are the same in both cases. In non-structured meshes
the performance of the BPT1 element is slightly superior as it will be shown in the
examples.

CELL VERTEX PATCH. BPN ELEMENT

As mentioned earlier, a different class of rotation-free plate triangles can be derived
starting from the so called cell vertex finite volume scheme (Figure 2b). The advantage
of the cell vetex scheme is that the deflection gradient is now continuous along the
control domain boundaries. This allows to compute directly the constant curvature
vector over the control domain as

1
== /F TVN;w;dl’ = B;w; (30)
2 7

where N; contains contributions from the shape functions from all the elements
participating in the i-th nodal control domain. Eq. (30) can be rewritten in a simpler
form taking into account that the deflection gradients are constant within each element,
as

o~

1 .

g EJT]VN wl) = Bw; (31)
4; J

where the sum extends over the n; elements contributing to the i-th control domain (for

instance n; = 5 in the patch of Figure 4), l; is the external side of element j, T is the

transformation matrix of eq. (12) linked to the side l;, superindex j refers to element

ni
values and A; = % Y. A®) where A is the area of element £.
k=1

The computation of the curvature matrix B; is not so str aightforward in this case
as 1ts size depends on the variable number of nodes over the element patch contributing
to a nodal control domain (see Figure 4).

Typically

1 2 ... Dn
B, = [B/, B, .., B’ | (32)
3Xn

where pj, is the number of nodes in the patch (i.e. pp = 6 in the patch of Figure 4) and

superindexes i, a, .. .7 refer to global node numbers. An explicit expression of the nodal
curvature matrix BZ can be found as

: 1 (k)
B =_-—3 I,T,VN, (33)
3x1 24; k ’

14



Element nodes
1 23
a gk
b i k|
c i 1 m
d i mn
e 1 n |

Figure 4. BPN element. Example of a typical control domain and numbering of nodes

where the sum extends now over the elements sharing node 7 within the patch and j
is the local number of node 7 within element k. An example of matrix B; for a typical
control domain is shown in Box III.

It is important to note that B; is in this case the global curvature matriz for the
central i-th node. Thus, the product B;L-FDZ-B,,;A,L- provides the i-th row of the global
stiffness matrix. This simplifies the assembly and solution process as the global stiffness
equations for a node can be elliminated once they are computed.

Indeed the standard “element” stiffness matrix can be found by adding the
contribution of the three internal domains participating into each triangular element as
shown in Figure 5. This however has been found not useful for practical purposes and the
direct assembly of the control domain contributions as explained above is recommended.

This plate element is termed BPN (for Basic Plate Nodal patch). Note that the
concept of “element” is here generalized as the BPN element combines a standard finite
element interpolation with non-standard integration domains.

Boundary conditions for the BPN element

The method for imposing the boundary conditions in the BPN element follows
the lines previously explained for the BPT element. The procedure is now simpler as
the deflection gradient is now continuous along the control domain boundary which
intersects the central node in this case (Figure 6). As usual, the conditions on nodal
deflections are imposed at the global solution level while the prescribed rotations must
be treated when building the curvature matrix.

15



B; = [B!,B/,B*, B!, B B"]
Bi = ﬁ[z(ﬂacga) +4, 1,60 + 1.6 1 1,6 TGl
B — ﬁ[zaﬁracg"') + TGP
BF = %&[IGT,LG:E,“) I el
B = 21141. BTG + 1 TGY)
B" — 2}% TG + 11,64
B = i[szng‘” + 1 TG
ng) _ VNi(k’) _ 2;@ {lc)i }(la)’ bgk) _ yy») yl(gk-), CZ(k) _ m,(f) _ mgk)

Box III. Example of derivation of the curvature matrix for the BPN control domain

of Figure 4

Clamped and symmelry edges

Zero rotation conditions at clamped and symmetry edges are simply imposed by

elliminating the contributions from these rotations terms in the sum of eq. (31).

Stmple supported edges

The condition %%

level.

16

0 along an edge direction is simple accounted for by
prescribing the deflections of the edge nodes to a zero value at the global solution




Figure 5. Contribution of control domains to a BPN triangular element in the cell
vertex scheme

Boundary line

Figure 6. BPN element. Control domain sharing a boundary line. Integration path
for computation of curvature matrix

Free edges

No special treatment for the rotations is required at free edges. Advantage can be
taken from the mixed formulation in this case by prescribing the edge bending moments
My, and Mgy, to a zero value. This can be simply done by elliminating the contributions
from these moments at free edge patches by making zero the appropriate rows in the
constitutive matrix D. Indeed if the free edge is not parallel to one of the cartesian axes
a transformation of the constitutive equation to edge axes is then necessary.

This procedure can also be applied to impose the condition M, = 0 at simply
supported edges.

17



BASIC SHELL TRIANGLE (BST)

The BPT element of previous section can be combined with the standard Constant
Strain Triangle (CST) [1] to model membrane behaviour. The resulting rotation-free
shell element is called Basic Shell Triangle (BST). The nodal degrees of freedom of the
BST element are the three displacements. Thus, the computational cost of the BST
element is equivalent to that of a standard membrane element, while it incorporates full
bending effects. Details of the derivation of the BST element are given below.

BST element. Bending stiffness matrix

Figure 7 shows the patch of four shell triangles typical of the Cell Centered (CC)
finite volume scheme. As usual in the CC scheme the control domain coincides with
an individual element. Also in Figure 7 the local and global node numbering scheme
chosen is shown. A clear definition of local and global node numbers is essential for the
derivation of the element stiffness matrix as shown next.

m Catzo} domain 1,2,3 Local node numbers

i,j,k Global node numbers

Figure 7. BST element. Control domain and four elements patch

Figure 8 shows the local element axes z'y’2 where &' is parallel to side 1-2 (or
i—7) and in the direction of increasing local node numbers, Z’ is a direction orthogonal
to the element defining the unit normal vector n and y' is obtained by cross product of
vectors along 2z’ and z/. A side coordinate system is also defined (see Figures 8 and 9)
including side unit vectors s, t and n. Vector s is aligned along the side following the
directions of increasing global node numbers, n is the normal vector parallel to the 2/
local axis and t = n A s.

For simplicity let us express the local rotations 0,1, G,y/ along each side in terms of
the tangential and normal side rotations 0s and 6,,. The sign for the rotations follows
the criterion of Figures 8 and 9.

18



Figure 9. BST element. Transformation from side to local rotations

The transformation relating local and side rotations is written as

09 _ {6,,;/ }(e) _ [Cij _Sij}(e) { Os.; }(e) — . 9’ (34)

Oy Sij  Cij

where Gsi]. and 9”1‘7‘ are the tangential and normal rotations along side 75 of element

ow' (e) (e (e)

I . .
g By = T 9,,// = 3 and Cij > Si; are the components of side vector s;; > 1.e.
(e) _.(e) (ehT
S;; = [Cij ,S,L.]-] .
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The definition of curvatures follows the lines given for the BPT element. The
local curvatures over the control domain formed by the triangle ¢jk are given by (see

eq. (11))

1
%=~ /F TV w'dl (35)
p
where
32w/ 8210’ (9210/
I —
" l_ 8z’ oy’ ’—zam’ay’] (30m)
g AT 9
N e R R 4 (350)
o T dy’

where ¢,1, t,s are the components of vector t in the 2/, 3’ coordinate system, respectively.

Recalling that ' = [G:I;I,QZUI]T = V'w' and substituting eq. (34) into (35), the
curvature over the triangular control domain can be written as

K’;ID A(p) [T 17 T(p)eu lL] + T(p)T(p)o l ( )T(p)olulkz] (37)

In the derivation of eq. (37) it has been assumed that the local rotations are
constant over each element side. This is a consequence of the linear interpolation chosen
for the displacement field.

The tangential side rotations can be directly expressed in terms of the local
deflections along the sides. For instance, for side jk

! /(p) w,(p)
k% .
9k

where [, is the length of side jk.

Equation (38) introduces an approximation as the tangential rotation vectors of
adjacent element sharing a side are not parallel. Therefore the tangential rotation are
discontinuous along element sides, i.e. (see Figure 8)

[(P) _ U)"(P) w/(b) ,w/.(b)

(p) _ Yk j k j (b)
S5k ljla; 7é ljk ; (39)

The authors have found that this error has little relevance in practice. Note that

the error diminishes for smooth shells as the mesh is refined. Thus, for quasi-coplanar

sides wk(p) ~ wﬁb), wg-(P) ~ w;-(b and 9£ 2 ~ 9( )
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An alternative to ensure a continuous tangential side rotation is to define its value
as the average of the tangential side rotations contributed by the two adjacent elements
to the side, i.e.

B 1
o= ( @) 1 g )) (40)

The normal rotation vector has the same direction for the two elements sharing
a side (Figure 8). A continuous value of the normal rotation along the side can be
enforced by defining an average normal side rotation as

oF), = S(6%) +0%),) (41)

Using eq. (34) the average normal rotation along the side can be expressed in
terms of the normal deflections as

P 1 b b)
Where

M) = 1=, ) (13)

Substituting eqgs. (38) and (42) into (37) and choosing a standard linear
interpolation for the displacement field within each triangle, the curvatures for the
control domain can be expressed in term of the normal deflection values of patch nodes
as

H;) = Spw;) (44)
, = [s),80) s (45)

] ] P a a a b b b c c c
;(p),’LUj(p),'LUi(I),’lUS( ) /( )7w;( ),w;f ),’LUS( ),w%(?),w;( ))w;f ),w;i )]T

(46)

The form of the different Sz(zj) matrices is given in Box IV. Note also that the

definition of vector w;, depends on the convenion chosen for the local and global node
numbers for the element patch (Figure 7).
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| — /
K, = Spw),

w;} _ [’wi(l') ) ’LU;-(P) , w;\fﬁ) ) ;(“) , é(‘l) , ,w;(“) ’ w;‘:(b) , }(‘7) , ;::’) , g(c) , 'UJ;‘:(C) , ;i“)]T
_a® q® <@ @ _ i n)n) 4 (0)
Sp = [Sij ’Sjk » S J; Sij = MTU Tij Aij
o o/ B/ 0 0 0 0 . .
AP =10 T W @ @ @ O 0l a=-1,B=1 >
L 71]1 71_7‘ 7ijk 72]] 71]1 7ijl . .
o= 1) ﬂ = _1, J <1
, 0 a/lip Lik 0 0 0
A('p‘)— ‘ /.]L ﬁ/.]’” 03 b b n O3|; a=-1, B=1,k>j
ik ® (p) () (b))
L Yiki Yk Vikk Yk YVikj  Vikm .
a=1, B =-1,k<j
( (Bl 0 afly 0 0 0 1 B B oy
AP =" o @ 08 0 g o | e=1 B=-1k>i
L Yiis Trij  Vkik Vrii Vrik  Vkin )
a=-1, =1, k<
@ _ Lyoogn® @ __ . (@ _[0 0 0
ik = 5)\1']‘ VN, N =[-8, cj’ls 03 [0 0 0
aNy 7 (P) 1 (p)
(p) _ oz’ _ bi . (p) o )(p) /(1’). (p) _ )(p) )(p)
ka = liaa];,,"} - 2A(P) {Cz} ) bz _y] _yk ) c‘i — %k _:B]

Box IV. BST element. Local curvature matrix for the control domain of Figure 7
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The normal nodal deflections are related to the global nodal displacements by the

following transformation

where
7 J k [ m n
c” o 0o 0o o o0
o c” o 0o o o
o o c” o o o
o ¢ o o o o \
(a) u;
c;’ o o (()a) 0 0 N
0 0 0 C; 0 0 3
Cp= ® ap = o (48)
o o ¢Cc” o o0 o w
o c” o o o o o
o) L
o o o o ¢’ o
c® o o o o o
o o c9 o o o
o o o o o cY
with
Uy
) = (), ) o ()
wj
In above 032 is the cosine of the angle between the local 2’ axis of element p and

the global z axis, etc.

Substituting eq. (47) into (44) gives finally

Ky = By,ap (50)
where
By, = SpCp (51)

is the curvature matrix of the control p-th domain. In egs. (47) and (50) a; is the
vector containing the eighteen nodal displacement variables of the six nodes belonging
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to the patch of elements associated to the p-th control domain. Recall that in the BST
element control domains coincide with triangles.

The bending stiffness matrix associated to the p-th control domain is obtained by

Ky, = APB] D,B,, (52)

where D), is the bending constitutive matrix for the patch (see eq. (8)).

BST element. Membrane stiffness matrix

The membrane contribution to the BST element is simply provided by the
Constant Strain Triangle (CST) under plane stress conditions. The local membrane
strains are defined within each element in terms of the nodal displacements as

N N RN I
Em =) Bp. ul =By ay (53)
1=1
where
T
;o ou' o' ou o (54)

m = o 8y 0y T o

oN®)
oz’ ) . bi 0 (p)
(p) NP
B, = = 0 ¢ 55
m; 0( ) _85(’_) 2A(P) . ZZ (55)
aN_P 8Np () (3
oy’ ox!
u/‘(P)
1
a/n(;’) _ u‘/j(P) and u;:(l’) _ [u;(P)’ ;(P)]T
/(P)
Wy

(#) and vé(p) are the local in plane displacements along z’, 3 axis (Figure

c(p ) are defined in Box IV.

1

In above u;
8) and b7

The membrane strains within a control domain (coinciding with a triangle) are
expressed now in terms of the eighteen global nodal displacements of the four elements
patch as follows

e, =B\ Lya, = By ay (56)
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where
Bm, = Bjn Ly (57)

The transformation matrix Ly is given by

Ly=| 0 L® o o |, LO=|%z %y % (58)
0 0 L® gx9 Sz Cyly  Cyz

The membrane stiffness matrix associated to the p-th control domain is obtained
as

Ky, = APBL, DBy, (59)

P

where for an isotropic homogeneous material

1 v 0
Bt
Dp=r—g|v 1 0 (60)
(_V) O 0 1511

BST element. Full stiffness matrix and nodal force vector

The stiffness matrix for the BST element is obtained by adding the membrane and
bending contributions, i.e.

Kp — Kbp + anp (61)

where Kj, and K, are given by egs. (52) and (59), respectively.

Recall that the dimensions of the stiffness matrix K) is 18 x 18 as it links the
eighteen displacements of the six nodes contributing to the control domain. The
assembly of the stiffness matrices K into the global equation system follows the
standard procedure, i.e. a control domain is treated as a macro-triangular element
with six nodes.

The equivalent nodal force vector is obtained similarly as for standard C{ shell
triangular elements. Thus, the contribution of a uniformly distributed load over an
element is splitted into three equal parts among the three element nodes. As usual
nodal point loads are directly asigned to a node.
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Boundary conditions for the BST element

The procedure for prescribing the boundary conditions for the BST element follows
the same lines explained for the BPT plate triangle.

The process is simplified as the side rotations are formulated in terms of the normal
and tangential values. This allows to treat naturally all boundary condition types found
in practice.

Thus, the conditions on the normal rotations are introduced when forming the
curvature matrix, whereas the conditions on the nodal displacements and the tangential
rotations are prescribed at the solution equation level.

Clamped edge (u; = u; =0, =0,.. =0)

nij = Ysij

The condition u; = u; = 0 is prescribed when solving the global system of
equations. Note that, the condition 931.7. = 0 is automatically satisfied by prescribing

the side displacements to a zero value.

)
(see Box IV) as this naturally enforces the condition of zero normal side rotations in
eq. (42).
Note that the control domain in this case has the element adjacent to the boundary
side missing. This has to be properly taken into account in the assembly process.

The condition 0n;; = 0 is imposed by making zero the second row of matrix A(?)

Simply supported edge (u; = u; =6, = 0)
This condition is simply imposed by prescribing u; = u; = 0 at the global equation
solution level.

Symmetry edge (6,,,. = 0)

n, ]

The condition of zero normal side rotation is imposed by making zero the second

row of matrix AE? ) as described above.

Free edge

Matrix Ag?) is modified by ignoring the contribution from the missing adjacent

(a) (a) (@) _ g

element to the boundary side i5. This simply involves making 7, 5 =Yy =Ty =

and changing the 1/2 in the definition of ’)’L(;D;z to a unit value (see Box IV).

BASIC SHELL NODAL ELEMENT (BSN)

The BPN plate element described in a previous section is extended now to shell
analysis. The derivation of the bending and membrane stiffness matrices is described
next.
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BSN element. Bending stiffness matrix

Figure 10 shows a typical verter centered control domain surrounding a node and
the corresponding patch of BPN shell triangles. The following coordinate systems are
defined:

Global system: w,y, z, defining the global displacements u, v, w.

zZ,wW

Figure 10. BSN element. Control domain and coordinate systems

Local element system: z'y 2/, defining the element curvatures. Vector 2’ is defined
along the direction of the external side of each element in the patch, 2’ is the normal
direction to the element and the 4’ axis is obtained by cross product of unit vectors
along the 2’ and z’ directions.

Nodal system: z,7, z, defining the constant curvatures field over the control domain.
Here Z is the average normal direction at the node, Z is defined as orthogonal to z and
lying on the global plane =, z (if Z coincides with the global y axis, then Z = z) and the
y direction is taken as cross product of unit vectors in the z and 7z directions.

A constant curvatures field is defined over each control domain. For convenience
the curvatures are defined in the nodal coordinate system. From simple transformation
rules for each triangular element we can write

k=Rix=RiRyk’ (62)
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In above

5 v 8%w o 920 |7 63)
| 0z’ a2’ “0zoy (
is the nodal curvature vector
, 2w 9% 92 T
K = |— =, — ,—2 (64)
oz’ 0y’ 02y

is the element curvature vector and & is an auxiliary “global” curvature vector used to
simplify the transformation from element to nodal (local) curvatures. Recall that w' is
the deflection in the direction of the 2’ axis. The transformation matrices R and Ry
are given by

2 2 2

Caa Czy Ciz CzzCxy Cz2Czz CiyCzz
2 2 2 e oA e

R = €y iy Cyz CyzCiy CaCijz CyCyz

26:7::1: 2C1jru 2Ciyc_17y 2CrEng]z CxzyCijz + CzzCyy CzzCyz + Czq Cyz CzzCyy + CayCyz

(65)
2 2 -
[ Caly Cyla Cal :Cyl g,
2 2
Caty 'y CalyCy'y
C2 C2 C C
R2 = IL"Z :I/IZ .’L'IZ y’z (66)
2%’:1;%’;1/ 2C,ylmcyly CoplyCyly: -t Capl Cyly
2C,15Cp, 2C;q’ﬂ:cy/’z Cot 2Cylq + Col:Cyl 2
L2CuyCaty 2eyyCyrz ColzCyty + CoryCyry |

where as usual cz, is the cosine of the angle between Z and z axes, etc.

Let us write eq. (62) in integral form using the weighted residual method with
unit weight functions [1] as

lhm-RlBQ#yulzo (67)

where A; is the area of the i-th control domain surrounding node i. A simple integration
by parts gives (noting that the curvatures & and the transformation matrix R; are
constant within the control domain)

_ 1 (7) !

n:—Rl/RﬂVwﬂ 68

7 A7 1 T; ( )
where T is given by eq. (36b). In the derivation of eq. (68) the changes of the

transformation matrix Ry across the element sides have been neglected. Note that
these changes tend to zero as the mesh is refined.
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Eq. (68) can be computed by performing the boundary integral over the different
elements which contribute to the control domain of node ¢, i.e.

1 _@ l: ¢4
RS IRY T,V (69)
a2

K, =

where the sum extends over the number of elements contributing to the i-th control
domain, [; is the external side of element j (see Figure 10) and A; is the area of the i-th

n; r iz
control domain A; = % > Ag-b), where Agl) is the area of the j-th triangular element
J=1
contributing to the control domain.
Substituting in eq. (69) the standard linear interpolation for the normal deflection
w' within each triangle gives

R; = S;w), (70)

with
1 2 T
si= [sl®, s® | s0] (71)

)

where n; is the number of elements in the i-th patch (for instance n; = 6 in the patch
shown in Box V) and superindexes a,b, ...,r refer to global element numbers. Matrix

(k) . .
S, is given by

si” = V6!, ey, aff) (72)
. 2 _ b o @R,
Y i S (73)
and

k)
- : 1 [o ; k k ; k k
T B A S B

/((l) 1
(b)
JAE k k k k
"”'Ii _ : 2 , 'w'( ) _ [w,l( ),w,Z( ),wé( )]T (75)
'wl(r) Pn
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The final step is to transform the local nodal deflection vector w! to global axes.
The process follows the transformations explained for the BST element (see eqs. (47)-
(49)), i.e.

w; = C;ay (76)
with

T

al = [uT T ..T T

1 auj y Uy e 7upn y Wy = [u'i7 Ui7w’i]T (77)

In eqs. (75) and (77) py, is the number of nodes in the patch linked to the i-th

control domain (i.e. p, = 7 for the patch shown in Box V) .

The form of the transformation matrix C; depends naturally on the numbering of
nodes in the patch. A simple numbering scheme can be derived by taking the central
node as the first node for each element and the remaining two edge nodes in anticlockwise
order as nodes 2 and 3. An example of this numbering scheme is shown in Box V.

The curvature matrix is finally obtained by substituting eq. (76) into (70) giving
ki = By, a (78)

with the curvature matrix given for the i-th control domain given by

By, = S;C; (79)

The bending stiffness matrix for the ¢-th control domain is finally obtained by

K;. = A;BD;By, (80)

where D; is given by eq. (8b).

Box V shows an example of computation of the curvature matrix for a typical BSN
element.

BSN element. Membrane stiffness matrix

The membrane contribution to the BSN element can be obtained from the stiffness
matrix of the CST element following the lines explained for the Basic Shell Triangle
(BST) in previous section. A difficulty however arises in the assembly of the bending
and membrane stiffnesses in this case as cell vertex control domains do not coincide
with triangles as in the BST element. This assembly is however possible by identifying
the membrane stiffness contribution to each nodal control domain.

An alternative and simpler assembly scheme can be devised by obtaining directly
the membrane stiffness matrix for each control domain following a similar procedure as
for the bending case.
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Box V. Example of computation of the curvature matrix for the BSN element
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For this purpose a constant membrane field &, is assumed over the control domain.
For convenience the membrane field &, is defined in the nodal coordinate system. The
relationship between nodal and element membrane strains can be obtained from

Emn = R1Roe! (81)

m

where R and Ry are the transformation matrices given by egs. (65) and (66) and

- [20.20 0800I 20

m= 9z 07’ 0y ' 0z “
ou' v ou o ¥

E;n = [@’8—1/’8_‘1/ + E] (82b)

From eq. (81) the following expression for the membrane strains in the i-th control
domain is readily obtained

) 1 G 1) —AD ) 0
Em; = A—LRgZ) //Az RQE;ndA = A_LRgL) Zj: Tjo)ezn (83)

where the sum extends over the elements contributing to the z-th control domain, 647('17)

are the local strains over the j-th triangular element, AU) is the area of this triangle
and the rest of terms have the same meaning as in eq. (69). Note that in the derivation
of eq. (83) the local strain field &), has assumed to be constant over each element in
the patch.

The local membrane strains within each element are now readily expressed in
terms of the nodal displacements by eq. (53). Substituting this equation into (83) the
following matrix expression can be found

Em; = B;ni u;' (84)
where
1 2 n;
Bn = [M”, M, ., M) (85)
with

MEL) _ H(k)[B/(k) B/(k) B/(k)

7 mi1o—mg) 771,3]

(86a)
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: ®) v (&
Y = ?g;giftg”ligk> (86b)

(k)

and the expression of B;,L]l is given by eq (55).

In eq. (84) ué is the vector of nodal in-plane displacements for each element in
the patch given by

e 1 ()
ORI “ U’l( | w  (w®
! A a . ne v
u; = : x u = u’2( | , with u; = {UIJ'(“) } (87)
o' ) ug g

The next step is to transform vector ué to global axes. The transformation reads
u, = L;a; (88)

where a; is the global nodal displacement vector for the i-th control domain given by
eq. (77) and L; is the local-global transformation matrix. This matrix is obtained
by assembling the nodal contributions L) given by eq. (58). The structure of L; is
identical to that of matrix C; (see Box V).

Substitution of eq. (88) into (84) gives
Em; = B;ni L;a; = Bmiavi (89)

with
Bn, =B, L; (90)

m;

The membrane stiffness matrix for the i-th control domain is finally given by
— ART
K’l77/i - A'LB'I’I'LiD"TI«iB'I'I"Li (91)

where D,y is given by eqgs. (60) and (8b).

BSN element. Full stiffness matrix and nodal force vector

The stiffness matrix for a control domain characterizing a control domain for the
BSN element is obtained by adding the membrane and bending contributions as

where K. and K., are given by egs. (80) and (90), respectively.
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Recall that in the BSN formulation control domains do not coincide with individual
elements as in the BST case. The stiffness matrix K; of eq. (91) assembles all the
contributions to a single node and therefore it is already a global stiffness matriz. The
stiffness assembly process is therefore not necessary as in the case of the BPN element.

The equivalent nodal force vector for the BSN element can be obtained in identical
form as for the BST element, i.e. a uniformly distributed load is splitted into three equal
parts and assigned to each element node and nodal point loads are directly assigned to
the node at global level.

Boundary conditions for the BSN element

The conditions of prescribed displacements are imposed as usual at the equation
solution level after the global assembly process.

The conditions on prescribed rotations at edges follow a similar process to that
explained for the BPN plate element. Thus, free boundary edges are naturally modelled
simply by noting that the free boundary edge is now part of the control domain boundary
(see Figure 6). On the other hand the conditions of zero rotation along an edge is
imposed when forming the curvature matrix by making zero the appropriate row in

matrix Gg-k) of eq. (74).

It is worth noting that the nodal definition of curvatures and membrane strains
allows to impose the condition of zero bending and/or axial forces at free and simply
supported boundaries by making zero the appropriate rows of the constitutive matrix

as explained for the BPN element.

EXAMPLES

Square plates under uniform and point loads

A number of examples of thin square plates have been studied to test the efficiency
of the BPT, BPT1 and BPN rotation free plate elements. The examples analyzed are
the following;:

e Simple supported square plate under uniform load (Figure 12)

e Simple supported square plate under central point load (Figure 13)
e Clamped square plate under uniform load (Figure 14)

e Clamped square plate under central point load (Figure 15)

Figure 11 shows the geometry of the plate and the material properties. Results
shown in Figures 12-15 have been obtained for structured meshes using the two different
mesh orientations shown in Figure 11. Numerical results for the central deflection
obtained with the BPT, BPT1 and BPN elements are compared with the standard thin
plate solutions [4] and with results obtained with the standard 9 d.o.f. DKT plate
element [7,16] and the 6 d.o.f. Morley plate triangle [6]. Results obtained with the
new rotation free plate triangles compare very favourably with those obtained with the
DKT element. As expected, the Morley triangle yielded a higher error for the same
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degrees of freedom in all cases due to the presence of mid side normal rotations. This
substantially increases the numbers of nodal variables in the Morley triangle for the
same type of meshes.

Note also that the BPN gave in most cases more accurate results than the BPT
and BPT1 elements. However, a good feature of these two elements is that they seem

to be insensitive to mesh orientation, a property not shared by the BPN and the DKT
triangles.

Note that results for the BPT and BPT1 elements are identical in both cases as
expected for regular meshes.

The performance of the new rotation free triangles in non-structured meshes was
also found to be remarkable [38]. Results for the central deflection for a clamped plate
under a central point load using a non-structured mesh are shown in Figure 16a.

(a)
b
Orientation A Orient(atgon B (C)
’T‘ 1.2 ‘TA L2
L2 L2 R
\
I\\
— =% —

Figure 11. a) Square plate: L = 10, structured mesh, orientation A; b) Square
plate: structured mesh, orientation B; c¢) Circular plate: structured mesh.

E =10.92, v =0.3 and ¢t = 0.01 in all cases
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Figure 12. Central point deflection of a simple supported square plate under uniform
load. a) Mesh orientation A; b) Mesh orientation B
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Figure 13. Central point deflection of a simple supported square plate under central
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Figure 14. Central poi.nt deflection of a clamped square plate under uniform load.
a) Mesh orientation A; b) Mesh orientation B
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Figure 16. Central point deflection of clamped square and circular plates under a
central point load. Error in central deflection values obtained with BPT,
BPT1 and BPN elements using the non structured meshes shown

Circular plates under uniform and central point loads

Figure 11c shows the geometry of the plate and the material properties. Again
a number of tests using the BPT, BPT1 and BPN rotation free plate triangles was
performed using structured and non-structured meshes.

Numerical results for the central deflection using structured meshes are shown in
Figures 17 and 18 for the following cases:

e Simple supported circular plate under uniform load and a central point load
(Figure 17);

e Clamped circular plate under auniform load and a central point load (Figure 18).
The performance of the three rotation free elements is excellent. Numerical results

were in all cases (with exception of the example of Figure 17a) more accurate than those
provided by the DKT and the Morley triangles.

Note that results for the BPT and BPT1 differ slightly in this case as the mesh is
not regular. No particular trend in the comparison between the results obtained with
the two elements is observed. This favours the use of the BPT element for practical
purposes due to its simplicity.

Again the performance of all rotation-free plate elements for non-structured meshes
was found to be excellent [38]. A typical example is shown in Figure 16b.
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Figure 17. Central point deflection of a simple supported circular plate. a) Uniform
load; b) Central point load
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Skew thin plates under uniform load
Figure 19 shows the typical geometry of the skew plates analyzed and the material
properties. The following cases are considered.
e Bi-clamped 30° skewed plate under uniform load (Figure 20)
e 60, 40 and 20° cantilever skewed plates under uniform load (Figures 21-23).

Numerical results obtained with BPT , BPT1, BPN, DKT and Morley triangles
using structured meshes are compared with a finite difference solution reported in [39]
and with finite element solutions obtained with the DRM and ELM1 Reissner-Mindlin
triangles [13, 20] (Figure 21-23) .

The performance of the new rotation-free plate elements is also good in all these
examples. The maximum error for a 1000 d.o.f. mesh did not exceed 2.5 % in all cases.
Obviously the solution can be improved using mesh adaptivity as shown in [38].

L 2 1

30° E=100.0 o E =100.0
\/\/ * L=100.0 ‘\/\/\/W L = 100.0

t=0.1 t=4.0

/V\/\/\/ L v=03 L v=03

L L,

Figure 19. a) Bi-clamped skewed plate under uniform load; b) Skew cantilever plates
under uniform load
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Figure 20. Bi-clamped 30° skewed plate under uniform load. Convergence of central
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Figure 21. 60° skew cantilever plate under uniform load. a) Convergence of deflection of corner point 1;
b) Convergence of deflection of corner point 2
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Figure 22. 40° skew cantilever plate under uniform load. a) Convergence of deflection of corner point 1;
b) Convergence of deflection of corner point 2
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Figure 23. 20° skew cantilever plate under uniform load. a) Convergence of deflection of corner point 1;
b) Convergence of deflection of corner point 2
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Cylindrical shell under central point load

Figure 24 shows the geometry of the shell, the material properties and the loading.
The problem has been studied with the BST and BSN rotation-free shell triangles using
structured and non-structured meshes [38].

Figure 24 shows the convergence of the central deflection obtained using structured
meshes. The reference solutions were obtained from [40,41]. Numerical results for the

three rotation free shell triangles compare well with those obtained with the DKT-15
[7,16] element also shown.

A plot of the distribution of the bending moment M,/ along the central edge AB
is shown in Figure 25.
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Figure 24. Cylindrical shell under central point load. Error in vertical displacement of
point A for different structured meshes of BSN, BST and DKT-15 elements
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Cylindrical shell under uniform load

The geometry of the well known Scordelis-Lo shell [42,43] is shown in Figure 26.
The convergence of numerical results for the vertical displacement of the free point B
using structured meshes is shown in the same figure. The results obtained with the new
rotation free triangles compare favourably with those obtained with the DKT-15 [7,16]
element. Note the higher accuracy of the BSN element for this problem. Further results
for this problem using non-structured meshes can be found in [38].

Open spherical dome under opposite diametral point loads

The geometry of the sphere, the material properties and the mesh is shown in
Figure 27. Again the solution reported here has been obtained using structured meshes.
A non-structured mesh analysis can be found in [38].

Figure 27 shows the convergence for the radial displacement of point A obtained
with the BPT, BSN and DKT-15 elements. Numerical results converge in all cases to
a stiffer solution than the reference value of 0.093 [11,43]. This well known defect is
due to the appearance of strain energy causing an over stiff flexural response commonly
known as membrane locking [44]. Methods to elliminate this defficiency are presented
in [8].

Some numerical results are shown in Table I. Note that the behaviour of the BST
and BSN elements is more accurate than the DKT-15 element for a considerably smaller
number of degrees of freedom.
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Rotation-free shell triangles DKT-15
N° BST BSN N°
triangles d.o.f. w4 error WA error triangles | d.o.f. wA error
2048 3200 [0.0835| 10.2% |0.0821 11.7 2048 5312 [0.0798| 14.2%

Table I. Open spherical dome.
structured mesh of 2048 triangles using BST, BSN and DKT-15 elements

Radial displacement of point A obtained with a

A
sym. L=50.0
Z sym. R=25.0
t=0.25
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v=0.0
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Figure 26. Cylindrical shell under uniform load. Convergence of vertical displacement
of point B for different structured meshes of BSN, BST and DKT-15

elements

DOF
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Hyperbolic shell under uniform load

The geometry of the shell and the material properties are shown in Figure 27. A
comparison of the central deflection values obtained with different structured meshes
using BST, BSN and DKT-15 elements is shown in Figure 27 where a reference solution
is also shown [45]. Note the accuracy of less than ~ 10 % error obtained in all cases for
meshes with more than 100 d.o.f.

R=10.0
t=0.04
E=6.825x10
v=0.3

< 0.14

E —O— BSN

o | —O— BST

E 0.12 —4—— DKT

o

~

é —

m 0.10

g:) 0.093

’_1 —

[a™Y

|75

L)

A 0.08

20.06 T T T T T T TTTTT T T T
10 100 1000 10000

DOF

Figure 27. Open spherical dome under point load. Error in radial displacement of
point A for different structured meshes of BSN, BST and DKT-15 elements

50



Spherical cap under uniform impulse loading

The last example shows the efficiency of the new BST and BSN rotation-free shell
triangles for explicit dynamic analysis of shell structures.

The problem description and the mesh of 800 triangles (1082 dof) used to discretize
the spherical cap are shown in Figure 29. Fourfold symmetry was used. A uniform load
of 600 psi was applied over the cap as shown. Both elastic and elasto-plastic materials
with the material properties given in Figure 28 were considered. The results for the
central deflection obtained with the BST and BSN elements are compared in Figures
30a and 30b to those obtained with the DK'T-15 element [46] and with results reported

in references [47,48]. Note the accuracy of the new rotation free triangles for both the
linear and non-linear solutions.
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Figure 28. Hyperbolic shell under uniform pressure. Convergence of vertical

displacement of central point for different structured meshes of BSN, BSN2,
BST and DKT-15 elements
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Figure 29.
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Figure 30a. Spherical cup under uniform impulse loading. Evolution of central

displacement; Elastic solution
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Figure 30b. Spherical cup under uniform impulse loading. Evolution of central
displacement; Elastoplastic solution. Results obtained with BST, BSN
and DKT elements are compared with those obtained by Bathe [48] and
using the explicit dynamic code WHAMS [47]

Other examples of the performance of the new rotation-free shell triangles for non
linear dynamic analysis problems including frictional contact conditions are reported in
[49-52].

CONCLUDING REMARKS

A general methodology for deriving rotation free plate and shell triangles has been
described. The two element families here presented result from combining cell centered
and cell vertex finite volume schemes with finite element interpolations over triangular
elements. The simplest elements of these two families, i.e. those corresponding to a
linear displacement interpolation, have been described in some detail. The resulting
plate and shell triangles are simple and unexpensive as they only involve translational
degrees of freedom as nodal variables.

The performace of the new rotation-free plate and shell triangles has been found
to be very good in all cases studied. The elements seen particularly promising for
competitive analysis of large scale non linear shell problems typical of sheet forming
and crash-worhtiness situations.
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